EP0043758A1 - Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds - Google Patents
Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds Download PDFInfo
- Publication number
- EP0043758A1 EP0043758A1 EP81401033A EP81401033A EP0043758A1 EP 0043758 A1 EP0043758 A1 EP 0043758A1 EP 81401033 A EP81401033 A EP 81401033A EP 81401033 A EP81401033 A EP 81401033A EP 0043758 A1 EP0043758 A1 EP 0043758A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ethylenic
- cathode
- iodoperfluoroalkanes
- electrocatalysis
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 150000001875 compounds Chemical class 0.000 title claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000000376 reactant Substances 0.000 claims abstract 3
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims description 8
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 6
- 239000004917 carbon fiber Substances 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000839 emulsion Substances 0.000 claims description 5
- 150000003944 halohydrins Chemical class 0.000 claims description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 150000002118 epoxides Chemical class 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 5
- 150000002924 oxiranes Chemical class 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- -1 iodide ions Chemical class 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- BULLJMKUVKYZDJ-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-6-iodohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I BULLJMKUVKYZDJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- GEOVEUCEIQCBKH-UHFFFAOYSA-N hypoiodous acid Chemical class IO GEOVEUCEIQCBKH-UHFFFAOYSA-N 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
Definitions
- This addition can be carried out for example by radical route initiating the reaction by a rise in temperature (RN Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016 406 and 3 016 407), by irradiation with UV rays. (article by RN Haszeldine already cited, JD Park, J. Org. Chem. 26 1961 p. 2086 and D. Cantacuzene J. Chem. Soc. Perkin 1 1977 p. 1365), via azo derivatives (NO Brac , J. Orge Chem. 27 1962 p. 3027 and USP 3 083 224, 3 145 222 and 3 257 407).
- the Applicant has developed a process for adding iodoperfluoroalkanes to unsaturated alcohols by electrocatalysis, which leads to practically quantitative yields.
- allyl alcohol for example, the corresponding polyfluorinated iodoalcohol is first obtained, then by continuing the electrolysis, the epoxide is obtained by dehydroiodidation.
- the iodide ions produced migrate to the anode where they are oxidized with the formation of iodine which settles in the anolyte in the form of elementary iodine.
- phase of formation of the halohydrin and that of the epoxide are successive or simultaneous depending on the density of the current imposed.
- the process of the invention is applicable to acetylenic alcohols. This is how propargyl alcohol gives a mixture of iodo ethylenic alcohol and acetylenic alcohol: Ethylenic alcohol is found in both cis and trans forms.
- Ethylene ethers can also fix R F I under the operating conditions described.
- the reaction can be carried out in a solvent medium or in an aqueous emulsion depending on the cathode material used.
- a mercury cathode the reaction will take place in DMF medium
- a carbon fiber cathode it is possible to use an aqueous emulsion containing iodoperfluoroalkane, unsaturated alcohol and an electrolyte like KCl.
- a type of carbon fiber which can be used as a cathode mention may be made of RIGILOR AGTF 10,000 fibers, long fibers V 5 C and graphite felts R V G which are all products of Carbone-Lorraine.
- the Faraday yield varies with the type of cell used. It is excellent for mercury cathode cells, significantly less good for carbon fiber cathode cells. Nevertheless, the phase of formation of the R F I addition compound on the olefin or the acetylene compound is still electrocatalytic with an electrical current consumption clearly less than 1 Faraday per mole, while the epoxidation phase is not electrocatalytic and requires at least 1 Faraday per mole of product formed.
- the ohmic drop in the cell depends closely on the geometry of the assembly and on the aqueous phase / organic phase ratio of the catholyte. However, it remains low if we compare it with the values encountered in organic electrochemistry. It varies from around 4 to 10 volts depending on the intensities used.
- the electrodes are a 6 cm diameter mercury cathode and a platinum cloth anode.
- the electrolysis potential is controlled by a colomel reference electrode, saturated with KCl (ECS).
- the anode is carbon (electrode for arc 6 mm in diameter).
- the anolyte is a saturated solution of KC1, the catholyte contains:
- FIG. 1 shows the plan of the apparatus used.
- R F C 4 F 9 .
- Example 2 is repeated, varying the intensity of the electrolysis current. The results are given in the table below: the% of (1) and (2) are given relative to the starting R F I Note that for Example 4, the electrical efficiency for the conversion of R F I in halohydrin is at time 60 mm 0.25 Faraday per mole of R F I from.
- Example 2 The cell defined in Example 2 is used.
- Example 2 The cell defined in Example 2 is used.
- the catholyte contains 2 ml H 2 0 saturated with KC1 4 ml diallylether
- the C 6 F 13 compound is obtained in an analogous manner. These compounds are soluble in acetone from which they recrystallize by slow evaporation of the solvent. Carbon 13 NMR analysis makes it possible to determine the cis-trans percentage of A. (cf. NO Brace J. Org. Chem. 44 1979 p. 212).
- the organic phase tends to consist only of C 8 F 17 I with very little allylic alcohol, the latter preferably passing into the aqueous phase. The electrolysis then does not lead to any reaction on C 8 F 17 I.
- compositions are indicated in% molar.
- the two epoxides formed can be separated by distillation; they are colorless, dense liquids (d ⁇ 1.75).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Procédé d'addition d'iodoperfluoroalcanes de formule CF3 (CF2)2nl où n varie de 1 à 19, sur des composés éthyléniques ou acétyléniques caractérisé par une électrocatalyse du mélange des réactifs.Process for adding iodoperfluoroalkanes of formula CF3 (CF2) 2nl where n varies from 1 to 19, on ethylenic or acetylenic compounds characterized by electrocatalysis of the mixture of reactants.
Description
L'addition d'iodures de perfluoroalcane CF3(CF2)nI que nous désignerons sous le terme générique de RFI à des composés éthyléniques ou acétyléniques peut conduire à des produits qui sont utilisés comme intermédiaires de synthèse.The addition of perfluoroalkane iodides CF 3 (CF 2 ) n I which we will designate under the generic term of R F I to ethylenic or acetylenic compounds can lead to products which are used as synthesis intermediates.
Plusieurs procédés sont connus, mais ceux-ci ne donnent que des rendements médiocres dans le cas des alcools éthyléniques ou acétyléniques et notamment dans le cas de l'alcool allylique.Several methods are known, but these only give mediocre yields in the case of ethylenic or acetylenic alcohols and in particular in the case of allyl alcohol.
Cette addition peut s'effectuer par exemple par voie radicalaire initiant la réaction par une élévation de température (R.N. Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016 406 et 3 016 407), par irradiation par les rayons UV (article de R.N. Haszeldine déjà cité, J.D. Park, J. Org. Chem. 26 1961 p. 2086 et D. Cantacuzene J. Chem. Soc. Perkin 1 1977 p. 1365), par l'intermédiaire des dérivés azoïques (N.O. Brac, J. Orge Chem. 27 1962 p. 3027 et USP 3 083 224, 3 145 222 et 3 257 407).This addition can be carried out for example by radical route initiating the reaction by a rise in temperature (RN Haszeldine, J. Chem. Soc. 1953 p. 1199, USP 3 016 406 and 3 016 407), by irradiation with UV rays. (article by RN Haszeldine already cited, JD Park, J. Org. Chem. 26 1961 p. 2086 and D. Cantacuzene J. Chem. Soc. Perkin 1 1977 p. 1365), via azo derivatives (NO Brac , J. Orge Chem. 27 1962 p. 3027 and USP 3 083 224, 3 145 222 and 3 257 407).
Il est également possible de catalyser l'addition par le système d'Assher (J. Chem. Soc. 1961 p. 2261), le catalyseur étant un mélange de sels cuivreux et cuivriques et d'amines. Ce procédé a été étendu à des molécules fluorées par D.J. Burton (Tetrahedron Letters 1966 p. 5163) N.O. Brace (J. Orge Chem. 44 1979 p. 212) et décrit dans le BF 2 103 459.It is also possible to catalyze the addition by the Assher system (J. Chem. Soc. 1961 p. 2261), the catalyst being a mixture of cuprous and cupric salts and amines. This process has been extended to fluorinated molecules by D.J. Burton (Tetrahedron Letters 1966 p. 5163) N.O. Brace (J. Orge Chem. 44 1979 p. 212) and described in BF 2 103 459.
Si tous ces systèmes permettent d'additionner RFI à un composé éthylénique, ils présentent l'inconvénient de n'aboutir qu'à des rendements médiocres et très variables suivant la nature de l'initiateur et celle de l'oléfine utilisée. Il n'existe pas de catalyseur universel et en particulier il n'existe pas de système capable de provoquer l'addition quantitative de RFI sur les alcools éthyléniques. C'est ainsi que l'addition photochimique suivant J.D. Park, ou le procédé décrit dans le BF 2 103 459 donnent un taux de transformation de seulement 50 - 55 % avec l'alcool allylique.If all these systems make it possible to add R F I to an ethylenic compound, they have the disadvantage of only resulting in mediocre yields and very variable depending on the nature of the initiator and that of the olefin used. There is no universal catalyst and in particular there is no system capable of causing the quantitative addition of R F I to ethylenic alcohols. Thus the photochemical addition according to JD Park, or the process described in BF 2 103 459 give a transformation rate of only 50-55% with allyl alcohol.
La demanderesse a mis au point un procédé d'addition des iodoperfluoroalcanes aux alcools non saturés par électrocatalyse, qui conduit à des rendements pratiquement quantitatifs. Avec l'alcool allylique par exemple, on obtient dans un premier temps l'iodoalcool polyfluoré correspondant, puis en poursuivant l'électrolyse on obtient l'époxyde par déshydroioduration.
Les ions iodures produits migrent vers l'anode où ils sont oxydés avec formation d'iode qui décante dans l'anoly- te sous forme d'iode élémentaire.The iodide ions produced migrate to the anode where they are oxidized with the formation of iodine which settles in the anolyte in the form of elementary iodine.
La phase de formation de l'halohydrine et celle de l'époxyde sont successives ou simultanées selon la densité du courant imposée.The phase of formation of the halohydrin and that of the epoxide are successive or simultaneous depending on the density of the current imposed.
Le procédé de l'invention est applicable aux alcools acétyléniques. C'est ainsi que l'alcool propargylique donne un mélange de iodo alcool éthylénique et d'alcool acétylénique :
Les éthers éthyléniques peuvent également fixer RFI dans les conditions opératoires décrites. Le diallyl éther CH2 = CH - CH2 - O - CHZ - CH = CHZ par exemple donne par électrocatalyse le composé :
Tous ces produits sont des intermédiaires et peuvent être utilisés pour la fabrication de tensio-actifs fluorés et pour l'obtention de dérivés hydro et oléophobes utiles en particulier pour le traitement des textiles, cuir, papier, etc.All these products are intermediates and can be used for the manufacture of fluorinated surfactants and for obtaining hydro and oleophobic derivatives useful in particular for the treatment of textiles, leather, paper, etc.
La réaction peut être mise en oeuvre en milieu solvant ou en émulsion aqueuse en fonction du matériau cathodique employé. C'est ainsi qu'avec une cathode en mercure la réaction aura lieu en milieu D M F, et qu'avec une cathode en fibre de carbone il est possible d'utiliser une émulsion aqueuse contenant l'iodoperfluoroalcane, l'alcool insaturé et un électrolyte tel le KCl. Comme type de fibres de carbone utilisables comme cathode, on peut citer les fibres RIGILOR AGTF 10.000, les fibres longues V 5 C et les feutres de graphite R V G qui sont tous des produits de Carbone-Lorraine.The reaction can be carried out in a solvent medium or in an aqueous emulsion depending on the cathode material used. Thus with a mercury cathode the reaction will take place in DMF medium, and with a carbon fiber cathode it is possible to use an aqueous emulsion containing iodoperfluoroalkane, unsaturated alcohol and an electrolyte like KCl. As a type of carbon fiber which can be used as a cathode, mention may be made of RIGILOR AGTF 10,000 fibers, long fibers V 5 C and graphite felts R V G which are all products of Carbone-Lorraine.
Bien que l'invention soit réalisable avec l'ensemble des matériaux cathodiques et l'emploi de solutions ou d'émulsions, le procédé, lorsqu'il est mis en oeuvre dans ces dernières conditions, avec une cathode en fibre de carbone et une émulsion aqueuse contenant les réactifs présente le maximum d'avantages :
- - absence de sous-produit, de catalyseur ou de solvant qui constituent autant de risques de pollution,
- - séparation facile du composé obtenu,
- - possibilité de travailler sur des solutions très concentrées ce qui économise l'énergie nécessaire à la séparation des produits et augmente la productivité des installations,
- - conductivité électrique très élevée du milieu permettant l'utilisation de bas voltage et de fort ampérage,
- - récupération directe de l'iode sous forme élémentaire dans le cas de la préparation d'époxyde,
- - facilité pour résoudre le problème du diaphragme séparant les deux compartiments avec un matériau non mouillable par la phase organique.
- - absence of by-product, catalyst or solvent which constitute as many pollution risks,
- - easy separation of the compound obtained,
- - possibility of working on highly concentrated solutions which saves the energy required for product separation and increases the productivity of the installations,
- - very high electrical conductivity of the medium allowing the use of low voltage and high amperage,
- - direct recovery of iodine in elementary form in the case of the preparation of epoxide,
- - facility to solve the problem of the diaphragm separating the two compartments with a material not wettable by the organic phase.
Le rendement Faraday varie avec le type de cellule utilisé. Il est excellent pour les cellules à cathode de mercure, nettement moins bon pour les cellules à cathode en fibre de carbone. Néanmoins la phase de formation du composé d'addition du RFI sur l'oléfine ou le composé acétylénique est toujours électrocatalytique avec une consommation de courant électrique nettement inférieure à 1 Faraday par mole, alors que la phase d'époxydation n'est pas électrocatalytique et nécessite au moins 1 Faraday par mole de produit formé.The Faraday yield varies with the type of cell used. It is excellent for mercury cathode cells, significantly less good for carbon fiber cathode cells. Nevertheless, the phase of formation of the R F I addition compound on the olefin or the acetylene compound is still electrocatalytic with an electrical current consumption clearly less than 1 Faraday per mole, while the epoxidation phase is not electrocatalytic and requires at least 1 Faraday per mole of product formed.
La chute ohmique dans la cellule dépend étroitement de la géométrie du montage et du rapport phase aqueuse/phase organique du catholyte. Cependant, elle reste faible si on la compare aux valeurs rencontrées en électrochimie organique. Elle varie d'environ 4 à 10 volts selon les intensités utilisées.The ohmic drop in the cell depends closely on the geometry of the assembly and on the aqueous phase / organic phase ratio of the catholyte. However, it remains low if we compare it with the values encountered in organic electrochemistry. It varies from around 4 to 10 volts depending on the intensities used.
Les exemples suivants illustrent l'invention sans toutefois la limiter.The following examples illustrate the invention without, however, limiting it.
On utilise une cellule du type Moinet décrite dans le Bull Soc. Chim. Fr. 1969 p. 690. Les électrodes sont une cathode de mercure de 6 cm de diamètre et une anode en toile de platine. Le potentiel d'électrolyse est contrôlé par une électrode de référence au colomel, saturée en KCl (ECS).
La réduction monoélectronique de l'iodoalcane perfluoré nécessiterait 1 258 coulombs. Après le passage de seulement 60 coulombs on observe la conversion complète du C6F13I en l'halohydrine C6F13-CH2-CHI-CH2OH. Rendement électrique : 21,6 moles de RFI converties par Faraday consommé.Monoelectronic reduction of perfluorinated iodoalkane would require 1,258 coulombs. After the passage of only 60 coulombs, the complete conversion of C 6 F 13 I into the halohydrin C 6 F 13 -CH 2 -CHI-CH 2 OH is observed. Electrical efficiency: 21.6 moles of R F I converted by consumed Faraday.
On utilise une cathode en fibre de carbone, RIGILOR AGTF 10.000 de Carbone-Lorraine, obtenue par pyrolyse de fibre de crylor. L'anode est un carbone (électrode pour arc de 6 mm de diamètre). L'anolyte est une solution saturée en KC1, le catholyte contient :
Le catholyte est agité au moyen d'un agitateur magnétique. La figure 1 montre le plan de l'appareillage utilisé.The catholyte is agitated by means of a magnetic stirrer. Figure 1 shows the plan of the apparatus used.
Avec un courant de 0,2 A on obtient en 1 h untaux de transformation de 90 % en C4F9CH2CHICH2OH.With a current of 0.2 A, one obtains in 1 hour a conversion rate of 90% into C 4 F 9 CH 2 CHICH 2 OH.
Si l'électrolyse est poursuivie on observe la conversion progressive de l'halohydrine en époxyde C4F9CH2 -
Dans ces exemples RF= C4F9.In these examples R F = C 4 F 9 .
On répète l'exemple 2 en faisant varier l'intensité du courant d'électrolyse. Les résultats sont donnés dans le tableau ci-dessous :
On utilise la cellule définie dans l'exemple 2.The cell defined in Example 2 is used.
Le catholyte est chargé de 2 ml H2O saturée en KC1, 4 ml d'alcool propargylique CH = C - CH20H, 6 ml de C4 F 9I. On impose un courant de 0,2 A.
Les % de A, B, C sont donnés en % molaire par rapport au RFI de départ :
Après formation des composés d'addition A et B on observe la déshydroioduration de A conduisant à C. Cette élimination de HI est provoquée par l'élévation du pH du catholyte (réduction de la phase auqueuse) et ne se produit que sur le composé A dans lequel I et H sont en position trans.After formation of the addition compounds A and B, the dehydroiodidation of A leading to C. is observed. This elimination of HI is caused by the elevation of the pH of the catholyte (reduction of the auqueuse phase) and occurs only on compound A in which I and H are in the trans position.
On utilise la cellule définie dans l'exemple 2.The cell defined in Example 2 is used.
Le catholyte contient 2 ml H20 saturée en KC1 4 ml diallyléther
Le composé en C6F13 est obtenu de façon analogue. Ces composés sont solubles dans l'acétone d'où ils recristallisent par évaporation lente du solvant. L'analyse en R.M. N. du carbone 13 permet de déterminer le pourcentage cis-trans de A. (cf. N.O. Brace J. Org. Chem. 44 1979 p. 212).The C 6 F 13 compound is obtained in an analogous manner. These compounds are soluble in acetone from which they recrystallize by slow evaporation of the solvent. Carbon 13 NMR analysis makes it possible to determine the cis-trans percentage of A. (cf. NO Brace J. Org. Chem. 44 1979 p. 212).
L'exemple 2 est répété en utilisant les chaînes C6F13I et C8F17I au lieu de C4F9I. Deux situations sont à considérer :
- ― cas du C6F13I
- - case of C 6 F 13 I
L'électrolyse donne des résultats quasi identiques à ceux obtenus pour le C4F9I.The electrolysis gives results which are almost identical to those obtained for C 4 F 9 I.
Pour co composé la phase organique a tendance à n'être constituée que de C8F17I avec très peu d'alcool allylique, ce dernier passant dans la phase aqueuse préférentiellement. L'électrolyse ne conduit alors à aucune réaction sur le C8F17I.For co-compound the organic phase tends to consist only of C 8 F 17 I with very little allylic alcohol, the latter preferably passing into the aqueous phase. The electrolysis then does not lead to any reaction on C 8 F 17 I.
Cette difficulté est résolue si on électrolyse une phase mixte C4F9I + C8F17I, dans une proportion de 20 % de C4 en volume. On observe alors la formation des produits attendus. Avec un courant de 0,2 A on a obtenu les résultats suivants :
Les compositions sont indiquées en % molaire.The compositions are indicated in% molar.
Les deux époxydes formés sont séparables par distillation ; ce sont des liquides incolores, denses (d ≃ 1,75).The two epoxides formed can be separated by distillation; they are colorless, dense liquids (d ≃ 1.75).
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8015121 | 1980-07-08 | ||
FR8015121A FR2486521A1 (en) | 1980-07-08 | 1980-07-08 | PROCESS FOR THE ADDITION OF IODOPERFLUOROALKANES TO ETHYLENIC OR ACETYLENIC COMPOUNDS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0043758A1 true EP0043758A1 (en) | 1982-01-13 |
EP0043758B1 EP0043758B1 (en) | 1985-04-03 |
Family
ID=9243958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP81401033A Expired EP0043758B1 (en) | 1980-07-08 | 1981-06-26 | Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds |
Country Status (7)
Country | Link |
---|---|
US (1) | US4394225A (en) |
EP (1) | EP0043758B1 (en) |
JP (1) | JPS5747882A (en) |
BR (1) | BR8104338A (en) |
CA (1) | CA1148499A (en) |
DE (1) | DE3169663D1 (en) |
FR (1) | FR2486521A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650913A (en) * | 1984-11-29 | 1987-03-17 | E. I. Du Pont De Nemours And Company | Sulfinate-initiated addition of perfluorinated iodides to olefins |
WO2000003066A1 (en) * | 1998-07-09 | 2000-01-20 | Ppg Industries Ohio, Inc. | Method of electrochemically producing epoxides |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2597511B1 (en) * | 1986-04-17 | 1990-09-07 | Atochem | FUNCTIONALIZATION OF IODO-POLYFLUOROALCANES BY ELECTROCHEMICAL REDUCTION AND NOVEL FLUORINATED COMPOUNDS THUS OBTAINED |
IT1190116B (en) * | 1986-05-30 | 1988-02-10 | Ausimont Spa | PROCESS FOR THE SYNTHESIS OF MONO OR HYDROXYFLUOROALKANE |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3379627A (en) * | 1962-09-20 | 1968-04-23 | Pullman Inc | Process for the manufacture of oxygencontaining derivatives of olefins in an electrochemical cell |
FR2103459A1 (en) * | 1970-08-24 | 1972-04-14 | Ciba Geigy Ag |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180895A (en) * | 1960-11-25 | 1965-04-27 | Du Pont | Fluorocarbon ethers |
FR1443994A (en) * | 1965-04-27 | 1966-07-01 | Pechiney Saint Gobain | Improvements in obtaining olefin oxides |
US3632489A (en) * | 1969-04-24 | 1972-01-04 | Norman Louis Weinberg | Electrochemical introduction of nitrogen and oxygen functions into olefinic compounds |
US4097344A (en) * | 1976-06-29 | 1978-06-27 | E. I. Du Pont De Nemours And Company | Electrochemical coupling of perfluoroalkyl iodides |
-
1980
- 1980-07-08 FR FR8015121A patent/FR2486521A1/en active Granted
-
1981
- 1981-06-26 EP EP81401033A patent/EP0043758B1/en not_active Expired
- 1981-06-26 DE DE8181401033T patent/DE3169663D1/en not_active Expired
- 1981-06-29 US US06/278,609 patent/US4394225A/en not_active Expired - Fee Related
- 1981-07-07 BR BR8104338A patent/BR8104338A/en unknown
- 1981-07-07 JP JP56105157A patent/JPS5747882A/en active Granted
- 1981-07-07 CA CA000381281A patent/CA1148499A/en not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3379627A (en) * | 1962-09-20 | 1968-04-23 | Pullman Inc | Process for the manufacture of oxygencontaining derivatives of olefins in an electrochemical cell |
FR2103459A1 (en) * | 1970-08-24 | 1972-04-14 | Ciba Geigy Ag |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650913A (en) * | 1984-11-29 | 1987-03-17 | E. I. Du Pont De Nemours And Company | Sulfinate-initiated addition of perfluorinated iodides to olefins |
WO2000003066A1 (en) * | 1998-07-09 | 2000-01-20 | Ppg Industries Ohio, Inc. | Method of electrochemically producing epoxides |
Also Published As
Publication number | Publication date |
---|---|
FR2486521B1 (en) | 1982-10-01 |
JPS6132398B2 (en) | 1986-07-26 |
EP0043758B1 (en) | 1985-04-03 |
DE3169663D1 (en) | 1985-05-09 |
CA1148499A (en) | 1983-06-21 |
JPS5747882A (en) | 1982-03-18 |
BR8104338A (en) | 1982-03-23 |
US4394225A (en) | 1983-07-19 |
FR2486521A1 (en) | 1982-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0323300B1 (en) | Process for the electrochemical synthesis of alpha-saturated ketones | |
DE1468149B1 (en) | PROCESS FOR THE PRODUCTION OF OLEFIN OXIDES | |
EP0277048B1 (en) | Process for the electrochemical manufacture of carboxylic acids | |
EP0043758B1 (en) | Method of adding iodoperfluoroalkanes to ethylenic or acetylenic compounds | |
Tokuda et al. | Regioselectivity in electrochemical allylation of carbonyl compounds. A synthesis of egomaketone by regioselective allylation | |
FR2646441A1 (en) | METHOD FOR ELECTROSYNTHESIS OF A BETA GAMMA UNSATURATED ESTER | |
EP0245133B1 (en) | Functionalization of iodo-polyfluoroalcanes by electrochemical reduction, and fluorinated compounds so obtained | |
US3252877A (en) | Electrochemical preparation of acyloxy derivatives of condensed ring aromatic compounds | |
EP0203851B1 (en) | Electrochemical process for the preparation of organic trifluoro (or chlorodifluoro or dichlorofluoro) methylated derivatives | |
WO1993018210A1 (en) | Process for the preparation of taxane derivatives | |
US4098657A (en) | Electrolyte dehydrohalogenation of α-haloalcohols | |
EP0201365B1 (en) | Process for the electrosynthesis of alcohols and epoxide compounds | |
US4405816A (en) | 4,4'-Diphenyl ether-dialdehyde-bis-dimethylacetal | |
EP0192931B1 (en) | Process for the preparation of isoxazoles | |
EP0198722B1 (en) | Process for the preparation of amino-alcohols by electrochemical reduction of nitro-alcohols | |
EP0083274B1 (en) | Process for the preparation of true acetylenic hydrocarbons with a perfluoroalkyl chain | |
EP0370866B1 (en) | Aldehydes electrosynthesis process | |
CH664979A5 (en) | PROCESS FOR THE ELECTROSYNTHESIS OF CARBOXYLIC ACIDS. | |
FR2579626A1 (en) | METHOD FOR ELECTROSYNTHESIS OF KETONES AND ALDEHYDES | |
Fry et al. | Regioselective synthesis of. alpha.-alkoxy ketones from. alpha.,. alpha.'-dibromo ketones | |
EP0196253A1 (en) | Catalytic system, its preparation method and its use in the production of aldehydes | |
CH628883A5 (en) | PROCESS FOR THE MANUFACTURE OF A TETRAALKYLTHIURAME DISULFIDE. | |
Köster et al. | Electro-organic syntheses | |
FR2604189A1 (en) | Process for the preparation of fluorinated benzyl derivatives | |
US3415725A (en) | Electrolytic preparation of trialkoxyalkanes and tetraalkoxyalkanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19810701 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SOCIETE ATOCHEM |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3169663 Country of ref document: DE Date of ref document: 19850509 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890426 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19890522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19890608 Year of fee payment: 9 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19890630 Year of fee payment: 9 Ref country code: GB Payment date: 19890630 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19890809 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19890830 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19900626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19900627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19900630 Ref country code: CH Effective date: 19900630 Ref country code: BE Effective date: 19900630 |
|
BERE | Be: lapsed |
Owner name: ATOCHEM Effective date: 19900630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19910101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19910228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 81401033.6 Effective date: 19910206 |