[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0194577B1 - Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern - Google Patents

Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern Download PDF

Info

Publication number
EP0194577B1
EP0194577B1 EP86102928A EP86102928A EP0194577B1 EP 0194577 B1 EP0194577 B1 EP 0194577B1 EP 86102928 A EP86102928 A EP 86102928A EP 86102928 A EP86102928 A EP 86102928A EP 0194577 B1 EP0194577 B1 EP 0194577B1
Authority
EP
European Patent Office
Prior art keywords
strip
anode
strips
electrolyte
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86102928A
Other languages
English (en)
French (fr)
Other versions
EP0194577A2 (de
EP0194577A3 (en
Inventor
Kurt Held
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86102928T priority Critical patent/ATE49242T1/de
Publication of EP0194577A2 publication Critical patent/EP0194577A2/de
Publication of EP0194577A3 publication Critical patent/EP0194577A3/de
Application granted granted Critical
Publication of EP0194577B1 publication Critical patent/EP0194577B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44BMACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
    • B44B5/00Machines or apparatus for embossing decorations or marks, e.g. embossing coins
    • B44B5/02Dies; Accessories
    • B44B5/026Dies
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the invention relates to methods for the galvanic coating of a metallic, endless belt with a metal layer, in particular for use as a press belt in a double belt press, according to the preambles of claims 1 to 4 and devices for carrying out these methods according to the preambles of claims 7 to 10.
  • Such belts which are mainly used as press belts in double belt presses, are used to exert surface pressure on sheet-like materials, such as decorative laminate laminates, chipboard, fiberboard, electrolaminate and the like.
  • the material to be pressed is guided between two endlessly rotating press belts which are subjected to pressure and, if necessary, heat and hardened in the process (see DE-OS 2421296).
  • Such press belts are usually made of high tensile steel.
  • the surfaces of the press belt are galvanized with a hard, metallic and wear-resistant layer. If the surface of the material to be pressed is to be provided with a structure, embossing tapes are used, which, like the press belts, consist of a steel strip, with a soft, metallic layer being galvanized onto the surface, into which the desired structure is introduced, and then for protection a further hard layer is electroplated onto this soft layer (see DE-PS 29 50 795).
  • Trough-shaped baths which are filled with a liquid electrolyte which dissociates into ions which contain the desired metal atoms to be deposited are used for electroplating metal coatings on a metallic object.
  • An anode made of a highly conductive material is immersed in these electrolytes.
  • the object to be coated is completely immersed in the bath and switched as a cathode. If a DC voltage source is attached outside the bath between the cathode and the anode, a current consisting of the ions of the electrolyte flows in the bath between the cathode and the anode and at the cathode the metal ions are reduced to metal atoms by electron absorption, which then form a metallic coating on the cathode separate.
  • the baths available in the electroplating plants have certain maximum lengths and depths.
  • endless strips which geometrically form a closed circular ring, entirely in such an electroplating bath, it is known to fold these strips and only then to introduce them into the electroplating bath. With this method, however, only strips of around 6 m in length can be coated, which corresponds to a ring diameter of around 2 m in the largest available baths.
  • US-A-3 772 163 describes an inflatable plastic bag arranged in a container, on the surface of which there are copper mesh electrodes.
  • FR-A-2 285 178 shows chambers filled with an electrolyte which are rotatably arranged on the inside of a container wall by means of a shaft.
  • US-A-3 783 110 shows a rotatable cylindrical container with anodes arranged parallel to the wall of the container.
  • the invention has for its object to enable the electroplating of metallic layers on endless strips of any size, while the quality of the deposited metal layers is to be improved.
  • the double belt press 1 shown in FIG. 1 has four deflection drums 2, 3, 4, 5 mounted in a press frame.
  • the press frame is omitted in the drawing for the sake of clarity.
  • a press belt 6, 7, which is tensioned with hydraulic cylinders 8, is guided around two of the deflecting drums, which rotate according to the arrows in the deflecting drums 2 and 3.
  • a material web 9 leading from right to left in the drawing which can consist of laminates impregnated with synthetic resin, fiber-binder mixtures or the like, is compressed with simultaneous application of heat and pressure.
  • the pressure exerted on the material web 9 is applied hydraulically or mechanically to the inner sides of the press belts 6, 7 via pressure plates 10, 11 and transmitted from there to the material web.
  • a fluid pressure medium which can be pressurized, for example oil or air, is introduced into the space 12, which is delimited at the top and bottom by the pressure plate 10 or the inside of the press belt 6 and on the sides by the seal 13.
  • 7 fixed rollers 14 are attached between the pressure plate 11 and the inside of the press belt. With the help of hydraulic cylinders 60, the pressure plate 11 and thus the rollers 14 are set against the inside of the press belt 7.
  • the press belt 6 or 7 is an endless belt made of a high-tensile steel grade, which in the relaxed state has an annular shape.
  • the surface of the press belt must have a high hardness.
  • the required hardness is usually achieved by galvanic hard chrome plating of the surface with layer thicknesses of 30 to 100 micrometers.
  • the device shows a device according to the invention for the galvanic application of a hard chrome layer to the inside of the endless press belt 15.
  • the device consists of a rectangular base plate 16 made of steel, the area of which is dimensioned such that it can hold the largest press belt to be chromed.
  • the press belt 15 is placed upright on this base plate 16 in the untensioned state, with which it forms a circular ring, in an annular seal 17 resting on the base plate.
  • another press belt 15a is also placed on an annular seal 17, which is hidden in the drawing.
  • This press belt 15a has a smaller diameter than the outer press belt 15 and is arranged concentrically with the press belt 15.
  • the two press belts 15 and 15a have the same width or, in the upright state, the same height, so that an annular cavity 21 is formed between the inner surface 18 of the outer press belt 15 and the outer surface 19 of the inner press belt 15a.
  • the electrolyte usually chromic acid, is in this cavity.
  • the two bands 15 and 15a are clamped firmly on the base plate 16 by means of clamping elements 20 or counter-clamping elements 54, so that their annular arrangement and their relative position to one another are fixed during the chromium plating process.
  • the clamping elements 20 are attached so that they are outside the cavity 21.
  • the inner band 15a is tensioned from the inside with counter-tensioning elements 54 into a circular shape.
  • An insulating plate 23 made of plastic means that there is no electrically conductive connection between the mast 22 and the base plate 16.
  • a rotatably mounted outer sleeve 24 is attached to this mast.
  • This outer sleeve 24 carries two arms 25 made of copper, forming an angle of 180 degrees, the length of which is greater than the radius of the inner band 15a and smaller than the radius of the outer band 15.
  • the arms 25 are mounted at a height such that they protrude beyond the two press belts 15 and 15a.
  • a plurality of pencils 26 are attached, which extend into the cavity 21 almost to the base plate 16.
  • the pencils 26 Due to the appropriately selected length of the arms 25, the pencils 26 have a certain distance both from the inner surface 18 of the press belt 15 and from the outer surface 19 of the press belt 15a and therefore do not touch these surfaces even when the outer sleeve 24 and thus the arms 25 are rotated.
  • These cuffs are held in their position by the tensioning elements 20.
  • the clamping elements 20 are electrically insulated from the base plate 16. Since the band 15 rests on an annular seal 17 made of rubber or plastic, it likewise has no electrical contact with the base plate 16.
  • FIG. 3 The structure of such an annular seal 17 corresponding to a section at point A in FIG. 2 is shown in FIG. 3.
  • This seal consists of an annular body 42 which rests on the base plate 16.
  • the body 42 is made of an electrically non-conductive material such as rubber or plastic.
  • On the top of the body 42 there is an annular groove 43 in which a holder 44 is firmly inserted.
  • This holder 44 in turn consists of two parts, namely two annular iron rails 45 and 46.
  • One of the iron rails 45 has a shoulder 48 in its upper part and a groove 49 adjoining it.
  • the press belt 15 is now placed in the holder 44 in such a way that it stands on the shoulder 48 of the iron rail 45 and rests with the lower part of one surface on the wall 50 of the second iron rail 46.
  • the contact pressure can be increased further by allowing a pressurized liquid, for example water or the electrolyte liquid itself, to act in the groove 49 on the O-ring 51. This ensures that the press belt 15 is both firm and against the one in the cavity 21 located electrolyte sealingly rests on the base plate 16, and is also electrically insulated from the base plate
  • the sleeves 27 are connected via flexible lines 52 to a ring line 64 consisting of copper rods with a sufficiently large line cross section, which in turn is connected to the negative pole of a DC voltage source.
  • the pencils 26 are connected to the positive pole of the DC voltage source via the arms 25 and the mast 22, which in turn is contacted through the base plate 16.
  • the outer band 15 is thus connected as the cathode and the pencils 26 as the anode.
  • the outer sleeve 24 of the mast 22 is driven by means of a motor 28 and a chain 53 for transmitting power to a gear 55 fastened to the outer sleeve 24, so that the pencils 26 acting as anode rotate at a uniform speed.
  • chromium atoms are now deposited from the electrolyte in the cavity 21 on the part of the inner surface 18 of the press belt 15 which acts as the cathode and is opposite the anode 26. Since the anode 26 rotates, a chrome layer with a certain thickness is deposited on the entire inner surface 18 per revolution. The desired total layer thickness of the hard chrome layer is obtained by appropriate selection of the number of revolutions of the anode 26.
  • An increase in the deposited layer thickness per revolution is possible by increasing the number of adjacent pencils 26 which form the anode. In the case of a large number of pencils lying next to one another, care must be taken that they are attached in such a way that they have the shape of a circular section when viewed in cross-section, so that it is ensured that they do not collide with a surface 18, 19 of the strips when the outer sleeve 24 rotates.
  • Another measure for increasing the deposited layer thickness consists in attaching more than two arms 25 with the anodes attached to them on the outer sleeve 24. With these measures, it should be noted that the current strength increases accordingly and the power of the DC voltage source must be designed for this. Of course, with low power of the DC voltage source, only one arm 25 with an anode can be attached to the outer sleeve 24, in which case the number of cycles for a certain total layer thickness increases.
  • the dimensioning of the DC voltage source which is usually represented by a mains transformer with a subsequent rectifier, is carried out according to the known laws of electrolysis.
  • the properties of the deposited chrome layer are sensitive to the temperature of the electrolyte and the current density.
  • the temperature of the electrolyte in the cavity 21 is therefore constantly checked by means of temperature sensors mounted in the cavity and kept constant by supplying heated electrolytes.
  • Fresh electrolyte is supplied from below through the base plate 16 into the cavity 21.
  • the used electrolyte is replaced because the concentration of the chromium ions on the strip surface decreases accordingly. So both the temperature as well Concentration of the electrolyte constant over the entire electroplating period.
  • the current density is also automatically kept constant at all points, so that overall a very uniform layer thickness of the hard chrome layer is obtained on the entire strip surface. It has also been shown that hydrogen embrittlement hardly occurs, thus eliminating the risk of the surface layer cracking under tensile stress.
  • the flexural fatigue strength of the strips chrome-plated by the method according to the invention is also far higher than that of conventionally chrome-plated strips.
  • the current yields in hard chrome plating are approximately 20%, i.e. H.
  • Around 80% of the electricity required is used for the electrolysis of water.
  • This produces gaseous hydrogen at the cathode, which escapes from the cavity 21.
  • the rising gas bubbles entrain part of the electrolyte, with which the hydrogen gas is mixed with chromic acid vapor.
  • a time consisting of plastic film can be stretched over the entire belt arrangement, as indicated schematically in FIG. 5 by the reference numeral 30, in which these vapors are collected and extracted.
  • the supply lines of the current to the anode and cathode must be made with the lowest possible resistance. Therefore, as is common in electroplating, lines made of solid copper with a correspondingly large cross section are used. Since the anode 26 moves during the galvanization, the supply of the current in the mast 22 has a special configuration, which can be seen in cross section in FIG. 4.
  • the mast 22 consists of a hollow square tube 56 which is screwed onto the base plate 16 in an electrically insulated manner by means of a base flange 31 and a plastic plate 23.
  • a copper rod 32 runs in the square tube and is in contact with the power supply from the DC voltage source via an opening in the base plate 16.
  • This copper rod 32 terminates at its upper end with a flange 33 on which an outer ring flange 34 and an inner ring flange 35 are mounted in such a way that an annular cavity remains free between the two.
  • the outer sleeve 24 has in its lower part an annular counter flange 39 and a shaft 36 running in the middle.
  • This shaft 36 extends into the cavity 57 formed by the inner ring flange 35 and is rotatably fastened there on the inner ring flange 35 by means of two ball bearings 38, so that this shaft and with it the entire outer sleeve 24 can rotate about the fixed copper rod 32.
  • the ball bearings 38 are insulated from the inner ring flange 35 by means of an insulation 37 made of plastic. The distance between the two ball bearings 38 is fixed by an upper spacer sleeve 58, while the lower ball bearing rests on an insulating plate 40 via a lower spacer sleeve 59, which in turn lies on the flange 33.
  • the annular counter flange 39 of the outer sleeve 24 extends into the cavity formed by the inner ring flange 34 and outer ring flange 35 in such a way that a slight play of a few 1/10 mm remains between the walls.
  • This space determined by the game is filled with mercury 61, which conducts electricity well, and ensures the current transmission from the flange 33 via the fixed ring flanges 34 and 35 to the rotatable counter flange 39 of the outer sleeve 24 and from there via the arms 25, which are at the top Part of the outer sleeve 24 are mounted on the anode 26th
  • a gear 55 is mounted on the outer sleeve 24, which is driven by the motor 28 via the chain 53 and causes the outer sleeve to rotate.
  • the motor 28 is in turn attached to the square tube 56 so that no current flows from the outer sleeve 24 via the chain 53 to the motor 28 and the square tube 56, the gearwheel is electrically insulated from the outer sleeve by means of insulating foils 41.
  • This construction also ensures that no current flows from the inner ring flange 35 via the ball bearings 38 to the shaft 36, since the large currents required for the chrome plating could otherwise cause dangerous overheating on the small cross sections of the ball bearings.
  • the shaft 36 itself is at a short distance from the insulation plate 40 and thus from the flange 33.
  • the belts are arranged on the device in such a way that the belt with the smaller diameter is switched as the cathode. 2, this is the press belt 15a with the surface 19 to be chrome-plated.
  • the connection of the cathode to the negative pole of the voltage source now takes place via leads to the inside of the press belt 15a, as described above, while the anode continues with the pencils 26 connected is. Otherwise the arrangement remains unchanged.
  • the chromium atoms from the electrolyte located in the cavity 21 then separate with the voltage source switched on and the arms 25 rotating on the outer surface 19 of the press belt 15a and form the desired chromium layer.
  • the device according to the invention it is also advantageously possible to chrome-plate two press belts at the same time, the inside of the belt lying on the outside and the outside of the belt lying on the inside being chrome-plated.
  • cuffs are attached to the inside of the inside band 15a corresponding to the cuffs 27 of the outside band.
  • the cuffs 27 are both on the outer band 15 and the inner band 15a with tensioning elements 20 held, which, as shown in Fig. 5, consist of copper rods and serve in this embodiment at the same time the power supply.
  • the device shown in FIG. 5 is constructed in the same way as that in FIG. 2, except that here the power transmission from the motor 28 to the outer sleeve 24 takes place via a gear 29 with a suitably selected reduction ratio.
  • the parts identical to FIG. 2 are designated in FIG. 5 with the same reference numerals.
  • Both the sleeves of the outside band 15 and those of the inside band are connected to the negative pole of the voltage source, so that both bands now form the cathode at the same time. If the arms 25 rotate with the pencils 26 acting as an anode, chromium atoms are deposited both on the inner surface 18 of the outer band 15 and on the outer surface 19 of the inner band 15a. This means that one surface of each band is covered with a chrome layer. When dimensioning the voltage source, the higher current requirement must of course be taken into account.
  • a further development of the method enables the simultaneous chrome plating of the inside and outside surface of a single press belt 15b.
  • three press belts 15, 15b and 15a with decreasing diameters are placed concentrically one inside the other on the base plate 16.
  • Fig. 6 shows a section in the direction of the diameter to the common center through the walls of the three interlocking press belts.
  • These three press belts stand on seals 17, 17b and 17a, the seals 17 and 17a being constructed in accordance with the seal shown in FIG. 3, so that additional tensioning elements for the press belts can be dispensed with.
  • the inner 15a and outer press belt 15 can, however, also be tensioned with the usual tensioning elements 20 or 54, which makes the use of this seal for these two press belts 15, 15a unnecessary.
  • the middle press belt 15b is, however, clamped in such a seal, so that the inner and outer surfaces thereof are not covered for simultaneous chrome plating, and on the other hand the press belt 15b is fixed on the base plate 16.
  • the seal 17b additionally has a peg ring 47 which runs in both iron rails 45, 46 and which is made of a highly conductive material such as copper. This pin ring 47 is connected at several points from below through openings 65 in the base plate 16 through contact plug 63 to the negative pole of the voltage source, so that the band 15b is connected as a cathode.
  • the method and the corresponding device for carrying out the electroplating of a metal layer is described here using the example of hard chrome plating of a press belt.
  • both the method and the device for electroplating any other metal layer onto the press belt can be used, for example for coppering or nickel plating.
  • the conditions known for electroplating for the respective metal must be observed.
  • the anode 26 must then consist of a special material, for example of copper rods, if a copper layer is to be galvanically applied to the press belt. If it appears expedient, instead of the anode 26 consisting of individual rods, a single contiguous surface can also be selected for the anode.
  • the type of electrolyte should be chosen as is familiar to the person skilled in the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

  • Die Erfindung betrifft Verfahren zur galvanischen Beschichtung eines metallischen, endlosen Bandes mit einer Metallschicht, insbesondere zur Verwendung als Pressband in einer Doppelbandpresse, gemäß den Oberbegriffen der Patentansprüche 1 bis 4 und Vorrichtungen zur Durchführung dieser Verfahren gemäß den Oberbegriffen der Patentansprüche 7 bis 10.
  • Solche Bänder, die hauptsächlich als Pressbänder in Doppelbandpressen eingesetzt werden, dienen zur Ausübung von Flächendruck auf bahnförmige Werkstoffe, wie dekorative Schichtstofflaminate, Spannplatten, Faserplatten, Elektrolaminate und dergleichen. Dazu wird das Pressgut zwischen zwei endlos umlaufenden Pressbändem, die mit Druck und falls nötig mit Wärme beaufschlagt werden, geführt und dabei ausgehärtet (siehe DE-OS 2421296). Üblicherweise werden solche Pressbänder aus hochzugfestem Stahl hergestellt.
  • Damit die Pressbänder bei dem zum Verpressen angewendeten Druck nicht zu schnell verschleissen, erhalten die Oberflächen des Pressbandes eine harte, metallische und verschleißfeste Schicht aufgalvanisiert. Soll die Oberfläche des Pressgutes mit einer Struktur versehen werden, so verwendet man Prägebänder, die ebenso wie die Pressbänder aus einem Stahlband bestehen, wobei auf dessen Oberfläche eine weiche, metallische Schicht aufgalvanisiert wird, in die die gewünschte Struktur eingebracht wird, Anschließend wird zum Schutz auf diese weiche Schicht eine weitere, harte Schicht aufgalvanisiert (siehe DE-PS 29 50 795).
  • Zum Aufgalvanisieren von Metallüberzügen auf einem metallischen Gegenstand werden wannenförmige Bäder verwendet, die mit einem flüssigen Elektrolyten gefüllt sind, der in Ionen dissoziiert, die die gewünschten, abzuscheidenden Metallatome enthalten. In diesen Elektrolyten taucht eine aus einem gut leitfähigen Material bestehende Anode ein. Der zu beschichtende Gegenstand wird ganz in das Bad getaucht und als Kathode geschaltet. Wird außerhalb des Bades zwischen Kathode und Anode eine Gleichspannungsquelle angebracht, so fließt im Bad zwischen Kathode und Anode ein aus den Ionen des Elektrolyten bestehender Strom und an der Kathode werden die Metallionen durch Elektronenaufnahme zu Metallatomen reduziert, die sich auf der Kathode dann als metallischer Überzug abscheiden.
  • Die in den Galvanisieranstalten verfügbaren Bäder besitzen gewisse maximale Längen und auch Tiefen. Um endlose Bänder, die geometrisch gesehen einen geschlossenen kreisförmigen Ring bilden, ganz in einem solchen Galvanisierbad unterbringen zu können, ist es bekannt, diese Bänder zu falten und dann erst in das Galvanisierbad einzubringen. Mit dieser Methode sind jedoch nur Bänder von rund 6 m Länge, das entspricht einem Ringdurchmesser von rund 2 m in den größten verfügbaren Bädern zu beschichten.
  • Für verschiedene Anwendungen, wie zum Beispiel der kontinuierlichen Spanplattenherstellung, ist es jedoch nötig, lange Pressen zu bauen, die Längen von rund 12 m oder mehr besitzen können, so daß das Pressband eine Umfangslänge von wenigstens 26 m erreicht, Solche langen Pressbänder können jedoch nicht mehr herkömmlich auf galvanischem Wege beschichtet werden.
  • Ein weiterer Nachteil der in einem herkömmlichen Bad vorgenommenen Galvanisierung wird durch die Faltung der Pressbänder hervorgerufen. Durch diese Faltung erhält man verschieden weite Abstände zur Anode und die Stromdichte zwischen Anode und Kathode im Bad variiert beträchtlich, so daß eine unterschiedliche Dicke der abgeschiedenen Metallschicht auf der Bandoberfläche resultiert. Das kann wiederum zu Dickenschwankungen im hergestellten Pressgut führen und am Pressgut eine aufwendige Nacharbeit wie Schleifen erfordern. Außerdem hat sich gezeigt, daß bei Pressbändem, die in herkömmlichen Bädern galvanisch beschichtet werden, eine verstärkte Wasserstoffversprödung eintritt. Diese Wasserstoffversprödung führt zu Rissen und Brüchen in der abgeschiedenen Metallschicht und kann damit das gesamte Pressband unbrauchbar machen.
  • Zur galvanischen Beschichtung von Behälterwänden sind in der Literatur spezielle Galvanisierverfahren und -vorrichtungen bekannt geworden. So beschreibt die US-A-3 772 163 einen in einem Behälter angeordneten, aufblasbaren Kunststoffsack, auf dessen Oberfläche sich Kupfemetzelektroden befinden. Die FR-A-2 285 178 zeigt mit einem Elektrolyten gefüllte Kammern, die mittels einer Welle drehbar an der Innenseite einer Behälterwand angeordnet sind. In der US-A-3 783 110 ist ein rotierbarer zylindrischer Behälter gezeigt mit parallel zur Wand des Behälters angeordneten Anoden. Keine dieser Druckschriften befaßt sich jedoch mit der galvanischen Beschichtung von endlosen Bändern.
  • Der Erfindung liegt die Aufgabe zugrunde, das Aufgalvanisieren von metallischen Schichten auf endlosen Bändern beliebiger Umfangsgröße zu ermöglichen, wobei gleichzeitig die Qualität der abgeschiedenen Metallschichten verbessert werden soll.
  • Die Lösung dieser Aufgabe wird durch die in den Patentansprüchen 1 bis 4 beschriebenen Lehren vermittelt und zur Durchführung dieser Verfahren dienende Vorrichtungen werden in den Patentansprüchen 7 bis 10 angegeben.
  • Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, daß das galvanische Beschichten von endlosen Bändern beliebiger Umfangslänge ermöglicht wird und die Beschränkung auf die durch das Bad vorgegebenen maximalen Größen damit entfällt. Damit geht einher, daß der Bedarf an Elektrolyten stark vermindert wird und die benötigte Stromstärke zu Lasten der Verchromungszeit verringert werden kann. Soll nur eine Oberfläche des endlosen Bandes beschichtet werden, so ist keine Abdekkung der Rückseite des Bandes wie bei den herkömmlichen Verfahren mehr nötig. Weiter hat sich gezeigt, daß sowohl die Abscheidung einer gleichmäßigen, dicken Schicht gelingt, wie auch die Gefahr der Wasserstoffversprödung im Vergleich zur herkömmlichen Methode stark reduziert wird.
  • Bevorzugte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen
    • Fig. 1 schematisch die Seitenansicht einer Doppelbandpresse,
    • Fig. 2 eine Vorrichtung zum Verchromen eines Pressbandes in perspektivischer Ansicht,
    • Fig. 3 eine Dichtung zum Aufstellen eines Pressbandes auf der Grundplatte,
    • Fig. 4 einen Schnitt durch den Mast zur Stromzuführung,
    • Fig. 5 eine Ausführungsform einer Vorrichtung zum gleichzeitigen Verchromen zweier Pressbänder in perspektivischer Ansicht und
    • Fig. 6 einen Teilschnitt durch eine Vorrichtung zum gleichzeitigen Verchromen beider Oberflächen eines Pressbandes.
  • Die in Fig. 1 dargestellte Doppelbandpresse 1 besitzt vier in einem Pressengestell gelagerte Umlenktrommeln 2, 3, 4, 5. Das Pressengestell ist in der Zeichnung der Übersichtlichkeit halber weggelassen. Um jeweils zwei der Umlenktrommein, die sich entsprechend der Pfeile in den Umlenktrommeln 2 und 3 drehen, ist ein pressband 6, 7 herumgeführt, das mit Hydraulikzylindem 8 gespannt wird. Zwischen den Pressbändem wird eine in der Zeichnung von rechts nach links vorlaufende Werkstoffbahn 9, die aus mit Kunstharz getränkten Schichtstoffen, Faser-Bindemittelgemischen oder dergleichen bestehen kann, unter gleichzeitiger Anwendung von Wärme und Druck verdichtet.
  • Der auf die Werkstoffbahn 9 ausgeübte Druck wird über Druckplatten 10, 11 hydraulisch oder mechanisch auf die Innenseiten der Pressbänder 6, 7 aufgebracht und von dort auf die Werkstoffbahn übertragen. Bei der hydraulischen Druckübertragung wird in dem Raum 12, der nach oben und unten von der Druckplatte 10 bzw. der Pressbandinnenseite 6 und zu den Seiten von der Dichtung 13 begrenzt wird, ein unter Druck setzbares, fluides Druckmedium, beispielsweise Öl oder Luft, eingebracht. Zur mechanischen Druckübertragung sind zwischen der Druckplatte 11 und der pressbandinnenseite 7 ortsfeste Rollen 14 angebracht. Mit Hilfe von Hydraulikzylindem 60 wird die Druckplatte 11 und damit die Rollen 14 gegen die Innenseite des pressbandes 7 angestellt..
  • Das pressband 6 bzw. 7 ist ein endloses, aus einer hochzugfesten Stahlsorte bestehendes Band, das im entspannten Zustand eine ringförmige Gestalt besitzt. Damit es bei dem auf die Werkstoffbahn 9 auszuübenden Druck nicht innerhalb kurzer Zeit zerstört wird, muss die Oberfläche des Pressbandes eine hohe Härte besitzen. Üblicherweise wird die benötigte Härte durch galvanisches Hartverchromen der Oberfläche mit Schichtdicken von 30 bis 100 Mikrometer erreicht.
  • Die Fig. 2 zeigt eine erfindungsgemässe Vorrichtung zum galvanischen Aufbringen einer Hartchromschicht auf die Innenseite des endlosen Pressbandes 15. Die Vorrichtung besteht aus einer rechteckigen Grundplatte 16 aus Stahl, deren Fläche so bemessen ist, dass sie das grösste zu verchromende pressband aufnehmen kann. Entsprechend dem erfindungsgemässen Verfahren ist auf dieser Grundplatte 16 das Pressband 15 hochkant im ungespannten Zustand, womit es einen kreisförmigen Ring bildet, in einer auf der Grundplatte aufliegenden Ringdichtung 17 aufgestellt. Im Innem dieses pressbandes 15 ist ein weiteres Pressband 15a ebenfalls auf einer in der Zeichnung verdeckt liegenden Ringdichtung 17 aufgestellt. Dieses pressband 15a besitzt einen kleineren Durchmesser als das äussere Pressband 15 und ist konzentrisch zum Pressband 15 angeordnet. Die beiden Pressbänder 15 und 15a besitzen dieselbe Breite bzw. im hochkant gestellten Zustand dieselbe Höhe, so dass zwischen der Innenfläche 18 des äusseren Pressbandes 15 und der Aussenfläche 19 des inneren Pressbandes 15a ein ringförmiger Hohlraum 21 entsteht. In diesem Hohlraum befindet sich der Elektrolyt, gewöhnlicherweise Chromsäure.
  • Die beiden Bänder 15 und 15a werden mittels Spannelementen 20 bzw. Gegenspannelementen 54 fest auf der Grundplatte 16 aufgespannt, so dass ihre ringförmige Anordnung und ihre relative Lage zueinander während des Verchromungsvorgangs fest vorgegeben sind. Die Spannelemente 20 sind dabei so angebracht, dass sie ausserhalb des Hohlraums 21 stehen. Das innere Band 15a wird von der Innenseite aus mit Gegenspannelementen 54 zu einer kreisrunden Form gespannt. Im Mittelpunkt der durch die zwei Bänder 15 und 15a festgelegten konzentrischen Kreise befindet sich ein auf der Grundplatte stehender, mit dieser verschraubter Mast 22. Durch eine lsolierungs- platte 23 aus Kunststoff herrscht zwischen dem Mast 22 und der Grundplatte 16 keine elektrisch leitende Verbindung.
  • Auf diesem Mast ist eine drehbar gelagerte Aussenhülse 24 angebracht. Diese Aussenhülse 24 trägt zwei einen Winkel von 180 Grad bildende Arme 25 aus Kupfer, deren Länge grösser als der Radius des inneren Bandes 15a und kleiner als der Radius des äusseren Bandes 15 ist. Die Arme 25 sind in einer solchen Höhe angebracht, dass sie die beiden Pressbänder 15 und 15a überragen. An den Enden der beiden Arme 25 sind mehrere Bleistangen 26 befestigt, die in den Hohlraum 21 bis fast auf die Grundplatte 16 hineinreichen. Durch die entsprechend gewählte Länge der Arme 25 besitzen die Bleistangen 26 sowohl von der Innenfläche 18 des pressbandes 15 wie auch von der Aussenfläche 19 des pressbandes 15a einen gewissen Abstand und berühren daher diese Flachen auch bei Drehung der Aussenhülse 24 und damit der Arme 25 nicht.
  • Auf der Aussenfläche des Pressbandes 15 sind mehrere ringförmige aus Kupfer bestehende Manschetten 27 über die Höhe des Pressbandes 15 verteilt so angebracht, dass in der Nähe des oberen und unteren Randes des Pressbandes sich jeweils eine Manschette 27 befindet. Diese Manschetten werden durch die Spannelemente 20 in ihrer Lage fixiert gehalten. Die Spannelemente 20 sind gegenüber der Grundplatte 16 elektrisch isoliert angebracht. Da das Band 15 auf einer Ringdichtung 17 aus Gummi oder Kunststoff aufliegt, besitzt es ebenfalls keinen elektrischen Kontakt zur Grundplatte 16.
  • Den Aufbau einer solchen Ringdichtung 17 entsprechend einem Schnitt an der Stelle A in Fig. 2 zeigt Fig. 3. Diese Dichtung besteht aus einem, ringförmigen Körper 42, der auf der Grundplatte 16 aufliegt. Der Körper 42 besteht aus einem elektrisch nichtleitenden Material wie Gummi oder Kunststoff. Auf der Oberseite des Körpers 42 befindet sich eine ringförmige Nut 43, in der eine Halterung 44 fest eingesteckt ist. Diese Halterung 44 wiederum besteht aus zwei Teilen, nämlich zwei ringförmigen Eisenschienen 45 und 46. Eine der Eisenschienen 45 besitzt in ihrem oberen Teil einen Absatz 48 und eine daran anschliessende Nut 49. Das pressband 15 wird nun so in die Halterung 44 gestellt, dass es auf dem Absatz 48 der Eisenschiene 45 aufsteht und mit dem unteren Teil der einen Fläche an der Wandung 50 der zweiten Eisenschiene 46 anliegt. In der Nut 49 befindet sich ein O-Ring 51, der das Pressband 15 gegen die Wandung 50 presst. Der Anpressdruck kann noch gesteigert werden, indem man in der Nut 49 auf den O-Ring 51 eine unter Druck stehende Flüssigkeit, beispielsweise Wasser oder die Elektrolytflüssigkeit selbst, wirken lässt Dadurch wird gewährleistet, dass das Pressband 15 sowohl fest und gegen den im Hohlraum 21 befindlichen Elektrolyten dichtend auf der Grundplatte 16 aufliegt, als auch elektrisch gegen die Grundplatte isoliert ist
  • Der geschilderte Dichtungsaufbau nach Fig. 3 besitzt den Vorteil, dass durch die sehr starre Einspannung des Pressbandes 15 im unteren Bandteil ein sicherer ringförmiger Stand des Pressbandes auf der Grundplatte 16 gewährleistet ist Unter Umständen kann dann sogar auf die Spannelemente 20 oder Gegenspannelemente 54 verzichtet werden und das Pressband 15 frei auf der Grundplatte 16 aufgestellt werden. Selbstverständlich kann bei der Verwendung der Spannelemente 20 bzw. 54 auch auf eine einfachere Dichtung zurückgegriffen werden, da dann die Dichtung keine Spannfunktion ausüben muss. Es genügt dann beispielsweise die Abdichtung der Fuge zwischen pressband 15 und Grundplatte 16 mittels eines Silikonringes.
  • Zur galvanischen Hartverchromung der Innenfläche 18 des äusseren Bandes 15 werden entsprechend dem erfindungsgemässen Verfahren die Manschetten 27 über flexible Leitungen 52 an eine aus Kupferstäben mit genügend grossem Leitungsquerschnitt bestehende Ringleitung 64 angeschlossen, die ihrerseits wiederum mit dem negativen Pol einer Gleichspannungsquelle verbunden ist. Die Bleistangen 26 werden über die Arme 25 und dem Mast 22, der wiederum durch die Grundplatte 16 hindurch kontaktiert ist, mit dem positiven Pol der Gleichspannungsquelle verbunden. Damit ist das äussere Band 15 als Kathode geschaltet und die Bleistangen 26 als Anode. Mittels eines Motors 28 und einer Kette 53 zur Kraftübertragung auf ein an der Aussenhülse 24 befestigtes Zahnrad 55 wird die Aussenhülse 24 des Mastes 22 angetrieben, so dass die als Anode wirkenden Bleistangen 26 mit gleichförmiger Geschwindigkeit rotieren. Gemäss dem bekannten galvanischem Prinzip scheiden sich aus dem Elektrolyten im Hohlraum 21 nun Chromatome auf der der Anode 26 gegenüberliegenden Steile der Innenfläche 18 des als Kathode wirkenden Pressbandes 15 ab. Da sich die Anode 26 drehend bewegt, scheidet sich pro Umlauf eine Chromschicht mit einer bestimmten Dicke auf der gesamten Innenfläche 18 ab. Durch entsprechende Wahl der Anzahl der Umläufe der Anode 26 wird die gewünschte Gesamtschichtdicke der Hartchromschicht erhalten.
  • Eine Vergrösserung der abgeschiedenen Schichtdicke pro Umlauf ist möglich, indem die Anzahl der nebeneinanderliegenden Bleistangen 26, die die Anode bilden, erhöht wird. Bei sehr vielen nebeneinanderliegenden Bleistangen ist darauf zu achten, dass diese so angebracht werden, dass sie im Querschnitt gesehen die Form eines Kreisausschnittes besitzen, damit gewährleistet wird, dass sie bei der Rotation der Aussenhülse 24 nirgends mit einer Fläche 18, 19 der Bänder kollidieren. Eine andere Massnahme zur Vergrösserung der abgeschiedenen Schichtdicke besteht darin, mehr als zwei Arme 25 mit den daran befestigten Anoden auf der Aussenhülse 24 anzubringen. Bei diesen Massnahmen ist zu beachten, dass die Stromstärke entsprechend ansteigt und die Leistung der Gleichspannungsquelle dafür ausgelegt sein muss. Selbstverständlich kann bei geringer Leistung der Gleichspannungsquelle auch nur ein Arm 25 mit Anode an der Aussenhülse 24 angebracht sein, wobei dann die Anzahl der Umläufe für eine bestimmte Gesamtschichtdicke ansteigt.
  • Die Dimensionierung der Gleichspannungsquelle, die üblicherweise durch einen Netztransformator mit anschliessendem Gleichrichter dargestellt wird, erfolgt nach den bekannten Gesetzen der Elektrolyse. Die Eigenschaften der abgeschiedenen Chromschicht hängen, wie in der Galvanik allgemein bekannt, empfindlich von der Temperatur des Elektrolyten und der Stromdichte ab. Die Temperatur des Elektrolyten im Hohlraum 21 wird daher mittels im Hohlraum angebrachter Temperaturfühler ständig kontrolliert und durch Zufuhr von erwärmten Elektrolyten konstant gehalten. Die Zufuhr von frischem Elektrolyten erfolgt von unten durch die Grundplatte 16 hindurch in den Hohlraum 21. Gleichzeitig wird damit der verbrauchte Elektrolyt ersetzt, da durch die Abscheidung der Chromionen auf der Bandoberfläche dessen Konzentration entsprechend abnimmt. Somit ist sowohl die Temperatur wie auch Konzentration des Elektrolyten über den gesamten Galvanisierungszeitraum konstant.
  • Durch die ringförmige Anordnung der Kathode und Anode wird die Stromdichte ebenfalls automatisch an allen Stellen konstant gehalten, so dass man insgesamt eine sehr gleichmässige Schichtdicke der Hartchromschicht auf der gesamten Bandoberfläche erhält. Es hat sich auch gezeigt, dass eine Wasserstoffversprödung kaum auftritt, womit die Gefahr des Zerspringens der Oberflächenschicht unter Zugspannungen gebannt wird. Die Biegewechselfestigkeit der nach dem erfindungsgemässen Verfahren verchromten Bänder liegt ebenfalls weit höher als diejenige konventionell verchromter Bänder.
  • Die Stromausbeuten bei der Hartverchromung liegen bei ungefähr 20 %, d. h. rund 80 % des benötigten Stromes wird zur Elektrolyse von Wasser verwendet. Damit entwickelt sich an der Kathode gasförmiger Wasserstoff, der aus dem Hohlraum 21 entweicht. Die aufsteigenden Gasblasen reissen dabei einen Teil des Elektrolyten mit, womit das Wasserstoffgas mit Chromsäuredampf vermischt ist. Vorteilhafterweise kann über die gesamte Bänderanordnung ein aus Plastikfolie bestehendes Zeit gespannt werden, wie in Fig.5 schematisch mit dem Bezugszeichen 30 angedeutet ist, in dem diese Dämpfe aufgefangen und abgesaugt werden.
  • Um die Verlustleistungen so gering wie möglich zu machen, müssen die Zuleitungen des Stromes zur Anode und Kathode mit geringstmöglichem Widerstand erfolgen. Es werden daher wie in der Galvanik üblich Leitungen aus massivem Kupfer mit entsprechend grossem Querschnitt verwendet. Da sich die Anode 26 während der Galvanisierung bewegt, besitzt die Zuführung des Stromes im Mast 22 eine besondere Ausgestaltung, die in Fig. 4 im Querschnitt zu sehen ist.
  • Der Mast 22 besteht aus einem hohlen Vierkantrohr 56, das mittels eines Bodenflansches 31 über eine Kunststoffplatte 23 elektrisch isoliert auf der Grundplatte 16 aufgeschraubt ist. In dem Vierkantrohr verläuft eine Kupferstange 32, die über eine Öffnung in der Grundplatte 16 mit der Stromzuführung von der Gleichspannungsquelle kontaktiert ist. Diese Kupferstange 32 schliesst an ihrem oberen Ende mit einem Flansch 33 ab, auf dem ein äusserer Ringflansch 34 und ein innerer Ringflansch 35 so montiert sind, dass zwischen beiden ein ringförmiger Hohlraum frei bleibt. Zwischen dem hohlen Vierkantrohr 56 und dem Flansch 33 besteht keine leitende Verbindung, da gemeinsame Kontaktstellen mit Isolierungen 62 versehen sind. Die Aussenhülse 24 besitzt in ihrem unteren Teil einen ringförmigen Gegenflansch 39 und eine in der Mitte verlaufende Welle 36. Diese Welle 36 reicht in den vom inneren Ringflansch 35 gebildeten Hohlraum 57 und ist dort mittels zweier Kugellager 38 drehbar auf dem inneren Ringflansch 35 befestigt, so dass sich diese Welle und mit ihr die gesamte Aussenhülse 24 um die feststehende Kupferstange 32 drehen kann. Die Kugellager 38 sind mittels einer aus Kunststoff bestehenden Isolierung 37 gegen den inneren Ringflansch 35 isoliert. Der Abstand beider Kugellager 38 wird durch eine obere Distanzhülse 58 fixiert, während das untere Kugellager über eine untere Distanzhülse 59 auf einer Isolierungsplatte 40 aufliegt, die wiederum auf dem Flansch 33 liegt.
  • Der ringförmige Gegenflansch 39 der Aussenhülse 24 reicht in den durch den inneren Ringflansch 34 und äusseren Ringflansch 35 gebildeten Hohlraum so hinein, dass zwischen den Wänden ein geringfügiges Spiel von einigen 1/10 mm bleibt. Dieser durch das Spiel vorgegebene Raum ist durch Quecksilber 61, das elektrisch gut leitet, ausgefüllt und gewährleistet die Stromübertragung vom Flansch 33 über die feststehenden Ringflansche 34 und 35 auf den drehbaren Gegenflansch 39 der Aussenhülse 24 und von dort über die Arme 25, die am oberen Teil der Aussenhülse 24 montiert sind, weiter auf die Anode 26.
  • Auf der Aussenhülse 24 ist ein Zahnrad 55 montiert, das über die Kette 53 vom Motor 28 angetrieben wird und die Drehung der Aussenhülse bewirkt. Der Motor 28 wiederum ist am Vierkantrohr 56 befestigt Damit kein Strom von der Aussenhülse 24 über die Kette 53 auf den Motor 28 und das Vierkantrohr 56 fliesst, ist das Zahnrad mittels Isolierfolien 41 elektrisch gegen die Aussenhülse isoliert. Durch diesen Aufbau wird auch weiter erreicht, dass kein Strom vom inneren Ringflansch 35 über die Kugellager 38 auf die Welle 36 fliesst, da die bei der Verchromung benötigten grossen Ströme an den kleinen Querschnitten der Kugellager sonst gefährliche Überhitzungen verursachen könnten. Die Welle 36 selbst besitzt einen geringen Abstand zur lsolierungsplatte 40 und damit zu dem Flansch 33.
  • Soll nun anstelle der inneren Oberfläche eines Pressbandes dessen Aussenfläche verchromt werden, so werden die Bänder auf der Vorrichtung so angeordnet, dass das Band mit dem kleineren Durchmesser als Kathode geschaltet wird. In Fig. 2 ist dies das Pressband 15a mit der zu verchromenden Oberfläche 19. Die Verbindung der Kathode mit dem negativen Pol der Spannungsquelle erfolgt nun über Zuleitungen auf die Innenseite des Pressbandes 15a, entsprechend der obigen Beschreibung, während die Anode weiterhin mit den Bleistangen 26 verbunden ist. Ansonsten bleibt die Anordnung unverändert. Die Chromatome aus dem im Hohlraum 21 befindlichen Elektrolyten scheiden sich dann bei eingeschalteter Spannungsquelle und rotierenden Armen 25 auf der Aussenfläche 19 des pressbandes 15a ab und bilden die gewünschte Chromschicht.
  • Mit der erfindungsgemässen Vorrichtung lassen sich auch vorteilhafterweise zwei Pressbänder gleichzeitig verchromen, wobei dann bei dem aussenliegenden Band die Innenseite und bei dem innenliegenden Band die Aussenseite verchromt wird. Dazu werden auf der Innenseite des innenliegenden Bandes 15a Manschetten angebracht entsprechend den Manschetten 27 des aussenliegenden Bandes. Die Manschetten 27 werden sowohl auf dem äusseren Band 15 wie auch inneren Band 15a mit Spannelementen 20 festgehalten, die wie in Fig. 5 gezeigt, aus Kupferstangen bestehen und in diesem Ausführungsbeispiel gleichzeitig der Stromzuführung dienen. Ansonsten ist die in Fig. 5 gezeigte Vorrichtung gleich aufgebaut wie diejenige in Fig. 2, ausgenommen dass hier die Kraftübertragung vom Motor 28 auf die Aussenhülse 24 über ein Getriebe 29 mit passend gewählter Untersetzung erfolgt. Die zu Fig. 2 identischen Teile werden in Fig. 5 mit demselben Bezugszeichen bezeichnet.
  • Sowohl die Manschetten des aussenliegenden Bandes 15 wie auch diejenigen des innenliegenden Bandes werden mit dem negativen Pol der Spannungsquelle verbunden, so dass beide Bändem nun gleichzeitig die Kathode bilden. Rotieren die Arme 25 mit den als Anode wirkenden Bleistangen 26, so scheiden sich Chromatome sowohl auf der Innenfläche 18 des äusseren Bandes 15 als auch auf der Aussenfläche 19 des inneren Bandes 15a ab. Damit wird also je eine Oberfläche beider Bänder mit einer Chromschicht bedeckt. Bei der Dimensionierung der Spannungsquelle muss dann selbstverständlich der höhere Strombedarf beachtet werden.
  • Eine weitere Ausbildung des Verfahrens ermöglicht die gleichzeitige Verchromung der innenwie der Aussenfläche eines einzigen Pressbandes 15b. Dazu werden drei Pressbänder 15, 15b und 15a mit abnehmenden Durchmessern konzentrisch ineinander auf der Grundplatte 16 aufgestellt. Fig. 6 zeigt einen Schnitt in Richtung des Durchmessers zum gemeinsamen Mittelpunkt durch die Wandungen der drei ineinanderliegenden Pressbänder. Diese drei Pressbänder stehen auf Dichtungen 17, 17b und 17a, wobei die Dichtungen 17 und 17a entsprechend der in Fig.3 gezeigten Dichtung aufgebaut sind, so dass auf zusätzliche Spannelemente für die Pressbänder verzichtet werden kann. Falls es zweckmässig erscheint, können das innere 15a und äussere pressband 15 jedoch auch mit den üblichen Spannelementen 20 bzw. 54 gespannt werden, womit sich die Verwendung dieser Dichtung für diese beiden Pressbänder 15, 15a erübrigt.
  • Das mittlere Pressband 15b wird jedoch in einer solchen Dichtung eingespannt, womit dessen Innen- und Aussenflächen zum gleichzeitigen Verchromen nicht verdeckt sind und andrerseits das pressband 15b fixiert auf der Grundplatte 16 steht. Die Dichtung 17b besitzt in ihrem unteren Teil zusätzlich einen in beiden Eisenschienen 45, 46 verlaufenden Zapfenring 47, der aus einem gut leitenden Material wie Kupfer besteht. Dieser Zapfenring 47 ist an mehreren Stellen von unten durch Öffnungen 65 in der Grundplatte 16 durch Kontaktstecker 63 mit dem negativen Pol der Spannungsquelle verbunden, so dass das Band 15b als Kathode geschaltet ist.
  • Zwischen dem äusseren 15 und mittleren Band 15b besteht ein Hohlraum 21 a und zwischen dem mittleren 15b und inneren Band 15a ein weiterer Hohlraum 21b. In den Hohlraum 21 a taucht eine Anode 26a und in den Hohlraum 21 b eine Anode 26b ein. Beide Anoden 26a und 26b bestehen wiederum aus Bleistangen, die von einem Arm 25 abgehen. Die Ausgestaltung der Anoden und deren Kontaktierung über die Arme 25 und dem Mast 22 erfolgt ansonsten gleich wie weiter oben beschrieben. Beide Hohlräume 21 a und 21 b sind mit dem Elektrolyten gefüllt. Da das äussere Pressband 15 und das innere Pressband 15a potentialfrei sind, entsteht zwischen dem als Kathode wirkenden mittleren pressband 15b und den beiden Teilen 26a und 26b der Anode ein elektrisches Feld, so dass sich bei rotierender Anode und eingeschalteter Spannungsquelle eine Chromschicht gleichzeitig sowohl auf der Aussenals auch auf der Innenoberfläche des Pressbandes 15b abscheidet.
  • Das Verfahren und die entsprechende Vorrichtung zur Durchführung des Aufgalvanisierens einer Metallschicht ist hier am Beispiel der Hartverchromung eines Pressbandes beschrieben. Selbstverständlich lässt sich sowohl das Verfahren wie auch die Vorrichtung zur Aufgalvanisierung einer beliebigen anderen Metallschicht auf das Pressband verwenden, beispielsweise zum Verkupfern oder Vernickeln.. Dabei sind die beim Galvanisieren für das jeweilige Metall bekannten Bedingungen zu beachten. Unter Umständen muss dann die Anode 26 aus einem besonderen Material bestehen, beispielsweise aus Kupferstangen, falls auf das Pressband eine Kupferschicht galvanisch aufgebracht werden soll. Falls es zweckmässig erscheint, kann anstelle der aus einzelnen Stangen bestehenden Anode 26 auch eine einzige zusammenhängende Fläche für die Anode gewählt werden. Ebenso ist die Elektrolytsorte wie dem Fachmann geläufig zu wählen.

Claims (30)

1. Verfahren zur galvanischen Beschichtung der Innenfläche eines metallischen, endlosen Bandes mit einer Metallschicht, das in ungespanntem Zustand eine kreisringförmige Gestalt besitzt, insbesondere zum Einsatz als Pressband in einer Doppelbandpresse, wobei das Band als Kathode geschaltet zusammen mit einer Anode in einen Elektrolyten taucht, der in wässriger Lösung in Ionen dissoziiert, die die Beschichtung zu bildenden Metallatome enthalten, und Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsquelle verbunden werden, dadurch gekennzeichnet, daß zwei Bänder mit verschiedenen Durchmessern und ungefähr derselben Breite gewählt werden, wobei das zu beschichtende Band den größeren Durchmesser besitzt, beide Bänder hochkant so aufgestellt werden, daß die Breitseite der Bänder in vertikaler Richtung zeigt und das Band mit dem kleineren Durchmesser ganz innerhalb des Bandes mit dem größeren Durchmesser liegt, der zwischen dem inneren und dem äußeren Band gebildete Raum mit dem Elektrolyten gefüllt wird, in diesen Raum die im Querschnitt die Form eines Kreisausschnittes besitzende Anode eintaucht, das äußere Band als Kathode geschaltet wird und die Anode sich mit gleichförmiger Geschwindigkeit entlang der Kathode dreht.
2. Verfahren zur galvanischen Beschichtung der Außenfläche eines metallischen, endlosen Bandes mit einer Metallschicht, das in ungespanntem Zustand eine kreisringförmige Gestalt besitzt, insbesondere zum Einsatz als Pressband in einer Doppelbandpresse, wobei das Band als Kathode geschaltet zusammen mit einer Anode in einen Elektrolyten taucht, der in wässriger Lösung in Ionen dissoziiert, die die Beschichtung zu bildenden Metallatome enthalten, und Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsquelle verbunden werden, dadurch gekennzeichnet, daß zwei Bänder mit verschiedenen Durchmessern und ungefähr derselben Breite gewählt werden, wobei das zu beschichtende Band den kleineren Durchmesser besitzt, beide Bänder hochkant so aufgestellt werden, daß die Breitseite der Bänder in vertikaler Richtung zeigt und das Band mit dem kleineren Durchmesser ganz innerhalb des Bandes mit dem größeren Durchmesser liegt, der zwischen dem inneren und dem äußeren Band gebildete Raum mit dem Elektrolyten gefüllt wird, in diesen Raum die im Querschnitt die Form eines Kreisausschnittes besitzende Anode eintaucht, das innere Band als Kathode geschaltet wird und die Anode sich mit gleichförmiger Geschwindigkeit entlang der Kathode dreht.
3. Verfahren zur galvanischen Beschichtung der Außenfläche eines metallischen, endlosen Bandes mit einer Metallschicht und der Innenfläche eines weiteren Bandes, die in ungespannten Zustand eine kreisringförmige Gestalt besitzen, insbesondere zum Einsatz als Pressbänder in einer Doppelbandpresse, wobei beide Bänder als Kathode geschaltet zusammen mit einer Anode in einen Elektrolyten tauchen, der in wässriger Lösung in Ionen dissoziiert, die die Beschichtung zu bildenden Metallatome enthalten, und Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsguelle verbunden werden, dadurch gekennzeichnet, daß zwei Bänder mit verschiedenen Durchmessern und ungefähr derselben Breite gewählt werden, wobei beide Bänder hochkant so aufgestellt werden, daß die Breitseite der Bänder in vertikaler Richtung zeigt und das Band mit dem kleineren Durchmesser ganz innerhalb des Bandes mit dem größeren Durchmesser liegt, der zwischen dem inneren und dem äußeren Band gebildete Raum mit dem Elektrolyten gefüllt wird, in diesen Raum die im Querschnitt die Form eines Kreisausschnittes besitzende Anode eintaucht, sowohl das innere als auch das äußere Band als Kathoden geschaltet werden und die Anode sich mit gleichförmiger Geschwindigkeit entlang der Kathoden dreht.
4. Verfahren zur galvanischen Beschichtung der Innen- und Außenfläche eines metallischen, endlosen Bandes mit einer Metallschicht, das in ungespanntem Zustand eine kreisringförmige Gestalt besitzt, insbesondere zum Einsatz als Pressband in einer Doppelbandpresse, wobei das Band als Kathode geschaltet zusammen mit einer Anode in einen Elektrolyten taucht, der in wässriger Lösung in Ionen dissoziiert, die die Beschichtung zu bildenden Metallatome enthalten, und Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsguelle verbunden werden, dadurch gekennzeichnet, daß drei Bänder mit jeweils paarweise verschiedenen Durchmessern und ungefähr derselben Breite gewählt werden, wobei das zu beschichtende Band den mittleren Durchmesser besitzt, alle drei Bänder hochkant so aufgestellt werden, daß die Breitseite der Bänder in vertikaler Richtung zeigt und das Band mit dem nächst kleineren Durchmesser ganz innerhalb des Bandes mit dem nächst größeren Durchmesser liegt, die beiden zwischen dem inneren und dem mittleren Band und dem äußeren und dem mittleren Band gebildeten Räume mit dem Elektrolyten gefüllt werden, in diesen Räumen jeweils eine im Querschnitt die Form eines Kreisausschnittes besitzende Anode eintaucht, das mittlere Band als Kathode geschaltet wird, während sowohl das äußere als auch das innere Band potentialfrei sind und die Anoden sich mit gleichförmiger Geschwindigkeit entlang der Kathode drehen.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden ringförmigen, im Querschnitt einen Kreis bildenden Bänder so ineinander aufgestellt werden, daß sie bezüglich ihrer Kreismittelpunkte auf konzentrischen Kreisen liegen und der Abstand zwischen beiden Bändern überall konstant ist
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die drei ringförmigen, im Querschnitt einen Kreis bildenden Bänder so ineinander aufgestellt werden, daß sie bezüglich ihrer Kreismittelpunkte auf konzentrischen Kreisen liegen und der Abstand zwischen jeweils zwei Bändem konstant ist.
7. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einem Bad, das den Elektrolyten enthält, einer in den Elektrolyten tauchenden Anode und das in den Elektrolyten tauchende zu beschichtende Band, das als Kathode geschaltet ist, wobei Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsguelle verbunden sind, dadurch gekennzeichnet, daß das Bad mit dem Elektrolyten zu den Seiten von den ringförmigen, hochkant gestellten Bändern (15, 15a) und nach unten von einer Grundplatte (16) begrenzt wird, im Mittelpunkt des durch das äußere Band gebildeten Kreises ein vertikal aufragender Mast (22) auf der Grundplatte (16) montiert und gegen dieselbe elektrisch isoliert ist, von dem Arme (25) in einer Höhe, die größer als die Breite der Bänder ist, abgehen und bis in den Raum (21) des Bades reichen, von den äußersten Enden dieser Arme (25) flächenförmige, im Querschnitt die Form eines Kreisausschnittes besitzende und mittels der Arme (25) um den Mast (22) drehbare Anoden (26) in das Bad bis fast auf dessen Grund hinabreichen und die Anoden (26) über die Arme (25) und den Mast (22) mit dem Pluspol und das äußere Band durch an dessen Außenseiten anliegende Manschetten (27) mit dem Minuspol der Gleichspannungsguelle verbunden sind.
8. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 2 mit einem Bad, das den Elektrolyten enthält, einer in den Elektrolyten tauchenden Anode und das in den Elektrolyten tauchende zu beschichtende Band, das als Kathode geschaltet ist, wobei Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsquelle verbunden sind, dadurch gekennzeichnet, daß das Bad mit dem Elektrolyten zu den Seiten von den ringförmigen, hochkant gestellten Bändern (15, 15a) und nach unten von einer Grundplatte (16) begrenzt wird, im Mittelpunkt des durch das innere Band gebildeten Kreises ein vertikal aufragender Mast (22) auf der Grundplatte (16) montiert und gegen dieselbe elektrisch isoliert ist, von dem Arme (25) in einer Höhe, die größer als die Breite der Bänder ist, abgehen und bis in den Raum (21) des Bades reichen, von den äußersten Enden dieser Arme (25) flächenförmige, im Querschnitt die Form eines Kreisausschnittes besitzende und mittels der Arme (25) um den Mast (22) drehbare Anoden (26) in das Bad bis fast auf dessen Grund hinabreichen und die Anoden (26) über die Arme (25) und den Mast (22) mit dem Pluspol und das innere Band durch an dessen Innenseiten anliegende Manschetten (27) mit dem Minuspol der Gleichspannungsguelle verbunden sind.
9. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 3 mit einem Bad, das den Elektrolyten enthält, einer in den Elektrolyten tauchenden Anode und die in den Elektrolyten tauchenden zu beschichtenden Bänder, die als Kathode geschaltet sind, wobei Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsquelle verbunden sind, dadurch gekennzeichnet, daß das Bad mit dem Elektrolyten zu den Seiten von den ringförmigen, hochkant gestellten Bändern (15, 15a) und nach unten von einer Grundplatte (16) begrenzt wird, im gemeinsamen Mittelpunkt des durch das innere und äußere Band gebildeten Kreises ein vertikal aufragender Mast (22) auf der Grundplatte (16) montiert und gegen dieselbe elektrisch isoliert ist, von dem Arme (25) in einer Höhe, die größer als die Breite der Bänder ist, abgehen und bis in den Raum (21) des Bades reichen, von den äußersten Enden dieser Arme (25) flächenförmige, im Querschnitt die Form eines Kreisausschnittes besitzende und mittels der Arme (25) um den Mast (22) drehbare Anoden (26) in das Bad bis fast auf dessen Grund hinabreichen und die Anoden (26) über die Arme (25) und den Mast (22) mit dem Pluspol und sowohl das innere Band (15a) durch an dessen Innenseiten anliegende als auch das äußere Band (15) durch an dessen Außenseiten anliegende Manschetten (27) mit dem Minuspol der Gleichspannungsguelle verbunden sind.
10. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 4 mit einem Bad, das den Elektrolyten enthält, einer in den Elektrolyten tauchenden Anode und das in den Elektrolyten tauchende zu beschichtende Band, das als Kathode geschaltet ist, wobei Kathode und Anode mit den entsprechenden Polen einer Gleichspannungsquelle verbunden sind, dadurch gekennzeichnet, daß das Bad mit dem Elektrolyten zu den Seiten von dem ringförmigen, hochkant gestellten inneren Band (15a) und äußeren Band (15) und nach unten von einer Grundplatte (16) begrenzt wird, zwischen dem inneren Band (15a) und äußeren Band (15) ein mittleres Band (15b) angeordnet ist, im gemeinsamen Mittelpunkt des durch das innere und äußere Band gebildeten Kreises ein vertikal aufragender Mast (22) auf der Grundplatte (16) montiert und gegen dieselbe elektrisch isoliert ist, von dem Arme (25) in einer Höhe, die größer als die Breite der Bänder ist, abgehen und bis in den Raum (21) des Bades reichen, von je einem Arm (25) zwei flächenförmige, im Querschnitt die Form eines Kreisausschnittes besitzende und mittels der Arme (25) um den Mast (22) drehbare Anoden (26a, 26b) in das Bad bis fast auf dessen Grund hinabreichen, wobei sich eine Anode (26a) im Bereich (21a) zwischen dem äußeren (15) und mittleren Band (15b) und die andere Anode (26b) im Bereich (21 b) zwischen dem mittleren (15b) und inneren Band (15a) befindet und die Anoden (26a, 26b) über die Arme (25) und den Mast (22) mit dem Pluspol und das mittlere Band (15b) durch die Grundplatte (16) hindurch mit dem Minuspol der Gleichspannungsguelle verbunden sind.
11. Vorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß die Bänder (15, 15a) bzw. (15b) in einer Ringdichtung (17) auf der Grundplatte (16) stehen.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß die Ringdichtung (17) einen ringförmigen Körper (42) aus elastomerem Material besitzt, in dessen Oberfläche eine ringförmige Nut (43) eingebracht ist, in diese Nut (43) eine aus zwei ringförmigen Metallschienen (45, 46) bestehende Halterung (44) eingesteckt ist, wobei eine Metallschiene (45) in ihrem oberen Teil einen Absatz (48) zur Aufnahme des Bandes (15) und eine an diesen Absatz (48) anschließende Nut (49) besitzt.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß das Band (15) mittels eines in der Nut (49) befindlichen 0-Ringes und auf diesen Ö-Ring wirkenden Flüssigkeitsdrucks an die Wandung (50) der anliegenden Metallschiene (46) gepreßt wird.
14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die Metallschienen (45, 46) aus Eisen bestehen.
15. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß der ringförmige Körper (42) aus Gummi besteht.
16. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß durch die Grundplatte (16) ohne elektrisch leitende Verbindung zu derselben und den Körper (42) hindurch eine Verbindung mittels eines Kontaktsteckers (63) mit einem Zapfenring (47) zu dem Minuspol der Spannungsquelle erfolgt.
17. Vorrichtung nach mindestens einem der Ansprüche 7 bis 16, dadurch gekennzeichnet, daß vom Mast (22) aus ein Zelt (30) mit einer Absaugvorrichtung über alle Bänder (15, 15a, 15b) gespannt ist.
18. Vorrichtung nach mindestens einem der Ansprüche 7 bis 17, dadurch gekennzeichnet, daß das äußere Band (15) mittels an der Außenseite angreifender, leistenförmiger Spannelemente (20) auf die Grundplatte (16) aufgespannt ist.
19. Vorrichtung nach mindestens einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, daß das innere Band (15a) mittels an der Innenseite angreifender, leistenförmiger Spannelemente (20) auf die Grundplatte (16) aufgespannt ist.
20. Vorrichtung nach mindestens einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, daß das innere Band (15a) mittels an der Innenseite angreifender, das Band nach außen spannender Gegenspannelemente (54) in kreisförmiger Form gehalten wird.
21. Vorrichtung nach Ansprüche 18 oder 19, dadurch gekennzeichnet, daß die Manschetten (27) mittels der leistenförmigen Spannelemente (20) auf der Oberfläche des Bandes festgespannt werden.
22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, daß die Manschetten (27) aus Kupfer bestehen.
23. Vorrichtung nach Ansprüche 18 oder 19, dadurch gekennzeichnet, daß die Kontaktierung der Manschetten (27) mit dem Minuspol der Gleichspannungsquelle über die aus Kupfer bestehenden Spannelemente (20) von unten durch die Grundplatte (16) hindurch erfolgt.
24. Vorrichtung nach Ansprüche 18 oder 19, dadurch gekennzeichnet, daß die Kontaktierung der Manschetten (27) mit dem Minuspol der Gleichspannungsquelle über flexible, auf die Manschetten steckbare Leitungen (52) von einer an der Grundplatte (16) angebrachten Ringleitung (64) aus erfolgt.
25. Vorrichtung nach mindestens einem der Ansprüche 7 bis 24, dadurch gekennzeichnet, daß die Anode aus mehreren dicht nebeneinanderliegenden Stangen (26) besteht, die an den Armen (25) des Mastes (22) befestigt sind.
26. Vorrichtung nach mindestens einem der Ansprüche 7 bis 25, dadurch gekennzeichnet, daß der Mast (22) aus einem hohlen Vierkantrohr (56) besteht, auf dessen oberen Teil eine drehbar gelagerte, gegenüber dem Vierkantrohr elektrisch isolierte Außenhülse (24) angebracht ist, die die Arme (25) trägt, und im Inneren des Vierkantrohres eine sowohl mit dem Pluspol der Spannungsquelle verbundene als auch mit der Außenhülse (24) kontaktierende Kupferstange (32) durch eine Öffnung in der Grundplatte (16) verläuft.
27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß die Außenhülse (24) mittels eines Motors (28) gedreht wird, dessen Kraft über eine Kette (53) auf ein an der Außenhülse (24) angebrachtes Zahnrad (55) übertragen wird.
28. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß die Außenhülse (24) mittels eines Motors (28) gedreht wird, dessen Kraft über ein Getriebe (29) auf die Außenhülse (24) übertragen wird.
29. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß die Stromzuführung von der Kupferstange (32) auf die drehbare Außenhülse (24) über eine metallische Flüssigkeit erfolgt.
30. Vorrichtung nach Anspruch 29, dadurch gekennzeichnet, daß als metallische Flüssigkeit Quecksilber verwendet wird.
EP86102928A 1985-03-15 1986-03-05 Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern Expired - Lifetime EP0194577B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86102928T ATE49242T1 (de) 1985-03-15 1986-03-05 Verfahren und vorrichtung zur galvanischen beschichtung von pressbaendern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3509388A DE3509388C2 (de) 1985-03-15 1985-03-15 Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern
DE3509388 1985-03-15

Publications (3)

Publication Number Publication Date
EP0194577A2 EP0194577A2 (de) 1986-09-17
EP0194577A3 EP0194577A3 (en) 1987-10-14
EP0194577B1 true EP0194577B1 (de) 1990-01-03

Family

ID=6265351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86102928A Expired - Lifetime EP0194577B1 (de) 1985-03-15 1986-03-05 Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern

Country Status (7)

Country Link
US (2) US4640758A (de)
EP (1) EP0194577B1 (de)
JP (1) JPS61213392A (de)
CN (1) CN1011601B (de)
AT (1) ATE49242T1 (de)
DE (1) DE3509388C2 (de)
SU (1) SU1426459A3 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04234765A (ja) * 1990-08-29 1992-08-24 Xerox Corp 基体、ベルトおよび静電写真像形成部材、並びにこれらの製造方法
US5064509A (en) * 1990-09-28 1991-11-12 Xerox Corporation Multilayer belts formed by electrodeposition
US5152723A (en) * 1990-12-24 1992-10-06 Xerox Corporation Endless metal belt assembly with hardened belt surfaces
CN100390326C (zh) * 2004-01-06 2008-05-28 上海维安热电材料股份有限公司 一种复合镀层材料的制备方法及设备
KR100686778B1 (ko) * 2005-01-12 2007-02-23 엘에스전선 주식회사 금속 전해박 제조장치
CN111575769B (zh) * 2020-05-25 2021-05-14 太仓市华夏电镀有限公司 一种自动挂镀生产线及挂镀铜镍铬生产工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3507770A (en) * 1967-12-08 1970-04-21 Charles G Fleming Apparatus for electrolytic refining of copper
US3772163A (en) * 1971-08-20 1973-11-13 J Jumer Electrochemical processing of inner surfaces of large vessels
US3783110A (en) * 1972-12-20 1974-01-01 Us Army Process for electrodeposition of metals under the influence of a centrifugal force field
DE2421296A1 (de) * 1974-05-02 1975-11-13 Held Kg Adolf Verfahren und vorrichtung zum herstellen von endloslaminaten
US4001094A (en) * 1974-09-19 1977-01-04 Jumer John F Method for incremental electro-processing of large areas
DE2950795C2 (de) * 1979-12-17 1982-07-29 Standex International Gmbh, 4150 Krefeld Verfahren zum Herstellen einer Prägegravur auf einem durch eine Schweißnaht verbundenen metallischen Endlosband

Also Published As

Publication number Publication date
DE3509388A1 (de) 1986-09-18
US4640758A (en) 1987-02-03
JPS61213392A (ja) 1986-09-22
DE3509388C2 (de) 1993-12-09
US4686016A (en) 1987-08-11
ATE49242T1 (de) 1990-01-15
CN86101406A (zh) 1986-09-10
EP0194577A2 (de) 1986-09-17
SU1426459A3 (ru) 1988-09-23
JPH0240753B2 (de) 1990-09-13
EP0194577A3 (en) 1987-10-14
CN1011601B (zh) 1991-02-13

Similar Documents

Publication Publication Date Title
DE1621184C3 (de) Vorrichtung zum einseitigen Galvanisieren von Metallbändern
DE69005788T2 (de) Verfahren und Vorrichtung zur Elektroplattierung eines metallischen Bandes.
DE4402596C2 (de) Elektrolytisches Verfahren in horizontalen Durchlaufanlagen und Vorrichtung zur Durchführung desselben
CH621516A5 (de)
DE2051578A1 (de) Methode des Elektrofassonierens und Mittel des Verfahrens
DE2051778C3 (de) Vorrichtung zum Galvanisieren von zylindrischen Gegenständen
DE2944852C2 (de)
EP0194577B1 (de) Verfahren und Vorrichtung zur galvanischen Beschichtung von Pressbändern
DE3440457C2 (de) Vorrichtung zur kontinuierlichen elektrolytischen Abscheidung einer Abdeckmetallschicht auf einem Metallband und Verwendung einer solchen Vorrichtung
DE3421480A1 (de) Beschichtete ventilmetall-elektrode zur elektrolytischen galvanisierung
DE2254855C3 (de) Vorrichtung zur Bildung eines Überzuges auf Oberflächen von Werkstücken
DE3786990T2 (de) Elektrolytische Behandlungszelle.
DE656233C (de) AEtzvorrichtung zum elektrolytischen AEtzen von Metallplatten oder aehnlichen Gebilden
DE3046091C2 (de) Vorrichtung zur elektrochemischen Metallbearbeitung
DE1294793B (de) Verfahren zur elektrolytischen Bearbeitung eines Werkstueckes mittels eines Mehrphasenstromes und Vorrichtung zur Durchfuehrung dieses Verfahrens
DE1172512B (de) Haltevorrichtung fuer perforierte Tauch-trommeln bei Anlagen zur Oberflaechen-behandlung von Massenteilen in Fluessigkeiten
DE3516397A1 (de) Vorrichtung zum elektrischen widerstands-rollennahtschweissen und insbesondere dafuer vorgesehene elektrodenrolle und schweissstromzufuehrung
DE102006044673B3 (de) Kontaktiereinheit für die galvanische Abscheidung, Galvanisiervorrichtung und Galvanisiersystem
DE4301742C2 (de) Vorrichtung zum Galvanisieren plattenförmiger Gegenstände, insbesondere von elektronischen Leiterplatten
DE229453C (de)
DE3012490C2 (de) Vorrichtung zum Galvanisieren der Mantelflächen zylindrischer Werkstücke
DE3147426C2 (de) Vorrichtung zum partiellen Galvanisieren
DE1496888C3 (de) Galva nisiervorrichtung
DE2538585A1 (de) Verfahren und vorrichtung zum polieren der innenflaeche eines laenglichen behaelters
DE469429C (de) Vorrichtung zum Galvanisieren von Rohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: C25D 7/04

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH LI SE

17P Request for examination filed

Effective date: 19870901

17Q First examination report despatched

Effective date: 19881216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH LI SE

REF Corresponds to:

Ref document number: 49242

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 86102928.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960129

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960229

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19970305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 86102928.8