EP0056108B1 - Heating boiler for low temperature heating-systems - Google Patents
Heating boiler for low temperature heating-systems Download PDFInfo
- Publication number
- EP0056108B1 EP0056108B1 EP81109797A EP81109797A EP0056108B1 EP 0056108 B1 EP0056108 B1 EP 0056108B1 EP 81109797 A EP81109797 A EP 81109797A EP 81109797 A EP81109797 A EP 81109797A EP 0056108 B1 EP0056108 B1 EP 0056108B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- boiler
- thermal conductivity
- flue gas
- coating
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003546 flue gas Substances 0.000 claims abstract description 22
- 239000011248 coating agent Substances 0.000 claims abstract description 20
- 238000000576 coating method Methods 0.000 claims abstract description 20
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 10
- 239000010959 steel Substances 0.000 claims abstract description 10
- 238000002485 combustion reaction Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000010304 firing Methods 0.000 claims abstract description 4
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 210000003298 dental enamel Anatomy 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 229920002647 polyamide Polymers 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000002320 enamel (paints) Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/24—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
- F24H1/26—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
- F24H1/28—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
- F24H1/287—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with the fire tubes arranged in line with the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0005—Details for water heaters
- F24H9/0036—Dispositions against condensation of combustion products
Definitions
- the invention relates to a boiler for low-temperature heaters with a boiler water jacket surrounding a combustion chamber for burner firing and a downstream flue gas duct.
- Low-temperature heaters such as ceiling or floor heating
- a low heating water temperature which is only a maximum of about 50 to 53 ° C, even at low outside temperatures.
- the aim is to use a boiler for such heating systems, which can also be operated in this low-temperature range, for example in order to reduce the boiler heat losses and to save expensive mixing valve devices and controls.
- the boiler is now operated with a boiler water temperature that changes according to the outside temperature, and if the boiler water temperature is only between about 25 and 28, especially in the transition season at the so-called heating limit, i.e.
- the dew point limit is at a wall temperature of around 40 to 45 ° C, which is far below the above-mentioned low boiler water temperature.
- the invention consists in that the steel sheet walls of the combustion chamber and the flue gas duct, i.e. all boiler parts covered by the burner flame and the flue gases, are provided on the boiler water side with a coating of a poorly heat-conducting material, the thermal conductivity of which is less than 1.
- the deliberate deterioration of the heat conduction with the water-side coating according to the invention due to the two-layered boiler walls depends on the coefficient of thermal conductivity of the coating material used, on the coating thickness on the boiler water side and on the heat flow going through the boiler walls and can be varied depending on the requirements and by a material with the lowest possible coefficient of thermal conductivity should be such that the desired or required increase in wall temperature on the flue gas side occurs even with a thin coating thickness.
- the coating can consist of a sufficiently heat-resistant polyamide plastic which has a coefficient of thermal conductivity of 0.3 or less.
- the coating thickness only needs to be a fraction of a millimeter in order to ensure that at a boiler water temperature of, for example, 25 to 28 ° C and at an average heat flow density (specific heating surface load) for boilers, a flue gas-side wall temperature increase of around 25 ° C occurs , so that the sheet steel wall on the flue gas side assumes a surface temperature of around 50 ° C, which is above the dew point limit when firing with light heating oil.
- the heat flow density averages around 12300 kcal per square meter and per hour. The heat flow density in the combustion chamber is naturally higher and is on average 26600.
- the coating is attached to the water side of the boiler walls, it is also absolutely protected against mechanical damage when cleaning the boiler on the flue gas side, so that the coating can also be made of enamel, which, in contrast to the known flue gas side enamel coatings, does not pose any risk of Crack formation is exposed to high flue gas temperature changes, but due to the arrangement on the water side and deterioration of the heat conduction, it is far better prevented that the temperature falls below the dew point and condensation water on the flue gas side of the boiler walls.
- Enamel is also a relatively poorly heat-conducting material with a coefficient of thermal conductivity less than 1. Since the coefficient of thermal conductivity is approximately 0.9 greater than that of polyamide plastic, the thickness of the enamel coating must also be greater.
- a water-side enamel coating of 1 mm thickness is sufficient to ensure that a flue gas-side wall temperature increase of around 30 ° C occurs and the wall temperature with around 55 ° C far above the dew point limit.
- the drawing shows an embodiment of the boiler according to the invention in a vertical longitudinal section.
- the boiler contains a combustion chamber 1 and a downstream flue gas duct 2, which are surrounded and cooled by a common boiler water jacket 3. All of the water-cooled steel plate walls of the boiler, which are smeared on the flue gas side by the burner flame or the flue gases, are provided on the boiler water side with a coating 4 made of a poorly heat-conducting material which, compared to the heat conductivity number of the steel plate walls of approximately 48, has a thermal conductivity number of less than 1.
- the coating consists of a commercially available polyamide plastic that has a thermal conductivity of at most 0.3.
- the layer thickness only needs to be at least about 0.3 mm and at most about 0.5 mm in order to obtain a wall temperature increase of around 25 ° C on the flue gas side, which leads to the dew point limit being exceeded when the boiler is operated in the low temperature range.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chimneys And Flues (AREA)
- Spray-Type Burners (AREA)
- Details Of Fluid Heaters (AREA)
Abstract
Description
Die Erfindung betrifft einen Heizkessel für Niedertemperatur-Heizungen mit einem eine Brennkammer für Brennerfeuerung und einen nachgeschalteten Rauchgaskanal umgebenden Kesselwassermantel.The invention relates to a boiler for low-temperature heaters with a boiler water jacket surrounding a combustion chamber for burner firing and a downstream flue gas duct.
Niedertemperatur-Heizungen, wie zum Beispiel Decken- oder Bodenheizungen, werden mit einer geringen Heizwassertemperatur betrieben, die selbst bei tiefen Außentemperaturen nur höchstens etwa 50 bis 53 °C beträgt. Man ist bestrebt, für derartige Heizungsanlagen einen Heizkessel anzuwenden, der ebenfalls in diesem Niedertemperaturbereich betrieben werden kann, um zum Beispiel die Kesselwärmeverluste zu verringern und teure Mischventileinrichtungen und -steuerungen einzusparen. Wenn der Heizkessel nun aber mit einer Kesselwassertemperatur betrieben wird, die entsprechend der Außentemperatur gleitend verändert wird, und wenn insbesondere in der Übergangsjahreszeit an der sogenannten Heizgrenze, das heißt bei zum Beispiel plus 15 °C Außentemperatur, die Kesselwassertemperatur nur noch zwischen etwa 25 und 28 °C liegt, entsteht das Problem, daß auf der von der Brennerflamme und den Rauchgasen bestrichenen Seite der Kesselwandungen die Taupunktsgrenze unterschritten wird und Kondensationserscheinungen auftreten mit der Folge von Korrosionen der Kesselstahlbleche durch die schwefelsäurehaItigen Kondensate. Bei der Verfeuerung von Heizöl der Güteklasse « extraleicht » liegt die Taupunktsgrenze bei einer Wandtemperatur von etwa 40 bis 45 °C, die mit einer vorerwähnt niedrigen Kesselwassertemperatur weit unterschritten wird. Es ist mit verschiedenen aufwendigen Maßnahmen versucht worden, diesem Problem der Taupunktsunterschreitung und Korrosionsgefahr bei Niedertemperatur-Heizkessein zu begegnen, beispielsweise durch die Verwendung von korrosionsbeständigen, aber sehr teuren hochlegierten Edelstahlblechen für die Kesselwandungen oder durch die Anwendung eines gegen Schwefelsäure-Korrosionsangriffe schützenden feuerfesten glasartigen Überzuges wie zum Beispiel aus Email auf der Rauchgasseite von normalen Stahlblechwandungen, der sich jedoch wegen der Gefahr von Rißbildungen oder Absplitterungen oder mechanischen Beschädigungen bei der Kesselreinigung als unzuverlässig und nicht für die Praxis geeignet herausgestellt hat.Low-temperature heaters, such as ceiling or floor heating, are operated with a low heating water temperature, which is only a maximum of about 50 to 53 ° C, even at low outside temperatures. The aim is to use a boiler for such heating systems, which can also be operated in this low-temperature range, for example in order to reduce the boiler heat losses and to save expensive mixing valve devices and controls. However, if the boiler is now operated with a boiler water temperature that changes according to the outside temperature, and if the boiler water temperature is only between about 25 and 28, especially in the transition season at the so-called heating limit, i.e. with an outside temperature of 15 ° C, for example ° C, the problem arises that on the side of the boiler walls covered by the burner flame and the flue gases, the temperature falls below the dew point and condensation occurs with the consequence of corrosion of the boiler steel sheets by the sulfuric acid-containing condensates. When burning "extra-light" quality heating oil, the dew point limit is at a wall temperature of around 40 to 45 ° C, which is far below the above-mentioned low boiler water temperature. Various complex measures have been attempted to counter this problem of falling below the dew point and risk of corrosion in the case of low-temperature boilers, for example by using corrosion-resistant but very expensive high-alloy stainless steel sheets for the boiler walls or by using a refractory glass-like coating that protects against sulfuric acid corrosion attacks such as from enamel on the flue gas side of normal sheet steel walls, which, however, has turned out to be unreliable and unsuitable for practical use due to the risk of cracks or chips or mechanical damage during boiler cleaning.
Mit der erfindungsgemäßen Problemlösung ist es möglich, praktisch jeden beliebigen Heizkessel im Niedertemperaturbereich mit einer weit unter der Taupunktsgrenze liegenden Kesselwassertemperatur zu betreiben und trotzdem einen kondensfreien und korrosionsfreien Betrieb zu erreichen. Die Erfindung besteht darin, daß die Stahlblechwandungen der Brennkammer und des Rauchgaskanals, das heißt alle von der Brennerflamme und von den Rauchgasen bestrichenen Kesselteile, auf der Kesselwasserseite mit einer Beschichtung aus einem schlecht wärmeleitenden Material versehen sind, dessen Wärmeleitzahl kleiner als 1 ist. Durch die Beschichtung, die nicht der Brennerflamme oder den Rauchgasen ausgesetzt ist und daher nicht feuerfest beschaffen zu sein braucht, wird auf der vom Kesselwasser bestrichenen Seite der Kesselwandungen der Wärmedurchgang von den Gasen durch die Stahlblechwandungen an das Kesselwasser so weit gebremst, daß sich bei einer unter der Taupunktsgrenze liegenden Kesselwassertemperatur die rauchgasseitige Wandtemperatur der Kesselwandungen auf einen die Taupunktsgrenze überschreitenden Betrag erhöht, wodurch in denkbar einfacher und zuverlässiger Weise ein kondensfreier Heizkesselbetrieb im Niedertemperaturbereich gewährleistet wird und eine Korrosionsgefahr an den Kesselstahlblechwandungen mit Sicherheit vermieden wird. Die mit der erfindungsgemäß wasserseitigen Beschichtung bewußt gewollte Wärmeleitungsverschlechterung durch die zweischichtig ausgebildeten Kesselwände hängt von der Wärmeleitzahl des verwendeten Beschichtungsmaterials, von der Beschichtungsdicke auf der Kesselwasserseite und von dem durch die Kesselwandungen gehenden Wärmestrom ab und kann je nach den Erfordernissen variiert werden und durch ein Material mit möglichst niedriger Wärmeleitzahl so hoch bemessen werden, daß selbst mit einer dünnen Beschichtungsdicke die jeweils gewünschte oder benötigte rauchgasseitige Wandtemperaturerhöhung eintritt. Beispielsweise kann die Beschichtung aus einem ausreichend hitzebeständigen Polyamid-Kunststoff bestehen, der eine Wärmeleitzahl von 0,3 oder weniger hat. Hierbei braucht die Beschichtungsdicke nur einen Bruchteil eines Millimeters zu betragen, um zu erreichen, daß bei einer Kesselwassertemperatur von zum Beispiel 25 bis 28 °C und bei einer bei Heizkesseln im Mittelwert üblichen Wärmestromdichte (spezifische Heizflächenbelastung) eine rauchgasseitige Wandtemperaturerhöhung von rund 25 °C eintritt, so daß die Stahlblechwandung auf der Rauchgasseite eine Oberflächentemperatur von rund 50 °C annimmt, die über der Taupunktsgrenze bei der Feuerung mit leichtem Heizöl liegt. In Nachschalt-Rauchgaskanälen von Heizkesseln liegt die Wärmestromdichte durchschnittlich bei etwa 12300 kcal pro Quadratmeter und pro Stunde. In der Brennkammer ist die Wärmestromdichte naturgemäß höher und liegt sie durchschnittlich bei 26600. Beispielsweise bei einer Wärmestromdichte von 26600, einer Kesselwassertemperatur von 25 °C und einer Wärmeleitzahl von 0,25 eines Polyamid-Kunststoffs ergibt sich aus der Formel für die Wärmeleitung durch eine Wand, daß mit einer Beschichtungsdicke von nur 0,3 mm eine Erhöhung der rauchgasseitigen Wandtemperatur um rund 32 °C auf rund 57 °C bewirkt wird und eintritt, die weit über der normalerweise vorkommenden Taupunktsgrenze liegt. Polyamid-Kunststoff kann auf die kesselwasserseitige Oberfläche der Kesselwandungen aufgespritzt werden und härtet anschließend in einem Ofen bei rund 200 °C aus, so daß die Beschichtung den beim Heizkesselbetrieb in den Kesselwandungen vorkommenden Temperaturen, die unter der Sicherheitsgrenze von 150 bis 180 °C für die Temperaturbeständigkeit der Beschichtung liegen, einwandfrei standhält. Ferner ist die Beschichtung, weil sie auf der Wasserseite der Kesselwandungen angebracht ist, auch gegen mechanische Beschädigungen beim rauchgasseitigen Reinigen des Heizkessels absolut geschützt, so daß die Beschichtung auch aus Email bestehen kann, die nicht nur im Gegensatz zu den bekannten rauchgasseitigen Emailüberzügen keiner Gefahr der Rißbildung durch hohe rauchgasseitige Temperaturwechsel ausgesetzt ist, sondern durch die wasserseitige Anordnung und Wärmeleitungsverschlechterung auch weit besser die Taupunktsunterschreitung und Schwitzwasserbildung auf der Rauchgasseite der Kesselwandungen verhindert. Email ist ebenfalls ein relativ schlecht wärmeleitendes Material mit einer Wärmeleitzahl kleiner als 1. Da die Wärmeleitzahl mit etwa 0,9 größer ist als bei Polyamid-Kunststoff, muß auch die Dicke der Emailbeschichtung größer sein. Bei einer Wärmestromdichte von 26600, einer Kesselwassertemperatur von 25 °C und einer Wärmeleitzahl von 0,9 für Email reicht ein wasserseitiger Emailüberzug von 1 mm Dicke aus, um zu gewährleisten, daß eine rauchgasseitige Wandtemperaturerhöhung von rund 30 °C eintritt und die Wandtemperatur mit rund 55 °C weit über der Taupunktsgrenze liegt.With the problem solution according to the invention it is possible to operate practically any boiler in the low temperature range with a boiler water temperature well below the dew point limit and still achieve condensation-free and corrosion-free operation. The invention consists in that the steel sheet walls of the combustion chamber and the flue gas duct, i.e. all boiler parts covered by the burner flame and the flue gases, are provided on the boiler water side with a coating of a poorly heat-conducting material, the thermal conductivity of which is less than 1. Due to the coating, which is not exposed to the burner flame or the flue gases and therefore does not need to be fire-proof, the heat transfer from the gases through the steel plate walls to the boiler water is braked on the side of the boiler walls covered by the boiler water to such an extent that one Boiler water temperature below the dew point limit increases the flue gas side wall temperature of the boiler walls to an amount exceeding the dew point limit, which ensures condensation-free heating boiler operation in the low temperature range in a very simple and reliable manner and a risk of corrosion on the boiler steel sheet walls is avoided with certainty. The deliberate deterioration of the heat conduction with the water-side coating according to the invention due to the two-layered boiler walls depends on the coefficient of thermal conductivity of the coating material used, on the coating thickness on the boiler water side and on the heat flow going through the boiler walls and can be varied depending on the requirements and by a material with the lowest possible coefficient of thermal conductivity should be such that the desired or required increase in wall temperature on the flue gas side occurs even with a thin coating thickness. For example, the coating can consist of a sufficiently heat-resistant polyamide plastic which has a coefficient of thermal conductivity of 0.3 or less. Here, the coating thickness only needs to be a fraction of a millimeter in order to ensure that at a boiler water temperature of, for example, 25 to 28 ° C and at an average heat flow density (specific heating surface load) for boilers, a flue gas-side wall temperature increase of around 25 ° C occurs , so that the sheet steel wall on the flue gas side assumes a surface temperature of around 50 ° C, which is above the dew point limit when firing with light heating oil. In secondary flue gas ducts of boilers, the heat flow density averages around 12300 kcal per square meter and per hour. The heat flow density in the combustion chamber is naturally higher and is on average 26600. For example, with a heat flow density of 26600, a boiler water temperature of 25 ° C and a thermal conductivity of 0.25 of a polyamide plastic, the formula for heat conduction through a wall results that with a coating thickness of only 0.3 mm an increase in the flue gas-side wall temperature of around 32 ° C to around 57 ° C is achieved and occurs, which is far above the normally occurring dew point limit. Polyamide plastic can be sprayed onto the surface of the boiler walls on the boiler water side and then hardens in an oven at around 200 ° C, so that the coating can withstand the temperatures that occur in the boiler walls during boiler operation, which are below the safety limit of 150 to 180 ° C for the Temperature resistance of the coating lie, withstands perfectly. Furthermore, because the coating is attached to the water side of the boiler walls, it is also absolutely protected against mechanical damage when cleaning the boiler on the flue gas side, so that the coating can also be made of enamel, which, in contrast to the known flue gas side enamel coatings, does not pose any risk of Crack formation is exposed to high flue gas temperature changes, but due to the arrangement on the water side and deterioration of the heat conduction, it is far better prevented that the temperature falls below the dew point and condensation water on the flue gas side of the boiler walls. Enamel is also a relatively poorly heat-conducting material with a coefficient of thermal conductivity less than 1. Since the coefficient of thermal conductivity is approximately 0.9 greater than that of polyamide plastic, the thickness of the enamel coating must also be greater. With a heat flow density of 26600, a boiler water temperature of 25 ° C and a thermal conductivity of 0.9 for enamel, a water-side enamel coating of 1 mm thickness is sufficient to ensure that a flue gas-side wall temperature increase of around 30 ° C occurs and the wall temperature with around 55 ° C far above the dew point limit.
Die Zeichnung zeigt ein Ausführungsbeispiel des erfindungsgemäßen Heizkessels in einem vertikalen Längsschnitt. Der Heizkessel enthält eine Brennkammer 1 und einen nachgeschalteten Rauchgaskanal 2, die von einem gemeinsamen Kesselwassermantel 3 umgeben und gekühlt sind. Alle rauchgasseitig von der Brennerflamme beziehungsweise den Rauchgasen bestrichenen wassergekühlten Stahlblechwandungen des Heizkessels sind auf der Kesselwasserseite mit einer Beschichtung 4 aus einem schlecht wärmeleitenden Material versehen, das gegenüber der Wärmeleitzahl der Stahlblechwandungen von etwa 48 nur eine Wärmeleitzahl keliner als 1 hat. Beispielsweise besteht die Beschichtung aus einem handelsüblichen Polyamid-Kunststoff, der eine Wärmeleitzahl von höchstens 0,3 hat. Die Schichtdicke braucht nur wenigstens etwa 0,3 mm und höchstens etwa 0,5 mm zu betragen, um rauchgasseitig eine Wandtemperaturerhöhung von rund 25 °C zu erhalten, die beim Betrieb des Heizkessels im Niedertemperaturbereich zu einem Überschreiten der Taupunktsgrenze führt.The drawing shows an embodiment of the boiler according to the invention in a vertical longitudinal section. The boiler contains a
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT81109797T ATE8704T1 (en) | 1981-01-14 | 1981-11-20 | BOILER FOR LOW TEMPERATURE HEATING. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19813100888 DE3100888A1 (en) | 1981-01-14 | 1981-01-14 | BOILER FOR LOW TEMPERATURE HEATERS |
DE3100888 | 1981-01-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0056108A1 EP0056108A1 (en) | 1982-07-21 |
EP0056108B1 true EP0056108B1 (en) | 1984-07-25 |
Family
ID=6122578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81109797A Expired EP0056108B1 (en) | 1981-01-14 | 1981-11-20 | Heating boiler for low temperature heating-systems |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0056108B1 (en) |
AT (1) | ATE8704T1 (en) |
DE (1) | DE3100888A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0103063A3 (en) * | 1982-08-12 | 1984-09-12 | Buderus Aktiengesellschaft | Cast iron central heating boiler |
AT399934B (en) * | 1991-06-03 | 1995-08-25 | Vaillant Gmbh | COMBUSTION CHAMBER |
DE19715918A1 (en) * | 1997-04-16 | 1998-10-22 | Andreas P Rosteuscher | Device for heating heat carrier e.g. at vessel wall |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT127506B (en) * | 1931-03-20 | 1932-03-25 | Richard Ing Herrmann | Device to prevent the formation of sweat water in gas-heated hot water generators. |
DE705267C (en) * | 1934-11-27 | 1941-04-22 | Junkers & Co | Heat exchanger for water heater |
DE1889560U (en) * | 1963-11-23 | 1964-03-19 | Gebrueder Wagner | STANDING BOILER FOR HOT WATER GENERATION. |
AU4138068A (en) * | 1968-07-29 | 1970-02-05 | MRS) FREDA McPHERSON | Hot water storage tank and/or boiler |
DE2427219A1 (en) * | 1974-06-05 | 1975-12-18 | Broetje Fa August | Device to minimise condensate formation - on hot gas side of gas fired installations has plastics insert in form of collar over the heat exchange channel orifice |
CH628134A5 (en) * | 1978-03-28 | 1982-02-15 | Ygnis Sa | FLUE GAS FLOWED HEAT EXCHANGER. |
-
1981
- 1981-01-14 DE DE19813100888 patent/DE3100888A1/en active Granted
- 1981-11-20 AT AT81109797T patent/ATE8704T1/en not_active IP Right Cessation
- 1981-11-20 EP EP81109797A patent/EP0056108B1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3100888C2 (en) | 1991-05-29 |
ATE8704T1 (en) | 1984-08-15 |
EP0056108A1 (en) | 1982-07-21 |
DE3100888A1 (en) | 1982-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0056108B1 (en) | Heating boiler for low temperature heating-systems | |
DE3911276C1 (en) | Device for recovering (reclaiming) heat from the exhaust gases of firing units (installations, systems) | |
EP0663563B1 (en) | Method of combustion in combustion apparatuses and combustion apparatus | |
DE8100612U1 (en) | BOILER FOR LOW TEMPERATURE HEATERS | |
DE3445319A1 (en) | Gas outflow device | |
DE3331340A1 (en) | Central heating boiler | |
DE2653973C3 (en) | Flue gas heated water heater | |
DE719944C (en) | Heating element for stoves | |
DE3151418A1 (en) | Low-temperature heating process, utilising the upper calorific value of fuels | |
DE675536C (en) | Covering compound to protect heat exchange surfaces | |
DE1087788B (en) | Heat exchanger for gas water heater | |
DE3343301A1 (en) | Central heating boiler for flowing fuels | |
DE811865C (en) | Gas-fired boiler | |
DE567176C (en) | Air heater working with cross flow | |
DE9405748U1 (en) | Flame deflection plate for installation in a boiler | |
AT224301B (en) | Heating system with a dome-like tile jacket that is closed on all sides and heated with hot air as a radiator | |
DE3302407A1 (en) | Regulating device | |
DE3720421C1 (en) | Fuel-oil burner for a furnace | |
AT377353B (en) | AIR RADIATOR | |
DE7528615U (en) | WATER HEATER WITH AN ATMOSPHERIC BURNER FOR GAS OR LIQUID FUELS | |
AT220564B (en) | Multi-level steam oven | |
AT411102B (en) | Heater esp. calorific value heater with housing in which heat cell is arranged which has prim. heat exchanger and internal exhaust gas pipe also includes burner and gas-air combination | |
DE3508117A1 (en) | BOILER FOR A LOW TEMPERATURE HEATING | |
DE8904341U1 (en) | Device for recovering heat from exhaust gases from combustion plants | |
DE3208731A1 (en) | Heating boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT CH FR GB IT |
|
17P | Request for examination filed |
Effective date: 19821214 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 8704 Country of ref document: AT Date of ref document: 19840815 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: JOH. VAILLANT GMBH U. CO Effective date: 19841130 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19860127 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920925 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920929 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19921029 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921116 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19931120 Ref country code: AT Effective date: 19931120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19931130 Ref country code: CH Effective date: 19931130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19931120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |