[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0112206B1 - Method of coating metallic surfaces with carbides - Google Patents

Method of coating metallic surfaces with carbides Download PDF

Info

Publication number
EP0112206B1
EP0112206B1 EP83402215A EP83402215A EP0112206B1 EP 0112206 B1 EP0112206 B1 EP 0112206B1 EP 83402215 A EP83402215 A EP 83402215A EP 83402215 A EP83402215 A EP 83402215A EP 0112206 B1 EP0112206 B1 EP 0112206B1
Authority
EP
European Patent Office
Prior art keywords
cement
metallic
proportion
addition
constituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83402215A
Other languages
German (de)
French (fr)
Other versions
EP0112206A1 (en
Inventor
Robert Leveque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Creusot Loire SA
Original Assignee
Creusot Loire SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creusot Loire SA filed Critical Creusot Loire SA
Priority to AT83402215T priority Critical patent/ATE25406T1/en
Publication of EP0112206A1 publication Critical patent/EP0112206A1/en
Application granted granted Critical
Publication of EP0112206B1 publication Critical patent/EP0112206B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • C23C12/02Diffusion in one step

Definitions

  • the present invention relates to a chemical vapor deposition process for halides, for producing a carbide coating on the surface of metal parts which must have a high hardness.
  • the metals concerned all the elements of the series mentioned above limitatively will be conventionally designated by: "the metals concerned”.
  • the carbides of the metals concerned are known for their very high hardness and their great chemical stability, which gives them good properties of resistance to friction, wear and corrosion. In the case where the mechanical parts are highly stressed by heat, these carbide coatings can constitute excellent thermal barriers and lead to a significant increase in the longevity of the materials.
  • the advantage of this process lies in obtaining a homogeneous metallic vapor, provided that the cement is in contact or at a given distance, but relatively small and constant, of the parts to be coated.
  • the object of the present invention is to avoid all these drawbacks by producing a coating of single-phase carbides, obtained by moderating the contribution of the metallic element of the coating as a function of the chemical composition of the substrate, and by ensuring a additional supply of carbon in the vapor phase.
  • the subject of the present invention is a process for the chemical coating, in the vapor phase of halides, of the surface of metallic parts which must have a high hardness, leading to the production of single-phase surface layers of carbides of metallic elements.
  • silicon - titanium - vanadium - chromium - zirconiumniobium - hafnium - tantalum and tungsten this process, which does not include any prior ionic nitriding, consisting of a carburizing treatment by gaseous halides from one to less of the aforementioned metal elements, at temperatures between 800 ° and 1100 ° C, for periods of between 2 and 20 hours, and being characterized in that the halides of the aforementioned metal elements are obtained by using a cement kept at a distance from the surface to be coated and comprising as sole constituents: at least one of the aforementioned filler elements, either in the form of a ferro-alloy, or in the technically t pure in metallic form;
  • the present invention can be applied by using a cement comprising for its metallic part either only one of the aforementioned filler elements, or two of them, such as, for example, chromium and titanium, or chromium and vanadium, or even more.
  • the invention is preferably implemented with a precise adjustment of the proportion of pulverulent carbon in the cement, always between 0.1 and 1.5% by weight of the total mass of this cement, to the chemical composition of the cement. substrate to be coated, and at the thickness targeted for the layer of carbides to be produced in a given time.
  • the cementation takes place exclusively in the gaseous phase without contact between the cementation and the surface of the part to be coated and for this purpose, the cementation is kept at distances from the surface of the parts to be treated comprised of preferably between 2 and 15 millimeters by means of wire mesh, the mesh size of which is adapted to the particle size of the cement used.
  • the main advantage of the invention is to make it possible to obtain coatings of single-phase metal carbides, free of porosity, and without decarburization of the metal substrate, because the carbon provided by the cement causes the reduction or even the suppression of backscattering. towards the surface of the carbon contained in the part to be coated.
  • the cement intended to form the vapor phase at high temperature consists of titanium metal shavings of maximum dimensions between 5 and 15 millimeters to which are added an ammonium chloride powder in a proportion of between 0.3 and 0.7% and a carbon powder in proportion between 0.7 and 1.3%.
  • the carrier gas used is a neutral gas, for example argon, which is found at atmospheric pressure.
  • the temperature to which the parts are brought is between 900 and 950 ° C. To avoid any phenomenon of localized corrosion, the parts are kept outside the cement and at a distance from the latter comprised between 5 and 15 millimeters.
  • the duration of the treatment is between 2 and 20 hours depending on the thickness of the layer to be produced.
  • the latter is arranged in an assembly produced by welding of wire mesh which surrounds the part to be treated.
  • the parts thus treated are then extracted from the case hardening device to undergo an appropriate heat treatment, of known type.
  • the cement intended to form the vapor phase at high temperature consists of ferrovanadium containing between 80 and 85 by weight of vanadium, the particle size of which is between 0.5 and 5 mm, to which are added a chloride powder. ammonium in proportion between 0.8 and 1.2%, and a carbon powder in proportion between 0.1 and 0.5%.
  • the carrier gas used is a neutral gas, for example argon, at atmospheric pressure.
  • the temperature at which the parts are brought is between 900 ° and 950 ° C. To avoid any phenomenon of localized corrosion, the parts are kept outside the cement and at a distance from the latter between 2 and 10 millimeters. The duration of treatment is between 2 and 20 hours.
  • the device used to produce the coating is the same as that described in the previous example.
  • the parts After case hardening, the parts are subjected to an appropriate heat treatment.
  • the invention can have many applications, for example in armament material, in nuclear power plant material, to solve spinning problems of light alloys, to improve the hardness of wood slicing tools.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

1. A process for forming a chemical coating in a vapour phase of halogenides, of the surface of metallic parts which must have a high hardness, resulting in the obtainment of monophase superficial layers of carbides of metallic elements of the following series : silicon, titanium, vanadium, chromium, zirconium, niobium, hafnium, tantalum and tungsten, this process, which does not comprise a prior ionic nitriding, being constituted by a gaseous cementation treatment of halogenides of at least one of the aforementioned metallic elements, at temperatures between 800 degrees and 1100 degrees C, during periods between 2 and 20 hours, characterised in that the halogenides of said metallic elements are obtained by using a cement maintained at a distance from the surface to be coated and comprising as sole constituents : at least one of said addition metallic elements, either in the form of ferro-alloy, or in the technically pure state in the metallic form ; an addition of ammonium chloride or fluoride in a proportion between 0.2 and 1.5% by weight of the total mass of the cement ; and an addition of powdered carbon in a proportion between 0.1% and 1.5% of the total mass of the cement, the atmosphere employed being constituted by a neutral gas.

Description

La présente invention concerne un procédé de dépôt chimique en phase vapeur d'halogénures, pour réaliser un revêtement en carbures sur la surface de pièces métalliques devant présenter une dureté élevée. Il s'agit ici de réaliser des revêtements durs composés de carbures d'un ou de plusieurs éléments de la série suivante: silicium - titane - vanadiumchrome - zirconium - niobium - hafnium - tantale - tungstène, appartenant tous aux groupes IVa, Va et Vla de la classification périodique des éléments. Dans ce qui suit, l'ensemble des éléments de la série mentionnée ci-dessus limitativement sera conventionnellement désigné par: "les métaux concernés".The present invention relates to a chemical vapor deposition process for halides, for producing a carbide coating on the surface of metal parts which must have a high hardness. This involves making hard coatings composed of carbides of one or more elements from the following series: silicon - titanium - vanadiumchrome - zirconium - niobium - hafnium - tantalum - tungsten, all belonging to groups IVa, Va and Vla of the periodic table of the elements. In what follows, all the elements of the series mentioned above limitatively will be conventionally designated by: "the metals concerned".

Les carbures des métaux concernés sont connus pour leur très grande dureté et leur grande stabilité chimique, ce qui leur confère de bonnes propriétés de résistance au frottement, à l'usure et à la corrosion. Dans le cas où les pièces mécaniques sont très sollicitées à la chaleur, ces revêtements de carbures peuvent constituer d'excellentes barrières thermiques et entraîner une augmentation sensible de la longévité des matériaux.The carbides of the metals concerned are known for their very high hardness and their great chemical stability, which gives them good properties of resistance to friction, wear and corrosion. In the case where the mechanical parts are highly stressed by heat, these carbide coatings can constitute excellent thermal barriers and lead to a significant increase in the longevity of the materials.

Il existe de nombreux procédés pour le revêtement des surfaces métalliques de pièces mécaniques en aciers ou en alliages métalliques par dépôt chimique d'un métal d'apport en phase vapeur ; ces procédés utilisent pour la plupart un halogénure du métal d'apport à l'état gazeux, à des températures comprises entre 700 et 1100°C, et l'apport de métal se fait suivant deux réactions distinctes:

  • - une réaction d'échange entre l'halogénure du métal d'apport et le fer, le nickel ou le cobalt qui constituent les éléments d'alliage essentiels des pièces mécaniques traitées suivant ce procédé.
  • - une réaction de réduction de ces mêmes halogénures par l'hydrogène utilisé assez souvent comme gaz porteur.
There are many methods for coating metal surfaces of mechanical parts made of steels or metal alloys by chemical deposition of a filler metal in the vapor phase; these processes mostly use a halide of the filler metal in the gaseous state, at temperatures between 700 and 1100 ° C., and the metal is supplied according to two distinct reactions:
  • - An exchange reaction between the halide of the filler metal and the iron, nickel or cobalt which constitute the essential alloying elements of the mechanical parts treated according to this process.
  • - A reduction reaction of these same halides by hydrogen used quite often as a carrier gas.

Ces réactions sont souvent facilitées par l'utilisation d'une pression inférieure à la pression atmosphérique comprise entre 50 et 500 Torr.These reactions are often facilitated by the use of a pressure below atmospheric pressure between 50 and 500 Torr.

L'utilisation d'atmosphères réactives contenant des pourcentages en volume contrôlés d'hydrocarbures gazeux ou d'ammoniac permet de réaliser de la même façon, sur la surface des matériaux métalliques, des revêtements de composés inorganiques tels que des carbures ou des nitrures.The use of reactive atmospheres containing controlled volume percentages of gaseous hydrocarbons or ammonia makes it possible to produce, in the same way, on the surface of metallic materials, coatings of inorganic compounds such as carbides or nitrides.

Les procédés connus permettant de réaliser en phase vapeur ces composés nécessitent des appareillages coûteux et entraînent des difficultés dans l'obtention de revêtements homogènes sur des pièces de forme compliquée ou à l'intérieur d'alésages.Known methods for producing these compounds in the vapor phase require expensive equipment and cause difficulties in obtaining homogeneous coatings on parts of complicated shape or inside bores.

Cette difficulté peut être cernée en utilisant une technique maintenant bien connue. L'obtention de la vapeur métallique est réalisée par action d'un halogénure, par exemple le chlorure ou le fluorure d'ammonium, sur un cément pulvérulent constitué par l'élément à déposer, sous forme de métal ou de ferro-alliage (chrome ou ferro-chrome lorsqu'il s'agit d'une chromisation, par exemple).This difficulty can be identified using a technique that is now well known. Obtaining metallic vapor is carried out by the action of a halide, for example ammonium chloride or fluoride, on a powdery cement formed by the element to be deposited, in the form of metal or ferro-alloy (chromium or ferro-chromium when it is a chromization, for example).

L'intérêt de ce procédé réside dans l'obtention d'une vapeur métallique homogène, à condition que le cément soit en contact ou à une distance donnée, mais relativement faible et constante, des pièces à revêtir.The advantage of this process lies in obtaining a homogeneous metallic vapor, provided that the cement is in contact or at a given distance, but relatively small and constant, of the parts to be coated.

Deux titres de propriété industrielle antérieurs (brevet français n° 78-30308, ou 2.439.824, du 25 Octobre 1978 et son certificat d'addition n° 80-11950, ou 2.483.468 du 29 Mai 1980) ont décrit des perfectionnements apportés à cette technique dans le cas de la chromisation: il s'agit de l'obtention sur des matériaux métalliques de couches monophasées de carbures ou de carbonitrures de chrome du type Cr2 (C, N) à l'aide d'un traitement séquencé comprenant:

  • - une première phase de nitruration ionique à une température comprise entre 450 et 650° C dans des conditions opératoires permettant de réaliser des couches de diffusion d'azote seules.
  • - une deuxième phase de chromisation s'inspirant de la technique précédemment connue, appliquée à des températures comprises entre 850° et 1100°C, mais dans laquelle le cément utilisé est de préférence un ferro-chrome de granulométrie comprise entre 0,5 et 4 mm, de teneur en chrome comprise entre 50 et 75 % et de teneur en carbone comprise entre 1 et 3 %, sans liant alumineux ni magnésien, avec un pourcentage d'halogénure d'ammonium (fluorure ou chlorure en l'occurence) compris entre 0,4 et 1,5%.
  • - une troisième phase de traitement thermique approprié.
Two previous industrial property titles (French patent n ° 78-30308, or 2,439,824, of October 25, 1978 and its certificate of addition n ° 80-11950, or 2,483,468 of May 29, 1980) have described improvements made to this technique in the case of chromization: it involves obtaining on metallic materials single-phase layers of chromium carbides or carbonitrides of the Cr 2 (C, N) type using a sequenced treatment including:
  • - A first phase of ionic nitriding at a temperature between 450 and 650 ° C under operating conditions making it possible to produce nitrogen diffusion layers alone.
  • - A second chromization phase inspired by the previously known technique, applied at temperatures between 850 ° and 1100 ° C, but in which the cement used is preferably a ferro-chromium with a particle size between 0.5 and 4 mm, chromium content between 50 and 75% and carbon content between 1 and 3%, without aluminous or magnesium binder, with a percentage of ammonium halide (fluoride or chloride in this case) between 0.4 and 1.5%.
  • - a third phase of appropriate heat treatment.

L'utilisation de cette technique, maintenant bien connue, d'un dépôt en phase vapeur par action d'un halogénure métallique obtenu à partir d'un halogénure d'ammonium et d'un ferro-alliage du métal concerné, permet de réaliser des couches de carbures par réaction superficielle entre l'élément métallique apporté par la vapeur à haute température et le carbone qui rétrodiffuse depuis l'intérieur du matériau revêtu vers et jusqu'à la surface.The use of this technique, now well known, of a vapor deposition by the action of a metal halide obtained from an ammonium halide and a ferro-alloy of the metal concerned, makes it possible to carry out carbide layers by surface reaction between the metallic element provided by the high temperature vapor and the carbon which backscatter from the interior of the coated material to and up to the surface.

Dans ces conditions, l'apport métallique est presque toujours trop important par rapport a la quantité de carbone rétrodiffusé en surface, cela quelle que soit la composition chimique du substrat à revêtir. Il peut en résulter plusieurs phénomènes:

  • - la présence de porosités dans le revêtement, liée à une différence entre la vitesse de croissance de la couche et la vitesse de rétrodiffusion du carbone au travers de cette même couche (effet Kirkendhal). Ces porosités sont plus nombreuses au voisinage de l'interface couche-substrat.
  • - la formation de couches biphasées constituées, soit par plusieurs types de carbures lorsque le diagramme d'équilibre entre le carbone et l'élément métallique d'apport le permet (exemple: chrome, vanadium, tantale ...), soit par un type de carbures et un alliage de diffusion entre l'élément métallique d'apport et le substrat.
  • - la formation, dans le cas de substrats d'aciers et pour les éléments d'apport très avides de carbone (titane par exemple), d'une sous-couche décarburée dont le niveau de résistance, après traitement thermique ultérieur, est plus faible que celui de l'acier à coeur.
Under these conditions, the metallic supply is almost always too great in relation to the amount of carbon backscattered at the surface, this regardless of the chemical composition of the substrate to be coated. This can result in several phenomena:
  • - the presence of porosities in the coating, linked to a difference between the speed of growth of the layer and the speed of backscattering of carbon through this same layer (Kirkendhal effect). These porosities are more numerous in the vicinity of the layer-substrate interface.
  • - the formation of two-phase layers consisting either of several types of carbides when the equilibrium diagram between the carbon and the metallic filler element allows it (example: chromium, vanadium, tantalum, etc.), or by a type carbides and an alloy of diffusion between the metallic filler element and the substrate.
  • - the formation, in the case of steel substrates and for the very greedy carbon input elements (titanium for example), a decarburized undercoat whose resistance level, after subsequent heat treatment, is lower than that of steel at heart.

Ces trois phénomènes entraînent une diminution sensible des propriétés mécaniques et de l'adhérence des revêtements.These three phenomena lead to a significant reduction in the mechanical properties and the adhesion of the coatings.

Ce type d'inconvénients n'est pas non plus évité par l'utilisation de mélanges pulvérulents placés en contact direct avec les pièces à traiter et contenant des ferroalliages ou des éléments d'alliage purs, par exemple du chrome ou du titane, des diluants comme par exemple l'alumine pour éviter l'agglomération du cément en cours de traitement, des halogénures d'ammonium et du carbone sous forme de charbon de bois ou de graphite est connue; on citera à titre d'exemple les brevets SU-A-692.909 et FR-A-2.486.103.This type of drawback is also not avoided by the use of powdery mixtures placed in direct contact with the parts to be treated and containing ferroalloys or pure alloying elements, for example chromium or titanium, diluents such as for example alumina to avoid agglomeration of the cement during treatment, ammonium halides and carbon in the form of charcoal or graphite is known; by way of example, the patents SU-A-692,909 and FR-A-2,486,103 will be cited.

Le but de la présente invention est d'éviter tous ces inconvénients par la réalisation d'un revêtement de carbures monophasés, obtenus en modérant l'apport de l'élément métallique du revêtement en fonction de la composition chimique du substrat, et en assurant un apport supplémentaire de carbone dans la phase vapeur.The object of the present invention is to avoid all these drawbacks by producing a coating of single-phase carbides, obtained by moderating the contribution of the metallic element of the coating as a function of the chemical composition of the substrate, and by ensuring a additional supply of carbon in the vapor phase.

A cet effet, la présente invention a pour objet un procédé de revêtement chimique, en phase vapeur d'halogénures, de la surface de pièces métalliques devant présenter une dureté élevée, conduisant à l'obtention de couches superficielles monophasées de carbures d'éléments métalliques de la série suivant: silicium - titane - vanadium - chrome - zirconiumniobium - hafnium - tantale et tungstène, ce procédé, qui ne comporte pas de nitruration ionique préalable, étant constitué par un traitement de cémentation par voie gazeuse d'halogénures d'un au moins des éléments métalliques précités, à des températures comprises entre 800° et 1100°C, pendant des durées comprises entre 2 et 20 heures, et étant caractérisé en ce que les halogénures des éléments métalliques précités sont obtenus en utilisant un cément maintenu à distance de la surface à revêtir et comprenant comme seuls constituants: l'un au moins des éléments précités d'apport, soit sous forme de ferro-alliage, soit à l'état techniquement pur sous forme métallique; une addition de chlorure ou de fluorure d'ammonium en proportion comprise entre 0,2 % et 1,5 % en poids de la masse totale de cément; et une addition de carbone pulvérulent en proportion comprise entre 0,1 et 1,5 % en poids de la masse totale du cément, l'atmosphère utilisée étant constituée d'un gaz neutre, tel que l'argon, par exemple.To this end, the subject of the present invention is a process for the chemical coating, in the vapor phase of halides, of the surface of metallic parts which must have a high hardness, leading to the production of single-phase surface layers of carbides of metallic elements. of the following series: silicon - titanium - vanadium - chromium - zirconiumniobium - hafnium - tantalum and tungsten, this process, which does not include any prior ionic nitriding, consisting of a carburizing treatment by gaseous halides from one to less of the aforementioned metal elements, at temperatures between 800 ° and 1100 ° C, for periods of between 2 and 20 hours, and being characterized in that the halides of the aforementioned metal elements are obtained by using a cement kept at a distance from the surface to be coated and comprising as sole constituents: at least one of the aforementioned filler elements, either in the form of a ferro-alloy, or in the technically t pure in metallic form; an addition of ammonium chloride or fluoride in a proportion of between 0.2% and 1.5% by weight of the total mass of cement; and an addition of pulverulent carbon in a proportion of between 0.1 and 1.5% by weight of the total mass of the cement, the atmosphere used consisting of a neutral gas, such as argon, for example.

La présente invention peut s'appliquer en utilisant un cément comprenant pour sa partie métallique soit un seul des éléments précités d'apport, soit deux d'entre eux, tels que, par exemple, le chrome et le titane, ou le chrome et le vanadium, soit même davantage.The present invention can be applied by using a cement comprising for its metallic part either only one of the aforementioned filler elements, or two of them, such as, for example, chromium and titanium, or chromium and vanadium, or even more.

L'invention est, de préférence, mise en oeuvre avec un ajustement précis de la proportion de carbone pulvérulent du cément, toujours comprise entre 0,1 et 1,5 % en poids de la masse totale de ce cément, à la composition chimique du substrat à revêtir, et a l'épaisseur visée pour la couche de carbures à réaliser dans un temps donné.The invention is preferably implemented with a precise adjustment of the proportion of pulverulent carbon in the cement, always between 0.1 and 1.5% by weight of the total mass of this cement, to the chemical composition of the cement. substrate to be coated, and at the thickness targeted for the layer of carbides to be produced in a given time.

Selon une caractéristique de l'invention, la cémentation a lieu exclusivement en phase gazeuse sans contact entre le cément et la surface de la pièce à revêtir et à cette fin, le cément est maintenu à des distances de la surface des pièces à traiter comprises de préférence entre 2 et 15 millimètres au moyen de treillis métalliques dont la dimension des mailles est adaptée à la granulométrie du cément utilisé.According to a characteristic of the invention, the cementation takes place exclusively in the gaseous phase without contact between the cementation and the surface of the part to be coated and for this purpose, the cementation is kept at distances from the surface of the parts to be treated comprised of preferably between 2 and 15 millimeters by means of wire mesh, the mesh size of which is adapted to the particle size of the cement used.

Les revendications 4 et 5 concernent d'autres modes de réalisation avantageux de l'invention.Claims 4 and 5 relate to other advantageous embodiments of the invention.

L'avantage principal de l'invention est de permettre d'obtenir des revêtements de carbures métalliques monophasés, exempts de porosité, et sans décarburation du substrat métallique, parce que le carbone apporté par le cément entraîne la diminution ou même la suppression de la rétrodiffusion vers la surface du carbone contenu dans la pièce à revêtir.The main advantage of the invention is to make it possible to obtain coatings of single-phase metal carbides, free of porosity, and without decarburization of the metal substrate, because the carbon provided by the cement causes the reduction or even the suppression of backscattering. towards the surface of the carbon contained in the part to be coated.

En fait, le carbone en provenance du cément agit de deux manières:

  • (a) D'une part, par l'intermédiaire de la phase vapeur au sein de laquelle les fines particules de carbone se trouvent en suspension, ce carbone, en se déposant à la surface de la pièce à revêtir et en la cémentant, freine et limite l'apport du métal concerné;
  • (b) D'autre part, à la surface de la pièce à revêtir ou substrat, ce carbone participe in situ à la formation du revêtement de carbures, limitant ou éliminant l'intervention, par rétrodiffusion, du carbone contenu dans les couches plus profondes du substrat.
In fact, carbon from cement works in two ways:
  • (a) On the one hand, through the vapor phase within which the fine particles of carbon are in suspension, this carbon, by depositing on the surface of the part to be coated and by cementing it, brakes and limits the contribution of the metal concerned;
  • (b) On the other hand, on the surface of the part to be coated or substrate, this carbon participates in situ in the formation of the coating of carbides, limiting or eliminating the intervention, by backscattering, of the carbon contained in the deeper layers. of the substrate.

Afin de bien faire comprendre l'invention, on va décrire ci-après, à titre d'exemples non limitatifs, deux modes de réalisation du procédé selon l'invention, l'un pour former une couche de carbure de titane TiC, l'autre pour former une couche de carbure de vanadium VC.In order to clearly understand the invention, two embodiments of the method according to the invention will be described below, by way of nonlimiting examples, one for forming a layer of titanium carbide TiC, the other to form a layer of VC vanadium carbide.

Premier mode - Formation de carbures de titane TiC monophasés.First mode - Formation of single-phase TiC titanium carbides.

Dans ce cas, le cément destiné à former la phase vapeur à haute température est constitué par des copeaux de titane métal de dimensions maximales comprises entre 5 et 15 millimètres auxquels sont ajoutés une poudre de chlorure d'ammonium en proportion comprise entre 0,3 et 0,7 % et une poudre de carbone en proportion comprise entre 0,7 et 1,3 %. Le gaz porteur utilisé est un gaz neutre, par exemple l'argon, qui se trouve à la pression atmosphérique. La température à laquelle sont portées les pièces est comprise entre 900 et 950° C. Pour éviter tout phénomène de corrosion localisée, les pièces sont maintenues en dehors du cément et à une distance de ce dernier comprise entree 5 et 15 millimètres. La durée du traitement est comprise entre 2 et 20 heures suivant l'épaisseur de la couche à réaliser.In this case, the cement intended to form the vapor phase at high temperature consists of titanium metal shavings of maximum dimensions between 5 and 15 millimeters to which are added an ammonium chloride powder in a proportion of between 0.3 and 0.7% and a carbon powder in proportion between 0.7 and 1.3%. The carrier gas used is a neutral gas, for example argon, which is found at atmospheric pressure. The temperature to which the parts are brought is between 900 and 950 ° C. To avoid any phenomenon of localized corrosion, the parts are kept outside the cement and at a distance from the latter comprised between 5 and 15 millimeters. The duration of the treatment is between 2 and 20 hours depending on the thickness of the layer to be produced.

Pour permettre de maintenir à une distance convenable (5 à 15 millimètres) le cément de la surface à revêtir, ce dernier est disposé dans un montage réalisé par soudage de treillis métalliques qui entourent la pièce à traiter.To allow the cementation of the surface to be coated to be kept at a suitable distance (5 to 15 millimeters), the latter is arranged in an assembly produced by welding of wire mesh which surrounds the part to be treated.

Dans ces conditions, on obtient des revêtements de carbure de titane monophasés, exempts de porosités et sans décarburation du substrat métallique. L'épaisseur du revêtement dépend du temps de traitement et de la teneur en carbone et en éléments carburigènes du substrat: à titre d'exemple, après un traitement de 3 heures à 940°C, la couche de carbure TiC atteint:

  • - 10 micromètres dans le cas d'un acier XC 90, .c'est-à-dire : acier fin à 0,9% C.
  • - 5 micromètres dans le cas d'un acier Z 160 CDV 12, c'est-à-dire : acier fortement allié, à 1,60 % C. à 12 % Cr, 0.90 % Mo et 0.90 % V.
  • - 7 micromètres dans le cas d'un acier 32 CDV 13, c'est-à-dire : acier faiblement allié, à 0,32 % C, à 3,25 % Cr, 1 % Mo et 0,2 % V.
Under these conditions, titanium carbide single-phase coatings are obtained, free of porosities and without decarburization of the metal substrate. The thickness of the coating depends on the treatment time and on the content of carbon and carburogenic elements in the substrate: for example, after a treatment of 3 hours at 940 ° C., the layer of TiC carbide reaches:
  • - 10 micrometers in the case of XC 90 steel, i.e.: fine steel at 0.9% C.
  • - 5 micrometers in the case of Z 160 CDV 12 steel, that is to say: highly alloyed steel, at 1.60% C. at 12% Cr, 0.90% Mo and 0.90% V.
  • - 7 micrometers in the case of a 32 CDV 13 steel, that is to say: low alloy steel, at 0.32% C, 3.25% Cr, 1% Mo and 0.2% V.

Les pièces ainsi traitées sont ensuite extraites du dispositif de cémentation pour subir un traitement thermique approprié, de type connu.The parts thus treated are then extracted from the case hardening device to undergo an appropriate heat treatment, of known type.

Deuxième mode - Formation de carbures de vanadium VC monophasés.Second mode - Formation of single-phase VC vanadium carbides.

Dans ce cas, le cément destiné à former la phase vapeur à haute température est constitué par du ferrovanadium contenant entre 80 et 85 en poids de vanadium, dont la granulométrie est comprise entre 0,5 et 5mm, auxquels sont ajoutés une poudre de chlorure d'ammonium en proportion comprise entre 0,8 et 1,2 %, et une poudre de carbone en proportion comprise entre 0,1 et 0,5 %. Le gaz porteur utilisé est un gaz neutre, par exemple l'argon, à la pression atmosphérique. La température à laquelle sont portées les pièces est comprise entre 900° et 950° C. Pour éviter tout phénomène de corrosion localisée, les pièces sont maintenues en dehors du cément et à une distance de ce dernier comprise entre 2 et 10 millimètres. La durée du traitement est comprise entre 2 et 20 heures.In this case, the cement intended to form the vapor phase at high temperature consists of ferrovanadium containing between 80 and 85 by weight of vanadium, the particle size of which is between 0.5 and 5 mm, to which are added a chloride powder. ammonium in proportion between 0.8 and 1.2%, and a carbon powder in proportion between 0.1 and 0.5%. The carrier gas used is a neutral gas, for example argon, at atmospheric pressure. The temperature at which the parts are brought is between 900 ° and 950 ° C. To avoid any phenomenon of localized corrosion, the parts are kept outside the cement and at a distance from the latter between 2 and 10 millimeters. The duration of treatment is between 2 and 20 hours.

Le dispositif utilisé pour réaliser le revêtement est le même que celui qui a été décrit dans l'exemple précédent.The device used to produce the coating is the same as that described in the previous example.

Après cémentation, les pièces sont soumises à un traitement thermique approprié.After case hardening, the parts are subjected to an appropriate heat treatment.

Dans ces conditions, on obtient des revêtements de carbures de vanadium monophasés, exempts de porosités et sans décarburation du substrat métallique. L'épaisseur du revêtement dépend du temps de traitement et de la teneur en carbone et en éléments carburigènes du substrat: à titre d'exemple, après un traitement de 15 heures à 920°C, la couche de carbure VC atteint:

  • - 20 micromètres dans le cas d'un acier XC 90, c'est-à-dire : acier fin à 0,9 % C.
  • -10 micromètres dans le cas d'un acier Z 160 CDV 12, c'est-à-dire : acier fortement allié, à 1,60 % C, 12 % Cr, 0.9 % Mo et 0,9 % V.
  • - 12 micromètres dans le cas d'un acier 35 CD 4, c'est-à-dire : acier faiblement allié à 0,35 % C, 1 % Cr et 0,22 % Mo.
Under these conditions, coatings of single-phase vanadium carbides are obtained, free of porosities and without decarburization of the metal substrate. The thickness of the coating depends on the treatment time and on the content of carbon and carburogenic elements in the substrate: for example, after a treatment for 15 hours at 920 ° C., the layer of VC carbide reaches:
  • - 20 micrometers in the case of XC 90 steel, that is to say: fine steel at 0.9% C.
  • -10 micrometers in the case of a Z 160 CDV 12 steel, that is to say: highly alloyed steel, at 1.60% C, 12% Cr, 0.9% Mo and 0.9% V.
  • - 12 micrometers in the case of 35 CD 4 steel, that is to say: low alloy steel at 0.35% C, 1% Cr and 0.22% Mo.

L'invention peut recevoir de nombreuses applications, par exemple en matériel d'armement, en matériel de centrales nucléaires, pour résoudre des problèmes de filage des alliages légers, pour améliorer la dureté d'outils de tranchage du bois.The invention can have many applications, for example in armament material, in nuclear power plant material, to solve spinning problems of light alloys, to improve the hardness of wood slicing tools.

Elle s'applique aussi bien, comme substrat, aux aciers de construction, qu'aux aciers à outils ou aux aciers inoxyables.It applies as well, as a substrate, to structural steels, as to tool steels or to stainless steels.

Claims (5)

1. A process for forming a chemical coating in a vapour phase of halogenides, of the surface of metallic parts which must have a high hardness, resulting in the obtainment of monophase superficial layers of carbides of metallic elements of the following series : silicon, titanium, vanadium, chromium, zirconium, niobium, hafnium, tantalum and tungsten, this process, which does not comprise a prior ionic nitriding, being constituted by a gaseous cementation treatment of halogenides of at least one of the aforemetioned metallic elements, at temperatures between 800° and 1100° C, during periods between 2 and 20 hours, characterised in that the halogenides of said metallic elements are obtained by using a cement maintained at a distance from the surface to be coated and comprising as sole constituents : at least one of said addition metallic elements, either in the form of ferro-alloy, or in the technically pure state in the metallic form ; an addition of ammonium chloride or fluoride in a proportion between 0.2 and 1.5 % by weight of the total mass of the cement ; and an addition of powdered carbon in a proportion between 0.1 % and 1.5 % of the total mass of the cement, the atmosphere employed being constituted by a neutral gas.
2. A coating process according to claim 1, characterised in that the cement which gives rise to the metallic halogenides comprises in its metallic part a plurality of said elements, either in the form of a ferro-alloy mixture of different types, or in the form of various metallic elements in the technically pure state.
3. A coating process according to any one of the claims 1 and 2, characterised by the precise adjustment of the proportion of powdered carbon of the cement, both in the chemical composition of the metallic surface to be coated and in the contemplated thickness for the carbide layer to be produced within a given period.
4. A chemical coating process according to claim 1, in which the coating of the surface of the metallic parts to be coated is constituted by titanium carbides, characterised in that the cement which produces the metallic chlorides is constituted by : metallic titanium cuttings of maximum dimensions between 0.3 and 0.7 % by weight of the total mass of the cement ; and an addition of carbon powder in a proportion between 0.7 and 1.3 % by weight of the total mass of the cement ; the distance between the cement and the parts to be coated being between 5 and 15 mm, and the treatment temperature being between 900° and 950° C.
5. A chemical coating process according to claim 1, in which the coating of the surface of the metallic parts to be coated is constituted by vanadium carbides, characterised in that the cement which produces the metallic chlorides is constituted by : ferro-vanadium containing between 80 % and 85 % of vanadium, in a particle size between 0.5 and 5 mm ; an addition of ammonium chloride powder in a proportion between 0.8 and 1.2 % by weight of the total mass of the cement ; and an addition of carbon powder in a proportion between 0.1 % and 0.5 % by weight of the total mass of the cement ; the distance between the cement and the parts to be coated being 2 and 10 mm, and the treatment temperature being between 900° and 950°C.
EP83402215A 1982-11-18 1983-11-17 Method of coating metallic surfaces with carbides Expired EP0112206B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83402215T ATE25406T1 (en) 1982-11-18 1983-11-17 PROCESS FOR COATING METALLIC SURFACES WITH CARBIDES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8219283A FR2536422A1 (en) 1982-11-18 1982-11-18 PROCESS FOR COATING CARBIDE WITH METAL SURFACES
FR8219283 1982-11-18

Publications (2)

Publication Number Publication Date
EP0112206A1 EP0112206A1 (en) 1984-06-27
EP0112206B1 true EP0112206B1 (en) 1987-02-04

Family

ID=9279281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83402215A Expired EP0112206B1 (en) 1982-11-18 1983-11-17 Method of coating metallic surfaces with carbides

Country Status (4)

Country Link
EP (1) EP0112206B1 (en)
AT (1) ATE25406T1 (en)
DE (1) DE3369705D1 (en)
FR (1) FR2536422A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765840A (en) * 1987-04-28 1988-08-23 Nauchno-Issledovatelsky Institut Tekhnologii Avtomobilnoi Promyshlennosti Composition for depositing diffusion carbide coatings on iron-carbon alloy articles
GB2204327B (en) * 1987-05-01 1991-07-31 Nii Tekh Avtomobil Promy Deposition of diffusion carbide coatings on iron-carbon alloy articles
DE4037480A1 (en) * 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
CN112299882B (en) * 2019-07-23 2023-01-06 中国人民解放军国防科技大学 In-situ preparation method of HfC-based ternary carbide gradient coating on surface of carbon material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR447606A (en) * 1912-03-04 1913-01-10 Giulio Sirovich Improvements in diffusion cementation processes
FR940915A (en) * 1943-03-01 1948-12-28 Diffusion Alloys Ltd Method of diffusing metals inside iron and steel
FR62109E (en) * 1950-10-31 1955-06-10 Onera (Off Nat Aerospatiale) Improvements to the processes for forming surface diffusion alloys, especially chromium
SU692909A1 (en) * 1977-07-01 1979-10-25 Предприятие П/Я Р-6930 Composition for diffusive strengthening of working parts of stamps and press-molds
FR2486103A1 (en) * 1980-07-02 1982-01-08 Zaets Inna Pack diffusion titanium coating of ferrous metal - using mixt. of titanium, alumina, aluminium chloride and graphite

Also Published As

Publication number Publication date
EP0112206A1 (en) 1984-06-27
DE3369705D1 (en) 1987-03-12
ATE25406T1 (en) 1987-02-15
FR2536422A1 (en) 1984-05-25

Similar Documents

Publication Publication Date Title
US3836392A (en) Process for increasing the resistance to wear of the surface of hard metal cemented carbide parts subject to wear
US4459328A (en) Articles coated with wear-resistant titanium compounds
US4548786A (en) Coated carbide cutting tool insert
US4497874A (en) Coated carbide cutting tool insert
US4411960A (en) Articles coated with wear-resistant titanium compounds
FR2660938A1 (en) COATING SYSTEMS FOR TITANIUM PROTECTION AGAINST OXIDATION.
LU86916A1 (en) Oxidation-resistant carbon and process for its manufacture.
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
US4799977A (en) Graded multiphase oxycarburized and oxycarbonitrided material systems
EP0383665B1 (en) Process of depositing a coating of a metallic nitride or carbonitride from the vapour phase under low temperature
EP0222241B1 (en) Deposition of titanium aluminides
EP0010484A1 (en) Improvement in the chromising of steel in the gaseous phase
EP0112206B1 (en) Method of coating metallic surfaces with carbides
US4857116A (en) Process for applying coatings of zirconium and/or titanium and a less noble metal to metal substrates and for converting the zirconium and/or titanium to a nitride, carbide, boride, or silicide
Archer Chemical vapour deposition
EP0951462B1 (en) Thermochemical treatment, in halogenated atmosphere, of a carbon-containing material, non-porous, slightly or very porous
US3493423A (en) Coating carbon substrates with refractory metal carbides
RU2084554C1 (en) Alloy being resistant against action of melt zinc for applying coatings, method for its applying on article and article with coating
EP0043742B1 (en) Method of gas-chromizing steels
JPH04276059A (en) Method for modifying sprayed deposit
CA1103061A (en) Nickel based alloy
WO1986000345A1 (en) Method for making coatings of boron carbides and coatings obtained thereby
JPS642186B2 (en)
Tomaszewicz et al. Morphological studies of coking on heat-resistant alloys
JP2539922B2 (en) Diamond coated cemented carbide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840612

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 25406

Country of ref document: AT

Date of ref document: 19870215

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3369705

Country of ref document: DE

Date of ref document: 19870312

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911101

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911104

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19911107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911111

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911112

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911125

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911128

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911217

Year of fee payment: 9

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19921117

Ref country code: GB

Effective date: 19921117

Ref country code: AT

Effective date: 19921117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: CREUSOT-LOIRE

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921117

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83402215.4

Effective date: 19930610