[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0168705B1 - Bad und Verfahren zur galvanischen Hartvergoldung - Google Patents

Bad und Verfahren zur galvanischen Hartvergoldung Download PDF

Info

Publication number
EP0168705B1
EP0168705B1 EP85108129A EP85108129A EP0168705B1 EP 0168705 B1 EP0168705 B1 EP 0168705B1 EP 85108129 A EP85108129 A EP 85108129A EP 85108129 A EP85108129 A EP 85108129A EP 0168705 B1 EP0168705 B1 EP 0168705B1
Authority
EP
European Patent Office
Prior art keywords
bath
aqueous solution
gold
hard
solution contains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85108129A
Other languages
English (en)
French (fr)
Other versions
EP0168705A1 (de
Inventor
Jacky Dr. Vanhumbeeck
Rudy De Doncker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19853509245 external-priority patent/DE3509245A1/de
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT85108129T priority Critical patent/ATE38061T1/de
Publication of EP0168705A1 publication Critical patent/EP0168705A1/de
Application granted granted Critical
Publication of EP0168705B1 publication Critical patent/EP0168705B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H2011/046Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion by plating

Definitions

  • the invention relates to an acidic cyanide bath for the galvanic hard gold plating of electrical contact components according to the preamble of claim 1, and methods for the galvanic hard gold plating of electrical contact components using this bath.
  • Galvanic gold deposits are characterized by their excellent corrosion resistance and their relatively good electrical properties. These two properties are of particular importance in the case of electrical contact components such as connectors, contacts for relays and switches and the like, since here the galvanically deposited gold layers have to take over the corrosion protection of the carrier material and the loss-free transmission of the energy. Great importance is attached to a low and constant contact resistance. With regard to the mechanical stress on the contact components, the hardness and wear resistance of the gold layers also play an important role. Corresponding abrasion-resistant hard gold layers are mostly produced from baths that contain so-called hardness additives, with the metals cobalt and nickel being used as hardness additives in particular.
  • base metals such as cobalt and nickel
  • other properties of the deposited layers can also be influenced.
  • the base metals diffuse to the surface of the deposited layers and thereby lead to an undesirable increase in the contact resistance.
  • the invention is based on an acidic cyanide bath known from DE-PS 3 121 509, which uses potassium gold cyanide as a gold source, malic acid as a conductive salt, nitrilotriacetic acid as a complexing agent, cobalt sulfate as a hardness additive and for adjusting a pH between 3.8 and 4.7 Contains potassium hydroxide.
  • the gold layers deposited from this bath are hard and wear-resistant.
  • Additive-free bath for galvanic hard gold plating which as the gold source is alkali gold cyanide. contains in particular potassium gold cyanide, potassium dihydrogen phosphate as a buffer system and possibly potassium hydroxide and hydrazine hydrate as a reducing agent.
  • the term additive-free bath is intended to express that hardness additives such as cobalt or nickel can be dispensed with entirely or should only be present in small amounts of less than 10 mg / l.
  • the gold layers deposited from this additive-free bath are hard, so-called adhesive wear occurs in electrical contact components such as connectors and the like. If there is friction between two such gold layers, they can weld to one another, which then leads to corresponding wear.
  • an acidic cyanide gold bath which contains gold as sodium gold cyanide or potassium gold cyanide, cobalt or nickel in the form of a water-soluble salt of a hydroxycarboxylic acid and a mixture contains two hydroxycarboxylic acids - such as citric acid and trihydroxyglutamic acid or malic acid and tetrahydroxyadipic acid.
  • pH values between 3.8 and 6.0 and bath temperatures between 20 and 50 ° C shiny gold layers are deposited with current densities between 0.1 and 1.5 A / dm 2 .
  • galvanic hard gold plating of parts of mass production - such as electrical contact components - higher current densities or higher deposition rates are required for economical work.
  • an acidic cyanide bath for galvanic hard gold plating which in aqueous solution alkali gold cyanide - such as.
  • alkali gold cyanide - such as.
  • potassium gold cyanide or sodium gold cyanide - a weak Lewis acid - such as. B. quinaldic acid or boric acid -, a weak polyfunctional water-soluble aliphatic acid - such.
  • citric acid or malic acid - a non-separating metal compound - such as. B. an aluminum, barium or magnesium compound - and as a hardening additive contains a metal such as cobalt, nickel, cadmium, silver, copper, iron or platinum in the form of a water-soluble salt.
  • the hard gold layers are deposited with current densities between 0.05 and 2.1 A / dm 2 .
  • a simpler composition of the bath and the achievement of higher current densities would be desirable.
  • the invention has for its object to provide a bath for the galvanic hard gold plating of contact components, which has a simple composition and an economy hard and wear-resistant gold layers with low and, above all, constant contact resistance. This object is achieved in a generic bath by the characterizing features of claim 1.
  • the invention is based on the finding that in the bath known from DE-PS 3 121 509, the nitrilotriacetic acid provided as a complexing agent can be omitted without substitute, provided that the concentrations specified in the characterizing features of claim 1 are observed for the other constituents of the bath.
  • the malic acid contained in the bath according to the invention thus acts simultaneously as a conductive salt, as a buffer and as a complexing agent.
  • the gold layers deposited from the bath are hard and wear-resistant and have a low contact resistance.
  • the aqueous solution can be free from additions of hardness, whereby matt precipitates are deposited which are hard and wear-resistant and have low contact resistances with a particularly good stability over time.
  • the aqueous solution can also contain 30 to 250 mg / l, preferably 40 to 100 mg / l as a hardness additive and approximately 50 mg / l cobalt or 50 to 300 mg / l as an optimum and approximately 100 mg / l as an optimum Contain nickel.
  • shiny precipitates are deposited, which are hard and wear-resistant and have low, constant contact resistances over time.
  • the current density window in which acceptable precipitation is achieved, is considerably larger than in an additive-free bath.
  • the aqueous solution preferably contains the cobalt in the form of cobalt sulfate or the nickel preferably in the form of nickel sulfate.
  • the aqueous solution contains 10 to 25 g / l gold, optimal results being achieved at approximately 15 g / l gold.
  • the aqueous solution contains 150 to 250 g / l malic acid.
  • An optimal quality of the precipitates is achieved when the aqueous solution contains approximately 200 g / l malic acid.
  • the aqueous solution contains potassium hydroxide for adjusting a pH between 4.2 and 4.7, preferably for adjusting a pH of approximately 4.5.
  • the invention also specifies a preferred method for the galvanic hard gold plating of electrical contact components using an additive-free bath according to the invention. It is provided that the hard gold plating is carried out in a jet plating system at a current density between 2 and 20 A / dm 2 and at a spraying speed of the aqueous solution between 1 and 10 m / s. A particularly good quality of the deposited precipitates is achieved if the hard gold plating is carried out at a current density between 2 and 13 A / dm 2 .
  • the invention further specifies a preferred method for the galvanic hard gold plating of electrical contact components using a bath according to the invention containing cobalt or nickel as a hardness additive. It is provided that the hard gold plating is carried out in a jet plating system at a current density between 2 and 45 A / dm 2 and at a spraying speed of the aqueous solution between 1 and 10 m / s. A particularly good quality of the deposited layers is achieved when the hard gold plating with a current density between 2 and. 35 A / dm 2 is carried out.
  • the hard gold plating is carried out at a spraying speed of the aqueous solution of approximately 2 m / s. In both cases it is also particularly favorable if the hard gold plating is carried out at a bath temperature between 40 and 65 ° C., preferably between 50 and 60 ° C., a bath temperature of approximately 55 ° C. being regarded as optimal.
  • the bath temperature was set to 55 ° C when the jet plating system was in operation.
  • the aqueous bath solution with Spr i was tz Oberen of about 2 m / s on the areas to be plated of the plug contacts directed and plating at current densities 2-13 ALDM 2 pre- taken, the cathodic current yield was 90 to 95%.
  • Matte_hard gold layers with a layer thickness of approx. 2.5 ⁇ m were deposited, which had very good wear resistance, excellent ductility and a low contact resistance. After storing the plug contacts at an elevated temperature, there was no noticeable increase in the contact resistance.
  • the hardness HV (50) was always in the range between 170 and 180 kp / mm 2 .
  • the bath temperature was set to 55 ° C and the spraying speed to approx. 2 m / s.
  • cathodic current yields between 40 and 70% shining hard gold layers with a layer thickness of approx. 2.5 ⁇ m were deposited, which had very good wear resistance, good ductility and a low contact resistance.
  • the measured hardness HV (50) was always in the range between 120 and 180 kp / mm 2 .
  • the baths described in Examples 1, 2 and 3 contained no further constituents or additives apart from the constituents indicated.
  • similarly good results can be achieved if the cobalt or nickel used as the hardness additive is added in the form of other water-soluble salts, for example in the form of cobalt chloride or nickel chloride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

  • Die Erfindung betrifft ein saures cyanidisches Bad zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen nach dem Oberbegriff des Anspruchs 1, sowie Verfahren zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen unter Verwendung dieses Bades.
  • Galvanische Goldniederschläge zeichnen sich durch ihre ausgezeichnete Korrosionsbeständigkeit und ihre relativ guten elektrischen Eigenschaften aus. Diesen beiden Eigenschaften kommt insbesondere bei elektrischen Kontaktbauteilen wie Steckverbindern, Kontakten für Relais und Schalter und dg eine erhöhte Bedeutung zu, da hier die galvanisch abgeschiedenen Goldschichten zum einen den Korrosionsschutz des Trägermaterials und zum andern die verlustfreie Übertragung der Energie übernehmen müssen. Dabei wird auf einen niedrigen und zeitlich konstanten Übergangswiderstand größter Wert gelegt. Im Hinblick auf die mechanische Beanspruchung der Kontaktbauteile spielen aber auch die Härte und Verschleißfestigkeit der Goldschichten eine wesentliche Rolle. Entsprechende abriebbeständige Hartgoldschichten werden meist aus Bädern hergestellt, die sog. Härtezusätze enthalten, wobei in sauren Bädern als Härtezusätze insbesondere die Metalle Kobalt und Nickel verwendet werden. Durch das Zu legieren von Unedelmetallen wie Kobalt und Nickel können neben der erwünschten Steigerung der Härte des Niederschlages aber auch andere Eigenschaften der abgeschiedenen Schichten mit beeinflußt werden. Insbesondere nach einer Lagerung der Kontaktbauteile bei erhöhter Temperatur diffundieren die Unedelmetalle an die Oberfläche der abgeschiedenen Schichten und führen dadurch zu einer unerwünschten Erhöhung des Übergangswiderstandes.
  • Die Erfindung geht aus von einem aus der DE-PS 3 121 509 bekannten sauren cyanidischen Bad, welches als Goldquelle Kaliumgoldcyanid, als Leitsalz Apfelsäure, als Komplexbildner Nitrilotriessigsäure, als Härtezusatz Kobaltsulfat und zur Einstellung eines pH-Wertes zwischen 3,8 und 4,7 Kaliumhydroxid enthält. Die aus diesem Bad abgeschiedenen Goldschichten sind hart und verschleißfest.
  • Aus der EP-OS 0 025 220 ist ein sog. zusatzfreies Bad zur galvanischen Hartvergoldung bekannt, welches als Goldquelle Alkaligoldcyanid. insbesondere Kaliumgoldcyanid, als Puffersystem Kaliumdihydrogenphosphat und ggf. Kaliumhydroxid und als Reduktionsmittel Hydrazinhydrat enthält. Durch die Bezeichnung zusatzfreies Bad soll dabei ausgedrückt werden, daß Härtezusätze wie Kobalt oder Nickel ganz entfallen können bzw. nur in geringen Mengen von weniger als 10 mg/I enthalten sein sollen. Obwohl die aus diesem zusatzfreien Bad abgeschiedenen Goldschichten hart sind, tritt bei elektrischen Kontaktbauteilen wie Steckverbindern und dgl. ein sog. adhäsiver Verschleiß auf. Bei einer Reibung zwischen zwei derartigen Goldschichten können diese miteinander verschweißen, was dann zu einem entsprechenden Verschleiß führt.
  • Aus Chemical Abstracts •, Bd.90, Nr.10, 5. März 1979, Seite 418, Zusammenfassung 78466j ist ein saures cyanidisches Goldbad bekannt, welches Gold als Natriumgoldcyanid oder Kaliumgoldcyanid, Kobalt oder Nickel in Form eines wasserlöslichen Salzes einer Hydroxycarboxylsäure und eine Mischung aus zwei Hydroxycarboxylsäuren - wie Zitronensäure und Trihydroxyglutaminsäure oder Apfelsäure und Tetrahydroxyadipinsäure enthält. Bei pH-Werten zwischen 3,8 und 6,0 und Badtemperaturen zwischen 20 und 50 °C werden mit Stromdichten zwischen 0,1 und 1,5 A/dm2 glänzende Goldschichten abgeschieden. Für eine galvanische Hartvergoldung von Teilen der Massenfertigung - wie elektrischen Kontaktbauteilen - werden für ein wirtschaftliches Arbeiten jedoch höhere Stromdichten bzw. höhere Abscheideraten verlangt.
  • Aus der US-PS 4 075 065 ist ein saures cyanidisches Bad für die galvanische Hartvergoldung bekannt, welches in wäßriger Lösung Alkaligoldcyanid - wie z. B. Kaliumgoldcyanid oder Natriumgoldcyanid - eine schwache Lewis-Säure - wie z. B. Chinaldinsäure oder Borsäure -, eine schwache polyfunktionelle wasserlösliche aliphatische Säure - wie z. B. Zitronensäure oder Apfelsäure -, eine nichtabscheidende Metallverbindung - wie z. B. eine Aluminium-, Barium-oder Magnesiumverbindung - und als Härtezusatz ein Metall wie Kobalt, Nickel, Cadmium, Silber, Kupfer, Eisen oder Platin in Form eines wasserlöslichen Salzes enthält. Bei pH-Werten zwischen 3,7 und 4,8 und Badtemperaturen zwischen 30 und 50 °C werden die Hartgoldschichten mit Stromdichten zwischen 0.05 und 2,1 A/dm2 abgeschieden. Für eine wirtschaftliche galvanische Hartvergoldung von elektrischen Kontaktbauteilen wären jedoch eine einfachere Zusammensetzung des Bades und die Erzielung höherer Stromdichten erwünscht.
  • Gleiches gilt für die US-PS 3 764 489, worin beschrieben wird, daß eine Legierung aus Gold mit Zinn oder Blei auf eine leitfähige Oberfläche in einem wäßrigen sauren Plattierungsbad abgeschieden wird, welches zwischen 1 und 30 g/l Gold in Form von Kaliumgoldcyanid, 1 bis 100 g/1 Zinn als eine wasserlösliche Komponente, 0,01 bis 1,0 g/I Blei als eine wasserlösliche Komponente und zwischen 5 und 500 g/1 eines Komplexbildners für Zinn (z. B. Apfelsäure), gleichzeitig Elektrolyt für das besagte Bad, enthält. Hierbei wird die besagte leitfähige Oberfläche als Kathode verwendet. Die einsetzbaren Stromstärken liegen zwischen 0,3 und 2,0 A/dm2. Der pH-Wert wird zwischen 3,5 und 5,5 eingestellt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Bad zur galvanischen Hartvergoldung von Kontaktbauteilen zu schaffen, welches eine einfache Zusammensetzung aufweist und eine wirtschaftliche Abscheidung harter und verschleißfester Goldschichten mit niedrigem und vor allem zeitlich konstanten Übergangswiderstand ermöglicht. Diese Aufgabe wird bei einem gattungsgemäßen Bad durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Der Erfindung liegt die Erkenntnis zugrunde, daß bei dem aus der DE-PS 3 121 509 bekannten Bad die als Komplexbildner vorgesehene Nitrilotriessigsäure ersatzlos entfallen kann, sofern für die übrigen Bestandteile des Bades die in den kennzeichnenden Merkmalen des Anspruchs 1 angegebenen Konzentrationen eingehalten werden. Die in dem erfindungsgemäßen Bad enthaltene Apfelsäure wirkt also entsprechend dieser Erkenntnis gleichzeitig als Leitsalz, als Puffer und als Komplexbildner. Hierdurch ergibt sich eine besonders einfache Zusammensetzung des Bades, welches nur noch Kaliumgoldcyanid, Apfelsäure, Kaliumhydroxid und ggf. Kobalt oder Nickel in Form von wasserlöslichen Salzen enthält. Die aus dem Bad abgeschiedenen Goldschichten sind hart und verschleißfest und weisen einen geringen Übergangswiderstand auf. Da Kobalt oder Nickel als Härtezusatz allenfalls in geringen Mengen vorhanden ist und auch auf andere Zusätze verzichtet wird, tritt selbst nach einer Lagerung der hartvergoldeten Kontaktbauteile bei erhöhter Temperatur keine merkliche Erhöhung des Übergangswiderstandes auf. Die äußerst günstigen mechanischen und elektrischen Eigenschaften der Hartgoldschichten sind also auf die einfache Badzusammensetzung bzw. auf das Weglassen bisher üblicher Badbestandteile zurückzuführen.
  • Bei dem erfindungsgemäßen Bad kann die wäßrige Lösung frei von Härtezusätzen sein, wobei matte Niederschläge abgeschieden werden, die hart und verschleißfest sind und niedrige Übergangswiderstände mit einer besonders guten zeitlichen Konstanz aufweisen.
  • Bei dem erfindungsgemäßen Bad kann die wäßrige Lösung aber auch als Härtezusatz 30 bis 250 mg/l, vorzugsweise 40 bis 100 mg/I und als Optimum ungefähr 50 mg/I Kobalt oder 50 bis 300 mg/1 und als Optimum ungefähr 100 mg/I Nickel enthalten. In diesem Fall werden glänzende Niederschläge abgeschieden, die hart und verschleißfest sind und niedrige, zeitlich konstante Übergangswiderstände aufweisen. Außerdem ist hier das Stromdichtefenster, in dem annehmbare Niederschläge erzielt werden, wesentlich größer als bei einem zusatzfreien Bad.
  • Bei einem Bad mit Härtezusatz enthält die wäßrige Lösung das Kobalt vorzugsweise in Form von Kobaltsulfat oder das Nickel vorzugsweise in Form von Nickelsulfat.
  • Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung enthält die wäßrige Lösung 10 bis 25 g/l Gold, wobei optimale Ergebnisse bei ungefähr 15 g/I Gold erzielt werden.
  • Weiterhin ist es vorteilhaft, wenn die wäßrige Lösung 150 bis 250 g/l Apfelsäure enthält. Eine optimale Qualität der Niederschläge wird dabei dann erreicht, wenn die wäßrige Lösung ungefähr 200 g/I Apfelsäure enthält.
  • Im Hinblick auf die Qualität der abgeschiedenen Niederschläge ist es besonders vorteilhaft, wenn die wäßrige Lösung Kaliumhydroxid zur Einstellung eines pH-Wertes zwischen 4,2 und 4,7, vorzugsweise zur Einstellung eines pH-Wertes von ungefähr 4,5 enthält.
  • Die Erfindung gibt auch ein bevorzugtes Verfahren zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen unter Verwendung eines zusatzfreien erfindungsgemäßen Bades an. Dabei ist vorgesehen, daß die Hartvergoldung in einer Jet-Plating-Anlage bei einer Stromdichte zwischen 2 und 20 A/dm2 und bei einer Spritzgeschwindigkeit der wäßrigen Lösung zwischen 1 und 10 m/s durchgeführt wird. Eine besonders gute Qualität der abgeschiedenen Niederschläge wird dabei dann erzielt, wenn die Hartvergoldung bei einer Stromdichte zwischen 2 und 13 A/dm2 durchgeführt wird.
  • Die Erfindung gibt ferner ein bevorzugtes Verfahren zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen unter Verwendung eines Kobalt oder Nickel als Härtezusatz enthaltenden erfindungsgemäßen Bades an. Dabei ist vorgesehen, daß die Hartvergoldung in einer Jet-Plating-Anlage bei einer Stromdichte zwischen 2 und 45 A/dm2 und bei einer Spritzgeschwindigkeit der wäßrigen Lösung zwischen 1 und 10 m/s durchgeführt wird. Eine besonders gute Qualität der abgeschiedenen Schichten wird dabei dann erzielt, wenn die Hartvergoldung bei einer Stromdichte zwischen 2 und. 35 A/dm2 durchgeführt wird. Bei dem zusatzfreien Bad und bei dem Kobalt oder Nickel als Härtezusatz enthaltenden Bad werden optimale Ergebnisse erzielt, wenn die Hartvergoldung bei einer Spritzgeschwindigkeit der wäßrigen Lösung von ungefähr 2 m/s durchgeführt wird. lri beiden Fällen ist es auch besonders günstig, wenn die Hartvergoldung bei einer Badtemperatur zwischen 40 und 65 °C, vorzugsweise zwischen 50 und 60 °C, durchgeführt wird, wobei eine Badtemperatur von ungefähr 55 °C als optimal angesehen wird.
  • Die folgenden Beispiele dienen zur weiteren Erläuterung der Erfindung.
  • Beispiel 1
  • In einer Jet-Plating-Anlage wurde zur galvanischen Hartvergoldung von Steckkontakten ein zusatzfreies Bad eingesetzt, das folgende Bestandteile in wäßriger Lösung enthielt :
    • 15 gll ... reines Gold in Form von Kaliumgoldcyanid
    • 200 g/l ... Apfelsäure Kaliumhydroxid in der zur Einstellung eines pH-Wertes von 4,5 erforderlichen Menge.
  • Beim Betrieb der Jet-Plating-Anlage wurde die Badtemperatur auf 55 °C eingestellt. Über die Spritzdüsen der Jet-Plating-Anlage wurde die wäßrige Badlösung mit Spritzgeschwindigkeiten von ca. 2 m/s auf die zu galvanisierenden Bereiche der Steckkontakte gerichtet und die Plattierung bei Stromdichten zwischen 2 und 13 Aldm2 vorgenommen, wobei die kathodische Stromausbeute bei 90 bis 95% lag. Es wurden matte_Hartgoldschichten mit einer Schichtstärke von ca. 2,5 µm abgeschieden, die eine sehr gute Verschleißfestigkeit, eine ausgezeichnete Duktilität und einen niedrigen Übergangswiderstand aufwiesen. Nach einer Lagerung der Steckkontakte bei erhöhter Temperatur konnte keine merkliche Erhöhung des Übergangswiderstandes festgestellt werden. Bei der Vickers-Härteprüfung der abgeschiedenen Hartgoldschichten mit einem Gewicht des Eindringkörpers von 50 g lag die Härte HV (50) stets im Bereich zwischen 170 und 180 kp/mm2.
  • Beispiel 2
  • In einer Jet-Plating-Anlage wurde zur galvanischen Hartvergoldung von Steckkontakten ein Bad eingesetzt, das folgende Bestandteile in wäßriger Lösung enthielt :
    • 15 g/l ... reines Gold in Form von Kaliumgoldcyanid
    • 200 g/l ... Apfelsäure
    • 50 mg/l reines Kobalt in Form von Kobaltsulfat Kaliumhydroxid in der zur Einstellung eines pH-Wertes von 4.5 erforderlichen Menge.
  • Beim Betrieb der Jet-Plating-Anlage wurde die Badtemperatur auf 55 °C und die Spritzgeschwindigkeit auf ca. 2 m/s eingestellt. In einem Stromdichtebereich zwischen 2 und 35 A/dm2 wurden bei kathodischen Stromausbeuten zwischen 40 und 70 % glänzende Hartgoldschichten mit einer Schichtstärke von ca. 2,5 µm abgeschieden, die eine sehr gute Verschleißfestigkeit, eine gute Duktilität und einen niedrigen Übergangswiderstand aufwiesen. Nach einer Lagerung der Steckkontakte bei erhöhter Temperatur konnte keine merkliche Erhöhung des Übergangswiderstandes festgestellt werden. Bei der Vickers-Härteprüfung lag die gemessene Härte HV (50) stets im Bereich zwischen 120 und 180 kp/mm2.
  • Beispiel 3
  • In einer Jet-Plating-Anlage wurde zur galvanischen Hartvergoldung von Steckkontakten ein Bad eingesetzt, das folgende Bestandteile in wäßriger Lösung enthielt :
    • 15 g/l ... reines Gold in Form von Kaliumgoldcyanid
    • 200 g/l ... Apfelsäure
    • 100 mg/I ... reines Nickel in Form von Nickelsulfat Kaliumhydroxid in der zur Einstellung eines pH-Wertes von 4,5 erforderlichen Menge.
  • Die galvanische Abscheidung glänzender Hartgoldschichten erfolgt mit den im Beispiel 2 angegebenen Parametern. Im Hinblick auf die Verschleißfestigkeit, die Duktilität, den Übergangswiderstand und die Härte der Hartgoldschichten konnten die im Beispiel 2 angegebenen Ergebnisse nahezu erreicht werden.
  • Die in den Beispielen 1, 2 und 3 beschriebenen Bäder enthielten außer den angegebenen Bestandteilen keine weiteren Bestandteile oder Zusätze. Bei den in den Beispielen 2 und 3 geschilderten Bädern können ähnlich gute Ergebnisse erzielt werden, wenn das als Härtezusatz verwendete Kobalt oder Nickel in Form anderer wasserlöslicher Salze, beispielsweise in Form von Kobaltchlorid oder Nickelchlorid zugegeben wird.

Claims (23)

1. Saures cyanidisches Bad zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen, das in wäßriger Lösung Kaliumgoldcyanid, Apfelsäure und Kaliumhydroxid enthält, dadurch gekennzeichnet, daß die wäßrige Lösung aus
a) 5 bis 45 g/l Gold als Kaliumgoldcyanid,
b) 50 bis 300 g/l Apfelsäure,
c) Kaliumhydroxid zur Einstellung eines pH-Wertes zwischen 3,8 und 5,0,
d) 0 bis 300 mg/l Kobalt oder Nickel in Form eines wasserlöslichen Salzes und
e) Wasser hergestellt ist.
2. Bad nach Anspruch 1, dadurch gekennzeichnet, daß die wäßrige Lösung frei von Härtezusätzen wie Kobalt oder Nickel ist.
3. Bad nach Anspruch 1, dadurch gekennzeichnet, daß die wäßrige Lösung als Härtezusatz 30 bis 250 mg/l Kobalt enthält.
4. Bad nach Anspruch 3, dadurch gekennzeichnet, daß die wäßrige Lösung 40 bis 100 mg/I Kobalt enthält.
5. Bad nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die wäßrige Lösung ungefähr 50 mg/l Kobalt enthält.
6. Bad nach Anspruch 1, 3, 4 oder 5, dadurch gekennzeichnet, daß die wäßrige Lösung Kobalt in Form von Kobaltsulfat enthält.
7. Bad nach Anspruch 1, dadurch gekennzeichnet, daß die wäßrige Lösung als Härtezusatz 50 bis 300 mg/I Nickel enthält.
8. Bad nach Anspruch 7, dadurch gekennzeichnet, daß die wäßrige Lösung als Härtezusatz ungefähr 100 mg/l Nickel enthält.
9. Bad nach Anspruch 1, 7 oder 8, dadurch gekennzeichnet, daß die wäßrige Lösung Nickel in Form von Nickelsulfat enthält.
10. Bad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wäßrige Lösung 10 bis 25 g/l Gold enthält.
11. Bad nach Anspruch 10, dadurch gekennzeichnet, daß die wäßrige Lösung ungefähr 15 g/I Gold enthält.
12. Bad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wäßrige Lösung 150 bis 250 g/I Apfelsäure enthält.
13. Bad nach Anspruch 12, dadurch gekennzeichnet, daß die wäßrige Lösung ungefähr 200 g/l Apfelsäure enthält.
14. Bad nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wäßrige Lösung Kaliumhydroxid zur Einstellung eines pH-Wertes zwischen 4,2 und 4,7 enthält.
15. Bad nach Anspruch 14, dadurch gekennzeichnet, daß die wäßrige Lösung Kaliumhydroxid zur Einstellung eines pH-Wertes von ungefähr 4,5 enthält.
16. Verfahren zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen unter Verwendung eines Bades nach Anspruch 2 oder nach Anspruch 2 und einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß die Hartvergoldung in einer Jet-Plating-Anlage bei einer Stromdichte zwischen 2 und 20 Aldm2 und bei einer Spritzgeschwindigkeit der wäßrigen Lösung zwischen 1 und 10 m/s durchgeführt wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Stromdichte zwischen 2 und 13 A/dm2 durchgeführt wird.
18. Verfahren zur galvanischen Hartvergoldung von elektrischen Kontaktbauteilen unter Verwendung eines Bades nach einem der Ansprüche 3 bis 9 oder nach einem der Ansprüche 3 bis 9 und einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß die Hartvergoldung in einer Jet-Plating-Anlage bei einer Stromdichte zwischen 2 und 45 A/dm2 und bei einer Spritzgeschwindigkeit der wäßrigen Lösung zwischen 1 und 10 m/s durchgeführt wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Stromdichte zwischen 2 und 35 Aldm2 durchgeführt wird.
20. Verfahren nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Spritzgeschwindigkeit der wäßrigen Lösung von ungefähr 2 m/s durchgeführt wird.
21. Verfahren nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Badtemperatur zwischen 40 und 65 °C durchgeführt wird.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Badtemperatur zwischen 50 und 60 °C durchgeführt wird.
23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Hartvergoldung bei einer Badtemperatur von ungefähr 55 °C durchgeführt wird.
EP85108129A 1984-07-05 1985-07-01 Bad und Verfahren zur galvanischen Hartvergoldung Expired EP0168705B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85108129T ATE38061T1 (de) 1984-07-05 1985-07-01 Bad und verfahren zur galvanischen hartvergoldung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3424757 1984-07-05
DE3424757 1984-07-05
DE3509245 1985-03-14
DE19853509245 DE3509245A1 (de) 1985-03-14 1985-03-14 Bad und verfahren zur galvanischen hartvergoldung

Publications (2)

Publication Number Publication Date
EP0168705A1 EP0168705A1 (de) 1986-01-22
EP0168705B1 true EP0168705B1 (de) 1988-10-19

Family

ID=25822654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85108129A Expired EP0168705B1 (de) 1984-07-05 1985-07-01 Bad und Verfahren zur galvanischen Hartvergoldung

Country Status (2)

Country Link
EP (1) EP0168705B1 (de)
DE (1) DE3565697D1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH494284A (fr) * 1968-11-28 1970-07-31 Sel Rex Corp Procédé pour le dépôt électrolytique d'un alliage d'or avec au moins un autre métal commun et bain aqueux de placage pour la mise en oeuvre de ce procédé
PL86754B1 (de) * 1974-12-11 1977-12-15
US4075065A (en) * 1975-07-07 1978-02-21 Handy & Harman Gold plating bath and process
DE3121509C2 (de) * 1981-05-29 1983-04-14 Siemens AG, 1000 Berlin und 8000 München Bad zur galvanischen Hartvergoldung

Also Published As

Publication number Publication date
DE3565697D1 (en) 1988-11-24
EP0168705A1 (de) 1986-01-22

Similar Documents

Publication Publication Date Title
DE2355581C3 (de) Galvanisches Glanzgoldbad mit hoher Abscheidungsgeschwindigkeit
AT514818B1 (de) Abscheidung von Cu, Sn, Zn-Beschichtungen auf metallischen Substraten
DE1233693B (de) Verfahren zur stromlosen Abscheidung von festhaftenden Zinnueberzuegen auf Aluminium
EP1413646A2 (de) Verfahren zur stromlosen Abscheidung von Metallen
DE102008033174B3 (de) Cyanidfreie Elektrolytzusammensetzung zur galvanischen Abscheidung einer Kupferschicht und Verfahren zur Abscheidung einer kupferhaltigen Schicht
DE3821073A1 (de) Verfahren zum galvanischen beschichten von aus aluminium oder aluminiumlegierungen gefertigten gegenstaenden mit einem vorzugsweise loetbaren metallueberzug
DE60202378T2 (de) Elektrolytisches bad zum elektrochemischen abscheiden von gold und goldlegierungen
DE3012999C2 (de) Bad und Verfahren zur galvanischen Abscheidung von hochglänzenden und duktiler Goldlegierungsüberzügen
DE60111727T2 (de) Komplexes palladiumsalz und seine verwendung zur anpassung der palladiumkonzentration in elektrolytischen bädern bestimmt für die abscheidung von palladium oder einer seiner legierungen
AT514427B1 (de) Elektrolytbad sowie damit erhältliche Objekte bzw. Artikel
EP3067444B1 (de) Abscheidung von dekorativen palladium-eisen-legierungsbeschichtungen auf metallischen substanzen
DE3013191A1 (de) Im wesentlichen cyanidfreies bad zur elektrolytischen abscheidung von silber oder silberlegierung
DE3147823A1 (de) "bad zur galvanischen abscheidung von palladium oder palladiumlegierungen und ein verfahren zur abscheidung von palladium oder palladiumlegierungen mit diesem bad"
EP0149029A1 (de) Palladiumbad
DE3244092A1 (de) Waessriges bad zur galvanischen abscheidung von gold und verfahren zur galvanischen abscheidung von hartgold unter seiner verwendung
EP0168705B1 (de) Bad und Verfahren zur galvanischen Hartvergoldung
DE2930035A1 (de) Waessriges galvanisches bad
DE3139815A1 (de) "verfahren zur erhaltung eines goldueberzuges mit verbesserter korrosionsbestaendigkeit auf einem substrat"
DE102020133188B4 (de) Verwendung eines Silber-Bismut-Elektrolyt zur Abscheidung von Hartsilberschichten
DE2002836A1 (de) Verfahren zum kontinuierlichen Herstellen von drahtfoermigem Gut,das mit einer einfachen Schicht aus Nickel oder einer Doppelschicht aus Nickel und Gold beschichtet ist
DE3509245A1 (de) Bad und verfahren zur galvanischen hartvergoldung
DE69011549T2 (de) Elektroplattierung von Gold enthaltenden Legierungen.
DE2439656C2 (de) Wäßriges saures Bad zur galvanischen Abscheidung einer Zinn-Nickel-Legierung
DE843785C (de) Verfahren zur Herstellung harter galvanischer Silberueberzuege
CH680449A5 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19860709

17Q First examination report despatched

Effective date: 19870610

R17C First examination report despatched (corrected)

Effective date: 19870610

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 38061

Country of ref document: AT

Date of ref document: 19881115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3565697

Country of ref document: DE

Date of ref document: 19881124

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900614

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900704

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900719

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900724

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900727

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901024

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910701

Ref country code: AT

Effective date: 19910701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910731

Ref country code: CH

Effective date: 19910731

Ref country code: BE

Effective date: 19910731

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19910731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85108129.9

Effective date: 19920210