EP0198722B1 - Process for the preparation of amino-alcohols by electrochemical reduction of nitro-alcohols - Google Patents
Process for the preparation of amino-alcohols by electrochemical reduction of nitro-alcohols Download PDFInfo
- Publication number
- EP0198722B1 EP0198722B1 EP86400162A EP86400162A EP0198722B1 EP 0198722 B1 EP0198722 B1 EP 0198722B1 EP 86400162 A EP86400162 A EP 86400162A EP 86400162 A EP86400162 A EP 86400162A EP 0198722 B1 EP0198722 B1 EP 0198722B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alcohols
- amino
- nitro
- manufacture
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 150000001414 amino alcohols Chemical class 0.000 title claims description 29
- 230000009467 reduction Effects 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 20
- 230000008569 process Effects 0.000 title claims description 19
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 title claims description 12
- 239000000243 solution Substances 0.000 claims description 44
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 23
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000909 electrodialysis Methods 0.000 claims description 16
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 14
- 239000012528 membrane Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 11
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 claims description 9
- 238000000746 purification Methods 0.000 claims description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 238000005868 electrolysis reaction Methods 0.000 claims description 8
- -1 mercury Chemical class 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 claims description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 4
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- OLQJQHSAWMFDJE-UHFFFAOYSA-N 2-(hydroxymethyl)-2-nitropropane-1,3-diol Chemical compound OCC(CO)(CO)[N+]([O-])=O OLQJQHSAWMFDJE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000497 Amalgam Inorganic materials 0.000 claims description 3
- 239000003011 anion exchange membrane Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000005341 cation exchange Methods 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- MHIHRIPETCJEMQ-UHFFFAOYSA-N 2-nitrobutan-1-ol Chemical compound CCC(CO)[N+]([O-])=O MHIHRIPETCJEMQ-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000006722 reduction reaction Methods 0.000 claims 7
- MVGJRISPEUZYAQ-UHFFFAOYSA-N 2-methyl-2-nitropropan-1-ol Chemical compound OCC(C)(C)[N+]([O-])=O MVGJRISPEUZYAQ-UHFFFAOYSA-N 0.000 claims 1
- LOTYADDQWWVBDJ-UHFFFAOYSA-N 2-methyl-2-nitropropane-1,3-diol Chemical compound OCC(C)(CO)[N+]([O-])=O LOTYADDQWWVBDJ-UHFFFAOYSA-N 0.000 claims 1
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 235000011149 sulphuric acid Nutrition 0.000 claims 1
- 239000001117 sulphuric acid Substances 0.000 claims 1
- 150000002828 nitro derivatives Chemical class 0.000 description 19
- 150000001412 amines Chemical class 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000011403 purification operation Methods 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- 101000962345 Homo sapiens NACHT, LRR and PYD domains-containing protein 12 Proteins 0.000 description 2
- 102100039240 NACHT, LRR and PYD domains-containing protein 12 Human genes 0.000 description 2
- 229910017912 NH2OH Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000008098 formaldehyde solution Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000003822 preparative gas chromatography Methods 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000012265 solid product Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 description 1
- ONHLDQSFENCHQP-UHFFFAOYSA-N 2-methyl-2-nitropropane-1,1-diol Chemical compound OC(O)C(C)(C)[N+]([O-])=O ONHLDQSFENCHQP-UHFFFAOYSA-N 0.000 description 1
- 101100037762 Caenorhabditis elegans rnh-2 gene Proteins 0.000 description 1
- 229910017108 Fe—Fe Inorganic materials 0.000 description 1
- 238000006683 Mannich reaction Methods 0.000 description 1
- CKRZKMFTZCFYGB-UHFFFAOYSA-N N-phenylhydroxylamine Chemical compound ONC1=CC=CC=C1 CKRZKMFTZCFYGB-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229940074994 mercuric sulfate Drugs 0.000 description 1
- 229910000372 mercury(II) sulfate Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- DPGAAOUOSQHIJH-UHFFFAOYSA-N ruthenium titanium Chemical compound [Ti].[Ru] DPGAAOUOSQHIJH-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- DPIPHYGHICYUOT-UHFFFAOYSA-N trimethoxy(nitro)methane Chemical compound COC(OC)(OC)[N+]([O-])=O DPIPHYGHICYUOT-UHFFFAOYSA-N 0.000 description 1
- PBGSUCPTXBVNSF-UHFFFAOYSA-N trimethoxymethanamine Chemical compound COC(N)(OC)OC PBGSUCPTXBVNSF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
Definitions
- the present invention relates to the manufacture of amino alcohols by electrochemical reduction of nitro alcohols.
- Nitro-alcohols are derivatives easily obtained by addition of formaldehyde on nitro-paraffins. Several processes have been described for transforming them into amino-alcohols (alkanol-amines) used in the manufacture of cosmetics, detergents or as intermediates for the synthesis of bactericides and pharmaceutical products.
- the reduction of the -NO2 group can be carried out by the Fe-Fe ++ pair in sulfuric or acetic acid medium, but the weight of reagent used is approximately three times that of the nitro derivative to be reduced; this results in a large amount of solid residue to be removed and it is necessary to rectify the liquid phase containing the amine in order to obtain a pure product; the yield is around 80%
- the only raw material consumed stoichiometrically is nitro-alcohol; the consumption of sulfuric acid being reduced to a minimum and in certain cases possibly being zero. There is little or no release to the environment. And, the conversion of the nitro derivative into an amino derivative can reach 95-98% and in most cases remains above 90%.
- reaction conditions make it impossible to form derivatives (R) 2-N-CH par, by Mannich reaction, often undesirable in the applications of amino alcohols, because of their physical properties and structure close to theirs, which increases the difficulty and the cost of the amino alcohol purification operations.
- the reduction of the R-N02 group and the acid-amino derivative separation are carried out by electroreduction in sulfuric medium in three stages.
- the invention relates to a process for the production of amino alcohols by electrochemical reduction of nitro-alcohols in sulfuric medium in three stages.
- the nitro group is reduced on a cathode made of a material with a high hydrogen overvoltage by treating a sulfuric solution of the nitro derivative, the reaction being carried out on a cathode whose voltage is moderately electronegative.
- the electronegative voltage is higher in absolute value.
- the sulfuric amino alcohol solution obtained is subjected to a purification operation by electro-electrodialysis and elimination of water.
- the first step there is a reduction to four electrons which transforms R-N02 into R-NOH.
- This reduction of the nitro group is carried out on a cathode produced from a material with a high hydrogen overvoltage by treating an aqueous sulfuric solution of the nitro derivative. This reaction is effective on a cathode whose voltage is moderately electronegative.
- the hydroxylamine amine is reduced to 2 electrons on a cathode whose electronegative voltage is higher in absolute value than previously.
- the sulfuric amino alcohol solution obtained is subjected to a purification operation by electro-electrodialysis, then to elimination of water.
- the two stages of electrochemical reduction can be implemented in a diaphragm cell consisting of a cation exchanger (MEC) or anion exchanger (MEA) membrane; the purification phase can be carried out in the same device or in a specific device.
- MEC cation exchanger
- MEA anion exchanger
- the current flows through the migration of the H3O+ cation under an electric field, resulting in a dilution of the catholyte.
- the current efficiency being total, the four protons generated at the anode by oxidation of water are consumed for cathodic reduction; there is no release of hydrogen.
- the efficiency of the current is not complete and part of it will be used to reduce protons to H2. This consumption of protons will be compensated by a higher production at the anode and a higher H3O+ flux.
- MEA diaphragm cell can be diagrammed in a similar manner.
- the final purification by electro-electrodialysis can be carried out in a special apparatus as shown in Figure 1 (3rd step) which differs from the MEA cell only in the nature of the electrode materials.
- the use of MEA membrane may have the advantage of a more strict suppression of the transfer by ion exchange of the cations R-NH3+ and R-NH2OH+ to the anolyte; one can also more easily use the anode compartment for carrying out the oxidation reaction.
- it is simpler and more convenient to carry out the reduction operations in electrochemical cells provided with an MEC diaphragm and purification in an electro-electrodialysis machine provided with an MEA diaphragm.
- the process is applicable to the nitro-alcohols represented by the formula in which R1 and R2 together or separately are hydrogen, the hydroxyalkyl group, such as hydroxymethyl, or a linear or branched alkyl group, in particular, methyl, ethyl, propyl or containing a number of carbon atoms greater than three.
- nitro products leading to industrially important alkanol-amines such as, nitro-2-methyl-2-propanol-1, nitro-2-methyl-2-propanediol 1-3, nitro- 2-ethyl-2-propanediol 1-3, nitro-2-butanol-1, tris (hydroxymethyl) nitromethane.
- the cathode is constructed from a material with a high hydrogen overvoltage such as pure or alloyed lead, mercury in the form of an amalgam (with copper, lead, Zn, etc.), zinc, zirconium. etc ...
- the anode is made of a material chemically inert in the anodic solution and preferably with low oxygen overvoltage such as for example Pb, ruthenium titanium, platinum Pt, etc.
- the diaphragm is made with a cation exchange membrane or commercial anion exchanger such as, for example, those sold under the brands “Nafion” (Du Pont) "IONAC” (Ionac), “ARP” and “CRP” (Rhône Poulenc) or those marketed by ASAHI Chem Ind or ASAHI CLASS CO etc ...
- a cation exchange membrane or commercial anion exchanger such as, for example, those sold under the brands "Nafion” (Du Pont) "IONAC” (Ionac), “ARP” and “CRP” (Rhône Poulenc) or those marketed by ASAHI Chem Ind or ASAHI CLASS CO etc ...
- the cathode current density has the maximum value compatible with the usable electrode voltages and the properties of the membrane; with lead or mercury and an "IONAC 3470" membrane, we can operate under 50A / dm2 and more.
- the temperature of the cathode solution can be between 20 ° C and 100 ° C; it will preferably be carried out between 60 ° C. and 90 ° C. for the second step, in the case where Pb cathodes are used, and at 30 ° C. on amalgamated copper.
- the catholyte is an aqueous sulfuric solution which can be saturated with nitro derivative; for nitro-2-methyl-2-propanediol, it is possible, for example, to operate at 333 g / l (or 286 g / kg).
- the H2SO4 content of the catholyte will be such that the molar ratio is between 1 and 1.5, preferably between 1.05 and 1.18.
- the anolyte is an aqueous sulfuric solution; its composition will depend on the type and properties of the membrane used and in particular on its permeability to sulfuric acid.
- H2SO4 in the anolyte will have a value such that the migration flow by diffusion of H2SO4 is minimized as well as the transfer of organic cations by ion exchange.
- the sulfuric solution of nitro-alcohols used as a catholyte can be prepared from solid products obtained by crystallization and purified by recrystallization.
- aqueous formaldehyde solution titrating from 35 to 40% is placed in a stirred reactor; it is brought to 40 ° C; we adjust the pH at 9 and the nitro paraffin is added dropwise while maintaining the temperature between 40 and 50 ° C and the pH at 9-10 by addition of a 15N aqueous NaOH solution; after one hour, the addition of nitro paraffin is complete; the mixture is stirred again for 1 hour at the same temperature while maintaining the pH above 9; the amount of nitro derivative is exactly stoichiometric or in slight excess (1 mol%) over the amount of formaldehyde.
- the catholyte can then be prepared by adding H2SO4, and optionally H2O, in proportions such that the composition of the final solution is at the H+ / R-NO2 ratio corresponding to the optimum of the cathodic reduction.
- the method can be implemented in an apparatus allowing continuous or discontinuous manufacture.
- a multicell electrolyser comprising 3 cathode compartments alternating with 4 anode compartments; the cathodes are lead plates whose useful surface immersed in the electrolyte is 72 cm2 (2 x 36 cm2); the anodes are identical Pb plates.
- Electrochemical oxidation 10 min in H2SO4 4%, 2 A / dm2
- Electrochemical reduction 15 min in H2SO4
- compartments are separated by 6 diaphragms of 37.5 cm2 useful cut from a membrane sold under the brand "IONAC 3475" consisting of a polypropylene support and anion exchange sites of the quaternary ammonium type.
- the 7 compartments are polypropylene frames 20 mm thick, joined by threaded rods; sealing is obtained by polyvinyl chloride PVC seals; each compartment has a useful volume of 77 ml.
- the cathode liquor is distributed in the three compartments from a thermal conditioning circuit consisting of a pump and a heat exchanger; this recirculation has the effect of causing agitation of the reaction medium; the compartments are not fitted with turbulence promoters.
- the total volume of cathode liquor thus brought into play is 340 ml.
- the anode liquor is not stirred.
- the catholyte contains 500 mmol (67.6 g; 179.1 g / kg of nitro-2-methyl-2-propanediol-1-3 and 29 g H2SO4 (7.7% by weight).
- the molar ratio H+ / R-NO2 is therefore 1.186.
- the anolyte is a 39% aqueous solution of sulfuric acid.
- the catholyte is brought to 50 ° C. and a cathode current density of 10 A / dm2 is established.
- the voltage measured on the central cathode compared to a saturated calomel ECS electrode, thanks to an assembly consisting of a capillary tube and a sintered glass in contact with the cathode is close to -0.6V / ECS.
- the variation of the cathode voltage is rapid; the cathode liquor is then brought to 80 ° C. and the operation is continued with the same current density; the cathode voltage takes a value close to - 1.5 V / DHW.
- the progress of the reaction is checked in parallel by potentiometric analysis of the cathode liquor which measures the contents of free acidity, R-NHOH and R-NH2; a semi-quantitative phmetric test indicates the disappearance of R-NO2; the volume variations of catholyte and anolyte are also measured in which water is optionally added.
- the anode compartments are emptied and immediately filled with pure water, leaving the electrodes energized ; the interpolar voltage takes a high value, then decreases because of the progressive increase in acidity of the anolyte, goes through a minimum and increases again because of the decrease in conductivity of the catholyte caused by its progressive depletion in ions.
- the overall yield compared to the initial nitro derivative is greater than 95%; the current efficiency is 67% for electrochemical reduction.
- Total energy expenditure (including electrodialysis) is 11 kWh / kg.
- the anode solution collected is an aqueous sulfuric solution titrating 39% H2SO4 and it can be recycled.
- the aqueous sulfuric solution collected after electro-electrodialysis can be used in part on the cathode side after delivery to the title in H2SO4 and addition of a new charge of nitro derivative.
- the chemical yield compared to the initial nitro derivative is 91 mol%: the efficiency of the current is 55%; the energy consumption is 8.6 kwh / kg for electrolysis and 12.3 kwh / kg for the electrolysis-electro-electrodialysis unit.
- a cell similar to the previous one is used, but having only one cathode compartment between two anode compartments; the cathode is made of Pb, the anodes of ruthenian titanium; the diaphragm is an anion exchange membrane, sold under the brand "IONAC" 3475.
- nitro-2-methyl-2-propanediol is carried out by operating with a catholyte containing 1 mole / kg of nitro derivative; one operates at 20 A / dm2 at 80 ° C; the H+ / RX ratio varies from 1.5 to 1.1 during operation.
- a solution containing 0.880 mole / kg of amino-2-methyl-2-propanediol-1-3 is obtained before electrodialysis.
- the chemical yield compared to the nitro derivative is 94.6%
- the efficiency of the current is 74.7%.
- the energy consumption is 7.8 kwh / kg.
- the solution obtained contains only the amino alcohol and sulfuric acid and it can be very easily purified and concentrated by electro-electrodialysis.
- Example 3 The operation is carried out in the electrolysis cell used in Example 3 in which the Pb cathode has been replaced by a cathode consisting of a Cu-Hg amalgam prepared by immersion for 10 minutes of a Cu plate of thickness 1 mm in a solution of mercuric sulfate (3%) and H2SO4 (10%).
- a cathode current density of 10 A / dm2 is used; the treated solution contains 0.737 mole / kg of methyl-2-nitro-2-propanediol-1-3; it is maintained at 30 ° C.
- Example 3 The operation is carried out on a cell with three compartments, identical to that of Example 3, except that it is provided with a cation exchange membrane diaphragm, sold under the brand "IONAC” MC 3470.
- the 2-nitro-2-methyl-propanediol 1-3 obtained in solution is reduced by adding nitroethane to a formaldehyde solution at 50 ° C., the pH being maintained at 9.5 by adding a 15 N sodium hydroxide solution. The concentration of the solution is then adjusted to 0.95 moles / kg of nitro derivative and 0.97 H2SO4 equivalent / kg.
- the reduction is carried out on the amalgamated copper cathode at 10 A / dm2 on the cathode and 9.6 A / dm2 on the diaphragm.
- the temperature of the catholyte is 30 ° C; it is an aqueous solution containing 1.075 mole / kg of nitro derivatives and 1.21 equ / kg H2SO4.
- the overall efficiency of the current is 75% and the energy expenditure for electrolysis is 9 kWh / kg of amino derivatives; the chemical yield, compared to the initial nitro derivatives, is 90.9%.
- An aqueous sulfuric solution is obtained containing 1.134 mol / kg of tris (methylhydroxy) amino methane, ie 137 g / kg and 1.391 eq / kg H2SO4; it is very easy to extract the pure amino alcohol by an EED treatment followed by dry evaporation; the overall efficiency of the electrolysis current is 65%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
La présente invention concerne la fabrication d'amino-alcools par réduction électrochimique de nitro-alcools.The present invention relates to the manufacture of amino alcohols by electrochemical reduction of nitro alcohols.
Les nitro-alcools sont des dérivés facilement obtenus par addition de formaldéhyde sur les nitro-paraffines. On a décrit plusieurs procédés pour les transformer en amino-alcools (alcanol-amines) utilisés dans la fabrication de cosmétiques, détergents ou comme intermédiaires de synthèse de bactéricides et de produits pharmaceutiques.Nitro-alcohols are derivatives easily obtained by addition of formaldehyde on nitro-paraffins. Several processes have been described for transforming them into amino-alcohols (alkanol-amines) used in the manufacture of cosmetics, detergents or as intermediates for the synthesis of bactericides and pharmaceutical products.
On peut effectuer la réduction du groupement -NO₂ par le couple Fe-Fe++ en milieu acide sulfurique ou acétique, mais le poids de réactif mis en oeuvre est environ trois fois celui du dérivé nitré à réduire ; il en résulte une grande quantité de résidu solide à éliminer et il est nécessaire de rectifier la phase liquide contenant l'amine pour obtenir un produit pur ; le rendement est de l'ordre de 80 %The reduction of the -NO₂ group can be carried out by the Fe-Fe ++ pair in sulfuric or acetic acid medium, but the weight of reagent used is approximately three times that of the nitro derivative to be reduced; this results in a large amount of solid residue to be removed and it is necessary to rectify the liquid phase containing the amine in order to obtain a pure product; the yield is around 80%
On peut aussi faire une hydrogénation catalytique, par exemple sur nickel de Raney en milieu méthanol sous 60 bars à 4O-45°C. Dans ce cas aussi, le rendement ne dépasse pas 80 % ; les réactions secondaires sont nombreuses entraînant la formation d'amines légères et de résidu lourd qu'il faut séparer de l'amino-alcool recherché, par plusieurs rectifications successives qui rendent nécessaires un investissement et une consommation d'énergie importants ; d'autre part, on ne peut éviter la formation de dérivé N-CH₃ qui est ensuite difficilement séparable du dérivé amino recherché.It is also possible to carry out a catalytic hydrogenation, for example on Raney nickel in methanol medium at 60 bars at 40 ° -45 ° C. In this case too, the yield does not exceed 80%; the side reactions are numerous leading to the formation of light amines and of heavy residue which must be separated from the desired amino alcohol, by several successive rectifications which necessitate significant investment and consumption of energy; on the other hand, one cannot avoid the formation of N-CH₃ derivative which is then difficult to separate from the desired amino derivative.
Un procédé de réduction électrochimique a déjà été décrit dans le brevet US 2.485.982 selon lequel on opère en solution aqueuse chlorhydrique ou sulfurique dans une cellule électrochimique munie d'un diaphragme poreux en porcelaine ; on obtient une solution aqueuse de chlorhydrate ou de sulfate d'amino-alcool qu'il faut ensuite neutraliser et/ou précipiter pour obtenir l'amine ; outre le dérivé nitré matière première, on consomme l'acide et les réactifs de neutralisation ou de précipitation qu'il faut ensuite rejeter dans l'environnement.An electrochemical reduction process has already been described in US Pat. No. 2,485,982 according to which one operates in aqueous hydrochloric or sulfuric solution in an electrochemical cell provided with a porous porcelain diaphragm; an aqueous solution of amino alcohol hydrochloride or sulphate is obtained which must then be neutralized and / or precipitated in order to obtain the amine; in addition to the nitro derivative raw material, the acid and the neutralization or precipitation reagents are consumed which must then be discharged into the environment.
Un autre procédé de réduction électrochimique a déjà été décrit dans le brevet GB 1.166.363 ; il s'agit de la réduction du nitrobenzène en phénylhydroxylamine dans un bain sulfurique qui est neutralisé avant la récupération du para-aminophénol par distillation. Dans ce procédé on consomme l'acide et de nombreux réactifs de neutralisation, et il est de plus nécessaire de distiller.Another electrochemical reduction process has already been described in patent GB 1,166,363; it is the reduction of nitrobenzene to phenylhydroxylamine in a sulfuric bath which is neutralized before recovery of the para-aminophenol by distillation. In this process the acid and many neutralizing reagents are consumed, and it is moreover necessary to distill.
On a recherché un procédé de réduction par voie électrochimique en milieu sulfurique permettant d'obtenir d'une part une solution aqueuse concentrée en amino-alcool pur et d'autre part des solutions d'acide sulfurique réutilisables dans l'opération suivante.We sought an electrochemical reduction process in sulfuric medium to obtain on the one hand an aqueous solution concentrated in pure amino alcohol and on the other hand solutions of sulfuric acid reusable in the following operation.
Selon le procédé de l'invention, en dehors de l'eau, la seule matière première consommée stoechiométriquement est le nitro-alcool ; la consommation d'acide sulfurique étant réduite au minimum et dans certains cas pouvant être nulle. Il n'y a pas ou peu de rejet dans l'environnement. Et, la conversion du dérivé nitré en dérivé aminé peut atteindre 95-98 % et reste dans la majorité des cas supérieure à 90 %.According to the process of the invention, apart from water, the only raw material consumed stoichiometrically is nitro-alcohol; the consumption of sulfuric acid being reduced to a minimum and in certain cases possibly being zero. There is little or no release to the environment. And, the conversion of the nitro derivative into an amino derivative can reach 95-98% and in most cases remains above 90%.
En outre, les conditions réactionnelles rendent impossible la formation de dérivés (R)₂-N-CH₃, par réaction de Mannich, souvent indésirables dans les applications des amino-alcools, en raison de leurs propriétés physiques et structure voisines des leurs, ce qui augmente la difficulté et le coût des opérations de purification des aminoalcools.In addition, the reaction conditions make it impossible to form derivatives (R) ₂-N-CH par, by Mannich reaction, often undesirable in the applications of amino alcohols, because of their physical properties and structure close to theirs, which increases the difficulty and the cost of the amino alcohol purification operations.
La réduction du groupement R-N0₂ et la séparation acide-dérivé aminé se font par électroréduction en milieu sulfurique en trois étapes.
Ainsi l'invention concerne un procédé de fabrication d'amino-alcools par réduction électrochimique de nitro-alcools en milieu sulfurique en trois étapes. Lors de la première étape de réduction en hydroxylamine, on opère la réduction du groupe nitré sur une cathode élaborée dans un matériau à forte surtension d'hydrogène en traitant une solution sulfurique du dérivé nitré, la réaction étant conduite sur une cathode dont la tension est moyennement électronégative. Lors de la deuxième étape de réduction en amino-alcool, la tension électronégative est plus élevée en valeur absolue. Dans la troisième étape on soumet la solution sulfurique d'amino-alcool obtenue à une opération de purification par électro-électrodialyse et élimination de l'eau.The reduction of the R-N0₂ group and the acid-amino derivative separation are carried out by electroreduction in sulfuric medium in three stages.
Thus, the invention relates to a process for the production of amino alcohols by electrochemical reduction of nitro-alcohols in sulfuric medium in three stages. During the first hydroxylamine reduction step, the nitro group is reduced on a cathode made of a material with a high hydrogen overvoltage by treating a sulfuric solution of the nitro derivative, the reaction being carried out on a cathode whose voltage is moderately electronegative. During the second amino alcohol reduction step, the electronegative voltage is higher in absolute value. In the third step, the sulfuric amino alcohol solution obtained is subjected to a purification operation by electro-electrodialysis and elimination of water.
Dans la première étape on opère une réduction à quatre électrons qui transforme R-N0₂ en R-NOH. Cette réduction du groupement nitré est réalisée sur une cathode élaborée dans un matériau à forte surtension d'hydrogène en traitant une solution aqueuse sulfurique du dérivé nitré. Cette réaction est effective sur une cathode dont la tension est moyennement électronégative.In the first step there is a reduction to four electrons which transforms R-N0₂ into R-NOH. This reduction of the nitro group is carried out on a cathode produced from a material with a high hydrogen overvoltage by treating an aqueous sulfuric solution of the nitro derivative. This reaction is effective on a cathode whose voltage is moderately electronegative.
Dans la deuxième étape on opère la réduction à 2 électrons de l'hydroxylamine en amine sur une cathode dont la tension électronégative est plus élevée en valeur absolue que précédemment.In the second step, the hydroxylamine amine is reduced to 2 electrons on a cathode whose electronegative voltage is higher in absolute value than previously.
Dans la troisième étape, on soumet la solution sulfurique d'amino-alcool obtenue à une opération de purification par électro-électrodialyse, puis à une élimination d'eau.In the third step, the sulfuric amino alcohol solution obtained is subjected to a purification operation by electro-electrodialysis, then to elimination of water.
On peut mettre en oeuvre les deux étapes de réduction électrochimique dans une cellule à diaphragme constitué d'une membrane échangeur de cations (MEC) ou échangeur d'anions (MEA) ; la phase de purification peut être effectuée dans le même appareil ou dans un appareil spécifique.The two stages of electrochemical reduction can be implemented in a diaphragm cell consisting of a cation exchanger (MEC) or anion exchanger (MEA) membrane; the purification phase can be carried out in the same device or in a specific device.
Sur les schémas ci-après, on indique les réactions globales mises en oeuvre et les transferts de matières (traits pleins : migration provoquée par le champ électrique - pointillés : transferts par diffusion).In the diagrams below, the global reactions used and the transfers of matter are indicated (solid lines: migration caused by the electric field - dotted lines: transfers by diffusion).
De toute façon, le rapport d'acidité H⁺/RX optimum (RX = RNO₂ + RNHOH + RNH₂) sera maintenu constant du côté cathodique.In any case, the optimum H⁺ / RX acidity ratio (RX = RNO₂ + RNHOH + RNH₂) will be kept constant on the cathode side.
On peut, en effet, opérer sur des solutions anodiques et cathodiques de concentration, telles que le transfert par diffusion de mole d'H₂SO₄ soit négligeable. Ces concentrations seront choisies en fonction des propriétés de la membrane utilisée. On ne peut cependant complètement éviter un échange d'ions entraînant un transfert du catholyte vers l'anolyte des cations R-NH₂OH⁺, R-NH₃⁺.One can, in fact, operate on anodic and cathodic solutions of concentration, such that the transfer by diffusion of mole of H₂SO₄ is negligible. These concentrations will be chosen according to the properties of the membrane used. One cannot however completely avoid an ion exchange leading to a transfer of the catholyte to the anolyte of the cations R-NH₂OH⁺, R-NH₃⁺.
Le schéma de la 3ème étape représente un appareil d'électro-électrodialyse muni d'un diaphragme MEA et d'électrodes à faible surtension d'hydrogène et d'oxygène dans lequel grâce au transfert des ions SO₄ =sous l'effet du champ électrique et à la réduction des cations sur la cathode on détruit les ions du type R-NH₃⁺ et on recueille du coté cathodique une solution aqueuse pure de R-NH₂ et du côté anodique une solution d'H₂SO₄ diluée et recyclable dans le compartiment cathodique après addition de RNO₂.The diagram of the 3rd stage represents an electro-electrodialysis device provided with an MEA diaphragm and electrodes with low hydrogen and oxygen overvoltage in which thanks to the transfer of ions SO₄ = under the effect of the electric field and when the cations are reduced on the cathode, ions of the R-NH₃⁺ type are destroyed and a pure aqueous solution of R-NH₂ is collected on the cathode side and a dilute and recyclable solution of H₂SO₄ solution on the anode side afterwards in the cathode compartment addition of RNO₂.
Le cas d'une cellule à diaphragme MEA peut être schématisé de manière analogue.
Ainsi, pendant les deux premières étapes, on utilise du côté anodique une solution aqueuse d'acide sulfurique notablement plus concentrée que le catholyte ; le débit de diffusion à travers la membrane de l'anolyte vers le catholyte équilibre ainsi le transport d'ions SO₄ = en sens inverse. On peut ainsi maintenir, du côté cathodique, une concentration acide constante et toujours opérer la réduction électrochimique sur une solution dans laquelle le rapport molaire H⁺/RX reste constant et à sa valeur optimum notamment pour la réduction du groupement hydroxylamine en groupement aminé. (RX = R-NO₂ + R-NHOH + R-NH₂).Thus, during the first two stages, an aqueous solution of sulfuric acid appreciably more concentrated than the catholyte is used on the anode side; the diffusion rate through the membrane from the anolyte to the catholyte thus balances the transport of SO₄ = ions in the opposite direction. It is thus possible to maintain, on the cathode side, a constant acid concentration and always operate the electrochemical reduction on a solution in which the H⁺ / RX molar ratio remains constant and at its optimum value in particular for the reduction of the hydroxylamine group into an amino group. (RX = R-NO₂ + R-NHOH + R-NH₂).
La purification finale par électro-électrodialyse peut être effectuée dans un appareillage spécial comme figuré sur la figure 1 (3ème étape) qui diffère de la cellule MEA seulement par la nature des matériaux d'électrode.The final purification by electro-electrodialysis can be carried out in a special apparatus as shown in Figure 1 (3rd step) which differs from the MEA cell only in the nature of the electrode materials.
On peut aussi mettre en oeuvre la purification fin ale dans la cellule ayant servi à la réalisation de la réduction électrochimique en remplaçant la solution sulfurique concentrée anodique par de l'eau pure et en envoyant dans la cellule la quantité d'électricité nécessaire au transfert des ions SO₄ =; la modification de la différence de concentration sulfurique de part et d'autre de la membrane entraîne l'inversion du courant de diffusion. Comme dans l'appareil d'électro-électrodialyse (fig. 1, 3ème étape), le transfert d'eau de solvatation s'effectue dans le sens catholyte-anolyte et le titre du catholyte est augmenté. Cependant, étant donné que le matériau de cathode pour la réduction électrochimique est choisi en raison de sa forte surtension d'hydrogène, l'utilisation de la cellule de réaction pour la purification entraîne inutilement une consommation d'énergie supplémentaire.It is also possible to carry out the fine ale purification in the cell used for carrying out the electrochemical reduction by replacing the concentrated anodic sulfuric solution with pure water and by sending into the cell the quantity of electricity necessary for the transfer of the SO₄ ions = ; the modification of the difference in sulfuric concentration on either side of the membrane results in the inversion of the diffusion current. As in the electro-electrodialysis machine (fig. 1, 3rd step), the transfer of solvation water takes place in the catholyte-anolyte direction and the titer of the catholyte is increased. However, since the cathode material for electrochemical reduction is chosen because of its high hydrogen overvoltage, the use of the reaction cell for purification unnecessarily leads to additional energy consumption.
Selon la structure des produits préparés, l'utilisation de membrane MEA peut avoir l'avantage d'une suppression plus stricte du transfert par échange d'ions des cations R-NH₃⁺ et R-NH₂OH⁺ vers l'anolyte ; on peut aussi plus facilement, utiliser le compartiment anodique pour la mise en oeuvre de réaction d'oxydation. Néanmoins, dans la plupart des cas, il est plus simple et plus commode d'effectuer les opérations de réduction dans les cellules électrochimiques munies de diaphragme MEC et la purification dans un appareil d'électro-électrodialyse muni d'un diaphragme MEA.Depending on the structure of the prepared products, the use of MEA membrane may have the advantage of a more strict suppression of the transfer by ion exchange of the cations R-NH₃⁺ and R-NH₂OH⁺ to the anolyte; one can also more easily use the anode compartment for carrying out the oxidation reaction. However, in most cases, it is simpler and more convenient to carry out the reduction operations in electrochemical cells provided with an MEC diaphragm and purification in an electro-electrodialysis machine provided with an MEA diaphragm.
Le procédé est applicable aux nitro-alcools représentés par la formule
Parmi ces produits, on trouve des produits nitrés conduisant à des alkanol-amines industriellement importants tels que, le nitro-2-méthyl-2-propanol-1, le nitro-2-méthyl-2-propanediol 1-3, le nitro-2-éthyl-2-propanediol 1-3, le nitro-2-butanol-1, le tris (hydroxyméthyl) nitrométhane.Among these products, there are nitro products leading to industrially important alkanol-amines such as, nitro-2-methyl-2-propanol-1, nitro-2-methyl-2-propanediol 1-3, nitro- 2-ethyl-2-propanediol 1-3, nitro-2-butanol-1, tris (hydroxymethyl) nitromethane.
La cathode est construite dans un matériau présentant une forte surtension d'hydrogène comme par exemple le plomb pur ou allié, le mercure sous forme d'amalgamme (avec le cuivre, le plomb, le Zn etc...) le zinc, le zirconium etc...The cathode is constructed from a material with a high hydrogen overvoltage such as pure or alloyed lead, mercury in the form of an amalgam (with copper, lead, Zn, etc.), zinc, zirconium. etc ...
L'anode est réalisée dans un matériau chimiquement inerte dans la solution anodique et de préférence à faible surtension d'oxygène comme par exemple le Pb, le titane ruthénié, la Pt platiné, etc...The anode is made of a material chemically inert in the anodic solution and preferably with low oxygen overvoltage such as for example Pb, ruthenium titanium, platinum Pt, etc.
Le diaphragme est réalisé avec une membrane échangeur de cation ou échangeur d'anion du commerce telles que, par exemple, celles vendues sous les marques "Nafion" (Du Pont) "IONAC" (Ionac), "ARP" et "CRP" (Rhône Poulenc) ou celles commercialisées par ASAHI Chem Ind ou ASAHI CLASS CO etc...The diaphragm is made with a cation exchange membrane or commercial anion exchanger such as, for example, those sold under the brands "Nafion" (Du Pont) "IONAC" (Ionac), "ARP" and "CRP" (Rhône Poulenc) or those marketed by ASAHI Chem Ind or ASAHI CLASS CO etc ...
La densité de courant cathodique a la valeur maximum compatible avec les tensions d'électrodes utilisables et les propriétés de la membrane ; avec le plomb ou le mercure et une membrane "IONAC 3470", on peut opérer sous 50A/dm² et plus.The cathode current density has the maximum value compatible with the usable electrode voltages and the properties of the membrane; with lead or mercury and an "IONAC 3470" membrane, we can operate under 50A / dm² and more.
La température de la solution cathodique peut être comprise entre 20°C et 100°C ; on opérera de préférence entre 60°C et 90°C pour la deuxième étape, dans le cas où on utilise des cathodes de Pb, et à 30°C sur cuivre amalgamé.The temperature of the cathode solution can be between 20 ° C and 100 ° C; it will preferably be carried out between 60 ° C. and 90 ° C. for the second step, in the case where Pb cathodes are used, and at 30 ° C. on amalgamated copper.
Le catholyte est une solution aqueuse sulfurique qui pourra être saturée en dérivé nitré ; pour le nitro-2-méthyl-2-propanediol on peut opérer par exemple à 333 g/l (ou 286 g/kg).The catholyte is an aqueous sulfuric solution which can be saturated with nitro derivative; for nitro-2-methyl-2-propanediol, it is possible, for example, to operate at 333 g / l (or 286 g / kg).
La teneur en H₂SO₄ du catholyte sera telle que le rapport molaire
L'anolyte est une solution aqueuse sulfurique ; sa composition dépendra du type et des propriétés de la membrane utilisée et notamment de sa perméabilité à l'acide sulfurique.The anolyte is an aqueous sulfuric solution; its composition will depend on the type and properties of the membrane used and in particular on its permeability to sulfuric acid.
Dans le cas d'un diaphragme échangeur de cations MEC, (H₂SO₄) dans l'anolyte aura une valeur tell e que le flux de migration par diffusion d'H₂SO₄ soit minimisé ainsi que le transfert de cations organiques par échange d'ions.In the case of an MEC cation exchanger diaphragm, (H₂SO₄) in the anolyte will have a value such that the migration flow by diffusion of H₂SO₄ is minimized as well as the transfer of organic cations by ion exchange.
Dans le cas d'un diaphragme échangeur d'anions MEA, (H₂SO₄) A dans l'anolyte a une valeur telle que l'écart de concentration (H₂SO₄) A - (H₂SO₄) C entraîne un flux de diffusion d'H₂SO₄ équilibré avec la migration des ions SO₄ = sous l'effet du champ électrique ; cette composition va donc dépendre des caractéristiques de diffusion de la membrane, de la densité du courant sur le diaphragme, et de la concentration en H⁺ (donc en R-NO₂) du catholyte.In the case of an anion exchanger diaphragm MEA, (H₂SO₄) A in the anolyte has a value such that the concentration difference (H₂SO₄) A - (H₂SO₄) C results in a diffusion flow of H₂SO₄ balanced with the migration of SO₄ = ions under the effect of the electric field; this composition will therefore depend on the diffusion characteristics of the membrane, the density of the current on the diaphragm, and the concentration of H⁺ (therefore R-NO₂) of the catholyte.
La solution sulfurique de nitro-alcools utilisée comme catholyte peut être préparée à partir de produits solides obtenus par cristallisation et purifiés par recristallisation.The sulfuric solution of nitro-alcohols used as a catholyte can be prepared from solid products obtained by crystallization and purified by recrystallization.
On peut aussi utiliser la solution aqueuse obtenue par réaction de la nitro-paraffine et du formaldéhyde ; dans ce cas, on peut procéder (par exemple) de la façon suivante :One can also use the aqueous solution obtained by reaction of nitro-paraffin and formaldehyde; in this case, we can proceed (for example) as follows:
On place, dans un réacteur agité, une solution aqueuse de formaldéhyde titrant de 35 à 40% ; on la porte à 40°C ; on ajuste le pH à 9 et on ajoute goutte à goutte la nitro paraffine en maintenant la température entre 40 et 50°C et la pH à 9-10 par addition d'une solution aqueuse de NaOH 15 N ; au bout d'une heure, l'addition de nitro paraffine est achevée ; on agite encore pendant 1 heure à la même température en maintenant le pH supérieur à 9 ; la quantité de dérivé nitré est exactement stoechiométrique ou en léger excès (1% molaire) sur la quantité de formaldéhyde.An aqueous formaldehyde solution titrating from 35 to 40% is placed in a stirred reactor; it is brought to 40 ° C; we adjust the pH at 9 and the nitro paraffin is added dropwise while maintaining the temperature between 40 and 50 ° C and the pH at 9-10 by addition of a 15N aqueous NaOH solution; after one hour, the addition of nitro paraffin is complete; the mixture is stirred again for 1 hour at the same temperature while maintaining the pH above 9; the amount of nitro derivative is exactly stoichiometric or in slight excess (1 mol%) over the amount of formaldehyde.
On acidifie ensuite par H₂SO₄ jusqu'à pH 5.Then acidified with H₂SO₄ to pH 5.
Le catholyte peut alors être préparé par addition d'H₂SO₄, et éventuellement d'H₂O, dans des proportions telles que la composition de la solution finale soit au rapport H⁺/R-NO₂ correspondant à l'optimum de la réduction cathodique.The catholyte can then be prepared by adding H₂SO₄, and optionally H₂O, in proportions such that the composition of the final solution is at the H⁺ / R-NO₂ ratio corresponding to the optimum of the cathodic reduction.
Le procédé peut être mis en oeuvre dans un appareillage permettant une fabrication en continue ou en discontinue.The method can be implemented in an apparatus allowing continuous or discontinuous manufacture.
Les exemples suivants illustrent à titre non limitatif la présente invention.The following examples illustrate, without limitation, the present invention.
On utilise un électrolyseur multicellulaire comprenant 3 compartiments cathodiques alternant avec 4 compartiments anodiques ; les cathodes sont des plaques de plomb dont la surface utile plongeant dans l'électrolyte est de 72 cm2 (2 x 36 cm2) ; les anodes sont des plaques de Pb identiques.A multicell electrolyser is used comprising 3 cathode compartments alternating with 4 anode compartments; the cathodes are lead plates whose useful surface immersed in the electrolyte is 72 cm2 (2 x 36 cm2); the anodes are identical Pb plates.
Les électrodes ont subi un traitement préliminaire de dégraissage par détergent puis décapage électronique.
Oxydation électrochimique : 10 mn dans H₂SO₄ 4%, 2 A/dm2
Réduction électrochimique : 15 mn dans H₂SO₄The electrodes have undergone a preliminary degreasing treatment with detergent and then electronic pickling.
Electrochemical oxidation: 10 min in H₂SO₄ 4%, 2 A / dm2
Electrochemical reduction: 15 min in H₂SO₄
Les compartiments sont séparés par 6 diaphragmes de 37,5 cm2 utiles découpés dans une membrane commercialisée sous la marque "IONAC 3475" constituée d'un support en polypropylène et de sites échangeurs d'anions du type ammonium quaternaire.The compartments are separated by 6 diaphragms of 37.5 cm2 useful cut from a membrane sold under the brand "IONAC 3475" consisting of a polypropylene support and anion exchange sites of the quaternary ammonium type.
Les 7 compartiments sont des cadres en polypropylène de 20 mm d'épaisseur solidarisés par des tiges filetées ; l'étanchéité est obtenu par des joints en chlorure de polyvinyle PVC ; chaque compartiment a un volume utile de 77 ml.The 7 compartments are polypropylene frames 20 mm thick, joined by threaded rods; sealing is obtained by polyvinyl chloride PVC seals; each compartment has a useful volume of 77 ml.
La liqueur cathodique est répartie dans les trois compartiments à partir d'un circuit de conditionnement thermique constitué d'une pompe et d'un échangeur de chaleur; cette recirculation a pour effet de provoquer l'agitation du milieu réactionnel ; les compartiments ne sont pas munis de promoteurs de turbulence. Le volume total de liqueur cathodique ainsi mise en jeu est de 340 ml. La liqueur anodique n'est pas agitée.The cathode liquor is distributed in the three compartments from a thermal conditioning circuit consisting of a pump and a heat exchanger; this recirculation has the effect of causing agitation of the reaction medium; the compartments are not fitted with turbulence promoters. The total volume of cathode liquor thus brought into play is 340 ml. The anode liquor is not stirred.
Le catholyte contient 500 mmoles (67,6 g ; 179,1 g/kg de nitro-2-méthyl-2-propanediol-1-3 et 29 g H₂SO₄ (7,7 % en poids). Le rapport molaire H⁺/R-NO₂ est donc de 1,186. L'anolyte est une solution aqueuse d'acide sulfurique à 39%.The catholyte contains 500 mmol (67.6 g; 179.1 g / kg of nitro-2-methyl-2-propanediol-1-3 and 29 g H₂SO₄ (7.7% by weight). The molar ratio H⁺ / R-NO₂ is therefore 1.186. The anolyte is a 39% aqueous solution of sulfuric acid.
On porte le catholyte à 50°C et on établit une densi té de courant cathodique de 10 A/dm2. La tension mesurée sur la cathode centrale par rapport à une électrode à calomel saturée ECS, grâce à un montage constitué d'un tube capillaire et d'un verre fritté au contact de la cathode est voisine de -0,6V/ECS.The catholyte is brought to 50 ° C. and a cathode current density of 10 A / dm2 is established. The voltage measured on the central cathode compared to a saturated calomel ECS electrode, thanks to an assembly consisting of a capillary tube and a sintered glass in contact with the cathode is close to -0.6V / ECS.
A la fin de la première étape, la variation de la tension de cathode est rapide ; on porte alors la liqueur cathodique à 80°C et on poursuit l'opération avec la même densité de courant ; la tension de cathode prend une valeur voisine de - 1,5 V/ECS.At the end of the first stage, the variation of the cathode voltage is rapid; the cathode liquor is then brought to 80 ° C. and the operation is continued with the same current density; the cathode voltage takes a value close to - 1.5 V / DHW.
On contrôle parallèlement l'avancement de la réaction par analyse potentiométrique de la liqueur cathodique qui mesure les teneurs en acidité libre, R-NHOH et R-NH₂; un test semi-quantitatif phmétrique indique la disparition de R-NO₂; on mesure aussi les variations de volume de catholyte et de l'anolyte dans lesquels on rajoute éventuellement de l'eau.The progress of the reaction is checked in parallel by potentiometric analysis of the cathode liquor which measures the contents of free acidity, R-NHOH and R-NH₂; a semi-quantitative phmetric test indicates the disappearance of R-NO₂; the volume variations of catholyte and anolyte are also measured in which water is optionally added.
A la fin de la deuxième étape, contrôlée par analyse chimique (disparition du point d'inflexion correspondant à R-NHOH sur la graphe potentiométrique), on vide les compartiments anodiques qu'on remplit immédiatement d'eau pure en laissant les électrodes sous tension; la tension interpolaire prend une valeur élevée, puis diminue à cause de l'augmentation progressive d'acidité de l'anolyte, passe par un minimum et augmente à nouveau à cause de la diminution de conductibilité du catholyte causée par son appauvrissement progressif en ions.At the end of the second step, checked by chemical analysis (disappearance of the inflection point corresponding to R-NHOH on the potentiometric graph), the anode compartments are emptied and immediately filled with pure water, leaving the electrodes energized ; the interpolar voltage takes a high value, then decreases because of the progressive increase in acidity of the anolyte, goes through a minimum and increases again because of the decrease in conductivity of the catholyte caused by its progressive depletion in ions.
Finalement, on recueille une solution cathodique contenant 1,57 mole/kg R-NH₂ (165 g/kg), 0,2 g H₂SO₄/kg ; la teneur en dérivé nitré et hydroxylamine est nulle.Finally, a cathode solution containing 1.57 mole / kg R-NH₂ (165 g / kg), 0.2 g H₂SO₄ / kg is collected; the content of nitro derivative and hydroxylamine is zero.
Par évaporation à sec sous pression réduite, on obtient finalement un précipité blanc contenant 99% d'amino-2-méthyl-2-propanediol-1-3 (dosage par chromatographie en phase vapeur) ; son point de fusion est de 108°C.By evaporation to dryness under reduced pressure, a white precipitate containing 99% amino-2-methyl-2-propanediol-1-3 is finally obtained (determination by vapor phase chromatography); its melting point is 108 ° C.
Le rendement global par rapport au dérivé nitré initial est supérieur à 95% ; l'efficacité du courant est de 67% pour la réduction électrochimique. La dépense totale d'énergie (y compris l'électrodialyse) est de 11 kwh/kg.The overall yield compared to the initial nitro derivative is greater than 95%; the current efficiency is 67% for electrochemical reduction. Total energy expenditure (including electrodialysis) is 11 kWh / kg.
La solution anodique recueillie est une solution aqueuse sulfurique titrant 39% H₂SO₄ et elle peut être recyclée. La solution aqueuse sulfurique recueillie aprés l'électro-électrodialyse peut être utilisée en partie du côté cathodique après remise au titre en H₂SO₄ et addition d'une nouvelle charge de dérivé nitré.The anode solution collected is an aqueous sulfuric solution titrating 39% H₂SO₄ and it can be recycled. The aqueous sulfuric solution collected after electro-electrodialysis can be used in part on the cathode side after delivery to the title in H₂SO₄ and addition of a new charge of nitro derivative.
On utilise le même électrolyseur que dans l'exemple 1 mais on traite une solution sulfurique de tris (hydroxyméthyl) nitrométhane à la concentration de 1,068 moles/kg (161 g/kg) ; la concentration en H₂SO₄ est telle que le rapport H⁺/R-NO₂ = 1,19 ; le titre de l'anolyte est de 35,5% H₂SO₄.The same electrolyser is used as in Example 1, but a sulfuric solution of tris (hydroxymethyl) nitromethane is treated at a concentration of 1.068 moles / kg (161 g / kg); the H₂SO₄ concentration is such that the H⁺ / R-NO₂ ratio = 1.19; the title of the anolyte is 35.5% H₂SO₄.
On opère avec une densité de courant cathodique de 9 A/dm2; la température de catholyte est maintenue à 50°C pendant la première phase puis portée à 80°C pour la deuxième phase.We operate with a cathodic current density of 9 A / dm2; the catholyte temperature is maintained at 50 ° C during the first phase and then raised to 80 ° C for the second phase.
Après électro-électrodialyse effectuée comme dans l'exemple 1, on obtient une solution pure d'amine ne contenant plus d'hydroxylamine ni d'acide sulfurique ; son titre est de 1,171 moles/kg (142 g/kg).After electro-electrodialysis carried out as in Example 1, a pure amine solution is obtained which no longer contains hydroxylamine or sulfuric acid; its titer is 1.171 moles / kg (142 g / kg).
Le rendement chimique par rapport au dérivé nitré initial est de 91% molaire : l'efficacité du courant est de 55%; la consommation d'énergie est de 8,6 kwh/kg pour l'électrolyse et de 12,3 kwh/kg pour l'ensemble électrolyse-électro-électrodialyse.The chemical yield compared to the initial nitro derivative is 91 mol%: the efficiency of the current is 55%; the energy consumption is 8.6 kwh / kg for electrolysis and 12.3 kwh / kg for the electrolysis-electro-electrodialysis unit.
Par évaporation à sec du catholyte, on recueille un produit solide blanc titrant 96% (dosage par chromatographie en phase vapeur).By dry evaporation of the catholyte, a white solid product titrating 96% is collected (assay by vapor phase chromatography).
On utilise une cellule analogue à la précédente, mais ne comportant qu'un compartiment cathodique entre deux compartiments anodiques; la cathode est en Pb, les anodes en titane ruthénié ; le diaphragme est une membrane échangeur d'anion, commercialisée sous la marque "IONAC"3475.A cell similar to the previous one is used, but having only one cathode compartment between two anode compartments; the cathode is made of Pb, the anodes of ruthenian titanium; the diaphragm is an anion exchange membrane, sold under the brand "IONAC" 3475.
On effectue la réduction du nitro-2-méthyl-2-propanediol en opérant avec un catholyte contenant 1 mole/kg dérivé nitré ; on opère à 20 A/dm2 à 80°C ; le rapport H⁺/RX varie de 1,5 à 1,1 en cours d'opération.The reduction of nitro-2-methyl-2-propanediol is carried out by operating with a catholyte containing 1 mole / kg of nitro derivative; one operates at 20 A / dm2 at 80 ° C; the H⁺ / RX ratio varies from 1.5 to 1.1 during operation.
On obtient avant électrodialyse une solution contenant 0,880 mole/kg de amino-2-méthyl-2-propanediol-1-3.A solution containing 0.880 mole / kg of amino-2-methyl-2-propanediol-1-3 is obtained before electrodialysis.
Le rendement chimique par rapport au dérivé nitré est de 94,6% L'efficacité du courant est de 74,7%. La consommation énergétique est de 7,8 kwh/kg. La solution obtenue ne contient que l'amino-alcool et de l'acide sulfurique et elle peut être très facilement purifiée et concentrée par électro-électrodialyse.The chemical yield compared to the nitro derivative is 94.6% The efficiency of the current is 74.7%. The energy consumption is 7.8 kwh / kg. The solution obtained contains only the amino alcohol and sulfuric acid and it can be very easily purified and concentrated by electro-electrodialysis.
On opère dans la cellule d'électrolyse utilisée dans l'exemple 3 dans laquelle on a remplacé la cathode en Pb par une cathode constituée d'un amalgame Cu-Hg préparé par immersion pendant 10 minutes d'une plaque de Cu d'épaisseur 1 mm dans une solution de sulfate mercurique (3%) et H₂SO₄ (10%).The operation is carried out in the electrolysis cell used in Example 3 in which the Pb cathode has been replaced by a cathode consisting of a Cu-Hg amalgam prepared by immersion for 10 minutes of a Cu plate of thickness 1 mm in a solution of mercuric sulfate (3%) and H₂SO₄ (10%).
On utilise une densité de courant cathodique de 10 A/dm2; la solution traitée contient 0,737 mole/kg de méthyl-2-nitro-2-propanediol-1-3 ; elle est maintenue à 30°C.A cathode current density of 10 A / dm2 is used; the treated solution contains 0.737 mole / kg of methyl-2-nitro-2-propanediol-1-3; it is maintained at 30 ° C.
On obtient avant le traitement final de purification, une solution aqueuse de méthyl-2-amino-2-propanediol-1-3 et d'acide sulfurique. L'efficacité du courant est de 80%. Le rendement chimique par rapport au dérivé nitré est de 97%.Before the final purification treatment, an aqueous solution of methyl-2-amino-2-propanediol-1-3 and sulfuric acid is obtained. The efficiency of the current is 80%. The chemical yield compared to the nitro derivative is 97%.
On opère sur une cellule à trois compartiments, identique à celle de l'exemple 3, sauf qu'elle est munie d'un diaphragme membrane échangeur de cations, commercialisée sous la marque "IONAC" MC 3470.The operation is carried out on a cell with three compartments, identical to that of Example 3, except that it is provided with a cation exchange membrane diaphragm, sold under the brand "IONAC" MC 3470.
On effectue la réduction du nitro-2 methyl-2 propanediol 1-3 obtenu en solution par addition de nitroéthane à une solution de formaldéhyde à 50°C, le pH étant maintenu à 9,5 par addition d'une solution de soude 15 N. On ajuste ensuite la concentration de la solution à 0,95 moles/kg de dérivé nitré et 0,97 équivalent H₂SO₄/kg.The 2-nitro-2-methyl-propanediol 1-3 obtained in solution is reduced by adding nitroethane to a formaldehyde solution at 50 ° C., the pH being maintained at 9.5 by adding a 15 N sodium hydroxide solution. The concentration of the solution is then adjusted to 0.95 moles / kg of nitro derivative and 0.97 H₂SO₄ equivalent / kg.
On opère sur cathode de mercure (cuivre amalgammé) à 30°C ; la densité de courant est de 10 A/dm2 sur la cathode et 9,6 A/dm2 sur le diaphragme.One operates on a mercury cathode (amalgamated copper) at 30 ° C; the current density is 10 A / dm2 on the cathode and 9.6 A / dm2 on the diaphragm.
Après électrolyse, on obtient une solution contenant 0,831 mole/kg d'amino-alcool et 0,867 équivalent H₂SO₄ par kg, dont on extrait très facilement l'amino-alcool pur par EED et évaporation à sec. La conversion du dérivé nitré en dérivé aminé est quantitative et l'efficacité du courant cumulé sur les deux étapes de la réduction électrochimique est de 80%; la consommation d'énergie à l'électrolyse est de 9,8 kwh/kg de produit fini.After electrolysis, a solution is obtained containing 0.831 mole / kg of amino alcohol and 0.867 H₂SO₄ equivalent per kg, from which the pure amino alcohol is very easily extracted by EED and evaporation to dryness. The conversion of the nitro derivative into the amino derivative is quantitative and the efficiency of the cumulative current over the two stages of the electrochemical reduction is 80%; the energy consumption for electrolysis is 9.8 kwh / kg of finished product.
On opère avec la même cellule équipée d'un diaphragme MEC sur un mélange riche en nitro-2 butanol-1, ayant la composition suivante :
On effectue la réduction sur la cathode de cuivre amalgamé à 10 A/dm2 sur la cathode et 9,6 A/dm2 sur la diaphragme. La température du catholyte est de 30°C ; c'est une solution aqueuse contenant 1,075 mole/kg de dérivés nitrés et 1,21 equ/kg H₂SO₄.The reduction is carried out on the amalgamated copper cathode at 10 A / dm2 on the cathode and 9.6 A / dm2 on the diaphragm. The temperature of the catholyte is 30 ° C; it is an aqueous solution containing 1.075 mole / kg of nitro derivatives and 1.21 equ / kg H₂SO₄.
Après électrolyse, on obtient une solution aqueuse sulfurique contenant 0,845 mole/kg de dérivés aminés et 1,03 equ/kg H₂SO₄ ; on dose un reste de fonction hydroxylamine dans la solution ne représentant que 2,5% molaire des produits organiques. Par électro-électrodialyse EED et extraction de l'eau, on obtiendra facilement une solution presque pure d'amino-alcools.After electrolysis, an aqueous sulfuric solution is obtained containing 0.845 mole / kg of amino derivatives and 1.03 equ / kg H₂SO₄; a residue of hydroxylamine function is measured in the solution representing only 2.5 mol% of the organic products. By electro-electrodialysis EED and extraction of water, one will easily obtain an almost pure solution of amino alcohols.
L'efficacité globale du courant est de 75% et la dépense d'énergie à l'électrolyse est de 9 kwh/kg de dérivés aminés ; le rendement chimique, par rapport aux dérivés nitrés initiaux, est de 90,9%.The overall efficiency of the current is 75% and the energy expenditure for electrolysis is 9 kWh / kg of amino derivatives; the chemical yield, compared to the initial nitro derivatives, is 90.9%.
On traite à 30°C sur la même cellule que dans l'exemple précédent une solution aqueuse de tris (méthyl hydroxy) nitro méthane dans l'acide sulfurique et contenant 1,94 mole/kg de dérivé nitré et 2,32 equ/kg H₂SO₄ ; la densité de courant est de 13,9 A/dm2 sur la cathode et 13,3 A/dm2 sur le diaphragme.An aqueous solution of tris (methyl hydroxy) nitro methane in sulfuric acid and containing 1.94 mole / kg of nitro derivative and 2.32 equ / kg is treated at 30 ° C. on the same cell as in the previous example. H₂SO₄; the current density is 13.9 A / dm2 on the cathode and 13.3 A / dm2 on the diaphragm.
On obtient une solution aqueuse sulfurique contenant 1,134 mole/kg de tris (méthylhydroxy) amino méthane, soit 137 g/kg et 1,391 eq/kg H₂SO₄ ; on peut très facilement extraire l'amino-alcool pur par un traitement EED suivi d'une évaporation à sec ; l'efficacité globale du courant d'électrolyse est de 65%.An aqueous sulfuric solution is obtained containing 1.134 mol / kg of tris (methylhydroxy) amino methane, ie 137 g / kg and 1.391 eq / kg H₂SO₄; it is very easy to extract the pure amino alcohol by an EED treatment followed by dry evaporation; the overall efficiency of the electrolysis current is 65%.
Claims (13)
- Process for manufacture of amino-alcohols. by electro-chemical reduction of nitro-alcohols in sulphuric medium in three stages, in which during the first stage of reduction into hydroxylamine, the reduction of the nitrated group is performed on a cathode constructed in a material having a high hydrogen overpressure by treating a sulphuric solution of the nitrated derivative, the reaction being conducted on a cathode the voltage of which is moderately electro-negative; during the second stage of reduction into amino-alcohol, the electronegative voltage is higher as an absolute value; and during the third stage the sulphuric solution of amino-alcohol obtained is subjected to an operation of purification by electro-electrodialysis and removal of water.
- Process for manufacture of amino-alcohols, as claimed in claim 1, characterised in that the nitro-alcohol subjected to the electrochemical reduction is represented by the formula
- Process for manufacture of amino-alcohols as claimed in claim 2, characterised in that the nitro-alcohol is 2-nitro-2-methyl-1-propanol, 2-nitro-2-methyl-1,3-propanediol, 2-nitro-1-butanol, tris (hydroxymethyl) nitromethane.
- Process for manufacture of amino-alcohols as claimed in any of claims 1 to 3, characterised in that the nitrated derivative raw material used is in the form of the raw solution obtained by reaction of formaldehyde and the corresponding nitroparaffin.
- Process for manufacture of amino-alcohols, as claimed in any of claims 1 to 4, characterised in that the cathodic solution subjected to the electrolysis has a composition such that the molar ratio H+/R-NO₂ is between 1 and 1.5, its temperature being fixed at a value of between 20 and 100°C.
- Process for manufacture of amino-alcohols as claimed in any of claims 1 to 5, characterised in that the electrochemical reduction of the nitro-alcohols is implemented in an apparatus in which the anodic and cathodic compartments are separated by a cation exchange membrane.
- Process for manufacture of amino-alcohols as claimed in any of claims 1 to 5, characterised in that the electrochemical reduction of the nitro-alcohols is implemented in an apparatus in which the anodic and cathodic compartments are separated by an anion exchange membrane.
- process for manufacture of amino-alcohols as claimed in any of claims 1 to 5 and 7 characterised in that the final purification by electro-electrodialysis is performed in an apparatus the anodes and cathodes of which are constituted by materials having respectively a slight overpressure of oxygen and of hydrogen and in which the anodic and cathodic compartments are separated by a diaphragm constituted by an anion exchange membrane.
- Process for manufacture of amino-alcohols as claimed in any of claims 1 to 8, characterised in that the electro-electrodialysis apparatus is fed on the cathode side with the sulphuric amino-alcohol solution and on the anode side with pure water.
- Process for manufacture of amino-alcohols as claimed in any of claims 1 to 5 and 7 characterised in that the final purification of the catholyte is performed in the electrochemical reactor by replacing the concentrated solution of sulphuric acid contained in the anodic compartment by pure water.
- Process for manufacture of amino-alcohols as claimed in claim 1, characterised in that the cathodes are constructed in a material having a high overpressure of hydrogen, such as mercury, in amalgam form, lead, zirconium.
- Process for manufacture of amino-alcohols as claimed in claim 1, characterised in that the aqueous concentrated sulphuric solution constituting the anolyte is collected and reused in a subsequent operation.
- Process for manufacture of amino-alcohols as claimed in claim 1, characterised in that the diluted aqueous sulphuric solution collected on the anode side is reused on the cathode side after recharging with nitro-alcohol.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8501873 | 1985-02-11 | ||
FR8501873A FR2577242B1 (en) | 1985-02-11 | 1985-02-11 | PROCESS FOR THE MANUFACTURE OF AMINO-ALCOHOLS BY ELECTROCHEMICAL REDUCTION OF NITRO-ALCOHOLS |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0198722A2 EP0198722A2 (en) | 1986-10-22 |
EP0198722A3 EP0198722A3 (en) | 1988-03-23 |
EP0198722B1 true EP0198722B1 (en) | 1991-03-20 |
Family
ID=9316115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86400162A Expired - Lifetime EP0198722B1 (en) | 1985-02-11 | 1986-01-28 | Process for the preparation of amino-alcohols by electrochemical reduction of nitro-alcohols |
Country Status (7)
Country | Link |
---|---|
US (1) | US4678549A (en) |
EP (1) | EP0198722B1 (en) |
JP (1) | JPS61231189A (en) |
CA (1) | CA1251762A (en) |
DE (1) | DE3678189D1 (en) |
ES (1) | ES8702515A1 (en) |
FR (1) | FR2577242B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2614044B1 (en) * | 1987-04-16 | 1991-05-10 | Air Liquide | PROCESS FOR ELECTRO-REDUCTION OF ALIPHATIC NITERIUM DERIVATIVES |
US5074974A (en) * | 1990-06-08 | 1991-12-24 | Reilly Industries, Inc. | Electrochemical synthesis and simultaneous purification process |
ES2108654B1 (en) * | 1996-05-07 | 1998-07-01 | Univ Alicante | PROCEDURE FOR THE ELECTROCHEMICAL SYNTHESIS OF N-ACETILCISTEINA FROM CISTINA. |
KR100730460B1 (en) * | 2002-06-19 | 2007-06-19 | 에스케이 주식회사 | Continuous production method of 2-amino-2-methyl-1,3-propanediol using heterogeneous catalyst |
US20080200355A1 (en) * | 2007-01-12 | 2008-08-21 | Emmons Stuart A | Aqueous Solution for Managing Microbes in Oil and Gas Production and Method for their Production |
CN115611751A (en) * | 2022-11-08 | 2023-01-17 | 四平欧凯科技有限公司 | A kind of preparation method of trihydroxymethylaminomethane |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2485982A (en) * | 1944-03-13 | 1949-10-25 | Commercial Solvents Corp | Electrolytic production of aminoalcohols |
US2589635A (en) * | 1945-03-13 | 1952-03-18 | Polytechnic Inst Brooklyn | Electrochemical process |
US3338806A (en) * | 1961-08-21 | 1967-08-29 | Continental Oil Co | Process of preparing p-aminophenol by electrolytically reducing nitrobenzene |
GB1166363A (en) * | 1966-02-02 | 1969-10-08 | Miles Lab | Process for Electrolytic Reduction of Aromatic Nitro Compounds |
GB1308042A (en) * | 1969-05-28 | 1973-02-21 | Brown John Constr | Process for the preparation of rho-amino phenol by the electrolytic reduction of nitrobenzene |
GB1421118A (en) * | 1971-11-16 | 1976-01-14 | Albright & Wilson | Electrolytic reduction of nitrosophenols |
FR2472037A1 (en) * | 1979-12-18 | 1981-06-26 | Elf Aquitaine | FIBROUS PERCOLATING POROUS ELECTRODE MODIFIED IN CARBON OR GRAPHITE, ITS APPLICATION TO REALIZATION OF ELECTROCHEMICAL REACTIONS, AND ELECTROCHEMICAL REACTORS EQUIPPED WITH SUCH AN ELECTRODE |
US4584069A (en) * | 1985-02-22 | 1986-04-22 | Universite De Sherbrooke | Electrode for catalytic electrohydrogenation of organic compounds |
US4584070A (en) * | 1985-03-29 | 1986-04-22 | Ppg Industries, Inc. | Process for preparing para-aminophenol |
-
1985
- 1985-02-11 FR FR8501873A patent/FR2577242B1/en not_active Expired
-
1986
- 1986-01-28 EP EP86400162A patent/EP0198722B1/en not_active Expired - Lifetime
- 1986-01-28 DE DE8686400162T patent/DE3678189D1/en not_active Expired - Lifetime
- 1986-02-10 US US06/828,558 patent/US4678549A/en not_active Expired - Fee Related
- 1986-02-10 ES ES551795A patent/ES8702515A1/en not_active Expired
- 1986-02-10 JP JP61026080A patent/JPS61231189A/en active Pending
- 1986-02-11 CA CA000501605A patent/CA1251762A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61231189A (en) | 1986-10-15 |
EP0198722A3 (en) | 1988-03-23 |
FR2577242A1 (en) | 1986-08-14 |
ES8702515A1 (en) | 1986-12-16 |
CA1251762A (en) | 1989-03-28 |
EP0198722A2 (en) | 1986-10-22 |
FR2577242B1 (en) | 1987-10-30 |
US4678549A (en) | 1987-07-07 |
ES551795A0 (en) | 1986-12-16 |
DE3678189D1 (en) | 1991-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6315355B2 (en) | ||
FR2536766A1 (en) | ELECTROLYTIC PROCESS AND CELL FOR THE PREPARATION OF ORGANIC COMPOUNDS | |
US4938854A (en) | Method for purifying quaternary ammonium hydroxides | |
JP2005529232A (en) | Electrochemical process for producing ionic liquids | |
EP0198722B1 (en) | Process for the preparation of amino-alcohols by electrochemical reduction of nitro-alcohols | |
BE1000436A5 (en) | Electrochemical method for reducing nitric acid in nitrate hydroxylamine. | |
CN115917047A (en) | Process for the electrochemical production of alkanedicarboxylic acids by means of ring-opening oxidation using doped Ni(O)OH foam electrodes | |
Kariv-Miller et al. | Electroreductive dehalogenation of fluorobenzenes | |
EP0288344B1 (en) | Electrochemical process for recovery of metallic rhodium from used catalysts' aqueous solutions | |
CA1309968C (en) | Electro-reduction process of aliphatic nitrous derivatives | |
BE1006386A3 (en) | Perfluoroalkylsulfonylfluorures preparation process. | |
Lamoureux et al. | An electrolysis cell with close consecutive flow-through porous electrodes for particular organic electrosynthesis | |
Lisitsyn et al. | Electrochemical amination. Functionalization of anisole in solutions of 4.0–6.0 M H2SO4 and acetic acid | |
Hills | Electrochemistry: A Review of Literature Publishing During... | |
Karakus et al. | Electrosynthesis of nitrosobenzenes bearing electron withdrawing substituents | |
EP0117371B1 (en) | Process for the production of aminobenzoic acids from corresponding nitrotoluenes | |
EP0890566A1 (en) | Oxidation process for the production of a chlorobenzaldehyde | |
Lisitsyn et al. | Electrochemical amination of anisole in 4–6 M solutions of H2SO4 and acetonitrile | |
EP0370866B1 (en) | Aldehydes electrosynthesis process | |
JPS61261488A (en) | Electrolyzing method for alkaline metallic salt of amino acid | |
US4402805A (en) | Electrochemical process to prepare p-hydroxymethylbenzoic acid with a low level of 4-CBA | |
US4345978A (en) | Method and apparatus for preparing aromatic hydrazo or diaminodiphenyl compounds | |
Konarev | Electrochemical Behavior of m-Nitrosulfonic Acid of Benzene in Aqueous Solutions of Different Composition | |
US2916426A (en) | Electrolytic production of unsymmetrical dimethylhydrazine | |
JPS5837395B2 (en) | Method for producing N,N-disubstituted-p-phenylenediamine derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19860131 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19890704 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI LU NL SE |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 3678189 Country of ref document: DE Date of ref document: 19910425 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921209 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921217 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921222 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921223 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19921228 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19921229 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930131 Year of fee payment: 8 |
|
EPTA | Lu: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940128 Ref country code: GB Effective date: 19940128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940131 Ref country code: CH Effective date: 19940131 Ref country code: BE Effective date: 19940131 |
|
BERE | Be: lapsed |
Owner name: S.A. L' AIR LIQUIDE POUR L'ETUDE ET L'EXPLOITATION Effective date: 19940131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940801 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940930 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19941001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 86400162.3 Effective date: 19940810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050128 |