[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0066902A1 - Flüssigkeitsgekühlter Leistungswiderstand und dessen Verwendung - Google Patents

Flüssigkeitsgekühlter Leistungswiderstand und dessen Verwendung Download PDF

Info

Publication number
EP0066902A1
EP0066902A1 EP82200502A EP82200502A EP0066902A1 EP 0066902 A1 EP0066902 A1 EP 0066902A1 EP 82200502 A EP82200502 A EP 82200502A EP 82200502 A EP82200502 A EP 82200502A EP 0066902 A1 EP0066902 A1 EP 0066902A1
Authority
EP
European Patent Office
Prior art keywords
resistance conductor
power resistor
housing
resistor according
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82200502A
Other languages
English (en)
French (fr)
Other versions
EP0066902B1 (de
Inventor
Konrad Beriger
Ladislav Kucera
Paul Schneider
Günther Spittaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0066902A1 publication Critical patent/EP0066902A1/de
Application granted granted Critical
Publication of EP0066902B1 publication Critical patent/EP0066902B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/082Cooling, heating or ventilating arrangements using forced fluid flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • H01C3/02Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids arranged or constructed for reducing self-induction, capacitance or variation with frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C3/00Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids
    • H01C3/10Non-adjustable metal resistors made of wire or ribbon, e.g. coiled, woven or formed as grids the resistive element having zig-zag or sinusoidal configuration

Definitions

  • the invention relates to a liquid-cooled power resistor with at least one resistance conductor arranged in the housing and to a use of the liquid-cooled power resistor.
  • Liquid-cooled resistors are known per se.
  • a resistor of the type mentioned is undated, described and shown in the prospectus "Liquid-cooled resistor type HS600" from the company CGS, England.
  • the resistance conductor consists of a copper-nickel or chrome-nickel alloy and is wound on a ceramic core.
  • the roller-shaped ceramic core is mounted in an aluminum housing in which a stainless steel cooling coil is cast. This resistance therefore has an indirect heat dissipation. In order to keep the natural time constant as low as possible, the number of windings of the resistance wire is kept to a minimum.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, solves the problem of creating a liquid-cooled power resistor which has good heat dissipation and thus a high load capacity and which is structurally simple.
  • the arrangement of the resistance conductor should be low in inductance.
  • the advantages achieved by the invention are essentially to be seen in the fact that the direct arrangement of the resistance conductor in the cooling liquid, preferably in the deionized water, ensures effective and uniform heat dissipation, the heat capacity being relatively high. Because the resistance conductor is no longer rigid e.g. must attach to a ceramic body, the choice of material is also much easier. In the solution according to the invention, large differences in the thermal expansion coefficients of the resistance conductor and its holders cannot cause mechanical damage during the heating. Another advantage is the fact that e.g. can achieve a low-inductance solution through serpentine or meandering arrangement of the resistance conductor.
  • a housing 1 consists of a cylinder 2, which is provided with two flanges 2 ', and an upper cover plate 3 and a lower cover plate 4.
  • the flanges 2' are of square shape, so that their corners form the cylinder 2 protrude and serve for connection to the cover plates 3, 4 by means of fastening screws 5.
  • the closed housing 1 is provided with two connections 6 for deionized water, an inlet bore 7 being provided in the lower connection 6 and an outlet bore 8 being provided in the upper connection 6.
  • the arrows show the direction of flow.
  • four screens 9 are attached. They alternately leave a flow cross-section 10 on the left and right and serve to deflect the deionized water. They are provided with holes 15, which are shown in Fig. 2.
  • a resistance conductor 11 is guided through these bores 15 in a serpentine manner, so that the screens 9 are simultaneously used as holders for the resistance conductor 11.
  • An upper connecting pin 12 is inserted in the upper cover plate 3 and a lower connecting pin 13 is inserted in the lower cover plate 4. Both pins 12, 13 are fixed with nuts 14 and their outer parts form the electrical connections.
  • the inner part of the upper pin 12 is with the upper end 16 of the resistance conductor 11 and the inner part of the lower connecting pin 13 is electrically and mechanically connected to the lower end 17 of the resistance conductor 11.
  • the ends 16, 17 of the resistance conductor 11 are pressed into the inner parts of the connection pins 12, 13.
  • Another type of connection known per se can of course also be used, for example soldering, welding or screwing.
  • the cylinder 2 with the flanges 2 ' is made of aluminum.
  • the cover plates 3, 4 are made of polypropylene.
  • the connection pins 12 and 13 are therefore electrically insulated from one another.
  • the resistance conductor 11 consists of a chromium-nickel alloy, the connecting pins 12, 13 made of copper, the screens 9 made of polypropylene.
  • the deionized water used as coolant runs through the power resistor and is continuously treated in bypass operation. Other cooling liquids known per se can also be used, for example oil. Of course, other metals, alloys and plastics can also be used for the construction of the power resistor.
  • the cover plates 3, 4 should be made of an electrically insulating material. If the housing 1 is made entirely of metal, the connecting pins 12, 13 must be inserted into the cover plates 3, 4 in an insulating manner.
  • FIG. 2 shows the section II-II from FIG. 1.
  • the loops of the resistance conductor 11 prevent any mechanical damage during thermal expansion.
  • the holes 15 in the diaphragms 9 are larger than the cross section of the resistance conductor 11. This solution has several advantages.
  • the assembly of the resistance conductor 11 is simpler, the resistance conductor 11 can slide in the bores 15 during the thermal expansion and is also well-cooled in these places, because small parts of the cooling liquid can flow through these bores 15.
  • FIG. 3 shows the section III-III from FIG. 2.
  • the guide of the resistance conductor 11 is shown perpendicular to the guide, as shown in FIG. 1.
  • the resistance conductor 11 is drawn in one plane in FIGS. 1 and 3. The spatial distribution can be seen from FIG. 2.
  • the top cover plate 3 of another exemplary embodiment of the invention is illustrated.
  • This construction corresponds essentially to that according to FIGS. 1 to 3 with the difference that in addition to the upper connecting pin 12 already described, a second upper connecting pin 12 'is inserted in the upper cover plate 3.
  • Both ends of the resistance conductor 11 are connected to these connection pins 12, 12 ′, the center of the resistance conductor 11 being connected to the lower connection pin 13, which has also already been described and is not visible in FIG. 4.
  • two parts of the resistance conductor 11 are present in the housing 1, which one either in series between the connecting pins 12 and 12 'or in parallel between the lower connecting pin 13 and the short can switch closed pins 12 and 12 '.
  • This variant gives you the option of choosing between two different resistance values.
  • the liquid-cooled power resistor according to the invention is particularly suitable for connecting power thyristors in converter systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Details Of Resistors (AREA)

Abstract

Ein flüssigkeitsgekühlter Leistungswiderstand enthält wenigstens einen Widerstandsleiter (11), der in einem geschlossenen Gehäuse (1) direkt in als Kühlflüssigkeit verwendetem entionisiertem Wasser angeordnet ist. Der Widerstandsleiter (1) ist zweckmässig in Blenden (9) befestigt, die nicht nur als Halterungen des Widerstandsleiters (11) dienen, sondern auch die Kühlflüssigkeit umlenken. Der Widerstandsleiter (11) ist normalerweise an zwei Anschlussstifte (12, 13) angeschlossen. Man kann auch einen dritten Anschlussstift verwenden, der die Mitte des Widerstandsleiters anzapft, so dass man zwei ohmsche Werte des Leistungswiderstandes zur Verfügung hat. Der Leistungswiderstand sichert eine wirksame und gleichmässige Wärmeabfuhr und weist eine hohe Wärmekapazität auf. Die Anordnung ist induktivitätsarm. Der Leistungswiderstand ist insbesondere zur Beschaltung von Thyristoren in Stromrichteranlagen geeignet.

Description

  • 1 Die Erfindung bezieht sich auf einen flüssgkeitsgekühlten Leistungswiderstand mit wenigstens einem im Gehäuse angeordneten Widerstandsleiter und auf eine Verwendung des flüssigkeitsgekühlten Leistungswiderstandes.
  • Flüssigkeitsgekühlte Widerstände sind an sich bekannt. Ein Widerstand der eingangs genannten Art ist im Prospekt "Flüssigkeitsgekühlter Widerstand Typ HS600" der Firma CGS, England, undatiert, beschrieben und dargestellt. Der Widerstandsleiter besteht aus einer Kupfer-Nickel- oder Chrom-Nickel-Legierung und ist auf einem Keramikkern gewickelt. Der walzenförmige Keramikkern ist in einem Aluminiumgehäuse gelagert, in welchen eine Edelstahlkühlschlange eingegossen ist. Dieser Widerstand weist also eine indirekte Wärmeabfuhr auf. Um die Eigenzeitkonstante so gering wie möglich zu halten, wird die Anzahl der Wicklungen des Widerstandsdrahtes auf ein Minimum beschränkt.
  • Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen flüssigkeitsgekühlten Leistungswiderstand zu schaffen, der eine gute Wärmeabfuhr und somit eine hohe Belastbarkeit aufweist und der konstruktiv einfach ist. Die Anordnung des Widerstandsleiters soll induktivitätsarm sein.
  • Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass die direkte Anordnung des Widerstandsleiters in der Kühlflüssigkeit, vorzugsweise im entionisierten Wasser, eine wirksame und gleichmässige Wärmeabfuhr sichert, wobei die Wärmekapazität verhältnismässig hoch ist. Weil man den Widerstandsleiter nicht mehr starr z.B. auf einen Keramikkörper befestigen muss, ist auch die Materialwahl wesentlich erleichtert. Bei der erfindungsgemässen Lösung können auch grosse Unterschiede der Wärmedehnungskoeffizienten des Widerstandsleiters und dessen Halterungen keine mechanische Beschädigungen während der Erwärmung verursachen. Ein weiterer Vorteil ist darin zu sehen, dass man z.B. durch serpentinartige oder mäandrische Anordnung des Widerstandsleiters eine induktivitätsarme Lösung erreichen kann.
  • Im folgenden wird die Erfindung anhand von zwei Ausführungsmöglichkeiten näher erläutert.
  • Es zeigt:
    • Fig. 1 einen vereinfacht gezeichneten Längsschnitt durch eine erste beispielsweise Ausführungsform des erfindungsgemässen flüssigkeitsgekühlten Leistungswiderstandes mit einem an zwei Anschlussstifte angeschlossenen Widerstandsleiter,
    • Fig. 2 den Schnitt II-II aus Fig. l,
    • Fig. 3 den Schnitt III-III aus Fig. 2 und
    • Fig. 4 eine zweite beispielsweise erfindungsgemässe Ausführungsform, bei welcher die Mitte des Widerstandsleiters an einen Anschlussstift und die Enden des Widerstandsleiters an zwei weitere, in dieser Figur 4 dargestellte Anschlussstifte angeschlossen sind.
  • Gemäss Fig. 1 besteht ein Gehäuse 1 aus einem Zylinder 2, der mit zwei Flanschen 2' versehen ist, und aus einer oberen Deckplatte 3 und einer.unteren Deckplatte 4. Die Flansche 2' sind in Quadratform ausgebildet, so dass ihre Ecken den Zylinder 2 überragen und zur Verbindung mit den Deckplatten 3, 4 mittels Befestigungsschrauben 5 dienen. Das geschlossene Gehäuse 1 ist mit zwei Anschlüssen 6 für entionisiertes Wasser versehen, wobei im unteren Anschluss 6 eine Eintrittsbohrung 7 und im oberen Anschluss 6 eine Austrittsbohrung 8 vorgesehen sind. Die Pfeile zeigen die Strömungsrichtung. Im Inneren des Gehäuses 1 sind vier Blenden 9 befestigt. Sie lassen wechselweise links und rechts je einen Durchflussquerschnitt 10 frei und dienen zur Ablenkung des entionisierten Wassers. Sie sind mit Bohrungen 15 versehen, die in Fig. 2 dargestellt sind. Durch diese Bohrungen 15 ist serpentinartig ein Widerstansleiter 11 geführt, so dass die Blenden 9 gleichzeitig als Halterungen für den Widerstandsleiter 11 verwendet sind. In der oberen Deckplatte 3 ist ein oberer Anschlussstift 12 und in der unteren Deckplatte 4 ein unterer Anschlussstift 13 eingesetzt. Beide Anschlussstifte 12, 13 sind mit Muttern 14 fixiert und ihre äusseren Teile bilden die elektrischen Anschlüsse. Der innere Teil des oberen Anschlussstiftes 12 ist mit oberem Ende 16 des Widerstandsleiters 11 und der innere Teil des unteren Anschlussstiftes 13 ist mit unterem Ende 17 des Widerstandsleiters 11 elektrisch und mechanisch verbunden. In diesem Beispiel sind die Enden 16, 17 des Widerstandsleiters 11 in die inneren Teile der Anschlussstifte 12, 13 eingepresst. Man kann selbstverständlich auch eine andere an sich bekannte Art der Verbindung verwenden, z.B. Löten, Schweissen oder Verschrauben. Im gezeigten Beispiel besteht der Zylinder 2 mit den Flanschen 2' aus Aluminium. Die Deckplatten 3, 4 sind aus Polypropylen hergestellt. Die Anschlussstifte 12 und 13 sind also gegenseitig elektrisch isoliert. Der Widerstandsleiter 11 besteht aus einer Chrom-Nickel-Legierung, die Anschlussstifte 12, 13 aus Kupfer, die Blenden 9 aus Polypropylen. Das als Kühlflüssigkeit verwendete entionisierte Wasser läuft durch den Leistungswiderstand und wird im Bypassbetrieb dauernd aufbereitet. Es können auch andere an sich bekannte Kühlflüssigkeiten Verwendung finden, z.B. Oel. Selbstverständlich kann man auch andere Metalle, Legierungen und Kunststoffe für die Konstruktion des Leistungswiderstandes verwenden. Wenn der Zylinder 2 aus einem elektrisch leitenden Material hergestellt wird, sollten die Deckplatten 3, 4 aus einem elektrisch isolierenden Material hergestellt werden. Wenn das Gehäuse 1 voll aus Metall besteht, muss man die Anschlussstifte 12, 13 in die Deckplatten 3, 4 isolierend einsetzen.
  • Die Bezugszahlen von Fig. 1 gelten für gleiche Teile auch in den weiteren Figuren.
  • In Fig. 2 ist der Schnitt II-II aus Fig. 1 gezeigt. Man sieht die obere Blende 9 und rechts von dieser Blende 9 den freien Durchflussquerschnitt 10. Es ist dargestellt, wie die Schlingen des Widerstandsleiters 11 oberhalb der Blende 9 verlaufen. Rechts oben befindet sich der Teil (17) des Widerstandsleiters 11, der direkt mit dem unteren Ende 17 des Widerstandsleiters 11 verbunden ist, links unten ist ein Schnitt durch das obere Ende 16 des Widerstandsleiters 11 gezeigt. Die Schlingen des Widerstandsleiters 11 verhindern eventuelle mechanische Beschädigungen während der Wärmedehnungen. Die Bohrungen 15 in den Blenden 9 sind grösser als der Querschnitt des Widerstandsleiters 11. Diese Lösung weist mehrere Vorteile auf. Die Montage des Widerstandsleiters 11 ist einfacher, der Widerstandsleiter 11 kann während der Wärmedehüngen in den Bohrungen 15 gleiten und ist auch - in diesen Stellen gut gekühlt, weil kleine Teile der Kühlflüssigkeit durch diese Bohrungen 15 strömen können.
  • Fig. 3 stellt den Schnitt III-III aus Fig. 2 dar. In dieser Figur 3 ist die Führung des Widerstandsleiters 11 senkrecht zu der Führung dargestellt, wie sie in der Fig. 1 gezeigt ist. Wegen der Anschaulichkeit ist der Widerstandsleiter 11 in den Figuren 1 und 3 in einer Ebene gezeichnet. Die räumliche Verteilung ist aus der Figur 2 sichtbar.
  • In Fig. 4 ist die obere Deckplatte 3 einer anderen beispielsweisen Ausführungsform der Erfindung veranschaulicht. Diese Konstruktion entspricht im wesentlichen derjenigen gemäss Fig. 1 bis 3 mit dem Unterschied, dass in der oberen Deckplatte 3 zusätzlich zu dem schon beschriebenen oberen Anschlussstift 12 ein zweiter oberer Anschlussstift 12' eingesetzt ist. Mit diesen Anschlussstiften 12, 12' sind beide Enden des Widerstandsleiters 11 verbunden, wobei die Mitte des Widerstandsleiters 11 mit dem schon ebenfalls beschriebenen, in dieser Figur 4 nicht sichtbaren, unteren Anschlussstift 13 verbunden ist. Auf diese Weise sind im Gehäuse 1 zwei Teile des Widerstandsleiters 11 vorhanden, die man entweder in Serie zwischen den Anschlussstiften 12 und 12' oder parallel zwischen dem unteren Anschlussstift 13 und den kurzgeschlossenen Anschlussstiften 12 und 12' schalten kann. Diese Variante gibt die Möglichkeit, zwischen zwei verschiedenen Widerstandswerten zu wählen.
  • Der erfindungsgemässe flüssigkeitsgekühlte Leistungswiderstand ist insbesondere zur Beschaltung von Leistungsthyristoren in Stromrichteranlagen geeignet.
  • B e z e i c h n u g s l i s t e
    • 1 Gehäuse
    • 2 Zylinder
    • 2' Flansche des Zylinders 2
    • 3 obere Deckplatte
    • 4 untere Deckplatte
    • 5 Befestigungsschrauben
    • 6 Anschlüsse für Kühlflüssigkeit
    • 7 Eintrittsbohrung
    • 8 Austrittsbohrung
    • 9 Blenden
    • 10 Durchflussquerschnitt
    • 11 Widerstandsleiter
    • 12 oberer Anschlussstift
    • 12' zweiter oberer Anschlussstift
    • 13 unterer Anschlussstift
    • 14 Muttern
    • 15 Bohrungen in den Blenden 9
    • 16 oberes Ende des Widerstandsdrahtes 11
    • 17 unteres Ende des Widerstandsdrahtes 11

Claims (9)

1. Flüssigkeitsgekühlter Leistungswiderstand mit wenigstens einem im Gehäuse (1) angeordneten Widerstandsleiter (11), dadurch gekennzeichnet, dass der Widerstandsleiter (11) innerhalb eines geschlossenen Gehäuses (1) direkt in einer Kühlflüssigkeit angeordnet ist.
2. Leistungswiderstand nach Anspruch 1, dadurch gekennzeichnet, dass der Widerstandsleiter (11) induktivitätsarm in wenigstens zwei Abschnitten mit wechselnder Stromflussrichtung angeordnet ist.
3. Leistungswiderstand nach Anspruch 1, dadurch. gekennzeichnnet, dass im Gehäuse (1) wenigstens zwei Blenden (9) befestigt sind, die Bohrungen (15) zum Durchziehen des Widerstandsleiters (11) aufweisen und somit Halterungen des Widerstandsleiters (11) bilden.
4. Leistungswiderstand nach Anspruch 3, dadurch gekennzeichnet, dass die Bohrungen (15) in den Blenden (9) grösser sind als der Querschnitt des Widerstandsleiters (11).
5. Leistungswiderstand nach Anspruch 3, dadurch gekennzeichnet, dass die im Gehäuse (1) befestigten Blenden (9) nur einen Teil des Querschnittes des Gehäuses (1) absperren, wobei die freien Durchflussquerschnitte (10) des Gehäuses (1) für die Kühlflüssigkeit zur Ablenkung der Kühlflüssigkeit gegenseitig versetzt sind.
6. Leistungswiderstand nach Anspruch 1, dadurch gekennzeichnet, dass der Widerstandsleiter (11) mit seiner Mitte an einen Anschlussstift (13) und mit seinen Enden (16) je an einen weiteren Anschlussstift (12, 12') angeschlossen ist.
7. Leistungswiderstand nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (1) wenigstens einen elektrisch isolierenden Teil enthält.
8. Leistungswiderstand nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlflüssigkeit durch entionisiertes Wasser gebildet ist.
9. Verwendung des Leistungswiderstandes nach wenigstens einem der Ansprüche 1 bis 8 zur Beschaltung von Thyristoren in Stromrichteranlagen.
EP82200502A 1981-05-21 1982-04-28 Flüssigkeitsgekühlter Leistungswiderstand und dessen Verwendung Expired EP0066902B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH332281 1981-05-21
CH3322/81 1981-05-21

Publications (2)

Publication Number Publication Date
EP0066902A1 true EP0066902A1 (de) 1982-12-15
EP0066902B1 EP0066902B1 (de) 1985-11-21

Family

ID=4253471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200502A Expired EP0066902B1 (de) 1981-05-21 1982-04-28 Flüssigkeitsgekühlter Leistungswiderstand und dessen Verwendung

Country Status (3)

Country Link
US (1) US4434417A (de)
EP (1) EP0066902B1 (de)
DE (1) DE3267531D1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101623A1 (de) * 1982-08-17 1984-02-29 BBC Brown Boveri AG Halterungsvorrichtung für eine mäanderförmige Wicklung und Verwendung dieser Halterungsvorrichtung
DE4008422A1 (de) * 1990-03-16 1991-09-19 Asea Brown Boveri Leistungswiderstand
FR2675622A1 (fr) * 1991-04-18 1992-10-23 Asea Brown Boveri Resistance electrique.
US5508677A (en) * 1991-09-19 1996-04-16 Siemens Aktiengesellschaft Liquid-cooled heavy-duty resistor
WO2012019470A1 (zh) * 2010-08-09 2012-02-16 华中科技大学 高功率脉冲线性假负载

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817451B2 (ja) * 1991-06-25 1998-10-30 日本電気株式会社 電子管用カソード
DE9203354U1 (de) * 1992-03-12 1992-04-30 Siemens AG, 80333 München Flüssigkeitsgekühlter Hochlastwiderstand
DE19542162C2 (de) * 1995-11-11 2000-11-23 Abb Research Ltd Überstrombegrenzer
DE102004048661A1 (de) * 2004-09-09 2006-03-30 Eldis Ehmki & Schmid Ohg Hochleistungswiderstand
DE102011100760A1 (de) * 2011-05-07 2012-11-08 Walter Marks Steuereinrichtung und Verfahren zum Ansteuern eines Halbleiterschalters
EP2592633B1 (de) * 2011-11-14 2017-06-14 Cressall Resistors Limited Flüssigkeitsgekühlte Widerstandsvorrichtung
CN103050203B (zh) * 2012-12-13 2015-08-19 国网智能电网研究院 一种用于特高压直流换流阀的一体化水冷阻尼电阻
DK2897137T3 (da) * 2014-01-16 2020-06-22 Vishay Mcb Ind Kompakt elektrisk modstand med høj effekt
RU207661U1 (ru) * 2021-08-03 2021-11-09 Вадим Иосифович Лось Резистивная сборка высоковольтных водоохлаждаемых резисторов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE687083C (de) * 1938-07-22 1940-01-22 Telefunken Gmbh Fluessigkeitsgekuehlter Widerstand
US2640092A (en) * 1949-11-17 1953-05-26 Us Navy Low reactance shunt
FR2397766A1 (fr) * 1977-07-15 1979-02-09 Linde Ag Dispositif de chauffage electrique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE687083C (de) * 1938-07-22 1940-01-22 Telefunken Gmbh Fluessigkeitsgekuehlter Widerstand
US2640092A (en) * 1949-11-17 1953-05-26 Us Navy Low reactance shunt
FR2397766A1 (fr) * 1977-07-15 1979-02-09 Linde Ag Dispositif de chauffage electrique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101623A1 (de) * 1982-08-17 1984-02-29 BBC Brown Boveri AG Halterungsvorrichtung für eine mäanderförmige Wicklung und Verwendung dieser Halterungsvorrichtung
DE4008422A1 (de) * 1990-03-16 1991-09-19 Asea Brown Boveri Leistungswiderstand
FR2675622A1 (fr) * 1991-04-18 1992-10-23 Asea Brown Boveri Resistance electrique.
FR2680042A1 (fr) * 1991-04-18 1993-02-05 Asea Brown Boveri Resistance electrique.
US5508677A (en) * 1991-09-19 1996-04-16 Siemens Aktiengesellschaft Liquid-cooled heavy-duty resistor
WO2012019470A1 (zh) * 2010-08-09 2012-02-16 华中科技大学 高功率脉冲线性假负载

Also Published As

Publication number Publication date
EP0066902B1 (de) 1985-11-21
US4434417A (en) 1984-02-28
DE3267531D1 (en) 1986-01-02

Similar Documents

Publication Publication Date Title
EP0066902B1 (de) Flüssigkeitsgekühlter Leistungswiderstand und dessen Verwendung
EP1496534B1 (de) Hochleistungsschalter mit Kühlrippenanordnung
DE69427460T2 (de) Heizanlage mit selektiv einstellbarer Transversalfluss
DE69723435T2 (de) Steuerbarer induktor
DE69132499T2 (de) Wärmetauscher mit gestapelten Platten
DE102015010310A1 (de) Gelöteter Wärmetauscher und Herstellungsverfahren
DE2710432B2 (de) Gehäuse für eine elektrische Schaltungsanordnung
EP0604481B1 (de) Flüssigkeitsgekühlter hochlastwiderstand
DE69022899T2 (de) Sammelschiene für elektrische Stromversorgung.
DE3149236C2 (de) Schweißwerkzeug
DE4116960A1 (de) Kuehlvorrichtung fuer mindestens einen kondensator und verfahren zu ihrer herstellung
DE2913972C2 (de) Flüssigkeitsgekühlte elektrische Maschine
DE69400184T2 (de) Leistungswiderstand mit natürlicher Konvektion
DE19827225C9 (de) Resistiver Strombegrenzer
DE10316908A1 (de) Heizvorrichtung
EP3799704B1 (de) Leistungshalbleitermodul
DE69404078T2 (de) Widerstandselement für Leistungswiderstand
EP0101623B1 (de) Halterungsvorrichtung für eine mäanderförmige Wicklung und Verwendung dieser Halterungsvorrichtung
DE2857177T1 (de) Hot water radiator
DE1564701C3 (de) Supraleitende Wicklung mit Metallbrücken
CH368541A (de) Transformator
DE2500223C3 (de) Elektrisches Widerstandsgerät
DE689056C (de) Im Parallelstrom durchstroemter Waermeaustauscher unter Verwendung von Platten
CH654439A5 (de) Supraleiter.
DE19741302A1 (de) Geometrie für planare Induktivitäten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR LI SE

17P Request for examination filed

Effective date: 19821211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR LI SE

REF Corresponds to:

Ref document number: 3267531

Country of ref document: DE

Date of ref document: 19860102

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 82200502.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970324

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970429

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 82200502.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010427

Year of fee payment: 20