[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE19939992A1 - Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen - Google Patents

Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen

Info

Publication number
DE19939992A1
DE19939992A1 DE1999139992 DE19939992A DE19939992A1 DE 19939992 A1 DE19939992 A1 DE 19939992A1 DE 1999139992 DE1999139992 DE 1999139992 DE 19939992 A DE19939992 A DE 19939992A DE 19939992 A1 DE19939992 A1 DE 19939992A1
Authority
DE
Germany
Prior art keywords
weight
cavity
acid
detergent
detergent tablets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999139992
Other languages
English (en)
Inventor
Thomas Holderbaum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE1999139992 priority Critical patent/DE19939992A1/de
Publication of DE19939992A1 publication Critical patent/DE19939992A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3902Organic or inorganic per-compounds combined with specific additives
    • C11D3/3905Bleach activators or bleach catalysts
    • C11D3/3907Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung beschreibt mehrphasige Wasch- oder Reinigungsmittelformkörper sowie ein Verfahren zu ihrer Herstellung, bei dem ein teilchenförmiges Vorgemisch zu Formkörpern verpreßt wird, die mindestens eine Kavität aufweisen. In diese Kavität wird ein weiterer fester Teil, der mindestens anteilsweise in der Kavität eingeschlossen vorliegt, eingefügt, wobei der verbleibende Hohlraum zwischen den beiden Formkörperteilen mindestens anteilsweise mit Aktivsubstanz befüllt ist.

Description

Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, Verfahren zu ihrer Herstellung und ihre Anwendung.
Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Reinigungsmittel haben gegenüber pulverförmigen Produkten eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Es existiert daher ein äußerst breiter Stand der Technik zu Wasch- und Reinigungsmittelformkörpern, der sich auch in einer umfangreichen Patentliteratur niederschlägt. Schon früh ist dabei den Ent­ wicklern tablettenförmiger Produkte die Idee gekommen, über unterschiedlich zusammen­ gesetzte Bereiche der Formkörper bestimmte Inhaltsstoffe erst unter definierten Bedingun­ gen im Wasch- oder Reinigungsgang freizusetzen, um so den Reinigungserfolg zu verbes­ sern. Hierbei haben sich neben den aus der Pharmazie hinlänglich bekannten Kern/Mantel- Tabletten und Ring/Kern-Tabletten insbesondere mehrschichtige Formkörper durchgesetzt, die heute für viele Bereiche des Waschens und Reinigens oder der Hygiene angeboten werden. Auch die optische Differenzierung der Produkte gewinnt zunehmend an Bedeu­ tung, so daß einphasige und einfarbige Formkörper auf dem Gebiet des Waschens und Reinigens weitgehend von mehrphasigen Formkörpern verdrängt wurden. Marktüblich sind derzeit zweischichtige Formkörper mit einer weißen und einer gefärbten Phase oder mit zwei unterschiedlich gefärbten Schichten. Daneben existieren Punkttabletten, Ring­ kerntabletten, Manteltabletten usw., die derzeit eine eher untergeordnete Bedeutung haben.
Mehrphasige Reinigungstabletten für das WC werden beispielsweise in der EP 055 100 (Jeyes Group) beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittelzusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleich­ zeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Formkörper. Die Her­ stellung der Formkörper erfolgt nach der Lehre dieser Schrift entweder durch Einsetzen einer verpreßten Bleichmitteltablette in eine Form und Umgießen dieser Tablette mit der Reinigungsmittelzusammensetzung, oder durch Eingießen eines Teils der Reinigungsmit­ telzusammensetzung in die Form, gefolgt vom Einsetzen der verpreßten Bleichmittelt­ ablette und eventuell nachfolgendes Übergießen mit weiterer Reinigungsmittelzusammen­ setzung.
Auch die EP 481 547 (Unilever) beschreibt mehrphasige Reinigungsmittelformkörper, die für das maschinelle Geschirrspülen eingesetzt werden sollen. Diese Formkörper haben die Form von Kern/Mantel-Tabletten und werden durch stufenweises Verpressen der Be­ standteile hergestellt: Zuerst erfolgt die Verpressung einer Bleichmittelzusammensetzung zu einem Formkörper, der in eine mit einer Polymerzusammensetzung halbgefüllte Matrize eingelegt wird, die dann mit weiterer Polymerzusammensetzung aufgefüllt und zu einem mit einem Polymermantel versehen Bleichmittelformkörper verpreßt wird. Das Verfahren wird anschließend mit einer alkalischen Reinigungsmittelzusammensetzung wiederholt, so daß sich ein dreiphasiger Formkörper ergibt.
Ein anderer Weg zur Herstellung optisch differenzierter Wasch- und Reinigungsmittel­ formkörper wird in den internationalen Patentanmeldungen WO99/46522, WO99/27063 und WO99/27067 (Procter & Gamble) beschrieben. Nach der Lehre dieser Schriften wird ein Formkörper bereitgestellt, der eine Kavität aufweist, die mit einer erstarrenden Schmelze befüllt wird. Alternativ wird ein Pulver eingefüllt und mittels einer Coating­ schicht in der Kavität befestigt. Allen drei Anmeldung ist gemeinsam, daß der die Kavität ausfüllende Bereich nicht verpreßt sein soll, da auf diese Weise "druckempfindliche" In­ haltsstoffe geschont werden sollen.
Die ältere deutsche Patentanmeldung DE 199 09 271.0 (Henkel) schlägt ein Verfahren zur Herstellung mehrphasiger Wasch- und Reinigungsmittelformkörper vor, bei dem ein teil­ chenförmiges Vorgemisch zu Formkörpern verpreßt wird, auf deren Flächen optional Haftvermittler aufgebracht werden, wonach weitere Aktivsubstanz, beispielsweise in Form vorverpreßter Formkörper, aufgebracht wird. Diese Schrift beschreibt auch das Einbringen vortablettierter Aktivsubstanz(gemische) in Kavitäten von anderen Formkörpern.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, das in der älteren deutschen Patentanmeldung DE 199 09 271.0 beschriebene Verfahren und die dort offenbarten Formkörper weiterzuentwickeln. Insbesondere sollten die Haftvermittler funktioneller Be­ standteil der Formkörper werden und im Wasch- oder Reinigungsmittel spezifische Aufga­ ben übernehmen. Eine weitere Aufgabe der vorliegenden Erfindung war es, Formkörper bereitzustellen, bei denen auch temperaturempfindliche Inhaltsstoffe in abgegrenzte Re­ gionen eingebracht werden können, wobei die abgegrenzte Region hinsichtlich ihrer Größe in Bezug auf den Gesamtformkörper keinen Beschränkungen unterliegen sollte. Dabei sollte zudem einerseits eine optische Differenzierung zu herkömmlichen Zwei­ schichttabletten erreicht werden, andererseits sollte die Herstellung der Formkörper ohne großen technischen Aufwand auch in Großserie sicher funktionieren, ohne daß die Form­ körper Nachteile hinsichtlich der Stabilität aufweisen oder Ungenauigkeiten bei der Dosie­ rung zu befürchten wären. Die kontrollierte Freisetzung bestimmter Aktivsubstanzen zu vorgegebenen Zeiten zu erreichen, war ein weiteres Ziel der vorliegenden Erfindung.
Es wurde nun gefunden, daß die genannten Nachteile vermieden und die gewünschten Wirkungen erzielt werden, wenn "Kerne" in Kavitäten vorverpreßter Formkörper enthalten sind, welche die Kavität nicht vollständig ausfüllen. Auf diese Weise liegt im Formkörper zusätzlicher Raum vor, der mit weiterer Aktivsubstanz in flüssiger, gelförmiger, pastöser oder fester Form befüllt werden kann.
Gegenstand der vorliegenden Erfindung sind in einer ersten Ausführungsform Wasch- oder Reinigungsmittelformkörper, die
  • a) einen verpreßten Teil, der mindestens eine Kavität aufweist,
  • b) einen weiteren festen Teil, der mindestens anteilsweise in der Kavität eingeschlos­ sen vorliegt,
umfassen, wobei Teil b) die Kavität in Teil a) nicht vollständig ausfüllt und der verblei­ bende Hohlraum mindestens anteilsweise mit Aktivsubstanz befüllt ist.
Die Kavität im verpreßten Teil a) der erfindungsgemäßen Formkörper kann dabei jedwede Form aufweisen. Sie kann den Formkörper durchteilen, d. h. eine Öffnung an verschiede­ nen Seiten, beispielsweise an Ober- und Unterseite des Formkörpers aufweisen, sie kann aber auch eine nicht durch den gesamten Formkörper gehende Kavität sein, deren Öffnung nur an einer Formkörperseite sichtbar ist.
Die erfindungsgemäßen Formkörper können jedwede geometrische Form annehmen, wo­ bei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetragonale, orthor­ hombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig­ prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weisen die erfindungsgemäßen Formkörper Ecken und Kanten auf, so sind diese vorzugs­ weise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abgerundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Selbstverständlich können die verpreßten Teile a) der erfindungsgemäßen Formkörper auch mehrphasig hergestellt werden. Aus Gründen der Verfahrensökonomie haben sich hier zweischichtige Formkörper besonders bewährt.
Auch die Form der Kavität kann in weiten Grenzen frei gewählt werden. Aus Gründen der Verfahrensökonomie haben sich durchgehende Löcher, deren Öffnungen an einander ge­ genüberliegenden Flächen der Formkörper liegen, und Mulden mit einer Öffnung an einer Formkörperseite bewährt. In bevorzugten Wasch- und Reinigungsmittelformkörpern weist die Kavität die Form eines durchgehenden Loches auf, dessen Öffnungen sich an zwei ge­ genüberliegenden Formkörperflächen befinden. Die Form eines solchen durchgehenden Lochs kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen das durchge­ hende Loch kreisrunde, ellipsenförmige, dreieckige, rechteckige, quadratische, fünfeckige, sechseckige, siebeneckige oder achteckige Horizontalschnitte aufweist. Auch völlig irre­ guläre Lochformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind im Falle von eckigen Löchern solche mit ab­ gerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevor­ zugt.
Die vorstehend genannten geometrischen Realisierungsformen lassen sich beliebig mitein­ ander kombinieren. So können Formkörper mit rechteckiger oder quadratischer Grundflä­ che und kreisrunden Löchern ebenso hergestellt werden wie runde Formkörper mit achtec­ kigen Löchern, wobei der Vielfalt der Kombinationsmöglichkeiten keine Grenzen gesetzt sind. Aus Gründen der Verfahrensökonomie und des ästhetischen Verbraucherempfindens sind Formkörper mit Loch besonders bevorzugt, bei denen die Formkörpergrundfläche und der Lochquerschnitt die gleiche geometrische Form haben, beispielsweise Formkörper mit quadratischer Grundfläche und zentral eingearbeitetem quadratischem Loch. Besonders bevorzugt sind hierbei Ringformkörper, d. h. kreisrunde Formkörper mit kreisrundem Loch.
Wenn das o. g. Prinzip des an zwei gegenüberliegenden Formkörperseiten offenen Lochs auf eine Öffnung reduziert wird, gelangt man zu Muldenformkörpern. Erfindungsgemäße Wasch- und Reinigungsmittelformkörper, bei denen die Kavität die Form einer Mulde aufweist, sind ebenfalls bevorzugt. Wie bei den "Lochformkörpern" können die erfin­ dungsgemäßen Formkörper auch bei dieser Ausführungsform jedwede geometrische Form annehmen, wobei insbesondere konkave, konvexe, bikonkave, bikonvexe, kubische, tetra­ gonale, orthorhombische, zylindrische, sphärische, zylindersegmentartige, scheibenförmi­ ge, tetrahedrale, dodecahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sie­ ben- und achteckig-prismatische sowie rhombohedrische Formen bevorzugt sind. Auch völlig irreguläre Grundflächen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Weist der Formkörper Ecken und Kanten auf, so sind diese vorzugsweise abgerundet. Als zusätzliche optische Differenzierung ist eine Ausführungsform mit abge­ rundeten Ecken und abgeschrägten ("angefasten") Kanten bevorzugt.
Auch die Form der Mulde kann frei gewählt werden, wobei Formkörper bevorzugt sind, in denen mindestens eine Mulde eine konkave, konvexe, kubische, tetragonale, orthorhombi­ sche, zylindrische, sphärische, zylindersegmentartige, scheibenförmige, tetrahedrale, dode­ cahedrale, octahedrale, konische, pyramidale, ellipsoide, fünf-, sieben- und achteckig- prismatische sowie rhombohedrische Form annehmen kann. Auch völlig irreguläre Mul­ denformen wie Pfeil- oder Tierformen, Bäume, Wolken usw. können realisiert werden. Wie auch bei den Formkörpern sind Mulden mit abgerundeten Ecken und Kanten oder mit abgerundeten Ecken und angefasten Kanten bevorzugt.
Teil b) der erfindungsgemäßen Formkörper ist mindestens anteilsweise in der Kavität des Teils a) enthalten, wobei die Kavität nicht vollständig ausgefüllt wird und ein Hohlraum im Teil a) verbleibt. Je nach Ausgestaltung der Kavität im verpreßten Teil a) kann Teil b) den Hohlraum vollständig abschließen, es ist aber auch möglich, daß Teil b) beispielsweise nur eine Seite eines durchgehenden Loches in Teil a) verschließt und die verbleibende Kavität, die dann quasi eine Mulde darstellt, den Hohlraum bildet. Teil b) kann andererseits auch wie ein Verschluß in eine einseitig offene Kavität in Teil a) eingesetzt werden, wodurch sich ein Hohlraum bildet, der keine Außenflächen des Formkörpers kontaktiert. Wasch- oder Reinigungsmittelformkörper, bei denen Teil b) die Kavität in Teil a) verschließt und der verbleibende Hohlraum somit vollständig von a) und b) umschlossen ist, sind erfin­ dungsgemäß bevorzugt.
Diese Ausführungsform ist selbstverständlich nicht auf das Verschließen von Mulden­ formkörpern beschränkt; vielmehr kann auch ein durchgehendes Loch im verpreßten Teil a) mit einem entsprechend geformten Teil b) oder mit zwei unterschiedlichen Teilen b) verschlossen werden, so daß sich ein Hohlraum im Inneren der Tablette ausbildet. In logi­ scher Fortsetzung des genannten Prinzips lassen sich auch Kavitäten mit mehreren Öff­ nungen durch einen oder mehrere Teile b) verschließen.
Die Größe der Mulde oder des durchgehenden Loches im Vergleich zum gesamten Form­ körper richtet sich nach dem gewünschten Verwendungszweck der Formkörper. Je nach­ dem, mit wieviel weiterer Aktivsubstanz das verbleibende Hohlvolumen befüllt werden soll und ob eine geringere oder größere Menge an Aktivsubstanz enthalten sein soll, kann die Größe der Kavität und die Größe des die Kavität nicht vollständig ausfüllenden Teils b) variieren. Unabhängig vom Verwendungszweck sind Wasch- und Reinigungsmittelform­ körper bevorzugt, bei denen das Volumenverhältnis von verpreßtem Teil a) zu Teil b) 2 : 1 bis 100 : 1, vorzugsweise 3 : 1 bis 80 : 1, besonders bevorzugt 4 : 1 bis 50 : 1 und insbesondere 5 : 1 bis 30 : 1, beträgt.
Neben dem genannten Volumenverhältnis kann auch ein Massenverhältnis der beiden Teile angegeben werden, wobei die beiden Werte über die Dichten der Teile a) bzw. b) miteinander korrelieren. Unabhängig von der Dichte des einzelnen Teils a) bzw. b) sind erfindungsgemäße Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen das Gewichtsverhältnis von Teil a) zu Teil b) 1 : 1 bis 100 : 1, vorzugsweise 2 : 1 bis 80 : 1, beson­ ders bevorzugt 3 : 1 bis 50 : 1 und insbesondere 4 : 1 bis 30 : 1 beträgt.
Analoge Angaben lassen sich auch für die Oberflächen machen, die jeweils von Teil a) bzw. von Teil b) sichtbar sind. Hier sind Wasch- oder Reinigungsmittelformkörper bevor­ zugt, bei denen die nach außen sichtbare Oberfläche des Teils b) 1 bis 25%, vorzugsweise 2 bis 20%, besonders bevorzugt 3 bis 15% und insbesondere 4 bis 10% der Gesamtober­ fläche des befüllten Formkörpers ausmacht.
Teil b) füllt die Kavität im verpreßten Teil a) nicht vollständig aus, wodurch in den erfin­ dungsgemäßen Wasch- oder Reinigungsmittelformkörpern ein Hohlraum gebildet wird. Dieser Hohlraum ist erfindungsgemäß mindestens anteilsweise mit Aktivsubstanz befüllt. Der Hohlraum kann dabei selbst eine Kavität, d. h. zu einer oder mehreren Seiten hin offen sein, es ist aber auch möglich und bevorzugt, daß der Hohlraum vollständig von den Teilen a) und b) umschlossen ist. Unabhängig von der Ausgestaltung des Hohlraums sind Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen das Volumenverhältnis vom durch die Teile a) und b) gebildeten Hohlraum zum Gesamtformkörper 1 : 1 bis 50 : 1, vorzugsweise 2 : 1 bis 40 : 1, besonders bevorzugt 3 : 1 bis 30 : 1 und insbesondere 4 : 1 bis 20 : 1 beträgt.
Teil b) und der Basisformkörper [Teil a)] sind vorzugsweise optisch unterscheidbar einge­ färbt. Neben der optischen Differenzierung können anwendungstechnische Vorteile durch unterschiedliche Löslichkeiten der verschiedenen Formkörperbereiche erzielt werden. Wasch- und Reinigungsmittelformkörper, bei denen sich Teil b) schneller löst als Teil a), sind erfindungsgemäß bevorzugt. Durch Inkorporation bestimmter Bestandteile kann ei­ nerseits die Löslichkeit des Teils b) gezielt beschleunigt werden, andererseits kann die Freisetzung bestimmter Inhaltsstoffe aus Teil b) zu Vorteilen im Wasch- bzw. Reinigungs­ prozeß führen. Inhaltsstoffe, die bevorzugt zumindest anteilig in Teil b) lokalisiert sind, sind beispielsweise die weiter unten beschriebenen Desintegrationshilfsmittel, Tenside, Enzyme, soil-release-Polymere, Gerüststoffe, Bleichmittel, Bleichaktivatoren, Bleichkata­ lysatoren, optischen Aufheller Silberschutzmittel usw. Die beschleunigte Freisetzung einer oder mehrerer der genannten Aktivsubstanzen kann zur Leistungssteigerung genutzt wer­ den, indem beispielsweise Enzyme einem Wasch- oder Reinigungsprozeß früher und damit länger zur Verfügung stehen. Auch die vorzeitige Freisetzung von Bleichmitteln oder sau­ ren Bestandteilen ist problemlos möglich und beim Waschen oder Reinigen oft mit Lei­ stungsvorteilen verbunden.
Selbstverständlich sind auch erfindungsgemäße Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen sich Teil b) langsamer löst als Teil a). Auch hier können wiederum sämtliche in Wasch- oder Reinigungsmitteln üblichen Inhaltsstoffe ganz oder anteilsweise in Teil b) enthalten sein. Leistungsvorteile aus dieser verzögerten Freisetzung lassen sich beispielsweise dadurch erreichen, daß mit Hilfe eines langsamer löslichen Teils b) Aktiv­ substanzen) erst in späteren Spülgängen freigesetzt werden. So kann beispielsweise beim maschinellen Geschirrspülen durch langsamer lösliche Teile b) erreicht werden, daß im Klarspülgang weitere Aktivsubstanz(en) zur Verfügung steht/stehen. Durch zusätzliche Stoffe wie nichtionische Tenside, Acidifizierungsmittel, soil-release-Polymere usw. lassen sich so die Klarspülergebnisse verbessern. Auch eine Inkorporation von Parfüm ist pro­ blemlos möglich; durch dessen verzögerte Freisetzung kann bei Geschirrspülmaschinen der oft auftretende "Laugengeruch" beim Öffnen der Maschine beseitigt werden. Auch bei der Textilwäsche lassen sich Effekte der genannten Art nutzen, beispielsweise durch die verzögerte Freisetzung von kationischen Tensiden oder anderen Textilweichmachern bzw. Textilhilfsmitteln. Auf diese Weise kann im Nachbehandlungsgang der Haushalts­ waschmaschine Aktivsubstanz auf die Textilien aufgetragen werden, die im vorhergehen­ den Waschprozeß nur schwer oder unvollständig aufbringbar ist. Neben den genannten Weichspülmitteln sind insbesondere Parfüme, optische Aufheller, UV-Schutzmittel, Haut­ pflegemittel, Bügelhilfsmittel, Knitterschutzmittel, Quell- und Schiebefestmittel usw. zu nennen.
Der Basisformkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfin­ dung ein hohes spezifisches Gewicht. Wasch- und Reinigungsmittelformkörper, die da­ durch gekennzeichnet sind, daß der Basisformkörper [Teil a)] eine Dichte oberhalb von 1000 kgdm-3, vorzugsweise oberhalb von 1025 kgdm-3, besonders bevorzugt oberhalb von 1050 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweist, sind erfindungsgemäß bevorzugt.
Weitere Einzelheiten zu physikalischen Parametern des Basisformkörpers bzw. der fertigen Wasch- und Reinigungsmittelformkörper sowie Angaben zur Herstellung finden sich wei­ ter unten. Es folgt eine Darstellung der bevorzugten Inhaltsstoffe des Basisformkörpers.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelform­ körper sind dadurch gekennzeichnet, daß der Basisformkörper Gerüststoffe in Mengen von 1 bis 100 Gew.-%, vorzugsweise von 5 bis 95 Gew.-%, besonders bevorzugt von 10 bis 90 Gew.-% und insbesondere von 20 bis 85 Gew.-%, jeweils bezogen auf das Gewichts des Basisformkörpers, enthält.
In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können alle übli­ cherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, ins­ besondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologi­ schen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP- A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natrium­ disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internatio­ nalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche lösever­ zögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispiels­ weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalli­ ne Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels auf­ weisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokri­ stalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor­ phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Was­ sergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Sili­ kate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelform­ körper sind dadurch gekennzeichnet, daß der Basisformkörper Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mi­ schungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granula­ ren Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpres­ senden Mischung verwendet werden, wobei üblicherweise beide Wege zur Irrkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Coun­ ter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub­ stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alka­ limetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri­ phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel- Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (ins­ besondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekula­ ren Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkru­ stationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natron­ lauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy­ drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zerset­ zung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 140° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator her­ gestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zerset­ zung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH herge­ stellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein wei­ ßes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Er­ hitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliump­ hosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Er­ hitzen von Dinatriumphosphat auf < 200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphos­ phate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phos­ phate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasser­ lösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Was­ ser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen ent­ wässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphos­ phat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphos­ phat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphos­ phat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtri­ polyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelform­ körper sind dadurch gekennzeichnet, daß der Basisformkörper Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% und insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten bei­ spielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetall­ hydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimeta­ silikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevor­ zugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem ent­ haltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natri­ umcarbonat und Natriumdisilikat.
In besonders bevorzugten Wasch- und Reinigungsmittelformkörpern enthält der Basis­ formkörper Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natriumcarbonat, in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7,5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf das Ge­ wicht des Basisformkörpers.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmit­ telformkörpern insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxy­ late, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrie­ ben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natrium­ salze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro­ nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adi­ pinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus die­ sen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grund­ sätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein W- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu­ re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Poly­ meren realistische Molgewichtswerte liefen. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus die­ ser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als beson­ ders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Mole­ külmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vor­ zugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40400 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthal­ ten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas­ paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmel­ dung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxyl­ gruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde­ hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata­ lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolysepro­ dukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly­ saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu­ cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungs­ produkte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den inter­ nationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls ge­ eignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia­ mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly­ cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti­ gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon­ säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maxi­ mal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der inter­ nationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Da­ bei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Ho­ mologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP ver­ wendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbin­ devermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche ent­ halten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkali­ ionen auszubilden, als Cobuilder eingesetzt werden.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugs­ weise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wie­ derum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesonde­ re zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% und insbesondere zwischen 17,5 und 37,5 Gew.-%).
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten weiterhin ein oder mehrere Tensid(e). In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mi­ schungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht für Waschmitteltabletten Mischungen aus anionischen und nichtionischen Tensiden und für Reinigungsmitteltabletten nichtionische Tenside. Der Gesamttensidgehalt der Form­ körper liegt im Falle von Waschmitteltabletten bei 5 bis 60 Gew.-%, bezogen auf das Formkörpergewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind, während Reini­ gungsmitteltabletten für das maschinelle Geschirrspülen vorzugsweise unter 5 Gew.-% Tensid(e) enthalten.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13- Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansul­ fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren ge­ eignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevor­ zugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fett­ säuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca­ prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefel­ säurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettal­ kohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin be­ vorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der basis von fettchemi­ schen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12- C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten gerad­ kettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind ge­ eignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sul­ fosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ab­ leitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fet­ talkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy­ lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durch­ schnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alko­ holrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko­ holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxy­ lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine einge­ engte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylver­ zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose­ einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs­ grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine belie­ bige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1, 2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als allei­ niges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro­ poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl­ kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Pa­ tentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der in­ ternationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt wer­ den.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka­ nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vor­ zugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Was­ serstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuc­ kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie­ rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlen­ stoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl­ rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Poly­ hydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substitu­ iert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäu­ remethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhy­ droxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind als Waschmitteltabletten Wasch- und Reini­ gungsmittelformkörper bevorzugt, die anionische(s) und nichtionische(s) Tensid(e) ent­ halten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
So sind beispielsweise Wasch- und Reinigungsmittelformkörper besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10 : 1 und 1 : 10, vor­ zugsweise zwischen 7,5 : 1 und 1 : 5 und insbesondere zwischen 5 : 1 und 1 : 2 beträgt. Bevor­ zugt sind auch Wasch- und Reinigungsmittelformkörper, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionische(s) Tensid(e), in Mengen von 5 bis 40 Gew.-%, vor­ zugsweise von 7,5 bis 35 Gew.-%, besonders bevorzugt von 10 bis 30 Gew.-% uns insbe­ sondere von 12,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformkörper oder im gesamten Form­ körper, d. h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formkörper frei von nichtionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Form­ körpers, d. h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft er­ wiesen, so daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, in denen minde­ stens eine Phase der Formkörper Alkylpolyglycoside enthält.
Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anioni­ schen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformkörper resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformkörper denk­ bar, bei denen mindestens eine Phase der Formkörper frei von anionischen Tensiden ist.
Wie bereits erwähnt, beschränkt sich der Einsatz von Tensiden bei Reinigungsmittel­ tabletten für das maschinelle Geschirrspülen vorzugsweise auf den Einsatz nichtionischer Tenside in geringen Mengen. Im Rahmen der vorliegenden Erfindung bevorzugt als Reini­ gungsmitteltabletten einzusetzende Wasch- oder Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß der Basisformkörper Gesamttensidgehalte unterhalb von 5 Gew.-%, vorzugsweise unterhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und insbesondere unterhalb von 2 Gew.-%, jeweils bezogen auf das Gewicht des Basisform­ körpers, aufweist. Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Be­ deutung. Mit besonderem Vorzug enthalten die erfindungsgemäßen Reinigungsmittelform­ körper für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtioni­ sche Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside wer­ den vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Al­ kohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylen­ oxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Ge­ misch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbeson­ dere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durch­ schnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Al­ koholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mit­ telwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein kön­ nen. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (nar­ row range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bei erfindungsgemäßen Waschmittelformkörpern oder Reinigungsmittel­ formkörpern für das maschinelle Geschirrspülen ist es bevorzugt, daß die Wasch- und Rei­ nigungsmittelformkörper ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge enthalten die erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper bevorzugt ein nichtionisches Tensid mit einem Schmelz­ punkt oberhalb von 20°C. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Ten­ side, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtempe­ raturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität ober­ halb von 20 Pa.s, vorzugsweise oberhalb von 35 Pa.s und insbesondere oberhalb 40 Pa.s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Grup­ pen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Po­ lyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tenside mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C- Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervor­ gegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vor­ zugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die soge­ nannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxidein­ heiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, beson­ ders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Mol­ masse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen- Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders be­ vorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molma­ sse solcher Niotenside aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropy­ len/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umge­ kehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethy­ lenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Po­ lyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind bei­ spielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals er­ hältlich.
Ein weiter bevorzugtes Tensid läßt sich durch die Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2]
beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasser­ stoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von minde­ stens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Po­ ly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≧ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesät­ tigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≧ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylen­ oxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Rei­ henfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variations­ breite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)- Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umge­ kehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Beson­ ders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrati­ onshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfalls­ zeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, ver­ größern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfs­ mittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. mo­ difizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vor­ zugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desinte­ grationshilfsmittel, jeweils bezogen auf das Formkörpergewicht. Enthält nur der Basis­ formkörper Desintegrationshilfsmittel, so beziehen sich die genannten Angaben nur auf das Gewicht des Basisformkörpers.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reini­ gungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo­ seester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vor­ zugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulose­ derivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feintei­ liger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranu­ lierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Ste­ fan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Her­ stellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entneh­ men. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulose­ basis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Kompo­ nente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulo­ sen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufwei­ sen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kom­ paktierbar sind.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelform­ körper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrati­ onshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompak­ tierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können darüber hinaus sowohl im Basisformkörper [Teil a)] als auch in Teil b) oder in der Füllung des Hohlraums ein gasentwickelndes Brausesystem enthalten. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die bei­ spielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfin­ dungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem so­ wohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen las­ sen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder - hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalime­ tallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kalium­ salze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstver­ ständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Car­ bonate und Hydrogencarbonate aus waschtechnischem Interesse bevorzugt sein.
In bevorzugten Wasch- und Reinigungsmittelformkörpern werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkali­ metallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbe­ sondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid frei­ setzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihy­ drogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevor­ zugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Wein­ säure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure so­ wie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls ein­ setzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adi­ pinsäure (max. 33 Gew.-%).
Bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reingungsmittel­ formkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
Neben den genannten Bestandteilen Builder, Tensid und Desintegrationshilfsmittel, kön­ nen die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Bleichmittel, Bleichaktiva­ toren, Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korro­ sionsinhibitoren enthalten. Bei diesen wie auch bei den vorstehend genannten Aktivsub­ stanzen ist es selbstverständlich möglich, daß sie jeweils sowohl im Basisformkörper [Teil a)], als auch in Teil b) als auch in der Füllung des Hohlvolumens vorliegen, es ist aber auch möglich, daß nur bestimmte Teile des Formkörpers bestimmte Aktivsubstanzen ent­ halten, siehe weiter unten.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyro­ phosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Per­ benzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandi­ säure. Erfindungsgemäße Reinigungsmittel können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylpero­ xide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Per­ oxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäu­ ren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α- Naphthoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimido­ peroxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamido­ peroxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxy­ phthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6- aminopercapronsäure) können eingesetzt werden.
Als Bleichmittel in den erfindungsgemäßen Reinigungsmittelformkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht.
Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet. Die Bleichmittel werden in maschinellen Geschirrspülmitteln üblicherweise in Mengen von 1 bis 30 Gew.-%, vorzugsweise von 2,5 bis 20 Gew.-% und insbesondere von 5 bis 15 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt. Im Rahmen der vorliegenden Erfindung beziehen sich die genannten Mengenanteile auf das Gewicht des Basisformkörpers [Teil a)], so daß Wasch- oder Reinigungsmittelformkörper bevorzugt sind, bei denen der Basisformkörper Bleichmittel aus der Gruppe der Sauerstoff oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel, unter besonderer Bevorzugung von Natriumperborat und Natriumpercarbonat, in Mengen von 2 bis 25 Gew.-%, vorzugsweise von 5 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
Bleichaktivatoren, die die Wirkung der Bleichmittel unterstützen, können ebenfalls Be­ standteil des Basisformkörpers sein. Bekannte Bleichaktivatoren sind Verbindungen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Beispiele sind Tetraacetylethylendiamin TAED, Tetraacetylmethylendiamin TAMD und Tetraacetylhe­ xylendiamin TAHD, aber auch Pentaacetylglucose PAG, 1,5-Diacetyl-2,2-dioxo-hexa­ hydro-1,3,5-triazin DADHT und Isatosäureanhydrid ISA.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C- Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N- Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden. Die Bleichaktivatoren werden in maschinellen Geschirrspülmitteln üblicherweise in Mengen von 0,1 bis 20 Gew. %, vorzugsweise von 0,25 bis 15 Gew.-% und insbesondere von 1 bis 10 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt. Im Rahmen der vorliegenden Erfindung beziehen sich die genannten Mengenanteile auf das Gewicht des Basisformkörpers.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Klarspülerpartikel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsme­ tallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleich­ katalysatoren verwendbar.
Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierten Alkylen­ diamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril- Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezo­ gen auf das gesamte Mittel, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)- Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und be­ sonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt wer­ den.
Es ist ebenfalls bevorzugt, daß der Basisformkörper und/oder Teil b) und/oder die Füllung des Hohlraums Bleichaktivatoren enthalten. Bevorzugte Wasch- oder Reinigungsmittel­ formkörper sind dadurch gekennzeichnet, daß der Basisformkörper Bleichaktivatoren aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylen­ diamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acy­ lierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS) und n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), in Men­ gen von 0,25 bis 15 Gew.-%, vorzugsweise von 0,5 bis 10 Gew.-% und insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
Die erfindungsgemäßen Reinigungsmittelformkörper können insbesondere im Basisform­ körper zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotria­ zole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevor­ zugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reiniger­ formulierung 99999 00070 552 001000280000000200012000285919988800040 0002019939992 00004 99880en darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäu­ re, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansul­ fats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut ein­ gesetzt werden.
Im Rahmen der vorliegenden Erfindung bevorzugten Wasch- und Reinigungsmittelform­ körpern enthält der Basisformkörper Silberschutzmittel aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe, besonders bevorzugt Benzotriazol und/oder Alky­ laminotriazol, in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise von 0,05 bis 4 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%, jeweils bezogen auf das Gewicht des Basisform­ körpers.
Selbstverständlich kann aber auch Teil b) und/oder die Füllung des Hohlraums Silber­ schutzmittel enthalten, wobei der Basisformkörper entweder ebenfalls Silberschutzmittel enthält oder frei von solchen Verbindungen ist.
Neben den vorstehend genannten Inhaltsstoffen bieten sich weitere Substanzklassen zur Inkorporation in Wasch- und Reinigungsmittel an. So sind Wasch- und Reinigungsmittel­ formkörper bevorzugt, bei denen der Basisformkörper weiterhin einen oder mehrere Stoffe aus den Gruppen der Enzyme, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder, Farb- und/oder Duftstoffe in Gesamtmengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
Als Enzyme kommen in den Basisformkörpern insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehal­ tigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Ba­ cillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstof­ fe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, bei­ spielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirken­ den Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzy­ men von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso- Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen. Im Rahmen der vorliegenden Erfindung bevorzugte Reini­ gungsmittelformkörper sind dadurch gekennzeichnet, daß der Basisformkörper Protease und/oder Amylase enthält.
Dadurch, daß die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper das bzw. die Enzym(e) in zwei oder gar drei prinzipiell unterschiedlichen Bereichen enthalten kön­ nen, lassen sich Formkörper mit sehr genau definierter Enzymfreisetzung und Wirkung bereitstellen. Die nachstehende Tabelle gibt eine Übersicht über mögliche Enzymvertei­ lungen in erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern:
Farb- und Duftstoffe können den erfindungsgemäßen maschinellen Geschirrspülmitteln sowohl im Basisformkörper als auch in Teil b) und/oder in der Füllung des Hohlraums zugesetzt werden, um den ästhetischen Eindruck der entstehenden Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unver­ wechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riech­ stoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p- tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylace­ tat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethy­ lether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronel­ lal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeo­ nal, zu den Ketonen z. B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Ter­ pineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürli­ che Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Linden­ blütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die Duftstoffe können direkt in die erfindungsgemäßen Wasch- und Reinigungsmittel ein­ gearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubrin­ gen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermateriali­ en haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm- Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, kann es (oder Teile davon) mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabili­ tät und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den Mitteln zu behandeln­ den Substraten wie Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzu­ färben.
Die vorstehend beschriebenen Inhaltsstoffe können - wie bereits erwähnt - im Basisform­ körper enthalten sein, aber selbstverständlich auch in Teil b) und/oder die Füllung des Hohlraums eingearbeitet werden. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß der Kernform­ körper [Teil b)] mindestens einen Aktivstoff aus der Gruppe der Enzyme, Tenside, soil- release-Polymere, Desintegrationshilfsmittel, Bleichmittel, Bleichaktivatoren, Bleichkata­ lysatoren, Silberschutzmittel und Mischungen hieraus, enthält.
Durch die Aufteilung der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper in Basisformkörper [Teil a)] und "Kernformkörper" [Teil b)] sowie "Hohlraumfüllung" [Teil c)] können Inhaltsstoffe voneinander getrennt werden, was entweder zu einer lagerstabili­ tätsverbessernden Trennung inkompatibler Inhaltsstoffe oder zu einer kontrollierten Frei­ setzung bestimmter Wirksubstanzen genutzt werden kann. In bevorzugten erfindungsge­ mäßen Wasch- oder Reinigungsmittelformkörpern werden die drei unterschiedlichen Be­ reiche insbesondere dazu genutzt, die Wirkstoffpaarungen Bleichmittel/Bleichaktivator, Bleichmittel/Enzym, Bleichmittel/Silberschutzmittel, Bleichmittel/Duftstoff, Bleichmit­ tel/optischer Aufheller, Bleichmittel/Farbstoff, Bleichmittel/Tensid, Bleichaktiva­ tor/Enzym, Bleichaktivator/Silberschutzmittel, Bleichaktivator/Duftstoff, Bleichaktiva­ tor/optischer Aufheller, Bleichaktivator/Farbstoff, Bleichaktivator/Tensid oder nichtioni­ sches Tensid/anionisches Tensid voneinander zu trennen, um Leistungsvorteile zu erzielen. Darüber hinaus können durch die kontrollierte Freisetzung bestimmter Inhaltsstoffe aus den einzelnen Regionen oder durch gezielte Variation der Löslichkeit der einzelnen Regio­ nen Leistungsvorteile erzielt werden.
In bevorzugten Wasch- oder Reinigungsmittelformkörpern enthält der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel, während mindestens ein anderer Teil Bleichaktivatoren enthält.
Weiter bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Enzyme enthält.
Auch eine Trennung von Bleichmittel und Korrosionsinhibitoren bzw. Silberschutzmitteln läßt sich erreichen. Wasch- und Reinigungsmittelformkörper, in denen der Basisformkör­ per oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Korrosionsschutzmittel enthält, sind ebenfalls bevorzugt.
Nicht zuletzt sind auch Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Tenside, vor­ zugsweise nichtionische Tenside, unter besonderer Bevorzugung alkoxylierter Alkohole mit 10 bis 24 Kohlenstoffatomen und 1 bis 5 Alkylenoxideinheiten, enthält.
Nicht nur eine vollständige Trennung der Inhaltsstoffe kann vorteilhaft sein, auch durch variierende Mengen einzelner Inhaltsstoffe in den unterschiedlichen Formkörperbereichen lassen sich vorteilhafte Wirkungen erzielen. Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß mindestens zwei der drei Formkörperregionen (Basis­ formkörper, Kernformkörper, Hohlraumfüllung) denselben Wirkstoff in unterschiedlichen Mengen enthalten, sind erfindungsgemäß bevorzugt. Als Beispiele für Inhaltsstoffe, bei denen die Aufteilung in die unterschiedlichen Regionen Vorteile aufweisen, sind Desinte­ grationshilfsmittel, Farb- und Duftstoffe, optische Aufheller, Polymere, Silberschutzmittel Tenside und Enzyme zu nennen. Der Begriff "unterschiedliche Mengen" kennzeichnet dabei den Gehalt des einzelnen Formkörperbereichs an dem betreffenden Stoff, bezogen auf den Formkörperbereich, ist also eine Gew.-%-Angabe, die sich nicht auf die absoluten Mengen des Inhaltsstoffs bezieht.
Sämtliche vorstehend beschriebenen Inhaltsstoffe können in allen unterschiedlichen Berei­ chen der erfindungsgemäßen Formkörper enthalten sein. Während sich Teil a) der erfin­ dungsgemäßen Formkörper durch Pressen herstellen läßt, wobei insbesondere die Tablet­ tierung ein wichtiges Verfahren ist, können die Teile b) und c) auf unterschiedliche Weise hergestellt werden. Ein weiterer Gegenstand der vorliegenden Erfindung ist auch ein Ver­ fahren zur Herstellung mehrphasiger Wasch- oder Reinigungsmittelformkörper, das durch die Schritte
  • a) Verpressen teilchenförmiger Vorgemische zu Formkörpern, die mindestens eine Kavität aufweisen,
  • b) Herstellung von Formkörpern, die mindestens anteilsweise in die Kavität ein­ fügbar sind,
  • c) Befüllen eines Teils der Kavität mit Aktivsubstanz in fester, flüssiger, hoch­ viskoser oder plastischer Form,
  • d) Einsetzen der Verfahrensendprodukte des Verfahrensschritts b) in die Kavität der Verfahrensendprodukte des Verfahrensschritts a),
  • e) optionale Nachbehandlung der Formkörper
gekennzeichnet ist.
Bezüglich der Inhaltsstoffe der einzelnen teilchenförmigen Vorgemische bzw. Zusammen­ setzungen, die die unterschiedlichen Bereiche des Formkörpers ergeben, gilt analog das vorstehend für die erfindungsgemäßen Formkörper Ausgeführte.
Es hat sich als vorteilhaft erwiesen, wenn das in Schritt a) zu Basisformkörpern verpreßte Vorgemisch bestimmten physikalischen Kriterien genügt. Bevorzugte Verfahren sind bei­ spielsweise dadurch gekennzeichnet, daß die teilchenförmigen Vorgemische in Schritt a) ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbeson­ dere mindestens 700 g/l aufweisen.
Auch die Partikelgröße des in Schritt a) verpreßten Vorgemischs genügt vorzugsweise be­ stimmten Kriterien: Verfahren, bei denen die teilchenförmigen Vorgemische in Schritt a) Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweisen, sind erfindungsgemäß bevorzugt. Eine weiter eingeengte Partikelgrö­ ße in den zu verpressenden Vorgemischen kann zur Erlangung vorteilhafter Formkörperei­ genschaften eingestellt werden. In bevorzugten Varianten für des erfindungsgemäßen Ver­ fahrens weisen die in Schritt a) verpreßten teilchenförmigen Vorgemische eine Teilchen­ größenverteilung auf, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.- und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 µm oder kleiner als 200 µm sind. Hierbei sind engere Teilchengrößenverteilungen weiter bevorzugt. Be­ sonders vorteilhafte Verfahrensvarianten sind dabei dadurch gekennzeichnet, daß in Schritt a) verpreßte teilchenförmige Vorgemische eine Teilchengrößenverteilung aufweisen, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.-% und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 µm aufweisen.
Bei der Durchführung des Verfahrensschritts a) ist das erfindungsgemäße Verfahren nicht darauf beschränkt, daß lediglich ein teilchenförmiges Vorgemisch zu einem Formkörper verpreßt wird. Vielmehr läßt sich der Verfahrensschritt a) auch dahingehend erweitern, daß man in an sich bekannter Weise mehrschichtige Formkörper herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander verpreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht vorverpreßt, um eine glatte und parallel zum Form­ körperboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorge­ mischs zum fertigen Formkörper endverpreßt. Bei drei- oder mehrschichtigen Formkörpern erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorverpressung, bevor nach Zugabe des letzten Vorgemischs der Formkörper endverpreßt wird. Vorzugsweise ist die vorste­ hend beschriebene Kavität im Basisformkörper eine Mulde, so daß bevorzugte Ausfüh­ rungsformen des ersten erfindungsgemäßen Verfahrens dadurch gekennzeichnet sind, daß in Schritt a) mehrschichtige Formkörper, die eine Mulde aufweisen, in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt in Schritt a) zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein kön­ nen, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungs­ gemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Kornprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosie­ rung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wo­ bei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimm­ ten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikali­ schen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zer­ drückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elasti­ schen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Grö­ ße noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Ober­ stempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver­ pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehre­ re Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrun­ gen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem soge­ nannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unter­ stempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unter­ stempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be­ füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stel­ len, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erfor­ derlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzli­ che Niederdruckstücke, Niederzugschienen und Aushebebahnen unterstützt. Die Befül­ lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preß­ druck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an ver­ stellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen verse­ hen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen wer­ den muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füll­ schuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Wei­ se auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt wer­ den. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Form­ körper pro Stunde.
Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Ta­ blettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
  • - Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
  • - Geringe Umdrehungszahl des Rotors
  • - Große Füllschuhe
  • - Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
  • - Füllschuh mit konstanter Pulverhöhe
  • - Entkopplung von Füllschuh und Pulvervorlage.
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik be­ kannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteil­ haft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druck­ schienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht wer­ den, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elasti­ sche Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg einge­ setzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Erfindungsgemäße Verfahren, bei denen die Verpressung in Schritt a) bei Preßdrücken von 0,01 bis 50 kNcm-2, vorzugsweise von 0,1 bis 40 kNcm-2 und insbesondere von 1 bis 25 kNcm-2 erfolgt, sind dabei besonders bevorzugt.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Li­ verpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Me­ diopharm Kamnik (51). Besonders geeignet ist beispielsweise die Hydraulische Doppel­ druckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharmatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z. B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
Die Formkörper können dabei - wie bereits weiter oben erwähnt - in vorbestimmter Raum­ form und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreis­ förmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbie­ tungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometri­ schen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schich­ ten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese ver­ schiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls bei­ spielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig nega­ tiv beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbei­ ten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lö­ sungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Be­ standteilen der inneren Schicht(en) führt. Solche erfindungsgemäßen Verfahren, bei denen in Schritt a) mehrschichtige Formkörper in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt wer­ den, sind bevorzugte Ausführungsformen der vorliegenden Erfindung.
Wie auch weiter oben beschrieben, lassen sich inkompatible Inhaltsstoffe durch die Irrkor­ poration in die unterschiedlichen Teile a), b) oder c) der erfindungsgemäßen Formkörper voneinander trennen. Selbstverständlich ist eine solche Trennung auch dadurch möglich, daß Teil a) in sich aus mehreren voneinander abgegrenzten Teilbereichen aufgebaut ist. So sind Verfahren bevorzugt, die dadurch gekennzeichnet sind, daß in Schritt a) zweischichti­ ge Formkörper hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemi­ sche aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält.
Auch Bleichmittel und Bleichaktivatoren lassen sich analog trennen. Auch Verfahren, bei denen in Schritt a) zweischichtige Formkörper hergestellt werden, indem zwei unter­ schiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält, sind bevorzugte Ausführungsformen der vorliegenden Erfindung.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehr­ schichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direk­ ten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Sta­ bilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
In Schritt b) werden Formkörper hergestellt, die sich mindestens teilweise in die Kavität der Formkörper a) einfügen lassen. Diese können - wie weiter oben ausgeführt - die Ka­ vität verschließen und einen vollständig umschlossenen Hohlraum bilden. Sie können aber auch einen beidseitig offenen Hohlraum nur einseitig verschließen, so daß ein einseitig offener Hohlraum verbleibt, der mindestens anteilsweise mit Aktivsubstanz befüllt wird.
Die Herstellung der Formkörper in Schritt b) kann durch unterschiedliche Verfahren erfol­ gen, beispielsweise durch die bereits für den Schritt a) beschriebene Tablettierung. Erfin­ dungsgemäße Verfahren, bei denen die Formkörper in Schritt b) durch Tablettierung her­ gestellt werden, sind bevorzugt. Analog zu den Angaben für den Verfahrensschritt a) las­ sen sich für den fall, daß Teil b) auch durch Tablettierung hergestellt wird, auch für die teilchenförmige(n) Zusammensetzung(en) im Verfahrensschritt b) bevorzugte physikali­ sche Parameter angeben: Verfahren, bei denen die teilchenförmige(n) Zusammenset­ zung(en) in Schritt b) ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist/aufweisen und Verfahren, bei denen die teilchenförmige(n) Zusammensetzung(en) in Schritt b) Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweist/aufweisen, sind bevorzugte Ausführungsformen der vorliegenden Erfindung.
Alternativ zur Tablettierung sind auch andere Herstellverfahren für den Teil b) geeignet. Hier sind bevorzugte Verfahren dadurch gekennzeichnet, daß die Formkörper in Schritt b) durch Gießverfahren, Strangpressen, Extrusion oder Sinterung hergestellt werden.
Je nachdem, welche Inhaltsstoffe in den Teil b) der erfindungsgemäß hergestellten Form­ körper inkorporiert werden sollen, bieten sich unterschiedliche Verfahren zur Herstellung des Teils b) an. Soll beispielsweise die bei der Tablettierung auftretende Druckbelastung vermieden werden, um Inhaltsstoffe zu schützen, lassen sich Schmelzen herstellen, die in geeigneten Formen erstarren. Solche Gießverfahren können neben der Temperaturerniedri­ gung von Schmelzen auch andere Härtungsmechanismen nutzen, beispielsweise die zeit­ lich verzögerte Hydratisierung, die chemische Reaktion, Strahlenhärtung usw. Völlig analog können auch Massen hergestellt werden, welche formgebend verarbeitet werden können und nachfolgend erstarren bzw. aushärten. Im Unterschied zu Flüssigkeiten sind solche Massen auch im verarbeitungsfähigen Zustand formstabil, d. h. sie behalten eine einmal gegebene Form bei, und es werden keine Formen benötigt, die den Körpern die äußere Form bis zur Aushärtung "aufzwingen". Während solche Massen mit geringen Ver­ formungskräften in die gewünschte Form gebracht werden können und der Begriff Strang­ pressen" wegen der niedrigen Drücke bei der Verarbeitung irreführend ist, lassen sich teilchenförmige oder plastische Massen auch unter höheren Drücken extrudieren. Die Ex­ trusion ist ein weiteres bevorzugtes Herstellungsverfahren für den Teil b). Nicht zuletzt ist es auch möglich, Partikelhaufwerke geeigneter Zusammensetzung in Formen zu füllen und über Temperaturerhöhungen oder durch Bestrahlung, vorzugsweise mit Mikrowellen, eine Sinterung und Ausbildung von Formkörpern herbeizuführen.
Die Zusammensetzung der in Schritt b) hergestellten Formkörper kann in breiten Grenzen variiert werden. Grundsätzlich können alle weiter oben genannten Inhaltsstoffe auch oder nur in Teil b) inkorporiert werden. Wird als bevorzugtes Herstellverfahren für Teil b) ein Gießverfahren gewählt, so können weitere Hilfs- und Wirkstoffe aus den Gruppen der Wachse, Paraffine, Polyalkylenglycole, Emulgatoren und Stabilisatoren als "Matrix" für die Inhaltsstoffe des Teils b) gewählt werden. Diese Stoffe werden weiter unten beschrieben, da die Schmelzsuspensionen bzw. -emulsionen, aus denen sich Teil b) formen läßt, auch als weitere Aktivsubstanz für die Hohlraumfüllung geeignet sind.
In Abhängigkeit von der Form des verpreßten Teils a) und des mindestens anteilsweise in die Kavität einzusetzenden Teils b) erfolgen die Verfahrensschritte c) und d) in unter­ schiedlicher Reihenfolge. Verschließt Teil b) die Kavität in Teil a) vollständig und bildet damit erfindungsgemäß bevorzugte Formkörper aus, in denen der verbleibende Hohlraum vollständig von den Teilen a) und b) umschlossen ist, so wird in Schritt c) zuerst weitere Aktivsubstanz eingefüllt, bevor die Kavität durch Schritt d) - das Einsetzen des Teils b) - verschlossen wird. Es ist erfindungsgemäß aber auch möglich, erst den Teil b) in den ver­ preßten Teil einzufügen und dann einen verbleibenden Hohlraum mindestens anteilsweise mit weiterer Aktivsubstanz aufzufüllen, also Schritt d) vor Schritt c) durchzuführen. Diese Vorgehensweise läßt sich beispielsweise bei Basisformkörpern [Teilen a)] realisieren, die eine Kavität in Form eines durchgehenden Loches aufweisen. Man kann solche Löcher einseitig durch geeignete Teile b) verschließen, wodurch in diesem Verfahrensschritt d) aus dem Teil a) quasi ein Muldenformkörper "a) + b)" gebildet wird. Die auf diese Weise gebildete Mulde stellt dann den verbleibenden Hohlraum dar, der in Verfahrensschritt c) mindestens anteilsweise mit Aktivsubstanz befüllt wird. Sofern es gewollt ist, kann sich an diesen Verfahrensschritt c) ein weiterer Verfahrensschritt d) anschließen, so daß letztlich ein Basisformkörper mit durchgehendem Loch durch zwei Teile b) verschlossen wird, wo­ bei im Inneren ein Hohlraum verbleibt, der mindestens anteilsweise mit Aktivsubstanz gefüllt wurde.
Unabhängig davon, ob erst Verfahrensschritt c) oder erst Verfahrensschritt d) durchgeführt wird, wird in Verfahrensschritt c) mindestens ein Teil des später verbleibenden Hohlraums mit weiterer Aktivsubstanz befüllt. Diese weitere Aktivsubstanz kann den verbleibenden Hohlraum vollständig ausfüllen, es ist aber auch möglich, daß ein Teil des Hohlraums un­ befüllt bleibt. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß mindestens 50%, vorzugsweise mindestens 60% und insbesondere mindestens 70% des Hohlraumvo­ lumens mit weiterer Aktivsubstanz befüllt werden. Hierbei sind Wasch- oder Reinigungs­ mittelformkörper bevorzugt, bei denen das Volumenverhältnis von der unbefüllten Kavität zu der in diesem Raum enthaltenen Aktivsubstanz 1 : 1 bis 100 : 1, vorzugsweise 1,1 : 1 bis 50 : 1, besonders bevorzugt 1,2 : 1 bis 25 : 1 und insbesondere 1,3 : 1 bis 10 : 1 beträgt. In dieser Terminologie bedeutet ein Volumenverhältnis von 1 : 1, daß die Kavität vollständig ausge­ füllt ist.
In Abhängigkeit von der Größe der Kavität, der Dichte des Formkörpers, der Dichte der Aktivsubstanz in der Kavität und des Füllgrades der Kavität kann der Anteil der weiteren Aktivsubstanz in der Kavität unterschiedliche Anteile am Gesamtformkörper ausmachen. Hierbei sind Wasch- oder Reinigungsmittelformkörper bevorzugt, bei denen das Ge­ wichtsverhältnis von Formkörper zu der in der Kavität enthaltenen Aktivsubstanz 1 : 1 bis 100 : 1, vorzugsweise 2 : 1 bis 80 : 1, besonders bevorzugt 3 : 1 bis 50 : 1 und insbesondere 4 : 1 bis 30 : 1 beträgt. Bei dem vorstehend definierten Gewichtsverhältnis handelt es sich um das Verhältnis der Masse des nicht mit weiterer Aktivsubstanz befüllten Formkörpers {Masse des "Basisformkörpers" [Teil a)] plus Masse des Teils b)} zur Masse der Füllung [Teil c)].
Durch geeignete Konfektionierung von Formkörper und Aktivsubstanz kann der Zeitpunkt, zu dem die in der Kavität enthaltene Substanz freigesetzt wird, vorbestimmt werden. Bei­ spielsweise kann die Aktivsubstanz direkten Kontakt zur Applikationsflotte haben (also nicht vollständig durch die Teile a) und b) umschlossen sein) und quasi schlagartig löslich sein, so daß die in der Kavität enthaltene Aktivsubstanz gleich zu Beginn des Wasch- oder Reinigungsgangs in die Wasch- bzw. Reinigungsflotte dosiert wird. Alternativ hierzu kann die Substanz durch die Teile a) und b) eingeschlossen werden oder so schlecht löslich sein, daß erst der Formkörper aufgelöst wird und die in der Kavität enthaltene Aktivsub­ stanz hierdurch oder erst verzögert freigesetzt wird.
Abhängig von diesem Freisetzungsmechanismus lassen sich beispielsweise Formkörper realisieren, bei denen die in der Kavität enthaltene Aktivsubstanz in der Reinigungsflotte gelöst vorliegt, bevor die Bestandteile des Formkörpers gelöst sind, oder nachdem dies geschehen ist. So sind einerseits Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß sich die in der Kavität enthaltene Aktivsubstanz [Teil c)] schneller löst als der Basisformkörper [Teil a)].
Aber auch Wasch- und Reinigungsmittelformkörper, bei denen sich die in der Kavität ent­ haltene Aktivsubstanz [Teil c)] langsamer löst als der Basisformkörper [Teil a)], sind be­ vorzugte Ausführungsformen der vorliegenden Erfindung.
Die Füllung des Hohlraumvolumens (vor- und nachstehend als Teil c) der erfindungsge­ mäßen Formkörper bezeichnet) enthält mindestens eine Aktivsubstanz, kann aber auch eine Mischung mehrerer Aktivsubstanzen enthalten. Ebenso wie Teil b) sind als Aktivsub­ stanzen für die Inkorporation in Teil c) Aktivsubstanzen geeignet, welche mit Inhaltsstof­ fen aus Teil a) unerwünschte Interaktionen eingehen. Insbesondere bevorzugte Inhaltsstof­ fe für Teil c) sind solche, die durch die Tablettierung des Teils a) oder das Herstellverfah­ ren des Teils b) negativ beeinflußt würden. Solche Aktivsubstanzen sind beispielsweise Tenside, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Enzyme, Korrosionsinhibi­ toren und/oder Silberschutzmittel, Parfüm, Alkaliträger oder Acidifizierungsmittel. Die einzelnen Stoffe sind weiter oben detailliert beschrieben. Verfahren, bei denen die Kavität in Schritt c) mit mindestens einer Aktivsubstanz aus der Gruppe der Bleichmittel, Bleich­ aktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farb­ stoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Ver­ grauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren befüllt wird, sind bevorzugte Ausführungsformen der vorliegenden Erfindung. Die Hohlraumfüllung kann die unterschiedlichsten Formen annehmen, beispielsweise teilchenförmig (pulverför­ mig oder granular), gelförmig, flüssig oder plastisch. Die Hohlraumfüllung muß nicht voll­ ständig aus Aktivsubstanz bestehen, es lassen sich beispielsweise auch Aktivsubstanzen auf Trägermaterialien oder in Trägermatrizes einsetzen. Nicht zuletzt sind auch dünnflüs­ sige bis hochviskose oder pastöse Lösungen, Suspensionen oder Emulsionen von Aktiv­ substanzen in Lösungsmitteln oder Lösungsmittelgemischen als Teil c) einsetzbar.
Für die Durchführung des Verfahrensschrittes c) ist es bevorzugt, daß die Hohlraumfüllung in fließfähiger Form in die Kavität eingebracht wird. Bei festen Aktivsubstanzen oder Zu­ bereitungen können die Partikel in die Kavität eingebracht und nachfolgend durch geeig­ nete Maßnahmen, beispielsweise Fixierung mit einer Coatingschicht, befestigt werden. In Fällen, in denen der Hohlraum nach außen abgeschlossen ist, kann auf die Befestigung selbstverständlich auch verzichtet werden. Analoge Ausführungen gelten für fließfähige Hohlraumfüllungen in flüssiger, gelförmiger, pastöser oder plastischer Form, die durch Härtung, beispielsweise Erstarren von Schmelzen, Verdampfen von Lösungsmitteln, Kri­ stallisation, Polymerisation, pseudoplastische Eigenschaftsänderungen durch Änderung von Scherkräften oder durch spezielle Bindemittel im Hohlraum befestigt werden können, sofern dies nötig ist oder gewünscht wird.
Die Hohlraumfüllung [Teil c)] kann teilchenförmige Feststoffe enthalten. Diese Partikel können mit allen Verfahren des Standes der Technik hergestellt werden, beispielsweise durch Sprühtrocknung, Granulation, Verkapselung, Agglomeration, Granulation, Pelletie­ rung, Extrusion, Walzenkompaktierung usw. Falls es gewünscht ist, können die Partikel durch Inkorporation von Bindemitteln oder durch Ausformung einer Beschichtung über den Partikeln an der Kavität befestigt werden.
Werden als Hohlraumfüllung unterschiedliche Partikelgemische eingesetzt, so können die verschiedenen teilchenförmigen Hohlraumfüllungen unterschiedliche Teilchengrößen auf weisen, beispielsweise in der Art, daß die erste Hohlraumfüllung eine mittlere Partikelgrö­ ße aufweist, die 5%, vorzugsweise 10%, besonders bevorzugt 15% und insbesondere 20% über der mittleren Partikelgröße der zweiten Füllung liegt. Der Begriff "mittlere Partikel­ größe" oder "mittlere Teilchengröße" bezieht sich dabei auf die Maschenweite eines imagi­ nären Siebs, durch das 50 Gew.-% der Partikel durchfallen würden. Dieser Wert läßt sich durch Siebanalyse mit mehreren Sieben unterschiedlicher Maschenweiten (beispielsweise 5, 6 oder 7 Siebe) ermitteln.
Auch das Schüttgewicht der unterschiedlichen partikulären Hohlraumfüllungen kann un­ terschiedlich sein. Auch hier ist es bevorzugt, wenn die erste Hohlraumfüllung ein Schütt­ gewicht aufweist, das 5%, vorzugsweise 10%, besonders bevorzugt 15% und insbesondere 20% über dem Schüttgewicht der zweiten Füllung liegt.
Besonders bevorzugt in die Kavität(en) der erfindungsgemäßen Formkörper einzubringen­ de teilchenförmige Zusammensetzungen [Teil c)] sind solche, die Tenside enthalten, wobei es bevorzugt ist, diese Tenside für maschinelle Geschirrspülmittel in löseverzögerter Form bereitzustellen, um eine Freisetzung der Tenside aus der Kavitätsfüllung erst im Klarspül­ gang zu erreichen. Hierzu haben sich insbesondere Klarspülerpartikel bewährt, wie sie in der älteren deutschen Patentanmeldung DE 199 14 364.1 (Henkel KGaA) beschrieben werden. Solche besonders bevorzugt in die Kavität einbringenden Partikel bestehen aus 0 bis 90 Gew.-% eines oder mehrerer Trägermaterialien, 5 bis 50 Gew.-% einer oder mehre­ rer Hüllsubstanzen mit einem Schmelzpunkt oberhalb von 30°C, 5 bis 50 Gew.-% eines oder mehrerer Aktivstoffe sowie 0 bis 10 Gew.-% weiteren Wirk- und Hilfsstoffen, so daß Verfahren bevorzugt sind, bei denen Schritt c) das Befüllen der Kavität mit Partikeln um­ faßt, die aus
  • a) 0 bis 90 Gew.-% eines oder mehrerer Trägermaterialien,
  • b) 5 bis 50 Gew.-% einer oder mehrerer Hüllsubstanzen mit einem Schmelzpunkt oberhalb von 30°C,
  • c) 5 bis 50 Gew.-% eines oder mehrerer Aktivstoffe sowie
  • d) 0 bis 10 Gew.-% weiteren Wirk- und Hilfsstoffen,
bestehen.
Auf die Offenbarung der vorstehend genannten Schrift wird ausdrücklich Bezug genom­ men. Dennoch werden die wichtigsten Inhaltsstoffe dieser bevorzugt in die Kavität ein­ bringbaren "Klarspülerpartikel" nachfolgend beschrieben. Als Trägerstoffe a) kommen sämtliche bei Raumtemperatur festen Substanzen in Frage. Üblicherweise wird man dabei Stoffe auswählen, die im Reinigungsgang eine zusätzliche Wirkung entfalten, wobei sich Gerüststoffe besonders anbieten. In bevorzugten teilchenförmigen Klarspülern für die Füllung der Kavität sind als Trägermaterialien Stoffe aus der Gruppe der wasserlöslichen Wasch- und Reinigungsmittel-Inhaltsstoffe, vorzugsweise der Carbonate, Hydrogencarbo­ nate, Sulfate, Phosphate und der bei Raumtemperatur festen organischen Oligocarbonsäu­ ren in Mengen von 55 bis 85 Gew.-%, vorzugsweise von 60 bis 80 Gew.-% und insbeson­ dere von 65 bis 75 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthalten.
Die genannten bevorzugten Trägerstoffe wurden weiter oben bereits ausführlich beschrie­ ben.
An die Hüllsubstanzen b), die in den erfindungsgemäß bevorzugt als Füllung der Kavität eingesetzten Aktivsubstanzpartikeln eingesetzt werden, werden verschiedene Anforderungen gestellt, die zum einen das Schmelz- beziehungsweise Erstarrungsverhalten, zum anderen jedoch auch die Materialeigenschaften der Umhüllung im erstarrten Zustand, d. h. im Aktivsubstanzpartikel betreffen. Da die Aktivsubstanzpartikel bei Transport oder Lagerung dauerhaft gegen Umgebungseinflüsse geschützt sein sollen, muß die Hüllsubstanz eine hohe Stabilität gegenüber beispielsweise bei Verpackung oder Transport auftretenden Stoßbelastun­ gen aufweisen. Die Hüllsubstanz sollte also entweder zumindest teilweise elastische oder zu­ mindest plastische Eigenschaften aufweisen, um auf eine auftretende Stoßbelastung durch elastische oder plastische Verformung zu reagieren und nicht zu zerbrechen. Die Hüllsubstanz sollte einen Schmelzbereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem die zu umhüllenden Aktivstoffe keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zumindest leicht erhöhter Temperatur noch einen wirksamen Schutz für die eingeschlossenen Aktivstoffe zu bieten. Erfindungsgemäß weisen die Hüllsubstanzen einen Schmelzpunkt über 30°C auf.
Es hat sich als vorteilhaft erwiesen, wenn die Hüllsubstanz keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweist.
Die Hüllsubstanz weist vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vor­ zugsweise etwa 2 bis etwa 3°C.
Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.
Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als Hüllmaterialien einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgemäß als Hüllmaterial einsetzbar.
Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der Umhüllung einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
Besonders bevorzugte Hüllsubstanzen in den in den Hohlraum einbringbaren Aktivsub­ stanzpartikeln sind solche aus der Gruppe der Polyethylenglycole (PEG) und/oder Poly­ propylenglycole (PPG) enthält, wobei Polyethylenglycole mit Molmassen zwischen 1500 und 36.000 bevorzugt, solche mit Molmassen von 2000 bis 6000 besonders bevorzugt und solche mit Molmassen von 3000 bis 5000 insbesondere bevorzugt sind.
Hierbei sind Aktivsubstanzpartikel besonders bevorzugt, die als einzige Hüllsubstanz Pro­ pylenglycole (PPG) und/oder Polyethylenglycole (PEG) enthalten. Erfindungsgemäß ein­ setzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel III
genügen, wobei n Werte zwischen 10 und 2000 annehmen kann. Bevorzugte PPG weisen Molmassen zwischen 1000 und 10.000, entsprechend Werten von n zwischen 17 und ca. 170, auf.
Erfindungsgemäß bevorzugt einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel IV
H-(O-CH2-CH2)n-OH (IV)
genügen, wobei n Werte zwischen 20 und ca. 1000 annehmen kann. Die vorstehend ge­ nannten bevorzugten Molekulargewichtsbereiche entsprechen dabei bevorzugten Berei­ chen des Wertes n in Formel IV von ca. 30 bis ca. 820 (genau: von 34 bis 818), besonders bevorzugt von ca. 40 bis ca. 150 (genau: von 45 bis 136) und insbesondere von ca. 70 bis ca. 120 (genau: von 68 bis 113).
Bevorzugt enthält die in den erfindungsgemäßen Aktivsubstanzpartikeln enthaltene Hül­ lsubstanz im überwiegenden Anteil Paraffinwachs. Das heißt, daß wenigstens 50 Gew.-% der insgesamt enthaltenen Hüllsubstanzen, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte (bezogen auf Gesamt-Hüllsubstanz) von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht die Gesamtmenge der eingesetzten Hüllsubstanz ausschließlich aus Paraffinwachs.
Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.
Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.
Bevorzugt in die Kavität einbringbare teilchenförmige Klarspüler enthalten als Hüllsub­ stanz mindestens ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 60°C.
Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmendem Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Aktivsubstanzpartikel gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz der Partikel Aktivstoffe führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Partikel fuhren, wodurch Poren geöffnet werden und die Aktivstoffe den Eingangs genannten Umgebungseinflüssen ausgesetzt werden.
Die Hüllsubstanz kann neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. Grundsätzlich sollte das die Hüllsubstanz bildende Gemisch so beschaffen sein, daß die Aktivsubstanzpartikel wenigstens weitgehend wasserunlöslich sind. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.
In jedem Fall sollte die Umhüllung jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu vermeiden.
Das vorstehend beschriebene Prinzip dient der verzögerten Freisetzung von Inhaltsstoffen zu einem bestimmten Zeitpunkt im Reinigungsgang und läßt sich besonders vorteilhaft anwenden, wenn im Hauptspülgang mit niedrigerer Temperatur (beispielsweise 55°C) gespült wird, so daß die Aktivsubstanz aus den Aktivsubstanzpartikeln erst im Klarspülgang bei höheren Temperaturen (ca. 70°C) freigesetzt wird.
Bevorzugte erfindungsgemäß in die Kavität einbringbare teilchenförmige Klarspüler sind dadurch gekennzeichnet, daß sie als Hüllsubstanz ein oder mehrere Stoffe mit einem Schmelzbereich von 40°C bis 75°C in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Teil­ chengewicht, enthalten. Besonders bevorzugt sind Wasch- und Reinigungsmittelformkör­ per, bei denen die in der Kavität enthaltenen Teilchen als Hüllsubstanz Paraffin(e) oder Polyalkylenglycole, insbesondere Polyethylenglycole enthalten.
Die in die erfindungsgemäß in die Kavität einzubringenden Aktivsubstanzpartikeln ent­ haltenen Aktivstoffe können bei der Verarbeitungstemperatur (d. h. bei der Temperatur, bei der die Partikel hergestellt werden) sowohl in fester als auch in flüssiger Form vorliegen.
Die in den Aktivsubstanzpartikeln enthaltenen Aktivstoffe erfüllen bestimmte Aufgaben. Durch die Trennung bestimmter Substanzen oder durch die zeitlich beschleunigte oder verzögerte Freisetzung zusätzlicher Substanzen kann dadurch die Reinigungsleistung ver­ bessert werden. Aktivstoffe, die bevorzugt in die Aktivsubstanzpartikel eingearbeitet wer­ den, sind daher solche Inhaltsstoffe von Wasch- und Reinigungsmitteln, die entscheidend am Wasch- bzw. Reinigungsprozeß beteiligt sind.
In bevorzugt in die Kavität(en) einzuarbeitenden Aktivsubstanzpartikeln sind daher als Aktivstoff ein oder mehrere Stoffe aus den Gruppen der Tenside, Enzyme, Bleichmittel, Bleichaktivator, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder und/oder Duftstoffe in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Teilchengewicht, enthalten. Besonders bevorzugt sind dabei Verfahren, bei denen die in der Kavität enthaltenen Aktivsubstanz­ partikel als Aktivstoffe nichtionische(s) Tensid(e) und/oder Bleichmittel und/oder Bleich­ aktivatoren und/oder Enzym(e) und/oder Korrosionsinhibitoren und/oder Duftstoffe ent­ halten.
Durch das Einarbeiten von Tensiden in aufgeschmolzenes Hüllmaterial läßt sich eine Schmelzsuspension bzw. -emulsion herstellen, welche im fertigen Aktivsubstanzpartikel bzw. im fertig konfektionierten erfindungsgemäßen Formkörper, zu einem vorherbestimm­ baren Zeitpunkt zusätzliche waschaktive Substanz bereitstellt. Beispielsweise lassen sich auf diese Weise in die Kavität(en) einarbeitbare Aktivsubstanzpartikel für das maschinelle Geschirrspülen herstellen, die das zusätzliche Tensid aus dem erfindungsgemäßen Form­ körper erst bei Temperaturen freisetzen, welche haushaltsübliche Geschirrspülmaschinen erst im Klarspülgang erreichen. Auf diese Weise steht im Klarspülgang zusätzlich Tensid zur Verfügung, welches das Ablaufen des Wassers beschleunigt und so Flecken am Spül­ gut wirkungsvoll verhindert. Bei geeigneter Menge an erstarrter Schmelzsuspension bzw. -emulsion in den Aktivsubstanzpartikeln kann so auf die Verwendung heute üblicher zu­ sätzlicher Klarspülmittel verzichtet werden.
In bevorzugt in die Kavität einbringbaren Aktivsubstanzpartikeln ist/sind daher der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der nichtionischen Tenside, insbesondere der alkoxylierten Alkohole. Diese Substanzen wurden bereits ausführlich beschrieben.
Eine weitere Klasse von Aktivsubstanzen, die sich mit besonderem Vorteil in die erfin­ dungsgemäß einarbeitbaren Aktivsubstanzpartikel einarbeiten lassen, sind Bleichmittel. Hierbei können Partikel hergestellt und in die Kavität(en) eingebracht werden, die das Bleichmittel erst beim Erreichen bestimmter Temperaturen freisetzen, beispielsweise fertig konfektionierte Reinigungsmittel, die im Vorspülgang enzymatisch reinigen und erst im Hauptspülgang das Bleichmittel freisetzen. Auch sind Reinigungsmittel für das maschi­ nelle Geschirrspülen so herstellbar, daß im Klarspülgang zusätzliches Bleichmittel freige­ setzt werden und so schwierige Flecken, beispielsweise Teeflecken, wirkungsvoller entfer­ nen.
In bevorzugt in die Kavität einarbeitbaren teilchenförmigen Aktivsubstanzpartikeln ist/sind daher der bzw. die Aktivstoff(e) ausgewählt aus der Gruppe der Sauerstoff oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel. Auch diese Substanzen wurden bereits ausführlich beschrieben.
Eine weitere Klasse von Verbindungen, die bevorzugt als Aktivsubstanzen in den erfin­ dungsgemäß einbringbaren Aktivsubstanzpartikeln eingesetzt werden können, sind die Bleichaktivatoren. Auch die wichtigen Vertreter aus dieser Stoffgruppe wurden bereits beschrieben. Im Rahmen der vorliegenden Erfindung bevorzugt in die Kavität(en) einge­ brachte Aktivsubstanzpartikel enthalten als Aktivsubstanz Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethy­ lendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA).
Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht das Einbringen enzymhaltiger Partikel in die Kavität(en) vor. Solche Aktivsubstanzpartikel enthalten als Aktivstoff(e) Enzyme, welche weiter oben ausführlich beschrieben wurden. Besonders bevorzugt sind hierbei als teilchenförmige, in die Kavität(en) einzubringende Partikel sol­ che, die 40 bis 99,5 Gew.-%, vorzugsweise 50 bis 97,5 Gew.-%, besonders bevorzugt 60 bis 95 Gew.-% und insbesondere 70 bis 90 Gew.-% einer oder mehrerer Hüllsubstanz(en), die einen Schmelzpunkt oberhalb von 30°C aufweist/aufweisen, 0,5 bis 60 Gew.-%, vor­ zugsweise 1 bis 40 Gew.-%, besonders bevorzugt 2,5 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-% einer oder mehreren in der/den Hüllsubstanz(en) dispergierten flüssigen Enzymzubereitung(en) sowie 0 bis 20 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0 bis 10 Gew.-% und insbesondere 0 bis 5 Gew.-% sowie optional weitere Trä­ germaterialien, Hilfs- und/oder Wirkstoffe enthalten. Bevorzugte Verfahren sind dement­ sprechend dadurch gekennzeichnet, daß die Hohlraumfüllung [Teil c)] enthaltene Aktiv­ substanz Partikel umfaßt, die aus
  • a) 40 bis 99,5 Gew.-%, vorzugsweise 50 bis 97,5 Gew.-%, besonders bevorzugt 60 bis 95 Gew.-% und insbesondere 70 bis 90 Gew.-% einer oder mehrerer Hüllsub­ stanz(en), die einen Schmelzpunkt oberhalb von 30°C aufweist/aufweisen,
  • b) 0,5 bis 60 Gew.-%, vorzugsweise 1 bis 40 Gew.-%, besonders bevorzugt 2,5 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-% einer oder mehreren in der/den Hüll­ substanz(en) dispergierten flüssigen Enzymzubereitung(en) sowie
  • c) 0 bis 20 Gew.-%, vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0 bis 10 Gew.-% und insbesondere 0 bis 5 Gew.-% weiterer Trägermaterialien, Hilfs- und/oder Wirkstoffe
bestehen.
Die Hüllsubstanzen sind hierbei bevorzugt Polyethylenglycole und/oder Polypropylengly­ cole, als Aktivsubstanzen haben sich flüssige Enzymzubereitungen bewährt. Solche Flüs­ sigenzymkonzentrate beruhen entweder homogen auf einer Basis Propylenglykol/Wasser oder heterogen als Slurry, oder sie liegen in mikroverkapselter Struktur vor. Bevorzugte Flüssigproteasen sind z. B. Savinase® L, Durazym® L, Esperase® L, und Everlase® der Fa. Novo Nordisk, Optimase® L, Purafect® L, Purafect® OX L, Properase® L der Fa. Genencor International, und BLAP® L der Fa. Biozym Ges.m.b.H. Bevorzugte Amylasen sind Ter­ mamyl® L, Duramyl® L, und BAN® der Fa. Novo Nordisk, Maxamyl® WL und Purafect® HPAm L der Fa. Genencor International. Bevorzugte Lipasen sind Lipolase® L, Lipolase® ultra L und Lipoprime® L der Fa. Novo Nordisk und Lipomax® L der Fa. Genencor Inter­ national.
Als Slurries oder mikroverkapselte Flüssigprodukte können z. B. Produkte wie die mit SL bzw. LCC bezeichneten Produkte der Fa. Novo Nordisk eingesetzt werden. Die genannten handelsüblichen Flüssigenzymzubereitungen enthalten beispielsweise 20 bis 90 Gew.-% Propylenglycol bzw. Gemische aus Propylenglycol und Wasser. Im Rahmen der vorlie­ genden Erfindung bevorzugt in die Kavität einbringbare Enzympartikel sind dadurch ge­ kennzeichnet, daß sie eine oder mehrere Flüssig-Amylase-Zubereitungen und/oder eine oder mehrere Flüssig-Protease-Zubereitungen enthalten.
Als Aktivsubstanzen lassen sich auch Duftstoffe in die einzubringenden Partikel einarbei­ ten. Sämtliche weiter oben ausführlich beschriebenen Duftstoffe können dabei als Aktiv­ substanz verwendet werden. Bei Einarbeitung von Duftstoffen in die einzubringenden Par­ tikel resultieren Reinigungsmittel, die das gesamte oder einen Teil des Parfüms zeitverzö­ gert freisetzen. Auf diese Weise sind erfindungsgemäß beispielsweise Reinigungsmittel für das maschinelle Geschirrspülen herstellbar, bei denen der Verbraucher auch nach been­ digter Geschirreinigung beim Öffnen der Maschine die Parfümnote erlebt. Auf diese Weise kann der unerwünschte "Alkaligeruch", der vielen maschinellen Geschirrspülmitteln an­ haftet, beseitigt werden.
Auch Korrosionsinhibitoren lassen sich als Aktivstoff in die Partikel einbringen, wobei auf die dem Fachmann geläufigen Substanzen zurückgegriffen werden kann. Als Belagsinhi­ bitor hat sich beispielsweise eine Kombination aus Enzym (z. B. Lipase) und Kalkseifen­ dispergiermittel bewährt.
Bei außergewöhnlich niedrigen Temperaturen, beispielsweise bei Temperaturen unter 0°C, kann der Aktivsubstanzpartikel bei Stoßbelastung oder Reibung zerbrechen. Um die Stabilität bei solch niedrigen Temperaturen zu verbessern, können den Hüllsubstanzen gegebenenfalls Additive zugemischt werden. Geeignete Additive müssen sich vollständig mit dem geschmolzenen Wachs vermischen lassen, dürfen den Schmelzbereich der Hüllsubstanzen nicht signifikant ändern, müssen die Elastizität der Umhüllung bei tiefen Temperaturen verbessern, dürfen die Durchlässigkeit der Umhüllung gegenüber Wasser oder Feuchtigkeit im allgemeinen nicht erhöhen und dürfen die Viskosität der Schmelze des Hüllmaterials nicht soweit erhöhen, daß eine Verarbeitung erschwert oder gar unmöglich wird. Geeignet Additive, welche die Sprödigkeit einer im wesentlichen aus Paraffin bestehenden Umhüllung bei tiefen Temperaturen herabsetzen, sind beispielsweise EVA-Copolymere, hydrierte Harz­ säuremethylester, Polyethylen oder Copolymere aus Ethylacrylat und 2-Ethylhexylacrylat.
Ein weiteres zweckmäßiges Additiv bei der Verwendung von Paraffin als Umhüllung ist der Zusatz einer geringen Menge eines Tensids, beispielsweise eines C12-18-Fettalkoholsulfats. Dieser Zusatz bewirkt eine bessere Benetzung des einzubettenden Materials durch die Umhüllung. Vorteilhaft ist ein Zusatz des Additivs in einer Menge von etwa < 5 Gew.-%, bevorzugt < etwa 2 Gew.-%, bezogen auf die Hüllsubstanz. Der Zusatz eines Additivs kann in vielen Fällen dazu führen, daß auch Aktivsubstanzen umhüllt werden können, die ohne Additivzusatz in der Regel nach dem Schmelzen des Umhüllungsmaterials einen zähen, plastischen Körper aus Paraffin und teilgelöster Aktivsubstanz bilden.
Es kann auch von Vorteil sein, der Hüllsubstanz weitere Additive hinzuzufügen, um bei­ spielsweise ein frühzeitiges Absetzen der Aktivstoffe zu verhindern. Dies ist insbesondere bei der Herstellung der erfindungsgemäßen Aktivsubstanzpartikel ohne Trägerstoffe anzu­ raten. Die hierzu einsetzbaren Antiabsetzmittel, die auch als Schwebemittel bezeichnet werden, sind aus dem Stand der Technik, beispielsweise aus der Lack- und Druckfarben­ herstellung, bekannt. Um beim Übergang vom plastischen Erstarrungsbereich zum Fest­ stoff Sedimentationserscheinungen und Konzentrationsgefälle der zu umhüllenden Sub­ stanzen zu vermeiden, bieten sich beispielsweise grenzflächenaktive Substanzen, in Lö­ sungsmitteln dispergierte Wachse, Montmorillonite, organisch modifizierte Bentonite, (hy­ drierte) Ricinusölderivate, Sojalecithin, Ethylcellulose, niedermolekulare Polyamide, Me­ tallstearate, Calciumseifen oder hydrophobierte Kieselsäuren an. Weitere Stoffe, die die genannten Effekte bewirken, stammen aus den Gruppen der Antiausschwimmittel und der Thixotropiermittel und können chemisch als Silikonöle (Dimethylpolysiloxane, Methyl­ phenylpolysiloxane, Polyether-modifizierte Methylalkylpolysiloxane), oligomere Titanate und Silane, Polyamme, Salze aus langkettigen Polyammen und Polycarbonsäuren, Amin/Amid-funktionelle Polyester bzw. Amin/Amid-funktionelle Polyacrylate bezeichnet werden.
Zusatzmittel aus den genannten Stoffklassen sind kommerziell in ausgesprochener Vielfalt erhältlich. Handelsprodukte, die im Rahmen des erfindungsgemäßen Verfahrens vorteilhaft als Additiv zugesetzt werden können, sind beispielsweise Aerosil® 200 (pyrogene Kiesel­ säure, Degussa), Bentone® SD-1, SD-2, 34, 52 und 57 (Bentonit, Rheox), Bentone® SD-3, 27 und 38 (Hectorit, Rheox), Tixogel® EZ 100 oder VP-A (organisch modifizierter Smec­ tit, Südchemie), Tixogel® VG, VP und VZ (mit QAV beladener Montmorillonit, Südche­ mie), Disperbyk® 161 (Blockcopolymer, Byk-Chemie), Borchigen® ND (sulfogruppenfrei­ er Ionenaustauscher, Borchers), Ser-Ad® FA 601 (Servo), Solsperse® (aromatisches Ethoxylat, ICI), Surfynol®-Typen (Air Products), Tamol®- und Triton®-Typen (Rohur & Haas), Texaphor® 963, 3241 und 3250 (Polymere, Henkel), Rilanit®-Typen (Hen­ kel), Thixcin E und R (Ricinusöl-Derivate, Rheox), Thixatrol® ST und GST (Ricinusöl- Derivate, Rheox), Thixatrol® SR, SR 100, TSR und TSR 100 (Polyamid-Polymere, Rheox), Thixatrol® 289 (Polyetsre-Polymer, Rheox) sowie die unterschiedlichen M-P-A®- Typen X, 60-X, 1078-X, 2000-X und 60-MS (organische Verbindungen, Rheox).
Die genannten Hilfsmittel können in den erfindungsgemäß einzuarbeitenden Klarspüler- oder Enzympartikeln je nach Umhüllungsmaterial und Aktivsubstanz in variierenden Men­ gen eingesetzt werden. Übliche Einsatzkonzentrationen für die vorstehend genannten An­ tiabsetz-, Antiausschwimm-, Thioxotropier- und Dispergiermittel liegen im Bereich von 0,5 bis 8,0 Gew.-%, vorzugsweise zwischen 1,0 und 5,0 Gew.-%, und besonders bevorzugt zwischen 1,5 und 3,0 Gew.-%, jeweils bezogen auf die Gesamtmenge an Hüllsubstanz und Aktivstoffen.
Im Rahmen der vorliegenden Erfindung bevorzugt in die Kavität(en) einzuarbeitende teil­ chenförmige Klarspüler- oder Enzympartikel enthalten weitere Hilfsstoffe aus der Gruppe der Antiabsetzmittel, Schwebemittel, Antiausschwimmittel, Thixotropiermittel und Dis­ pergierhilfsmittel in Mengen von 0,5 bis 9 Gew.-%, vorzugsweise zwischen 1 und 7,5 Gew.-%, und besonders bevorzugt zwischen 1,5 und 5 Gew.-%, jeweils bezogen auf das Teilchengewicht.
Insbesondere bei der Herstellung von Schmelzsuspensionen bzw. -emulsionen, die Aktiv­ stoffe enthalten, welche bei der Verarbeitungstemperatur flüssig sind, ist der Einsatz spezi­ eller Emulgatoren vorteilhaft. Es hat sich gezeigt, daß insbesondere Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und der Polyoxyalkylensiloxane äußerst gut geeignet sind.
Unter Fettalkoholen werden dabei die aus nativen Fetten bzw. Ölen über die entsprechenden Fettsäuren (siehe unten) erhältlichen Alkohole mit 6 bis 22 Kohlenstoffatomen verstanden. Diese Alkohole können je nach der Herkunft des Fetts bzw. Öls, aus dem sie gewonnen werden, in der Alkylkette substituiert oder stellenweise ungesättigt sein. Als Emulgatoren werden in den erfindungsgemäßen Aktivsubstanzpartikeln daher bevorzugt C6-22- Fettalkohole, vorzugsweise C8-22-Fettalkohole und insbesondere C12-18-Fettalkohole unter besonderer Bevorzugung der C16-18-Fettalkohole, eingesetzt.
Als Emulgatoren können auch sämtliche aus pflanzlichen oder tierischen Ölen und Fetten gewonnenen Fettsäuren verwendet werden. Die Fettsäuren können unabhängig von ihrem Aggregatzustand gesättigt oder ein- bis mehrfach ungesättigt sein. Auch bei den ungesät­ tigten Fettsäuren sind die bei Raumtemperatur festen Spezies gegenüber den flüssigen bzw. pastösen bevorzugt. Selbstverständlich können nicht nur "reine" Fettsäuren eingesetzt wer­ den, sondern auch die bei der Spaltung aus Fetten und Ölen gewonnenen technischen Fett­ säuregemische, wobei diese Gemische aus ökonomischer Sicht wiederum deutlich bevor­ zugt sind.
So lassen sich als Emulgatoren im Rahmen der vorliegenden Erfindung beispielsweise einzelne Spezies oder Gemische folgender Säuren einsetzen: Caprylsäure, Pelargonsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Octadecan-12-ol- säure, Arachinsäure, Behensäure, Lignocerinsäure, Cerotinsäure, Melissinsäure, 10- Undecensäure, Petroselinsäure, Petroselaidinsäure, Ölsäure, Elaidinsäure, Ricinolsäure, Linolaidinsäure, α- und β-Eläosterainsäure, Gadoleinsäure Erucasäure, Brassidinsäure. Selbstverständlich sind auch die Fettsäuren mit ungerader Anzahl von C-Atomen einsetz­ bar, beispielsweise Undecansäure, Tridecansäure, Pentadecansäure, Heptadecansäure, No­ nadecansäure, Heneicosansäure, Tricosansäure, Pentacosansäure, Heptacosansäure.
In bevorzugt in die Kavität einzubringenden Klarspüler- oder Enzympartikeln werden als Emulgator(en) C6-22-Fettsäuren, vorzugsweise C8-22-Fettsäuren und insbesondere C12-18- Fettsäuren unter besonderer Bevorzugung der C16-18-Fettsäuren, eingesetzt.
Besonders bevorzugte Emulgatoren sind im Rahmen der vorliegenden Erfindung Polyglycerinester, insbesondere Ester von Fettsäuren mit Polyglycerinen. Diese bevorzugten Polyglycerinester lassen sich durch die allgemeine Formel V beschreiben
in der R1 in jeder Glycerineinheit unabhängig voneinander für H oder einen Fettacylrest mit 8 bis 22 Kohlenstoffatomen, vorzugsweise mit 12 bis 18 Kohlenstoffatomen, und n für eine Zahl zwischen 2 und 15, vorzugsweise zwischen 3 und 10, steht.
Diese Polyglycerinester sind insbesondere mit den Polymerisationsgraden n = 2, 3, 4, 6 und 10 bekannt und kommerziell verfügbar. Da Stoffe der genannten Art auch in kosmetischen Formulierungen weite Verbreitung finden, sind etliche dieser Substanzen auch in der INCI- Nomenklatur klassifiziert (CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997). Dieses kosmetische Standardwerk beinhaltet beispielsweise Informationen zu den Stichworten POLYGLYCERYL-3-BEESWAX, POLYGLYCERYL-3-CETYL ETHER, POLYGLYCERYL-4-COCOATE, POLYGLYCERYL-10-DECALINOLEATE, POLY­ GLYCERYL-10-DECAOLEATE, POLYGLYCERYL-10-DECASTEARATE, POLY­ GLYCERYL-2-DIISOSTEARATE, POLYGLYCERYL-3-DIISOSTEARATE, POLY­ GLYCERYL-10-DIISOSTEARATE, POLYGLYCERYL-2-DIOLEATE, POLY­ GLYCERYL-3-DIOLEATE, POLYGLYCERYL-6-DIOLEATE, POLYGLYCERYL-10- DIOLEATE, POLYGLYCERYL-3-DISTEARATE, POLYGLYCERYL-6- DISTEARATE, POLYGLYCERYL-10-DISTEARATE, POLYGLYCERYL-10- HEPTAOLEATE, POLY-GYLCERYL-12-HYDROXYSTEARATE, POLYGLYCERYL- 10-HEPTASTEARATE, POLYGLYCERYL-6-HEXAOLEATE, POLYGLYCERYL-2- ISOSTEARATE, POLY-GLYCERYL-4-ISOSTEARATE, POLY-GLYCERYL-6- ISOSTEARATE, POLY-GLYCERYL-10-LAURATE, POLY­ GLYCERYLMETHACRYLATE, POLYGLYCERYL-10-MYRISTATE, POLYGLYCERYL-2-OLEATE, POLYGLYCERYL-3-OLEATE, POLYGLYCERYL-4- OLEATE, POLYGLYCERYL-6-OLEATE, POLYGLYCERYL-8-OLEATE, POLYGLYCERYL-10-OLEATE, POLYGLYCERYL-6-PENTAOLEATE, POLYGLYCERYL-10-PENTAOLEATE, POLYGLYCERYL-6-PENTASTEARATE, POLYGLYCERYL-10-PENTASTEARATE, POLYGLYCERYL-2-SESQUI- IOSOSTEARATE, POLYGLYCERYL-2-SESQUIOLEATE, POLYGLYCERYL-2- STEARATE, POLYGLYCERYL-3-STEARATE, POLYGLYCERYL-4-STEARATE, POLYGLYCERYL-8-STEARATE, POLYGLYCERYL-10-STEARATE, POLY­ GLYCERYL-2-TETRAISOSTEARATE, POLYGLYCERYL-10-TETRAOLEATE, POLYGLYCERYL-2-TETRASTEARATE, POLYGLYCERYL-2-TRIISOSTEARATE, POLYGLYCERYL-10-TRIOLEATE, POLYGLYCERYL-6-TRISTEARATE. Die kommerziell erhältlichen Produkte unterschiedlicher Hersteller, die im genannten Werk unter den vorstehend genannten Stichwörtern klassifiziert sind, lassen sich im erfindungsgemäßen Verfahrensschritt b) vorteilhaft als Emulgatoren einsetzen.
Eine weitere Gruppe von Emulgatoren, die in den erfindungsgemäß in die Kavität(en) einzuarbeitenden Klarspüler- oder Enzympartikeln Verwendung finden können, sind substituierte Silicone, die mit Ethylen- bzw. Propylenoxid umgesetzte Seitenketten tragen. Solche Polyoxyalkylensiloxane können durch die allgemeine Formel VI beschrieben werden
in der jeder Rest R1 unabhängig voneinander für -CH3 oder eine Polyoxyethylen- bzw. -propylengruppe -[CH(R2)-CH2-O]xH-Gruppe, R2 für -H oder -CH3, x für eine Zahl zwischen 1 und 100, vorzugsweise zwischen 2 und 20 und insbesondere unter 10, steht und n den Polymerisationsgrad des Silikons angibt.
Optional können die genannten Polyoxyalkylensiloxane auch an den freien OH-Gruppen der Polyoxyethylen- bzw. Polyoxypropylen-Seitenketten verethert oder verestert werden. Das unveretherte und unveresterte Polymer aus Dimethylsiloxan mit Polyoxyethylen und/oder Polyoxypropylen wird in der INCI-Nomenklatur als DIMETHICONE COPOLYOL bezeichnet und ist unter den Handelsnamen Abil® B (Goldschmidt), Alkasil® (Rhône- Poulenc), Silwet® (Union Carbide) oder Belsil® DMC 6031 kommerziell verfügbar.
Das mit Essigsäure veresterte DIMETHICONE COPOLYOL ACETATE (beispielsweise Belsil® DMC 6032, -33 und -35, Wacker) und der DIMETHICONE COPOLYOL BUTYL­ ETHER (beispielsweise KF352A, Shin Etsu) sind im Rahmen der vorliegenden Erfindung ebenfalls als Emulgatoren einsetzbar.
Bei den Emulgatoren gilt wie bereits bei den Umhüllungsmaterialien und den zu umhüllenden Substanzen, daß sie über einen breit variierenden Bereich eingesetzt werden können. Üblicherweise machen Emulgatoren der genannten Art 1 bis 25 Gew.-%, vorzugsweise 2 bis 20 Gew.-% und insbesondere 5 bis 10 Gew.-% des Gewichts der Summe aus Hüllmaterialien und Aktivstoffen aus. Im Rahmen der vorliegenden Erfindung bevorzugt in die Kavität(en) einzubringende teilchenförmige Klarspüler oder Enzympartikel enthalten zusätzlich Emulgatoren aus der Gruppe der Fettalkohole, Fettsäuren, Polyglycerinester und/oder Polyoxyalkylensiloxane in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 3,5 Gew.-%, besonders bevorzugt von 0,5 bis 2 Gew.-% und insbesondere von 0,75 bis 1,25 Gew.-%, jeweils bezogen auf das Teilchengewicht.
Unabhängig davon, wie die Partikel, die in einer bevorzugten Ausführungsform der vorlie­ genden Erfindung als Hohlraumfüllung dienen können, zusammengesetzt sind, können diese am Formkörper befestigt werden. Dies ist insbesondere dann erforderlich, wenn die mit dem Teil c) zu befüllende Kavität nicht durch (einen weiteren) Teil b) verschlossen wird.
Diese Fixierung kann durch Aufbringen von Coatingschichten oder Aufsprühen von Lö­ sungen von Bindematerialien erfolgen, es ist aber auch möglich, Partikel, die bereits Bin­ dematerialien enthalten, durch Erwärmung oberflächlich erweichen zu lassen, wodurch eine der Sinterung vergleichbare Haftung am Formkörper erreicht wird. Selbstverständlich ist es auch möglich, vor dem Befüllen der Kavität mit weiterer Aktivsubstanz oder Aktiv­ substanz-Zubereitungsform Haftvermittler auf die Flächen der Kavität aufzubringen. Ent­ sprechende Verfahren, bei denen die Kavität in Schritt c) mit einer Mischung aus Haftver­ mittler(n) und Aktivsubstanz(en) befüllt wird, sind bevorzugt.
Die optional auf den in die Kavität eingebrachten Teil c) aufgebrachte Coatingschicht kann auf die Oberfläche des Teils c) aufgebracht und haftfest mit dieser verbunden werden, was beispielsweise durch Ankleben, partielles Aufschmelzen oder durch chemische Reaktion erfolgen kann.
Die Coatingschicht kann selbstverständlich auch ein Laminat aus mehreren unterschiedlich zusammengesetzten Coatingmaterialien sein, über unterschiedliche Zusammensetzungen einzelner Coatingschichten kann die Füllung der Kavität zu bestimmten Zeitpunkten im Wasch- und Reinigungsgang freigegeben werden.
Bevorzugte Coatingmaterialien sind die aus dem Stand der Technik bekannten Polymere. Insbesondere sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen die Coa­ tingschicht aus einem Polymer mit einer Molmasse zwischen 5000 und 500.000 Dalton, vorzugsweise zwischen 7500 und 250.000 Dalton und insbesondere zwischen 10.000 und 100.000 Dalton, besteht. Im Hinblick auf die Medien, in die Wasch- und Reinigungsmittel üblicherweise eingebracht werden, sind insbesondere Wasch- und Reinigungsmittelform­ körper bevorzugt, bei denen die Coatingschicht aus einem wasserlöslichen Polymer be­ steht.
Solche bevorzugten Polymere können synthetischen oder natürlichen Ursprungs sein. Werden Polymere auf nativer oder teilnativer Basis als Coatingmaterial eingesetzt, so sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Coatingmaterial aus­ gewählt ist aus einem oder mehreren Stoffen aus der Gruppe Carrageenan, Guar, Pektin, Xanthan, Cellulose und ihren Derivaten, Stärke und ihren Derivaten sowie Gelatine.
Carrageenan ist ein nach dem irischen Küstenort Carragheen benannter, gebildeter und ähnlich wie Agar aufgebauter Extrakt aus nordatlantischen, zu den Florideen zählenden Rotalgen. Das aus dem Heißwasserextrakt der Algen ausgefällte Carrageenan ist ein farb­ loses bis sandfarbenes Pulver mit Molmassen von 100000-800000 und einem Sulfat- Gehalt von ca. 25%, das in warmem Wasser sehr leicht löslich ist. Beim Carrageenan un­ terscheidet man drei Hauptbestandteile: Die gelbbildende f-Fraktion besteht aus D- Galaktose-4-sulfat und 3,6-Anhydro-α-D-galaktose, die abwechselnd in 1,3- und 1,4- Stellung glycosidisch verbunden sind (Agar enthält demgegenüber 3,6-Anhydro-α-L- galaktose). Die nicht gelierende 1-Fraktion ist aus 1,3-glykosidisch verknüpften D- Galaktose-2-sulfat und 1,4-verbundenen D-Galaktose-2,6-disulfat-Resten zusammenge­ setzt und in kaltem Wasser leicht löslich. Das aus D-Galaktose-4-sulfat in 1,3-Bindung und 3,6-Anhydro-α-D-galaktose-2-sulfat in 1,4-Bindung aufgebaute i-Carrageenan ist sowohl wasserlöslich als auch gelbildend. Weitere Carrageenan-Typen werden ebenfalls mit grie­ chischen Buchstaben bezeichnet: α, β, γ, µ, ν, ξ, π, ω, χ. Auch die Art vorhandener Katio­ nen (K, NH4, Na, Mg, Ca) beeinflußt die Löslichkeit der Carrageenane. Halbsynthetische Produkte, die nur eine Ionen-Sorte enthalten und im Rahmen der vorliegenden Erfindung ebenfalls als Coatingmaterialien einsetzbar sind, werden auch Carrag(h)eenate genannt.
Das im Rahmen der vorliegenden Erfindung als Coatingmaterial einsetzbare Guar, auch Guar-Mehl genannt, ist ein grauweißes Pulver, das durch Mahlen des Endosperms der ur­ sprünglich im indischen und pakistanischen Raum endemischen, inzwischen auch in ande­ ren Ländern, z. B. im Süden der USA, kultivierten, zur Familie der Leguminosen gehören­ den Guarbohne (Cyamopsis tetragonobolus) gewonnen wird. Hauptbestandteil des Guar ist mit bis zu ca. 85 Gew.-% der Trockensubstanz Guaran (Guar-Gummi, Cyamopsis- Gummi); Nebenbestandteile sind Proteine, Lipide und Cellulose. Guaran selbst ist ein Po­ lygalactomannan, d. h. ein Polysaccharid, dessen lineare Kette aus nichtsubstituierten (siehe Formel I) und in der C6-Position mit einem Galactose-Rest substituierten (siehe Formel (II) Mannose-Einheiten in β-D-(1 → 4)-Verknüpfung aufgebaut ist.
Das Verhältnis von I : II beträgt ca. 2 : 1; die II-Einheiten sind entgegen ursprünglicher An­ nahmen nicht streng alternierend, sondern in Paaren oder Tripletts im Polygalactomannan- Molekül angeordnet. Angaben zur Molmasse des Guarans variieren mit Werten von ca. 2,2.105-2,2.106 g/mol in Abhängigkeit vom Reinheitsgrad des Polysaccharids - der hohe Wert wurde an einem hochgereinigten Produkt ermittelt - signifikant und entsprechen ca. 1350-13500 Zucker-Einheiten/Makromolekül. In den meisten organischen Lösungsmitteln ist Guaran unlöslich.
Die ebenfalls als Coatingmaterial einsetzbaren Pektine sind hochmolekulare glykosidische Pflanzenstoffe, die in Früchten, Wurzeln und Blättern sehr verbreitet sind. Die Pektine bestehen im wesentlichen aus Ketten von 1,4-α-glykosid verbundenen Galacturonsäure- Einheiten, deren Säuregruppen zu 20-80% mit Methanol verestert sind, wobei man zwi­ schen hochveresterten (< 50%) und niedrigveresterten Pektinen (< 50%) unterscheidet. Die Pektine haben eine Faltblattstruktur und stehen damit in der Mitte Stärke- und Cellulose- Moleküle. Ihre Makromoleküle enthalten noch etwas Glucose, Galactose, Xylose und Arabinose und weisen schwach saure Eigenschaften auf.
Obst-Pektin enthält 95%, Rüben-Pektin bis 85% Galacturonsäure. Die Molmassen der ver­ schiedenen Pektine variieren zwischen 10000 und 500000. Auch die Struktureigenschaften sind stark vom Polymerisationsgrad abhängig; so bilden z. B. die Obst-Pektine in getrock­ netem Zustand asbestartige Fasern, die Flachs-Pektine dagegen feine, körnige Pulver.
Die Pektine werden durch Extraktion mit verdünnten Säuren vorwiegend aus den inneren Anteilen von Citrusfruchtschalen, Obstresten oder auch Zuckerrübenschnitzeln hergestellt.
Auch Xanthan ist als Coatingmaterial erfindungsgemäß einsetzbar. Xanthan ist ein mikro­ bielles anionisches Heteropolysaccharid, das von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen produziert wird und eine Molmasse von 2 bis 15 Millionen Dalton aufweist. Xanthan wird aus einer Kette mit β-1,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat, wobei die Anzahl der Pyruvat-Einheiten die Viskosität des Xanthan bestimmt. Xanthan läßt sich durch folgende Formel beschreiben:
Die Cellulosen und ihre Derivate sind ebenfalls als Coatingmaterialien geeignet. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal be­ trachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Gluco­ se aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose- Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Coatingmaterial auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Er­ findung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose er­ hältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktio­ nelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen bei­ spielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
Neben Cellulose und Cellulosederivaten können auch (modifizierte) Dextrine, Stärke und Stärkederivate als Coatingmaterialien eingesetzt werden.
Als nichtionische organische Coatingmaterialien geeignet sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hy­ drolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbe­ sondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trocken­ glucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungs­ produkte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den inter­ nationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls ge­ eignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Stärke kann als Coatingmaterial für die erfindungsgemäßen Wasch- und Reini­ gungsmittelformkörper eingesetzt werden. Stärke ist ein Homoglykan, wobei die Glucose- Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedli­ chen Molekulargewichts aufgebaut: Aus ca. 20-30% geradkettiger Amylose (MG. ca. 50.000-150.000) und 70-80% verzweigtkettigem Amylopektin (MG. ca. 300.000-­ 2.000.000), daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, ver­ schlungene Ketten mit etwa 300-1200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1500-12000 Molekülen Glucose. Neben reiner Stär­ ke sind als Coatingmaterialien im Rahmen der vorliegenden Erfindung auch Stärke- Derivate, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind, geeignet. Sol­ che chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Vereste­ rungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Car­ boxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.
Unter den Proteinen und modifizierten Proteinen hat Gelatine als Coatingmaterial eine herausragende Bedeutung. Gelatine ist ein Polypeptid (Molmasse: ca. 15.000-­ <250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet.
Weitere als Coatingmaterialien einsetzbare Polymere sind synthetische Polymere, die vor­ zugsweise wasserquellbar und/oder wasserlöslich sind. Solche Polymere auf synthetischer Basis können für die gewünschte Coatingdurchlässigkeit bei Lagerung und Auflösung der Coatingschicht bei Anwendung "maßgeschneidert" werden. Besonders bevorzugte erfin­ dungsgemäße Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß das Coatingmaterial ausgewählt ist aus einem Polymer oder Polymergemisch, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
  • a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
    • 1. Polyvinylpyrrolidone,
    • 2. Vinylpyrrolidon/Vinylester-Copolymere,
    • 3. Celluloseether
  • b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
    • 1. Alkylacrylamid/Acrylsäure-Copolymere
    • 2. Alkylacrylamid/Methacrylsäure-Copolymere
    • 3. Alkylacrylamid/Methylmethacrylsäure-Copolymere
    • 4. Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
    • 5. Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
    • 6. Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure- Copolymere
    • 7. Alkylacrylamid/Alkylmethacrylat/Alkylaminoethylmethacrylat/Alkylmeth­ acrylat-Copolymere
    • 8. Copolymere aus
      • 1. ungesättigten Carbonsäuren
      • 2. kanonisch derivatisierten ungesättigten Carbonsäuren
      • 3. gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
  • c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
    • 1. Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie de­ ren Alkali- und Ammoniumsalze
    • 2. Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    • 3. Methacroylethylbetain/Methacrylat-Copolymere
  • d) wasserlöslichen anionischen Polymeren aus der Gruppe der
    • 1. Vinylacetat/Crotonsäure-Copolymere
    • 2. Vinylpyrrolidon/Vinylacrylat-Copolymere
    • 3. Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpolymere
    • 4. Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
    • 5. gepropften und vernetzten Copolymeren aus der Copolymerisation von
      • 1. mindestens einem Monomeren vom nicht-ionischen Typ,
      • 2. mindestens einem Monomeren vom ionischen Typ,
      • 3. von Polyethylenglycol und
      • 4. einem Vernetzter
    • 6. durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
      • 1. Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäu­ ren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättig­ ter Carbonsäuren,
      • 2. ungesättigte Carbonsäuren,
      • 3. Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättig­ ten oder ungesättigten, geradkettigen oder verzweigten C8-18- Alkoholen
    • 7. Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallyl­ ester
    • 8. Tetra- und Pentapolymere aus
      • 1. Crotonsäure oder Allyloxyessigsäure
      • 2. Vinylacetat oder Vinylpropionat
      • 3. verzweigten Allyl- oder Methallylestern
      • 4. Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallyl­ estern
    • 9. Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Grup­ pe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlösli­ chen Salzen
    • 10. Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
  • e) wasserlöslichen kationischen Polymeren aus der Gruppe der
    • 1. quaternierten Cellulose-Derivate
    • 2. Polysiloxane mit quaternären Gruppen
    • 3. kationischen Guar-Derivate
    • 4. polymeren Dimethyldiallylammoniumsalze und deren Copolymeren mit Estern und Amiden von Acrylsäure und Methacrylsäure
    • 5. Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dial­ kylaminoacrylats und -methacrylats
    • 6. Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
    • 7. quaternierter Polyvinylalkohol
    • 8. unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Po­ lyquaternium 18 und Polyquaternium 27 angegebenen Polymere.
Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtem­ peratur in Wasser zu mehr als 2,5 Gew.-% löslich sind.
Die Coating der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können da­ bei aus einzelnen der vorstehend genannten Polymere hergestellt sein, es können aber auch Mischungen oder mehrlagige Schichtaufbauten aus den Polymeren verwendet werden. Die Polymere werden nachfolgend näher beschrieben.
Erfindungsgemäß bevorzugte wasserlösliche Polymere sind nichtionisch. Geeignete nicht­ ionogene Polymere sind beispielsweise:
  • - Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden. Polyvinylpyrrolidone sind bevorzugte nichtionische Poly­ mere im Rahmen der Erfindung.
  • - Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Poly­ mere der allg. Formel (III)
    die durch 40378 00070 552 001000280000000200012000285914026700040 0002019939992 00004 40259radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lö­ sungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Po­ lyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500-750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und - K-Wert-abhängig - Glas­ übergangstemperaturen von 130-175° besitzen. Sie werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten. Polyvinylpyrrolidone sind gut löslich in Wasser und einer Vielzahl von organischen Lösungsmitteln (Alkohole, Ketone, Eisessig, Chlorkohlenwasserstoffe, Phenole u. a.).
  • - Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Waren­ zeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere.
Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (IV)
als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinyla­ cetat-Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation, Substanz­ polymerisation). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Mono­ mereinheiten der Formeln (III) und (IV):
  • - Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhy­ droxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
Celluloseether lassen sich durch die allgemeine Formel (V) beschreiben,
in R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevor­ zugten Produkten steht mindestens ein R in Formel (III) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z. B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wieviele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wieviel mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85-1,35 (DS) bzw. 1,5-3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblich-weiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem droxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organi­ schen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfind­ lich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz.
Polyvinylalkohole, kurz als PVAL bezeichnet, sind Polymere der allgemeinen Struktur
[-CH2-CH(OH)-]n
die in geringen Anteilen auch Struktureinheiten des Typs
[-CH2-CH(OH)-CH(OH)-CH2]
enthalten. Da das entsprechende Monomer, der Vinylalkohol, in freier Form nicht bestän­ dig ist, werden Polyvinylalkohole über polymeranaloge Reaktionen durch Hydrolyse, technisch insbesondere aber durch alkalisch katalysierte Umesterung von Polyvinylaceta­ ten mit Alkoholen (vorzugsweise Methanol) in Lösung hergestellt. Durch diese techni­ schen Verfahren sind auch PVAL zugänglich, die einen vorbestimmbaren Restanteil an Acetatgruppen enthalten.
Handelsübliche PVAL (z. B. Mowiol®-Typen der Firma Hoechst) kommen als weiß­ gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 500-2500 (entsprechend Molmassen von ca. 20.000-100.000 g/mol) in den Handel und haben unter­ schiedliche Hydrolysegrade von 98-99 bzw. 87-89 Mol-%. Sie sind also teilverseifte Po­ lyvinylacetate mit einem Restgehalt an Acetyl-Gruppen von ca. 1-2 bzw. 11-13 Mol-%.
Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisie­ rung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichro­ maten, Borsäure, Borax verringern und so gezielt auf gewünschte Werte einstellen.
Weitere erfindungsgemäß geeignete Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Ampho-Polymere sind amphotere Polymere, d. h. Polymere, die im Mole­ kül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Po­ lymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammo­ niumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopolymere setzen sich aus ungesättigten Carbonsäu­ ren (z. B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäu­ ren (z. B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen, wie beispielsweise in der deut­ schen Offenlegungsschrift 39 29 973 und dem dort zitierten Stand der Technik zu entneh­ men sind. Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltrimoni­ umchlorid, wie sie unter der Bezeichnung Merquat®2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.- Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
Geeignete zwitterionische Polymere sind beispielsweise die in den deutschen Patentanmel­ dungen DE 39 29 973, DE 21 50 557, DE 28 17 369 und DE 37 08 451 offenbarten Poly­ merisate. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroy­ lethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind.
Erfindungsgemäß geeignete anionische Polymere sind u. a.:
  • - Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Be­ zeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind.
Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (IV) auch Monomereinheiten der allgemeinen Formel (VI) auf:
(-CH(CH3)-CH(COOH)-]n (VI)
  • - Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Wa­ renzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeich­ nung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
  • - Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
  • - Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen.
Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalky­ lenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhal­ ten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acryl­ säure oder Methacrylsäure, in Gegenwart von Radikalbildnern einrührt.
Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbu­ tyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Pro­ panol, Isopropanol, 1-Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1- Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3- Methyl-2-butanol, 2-Methyl-2-butanol, 2-Methyl-1-Butanol, 1-Hexanol, erhältlich sind, bewährt.
Als Polyalkylenglycole kommen insbesondere Polyethylenglycole und Polypropylengly­ cole in Betracht. Polymere des Ethylenglycols, die der allgemeinen Formel VII
H-(O-CH2-CH2)n-OH (VII)
genügen, wobei n Werte zwischen 1 (Ethylenglycol) und mehreren tausend annehmen kann. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrun­ gen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molge­ wichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Für kosmetische Inhalts­ stoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel V entspricht. Nach dieser Nomenklatur (sogenannte INCI- Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edi­ tion, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind bei­ spielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 ein­ setzbar. Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handels­ namen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhône-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelsnamen mit hö­ heren Zahlen.
Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der all­ gemeinen Formel VIII
genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d. h. die Vertreter mit n = 2, 3 und 4 in Formel VI.
Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Cro­ tonsäure eingesetzt werden.
  • - gepropfte und vernetzte Copolymere aus der Copolymerisation von
    • a) mindestens einem Monomeren vom nicht-ionischen Typ,
    • b) mindestens einem Monomeren vom ionischen Typ,
    • c) von Polyethylenglycol und
    • d) einem Vernetzer
Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehre­ ren Millionen, vorzugsweise zwischen 300 und 30.000, auf.
Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat, Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und 1-Hexen.
Die nicht-ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinyles­ sigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfpolameren enthalten sind.
Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
Die vorstehend beschriebenen gepfropften und vernetzten Copolymere werden vorzugs­ weise gebildet aus:
  • a) 5 bis 85 Gew.-% mindestens eine Monomeren vom nicht-ionischen Typ,
  • b) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ,
  • c) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und
  • d) 0,1 bis 8 Gew.-% eines Vernetzers, wobei der Prozentsatz des Vernetzers durch das Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist.
    • - durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Grup­ pen erhaltene Copolymere:
  • e) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäu­ ren,
  • f) ungesättigte Carbonsäuren,
  • g) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradket­ tigen oder verzweigten C8-18-Alkohols.
Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlen­ stoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenen­ falls durch zweibindige Heterogruppen wie -O-, -NH-, -S- unterbrochen sein können.
  • - Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (II) und (IV) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallyestern der Formel IX:
worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen ge­ sättigten geradkettigen oder verzweigten C1-6-Alkylrest steht und die Summe der Kohlen­ stoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist.
Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisati­ on von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-% Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methally­ letsre der Formel IX.
  • - Tetra- und Pentapolymere aus
    • a) Crotonsäure oder Allyloxyessigsäure
    • b) Vinylacetat oder Vinylpropionat
    • c) verzweigten Allyl- oder Methallylestern
    • d) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
  • - Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinymethylether, Acrylamid und deren wasserlöslicher Salze
  • - Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphati­ schen in α-Stellung verzweigten Monocarbonsäure.
Als Coatingmaterialien bieten sich bei den anionischen Polymeren insbesondere Polycar­ boxylate/Polycarbonsäuren, polymere Polycarboxylate, Polyasparaginsäure, Polyacetale und Dextrine an, die nachfolgend beschrieben werden.
Brauchbare organische Coatingmaterialien sind beispielsweise die in Form ihrer Natrium­ salze aber auch in freier Form einsetzbaren Polycarbonsäuren. Polymere Polycarboxylate sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grund­ sätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu­ re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Poly­ meren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus die­ ser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als beson­ ders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Mole­ külmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vor­ zugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthal­ ten.
Insbesondere als Coatingmaterialien bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Mono­ mere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol- Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure so­ wie Zucker-Derivate enthalten.
Weitere bevorzugte copolymere Coatingmaterialien sind solche, die in den deutschen Pa­ tentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Mo­ nomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinyla­ cetat aufweisen.
Ebenso sind als weitere bevorzugte Coatingmaterialien polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas­ paraginsäuren bzw. deren Salze und Derivate.
Weitere geeignete Coatingmaterialien sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hy­ droxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere, bevorzugt als Coatingmaterialien einsetzbare Polymere sind kationische Polyme­ re. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als "permanent kationisch" werden erfindungsgemäß solche Polymeren be­ zeichnet, die unabhängig vom pH-Wert der Mittels (also sowohl der Coatingschicht als auch des übrigen Wasch- und Reinigungsmittelformkörpers) eine kationische Gruppe auf weisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten.
Bevorzugte kationische Polymere sind beispielsweise
  • - quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Po­ lymer JR© im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR® 400 sind bevorzugte quaternierte Cellulose-Derivate.
  • - Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhält­ lichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethyl­ silylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino­ modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80),
  • - Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosme­ dia® Guar und Jaguar® vertriebenen Produkte,
  • - Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Mer­ quat® 100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat® 550 (Dimethyl­ diallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere.
  • - Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylamino­ acrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinyl­ pyrrolidon-Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat® 734 und Gafquat® 755 im Handel erhältlich.
  • - Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Be­ zeichnung Luviquat® angeboten werden.
  • - quaternierter Polyvinylalkohol
sowie die unter den Bezeichnungen
  • - Polyquaternium 2,
  • - Polyquaternium 17,
  • - Polyquaternium 18 und
  • - Polyquaternium 27
bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die ge­ nannten Polymere sind dabei nach der sogenannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th
Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
Erfindungsgemäß bevorzugte kationische Polymere sind quaternisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cel­ lulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
Als Coatingmaterialien ebenfalls bevorzugt einsetzbar sind Carbon- oder Dicarbonsäuren, bzw. solche mit gerader Anzahl von C-Atomen. Besonders bevorzugte Carbon- oder Di­ carbonsäuren sind dabei solche mit mindestens 4, vorzugsweise mit mindestens 6, beson­ ders bevorzugt mit mindestens 8 und insbesondere solche mit 8 bis 13 Kohlenstoffatomen. Besonders bevorzugte Dicarbonsäuren sind beispielsweise Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Undecansäure, Dodecansäure, Brassylsäure und deren Mischungen. Aber auch Tetradecansäure, Pentadecansäure und Thapsisäure sind geeignete Coatingmaterialien. Besonders bevorzugte Carbonsäuren sind solche mit 12 bis 22 C-Atomen, wobei solche mit 18 bis 22 Kohlenstoffatomen besonders bevorzugt sind. Der Einsatz der weiter oben beschriebenen Desintegrationshilfsmittel ist insbesondere bei Säurecoatingschichten empfehlenswert, wobei übliche Einsatzkonzentrationen für die Desintegrationshilfmittel in den Coatingschichten bei 0,1 bis 5 Gew.-%, bezogen auf die Coatingschicht, liegen.
Unabhängig von der chemischen Zusammensetzung der Coatingschicht sind erfindungs­ gemäße Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß die Coatingschicht, die Teil c) in der Kavität fixiert, eine Dicke von 1 bis 150 µm, vorzugsweise von 2 bis 100 µm, besonders bevorzugt von 5 bis 75 µm und insbeson­ dere von 10 bis 50 µm, aufweist.
Die Hohlraumfüllung [Teil c)] kann auch in flüssiger, gelförmiger, pastöser oder plasti­ scher Form in den Hohlraum eingebracht werden. In den Fällen, in denen die Kavität nicht durch Schritt d) des erfindungsgemäßen Verfahrens verschlossen wird, sondern die Hohl­ raumfüllung eine außenliegende Oberfläche aufweist, ist es bevorzugt, daß Teil c) nach dem einbringen in die Kavität aushärtet. Neben dem Abkühlen von hochviskosen Schmel­ zen zu harten Partikeln können auch andere Härtungsmechanismen genutzt werden. So ist es erfindungsgemäß ebenfalls möglich, Suspensionen oder Emulsionen von Aktivsubstan­ zen in härtbaren Matrizes für den Schritt c) zu verwenden, wobei die Härtung beispielswei­ se durch Strahlung (UV-Licht, Gammastrahlen, Mikrowellen) oder chemische Reaktion (Einsatz von Härtern, Oxidation, Reduktion, Polymerisation, Polykondensation, Polyaddi­ tion usw.) erfolgt.
Wird als Hohlraumfüllung eine durch Temperaturerniedrigung erstarrende Schmelze ein­ gesetzt, so wird diese durch Erwärmen einer Zusammensetzung aus Aktivsubstanz(en) und optionalen Trägerstoffen sowie schmelzbaren Matrixstoffen in eine fließfähige Schmelze überführt. Diese Schmelze wird dann in den Hohlraum eingefüllt und abkühlen gelassen, wobei Erstarrung eintritt. Als schmelzbare Matrixstoffe eignen sich die vorstehend aus­ führlich beschriebenen Hüllmaterialien, insbesondere Paraffine, Polyethylen- und Polypro­ pylenglycole, Wachse und deren Mischungen.
An die Befüllung der Kavität schließt sich in bestimmten Fällen (siehe oben) der Verfah­ rensschritt d) an, in dem der in Schritt b) gefertigte Formkörper die Kavität im verpreßten Teil a) eingesetzt wird. Dies kann in bevorzugten Ausführungsformen der vorliegenden Erfindung zu einem Verschließen der Kavität führen, es ist aber auch möglich, Öffnungen freizulassen, um bestimmte Auflöse- und Freisetzungskinetiken zu realisieren.
Die erfindungsgemäß hergestellten Formkörper können - wie oben beschrieben - ganz oder teilweise mit einer Beschichtung versehen werden. Verfahren, in denen die Nachbe­ handlung in Schritt e) im Aufbringen einer Coatingschicht auf den gesamten Formkörper besteht, sind erfindungsgemäß bevorzugt. Die hierzu einsetzbaren Coatingmaterialien wur­ den bereits ausführlich beschrieben.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können nach der Her­ stellung verpackt werden, wobei sich der Einsatz bestimmter Verpackungssysteme beson­ ders bewährt hat. Ein weiterer Aspekt der vorliegenden Erfindung ist eine Kombination aus (einem) erfindungsgemäßen Wasch- und Reinigungsmittelformkörper(n) und einem den oder die Wasch- und Reinigungsmittelformkörper enthaltenden Verpackungssystem, dadurch gekennzeichnet, daß das Verpackungssystem eine Feuchtigkeitsdampfdurchläs­ sigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpac­ kungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
Das Verpackungssystem der Kombination aus Wasch- und Reinigungsmittelformkörper(n) und Verpackungssystem weist erfindungsgemäß eine Feuchtigkeitsdampfdurchlässigkeits­ rate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag auf, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird. Die genann­ ten Temperatur- und Feuchtigkeitsbedingungen sind die Prüfbedingungen, die in der DIN- Norm 53122 genannt werden, wobei laut DIN 53122 minimale Abweichungen zulässig sind (23 ± 1°C, 85 ± 2% rel. Feuchte). Die Feuchtigkeitsdampfdurchlässigkeitsrate eines gegebenen Verpackungssystems bzw. Materials läßt sich nach weiteren Standardmethoden bestimmen und ist beispielsweise auch im ASTM-Standard E-96-53T ("Test for measuring Water Vapor transmission of Materials in Sheet form") und im TAPPI Standard T464 m- 45 ("Water Vapor Permeability of Sheet Materials at high temperature and Humidity") beschrieben. Das Meßprinzip gängiger Verfahren beruht dabei auf der Wasseraufnahme von wasserfreiem Calciumchlorid, welches in einem Behälter in der entsprechenden Atmo­ sphäre gelagert wird, wobei der Behälter an der Oberseite mit dem zu testenden Material verschlossen ist. Aus der Oberfläche des Behälters, die mit dem zu testenden Material ver­ schlossen ist (Permeationsfläche), der Gewichtszunahme des Calciumchlorids und der Ex­ positionszeit läßt sich die Feuchtigkeitsdampfdurchlässigkeitsrate nach
berechnen, wobei A die Fläche des zu testenden Materials in cm2, x die Gewichtszunahme des Calciumchlorids in g und y die Expositionszeit in h bedeutet.
Die relative Gleichgewichtsfeuchtigkeit, oft als "relative Luftfeuchtigkeit" bezeichnet, be­ trägt bei der Messung der Feuchtigkeitsdampfdurchlässigkeitsrate im Rahmen der vorlie­ genden Erfindung 85% bei 23°C. Die Aufnahmefähigkeit von Luft für Wasserdampf steigt mit der Temperatur bis zu einem jeweiligen Höchstgehalt, dem sogenannten Sättigungsge­ halt, an und wird in g/m3 angegeben. So ist beispielsweise 1 m3 Luft von 17° mit 14,4 g Wasserdampf gesättigt, bei einer Temperatur von 11° liegt eine Sättigung schon mit 10 g Wasserdampf vor. Die relative Luftfeuchtigkeit ist das in Prozent ausgedrückte Verhältnis des tatsächlich vorhandenen Wasserdampf-Gehalts zu dem der herrschenden Temperatur entsprechenden Sättigungs-Gehalt. Enthält beispielsweise Luft von 17° 12 g/m3 Wasser­ dampf, dann ist die relative Luftfeuchtigkeit = (12/14,4).100 = 83%. Kühlt man diese Luft ab, dann wird die Sättigung (100% r. L.) beim sogenannten Taupunkt (im Beispiel: 14°) erreicht, d. h., bei weiterem Abkühlen bildet sich ein Niederschlag in Form von Nebel (Tau). Zur quantitativen Bestimmung der Feuchtigkeit benutzt man Hygrometer und Psy­ chrometer.
Die relative Gleichgewichtsfeuchtigkeit von 85% bei 23°C läßt sich beispielsweise in La­ borkammern mit Feuchtigkeitskontrolle je nach Gerätetyp auf ± 2% r. L. genau einstellen. Auch über gesättigten Lösungen bestimmter Salze bilden sich in geschlossenen Systemen bei gegebener Temperatur konstante und wohldefinierte relative Luftfeuchtigkeiten aus, die auf dem Phasen-Gleichgewicht zwischen Partialdruck des Wassers, gesättigter Lösung und Bodenkörper beruhen.
Die erfindungsgemäßen Kombinationen aus Wasch- und Reinigungsmittelformkörper und Verpackungssystem können selbstverständlich ihrerseits in Sekundärverpackungen, bei­ spielsweise Kartonagen oder Trays, verpackt werden, wobei an die Sekundärverpackung keine weiteren Anforderungen gestellt werden müssen. Die Sekundärverpackung ist dem­ nach möglich, aber nicht notwendig.
Im Rahmen der vorliegenden Erfindung bevorzugte Verpackungssysteme weisen eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,5 g/m2/Tag bis weniger als 15 g/m2/Tag auf.
Das Verpackungssystem der erfindungsgemäßen Kombination umschließt je nach Ausfüh­ rungsform der Erfindung einen oder mehrere Wasch- und Reinigungsmittelformkörper. Es ist dabei erfindungsgemäß bevorzugt, entweder einen Formkörper derart zu gestalten, daß er eine Anwendungseinheit des Wasch- und Reinigungsmittels umfaßt, und diesen Form­ körper einzeln zu verpacken, oder die Zahl an Formkörpern in eine Verpackungseinheit einzupacken, die in Summe eine Anwendungseinheit umfaßt. Bei einer Solldosierung von 80 g Wasch- und Reinigungsmittel ist es also erfindungsgemäß möglich, einen 80 g schwe­ ren Wasch- und Reinigungsmittelformkörper herzustellen und einzeln zu verpacken, es ist erfindungsgemäß aber auch möglich, zwei je 40 g schwere Wasch- und Reinigungsmittel­ formkörper in eine Verpackung einzupacken, um zu einer erfindungsgemäßen Kombinati­ on zu gelangen. Dieses Prinzip läßt sich selbstverständlich erweitern, so daß erfindungs­ gemäß Kombinationen auch drei, vier, fünf oder noch mehr Wasch- und Reinigungsmittel­ formkörper in einer Verpackungseinheit enthalten können. Selbstverständlich können zwei oder mehr Formkörper in einer Verpackung unterschiedliche Zusammensetzungen aufwei­ sen. Auf diese Weise ist es möglich, bestimmte Komponenten räumlich voneinander zu trennen, um beispielsweise Stabilitätsprobleme zu vermeiden.
Das Verpackungssystem der erfindungsgemäßen Kombination kann aus den unterschied­ lichsten Materialien bestehen und beliebige äußere Formen annehmen. Aus ökonomischen Gründen und aus Gründen der leichteren Verarbeitbarkeit sind allerdings Verpackungssy­ steme bevorzugt, bei denen das Verpackungsmaterial ein geringes Gewicht hat, leicht zu verarbeiten und kostengünstig ist. In erfindungsgemäß bevorzugten Kombinationen besteht das Verpackungssystem aus einem Sack oder Beutel aus einschichtigem oder laminiertem Papier und/oder Kunststoffolie.
Dabei können die Wasch- und Reinigungsmittelformkörper unsortiert, d. h. als lose Schüt­ tung, in einen Beutel aus den genannten Materialien gefüllt werden. Es ist aber aus ästhe­ tischen Gründen und zur Sortierung der Kombinationen in Sekundärverpackungen bevor­ zugt, die Wasch- und Reinigungsmittelformkörper einzeln oder zu mehreren sortiert in Säcke oder Beutel zu füllen. Für einzelne Anwendungseinheiten der Wasch- und Reini­ gungsmittelformkörper, die sich in einem Sack oder Beutel befinden, hat sich in der Tech­ nik der Begriff "flow pack" eingebürgert. Solche "flow packs" können dann - wiederum vorzugsweise sortiert - optional in Umverpackungen verpackt werden, was die kompakte Angebotsform des Formkörpers unterstreicht.
Die bevorzugt als Verpackungssystem einzusetzenden Säcke bzw. Beutel aus einschichti­ gem oder laminiertem Papier bzw. Kunststoffolie können auf die unterschiedlichste Art und Weise gestaltet werden, beispielsweise als aufgeblähte Beutel ohne Mittelnaht oder als Beutel mit Mittelnaht, welche durch Hitze (Heißverschmelzen), Klebstoffe oder Klebebän­ der verschlossen werden. Einschichtige Beutel- bzw. Sackmaterialien sind die bekannten Papiere, die gegebenenfalls imprägniert sein können, sowie Kunststoffolien, welche gege­ benenfalls coextrudiert sein können. Kunststoffolien, die im Rahmen der vorliegenden Er­ findung als Verpackungssystem eingesetzt werden können, sind beispielsweise in Hans Domininghaus "Die Kunststoffe und ihre Eigenschaften", 3. Auflage, VDI Verlag, Düssel­ dorf, 1988, Seite 193, angegeben. Die dort gezeigte Abb. 111 gibt gleichzeitig An­ haltspunkte zur Wasserdampfdurchlässigkeit der genannten Materialien.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Kombinationen enthalten als Verpackungssystem einen Sack oder Beutel aus einschichtiger oder laminierter Kunst­ stoffolie mit einer Dicke von 10 bis 200 µm, vorzugsweise von 20 bis 100 µm und insbe­ sondere von 25 bis 50 µm.
Obwohl es möglich ist, neben den genannten Folien bzw. Papieren auch wachsbeschichtete Papiere in Form von Kartonagen als Verpackungssystem für die Wasch- und Reinigungs­ mittelformkörper einzusetzen, ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das Verpackungssystem keine Kartons aus wachsbeschichtetem Papier umfaßt. Der Begriff "Verpackungssystem" kennzeichnet dabei im Rahmen der vorliegenden Erfindung immer die Primärverpackung der Formkörper, d. h. die Verpackung, die an ihrer Innenseite direkt mit der Formkörperoberfläche in Kontakt ist. An eine optionale Sekundärverpac­ kung werden keinerlei Anforderungen gestellt, so daß hier alle üblichen Materialien und Systeme eingesetzt werden können.
Wie bereits weiter oben erwähnt, enthalten die Wasch- und Reinigungsmittelformkörper der erfindungsgemäßen Kombination je nach ihrem Verwendungszweck weitere Inhalts­ stoffe von Wasch- und Reinigungsmitteln in variierenden Mengen. Unabhängig vom Ver­ wendungszweck der Formkörper ist es erfindungsgemäß bevorzugt, daß der bzw. die Wasch- und Reinigungsmittelformkörper eine relative Gleichgewichtsfeuchtigkeit von weniger als 30% bei 35°C aufweist/aufweisen.
Die relative Gleichgewichtsfeuchtigkeit der Wasch- und Reinigungsmittelformkörper kann dabei nach gängigen Methoden bestimmt werden, wobei im Rahmen der vorliegenden Untersuchungen folgende Vorgehensweise gewählt wurde: Ein wasserundurchlässiges 1- Liter-Gefäß mit einem Deckel, welcher eine verschließbare Öffnung für das Einbringen von Proben aufweist, wurde mit insgesamt 300 g Wasch- und Reinigungsmittelformkör­ pern befüllt und 24 h bei konstant 23°C gehalten, um eine gleichmäßige Temperatur von Gefäß und Substanz zu gewährleisten. Der Wasserdampfdruck im Raum über den Form­ körpern kann dann mit einem Hygrometer (Hygrotest 6100, Testoterm Ltd., England) be­ stimmt werden. Der Wasserdampfdruck wird nun alle 10 Minuten gemessen, bis zwei auf­ einanderfolgende Werte keine Abweichung zeigen (Gleichgewichtsfeuchtigkeit). Das o. g. Hygrometer erlaubt eine direkte Anzeige der aufgenommenen Werte in % relativer Feuch­ tigkeit.
Ebenfalls bevorzugt sind Ausführungsformen der erfindungsgemäßen Kombination, bei denen das Verpackungssystem wiederverschließbar ausgeführt ist. Auch Kombinationen, bei denen das Verpackungssystem eine Microperforation aufweist, lassen sich erfindungs­ gemäß mit Vorzug realisieren.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Waschverfahren zum Waschen von Textilien in einer Haushaltswaschmaschine, das dadurch gekennzeichnet ist, daß man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper in die Einspülkammer der Waschmaschine einlegt und ein Waschprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper eingespült werden.
Der bzw. die Formkörper müssen aber nicht über die Einspülkammer dosiert werden, son­ dern können auch direkt in die Waschtrommel gegeben werden. Hierbei kann sowohl eine Dosierhilfe, beispielsweise ein Netzdosierer, zum Einsatz kommen, die Formkörper kön­ nen aber auch ohne Dosierhilfe direkt zu der Wäsche in die Trommel gegeben werden. Ein Waschverfahren zum Waschen von Textilien in einer Haushaltswaschmaschine, bei dem man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper mit oder ohne Dosierhilfe in die Waschtrommel der Waschmaschine einlegt und ein Waschprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper aufgelöst wer­ den, ist daher ebenfalls ein Gegenstand der vorliegenden Erfindung.
Wie weiter oben erwähnt, lassen sich auch Reinigungsmitteltabletten für das maschinelle Geschirrspülen nach dem erfindungsgemäßen Verfahren herstellen. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, das dadurch gekennzeichnet ist, daß man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper in die Dosierkammer der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf sich die Dosierkammer öffnet und der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.
Auch beim erfindungsgemäßen Reinigungsverfahren kann man auf die Dosierkammer ver­ zichten und den bzw. die erfindungsgemäßen Formkörper beispielsweise in den Besteck­ korb einlegen. Selbstverständlich ist aber auch hier der Einsatz einer Dosierhilfe, bei­ spielsweise eines Körbchens, das im Spülraum angebracht wird, problemlos möglich. Dementsprechend ist ein Reinigungsverfahren zum Reinigen von Geschirr in einer Ge­ schirrspülmaschine, bei dem man einen oder mehrere erfindungsgemäße(n) Wasch- und Reinigungsmittelformkörper mit oder ohne Dosierhilfe in den Spülraum der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper aufgelöst werden, ein weiterer Gegenstand der vorliegenden Erfindung.

Claims (39)

1. Wasch- oder Reinigungsmittelformkörper, umfassend
  • a) einen verpreßten Teil, der mindestens eine Kavität aufweist,
  • b) einen weiteren festen Teil, der mindestens anteilsweise in der Kavität eingeschlos­ sen vorliegt,
dadurch gekennzeichnet, daß Teil b) die Kavität in Teil a) nicht vollständig ausfüllt und der verbleibende Hohlraum mindestens anteilsweise mit Aktivsubstanz befüllt ist.
2. Wasch- oder Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß Teil b) die Kavität in Teil a) verschließt und der verbleibende Hohlraum somit vollständig von a) und b) umschlossen ist.
3. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Teil a) zu Teil b) 1 : 1 bis 100 : 1, vor­ zugsweise 2 : 1 bis 80 : 1, besonders bevorzugt 3 : 1 bis 50 : 1 und insbesondere 4 : 1 bis 30 : 1 beträgt.
4. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die nach außen sichtbare Oberfläche des Teils b) 1 bis 25%, vor­ zugsweise 2 bis 20%, besonders bevorzugt 3 bis 15% und insbesondere 4 bis 10% der Gesamtoberfläche des befüllten Formkörpers ausmacht.
5. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß das Volumenverhältnis vom durch die Teile a) und b) gebildeten Hohlraum zum Gesamtformkörper 1 : 1 bis 50 : 1, vorzugsweise 2 : 1 bis 40 : 1, besonders bevorzugt 3 : 1 bis 30 : 1 und insbesondere 4 : 1 bis 20 : 1 beträgt.
6. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sich Teil b) schneller löst als Teil a).
7. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sich Teil b) langsamer löst als Teil a).
8. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Basisformkörper [Teil a)] eine Dichte oberhalb von 1000 kgdm-3, vorzugsweise oberhalb von 1025 kgdm-3, besonders bevorzugt oberhalb von 1050 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweist.
9. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Basisformkörper Gerüststoffe in Mengen von 1 bis 100 Gew.- %, vorzugsweise von 5 bis 95 Gew.-%, besonders bevorzugt von 10 bis 94 Gew.-% und insbesondere von 20 bis 85 Gew.-%, jeweils bezogen auf das Gewichts des Basis­ formkörpers, enthält.
10. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Basisformkörper Phosphat(e), vorzugsweise Alkalimetall­ phosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natri­ um- bzw. Kaliumtripolyphosphat), in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% uns insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
11. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Basisformkörper Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natriumcarbonat, in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7, 5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
12. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der Basisformkörper Silikat(e), vorzugsweise Alkalisilikate, be­ sonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.- %, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
13. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Basisformkörper Gesamttensidgehalte unterhalb von 5 Gew.- %, vorzugsweise unterhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und insbesondere unterhalb von 2 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, aufweist.
14. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Basisformkörper Bleichmittel aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel, unter besonderer Be­ vorzugung von Natriumperborat und Natriumpercarbonat, in Mengen von 2 bis 25 Gew.-%, vorzugsweise von 5 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
15. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Basisformkörper Bleichaktivatoren aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenol­ sulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS und n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), in Mengen von 0,25 bis 15 Gew.-%, vorzugsweise von 0,5 bis 10 Gew.-% und insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
16. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der Basisformkörper Silberschutzmittel aus der Gruppe der Tria­ zole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotria­ zole und der Übergangsmetallsalze oder -komplexe, besonders bevorzugt Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise von 0,05 bis 4 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%, jeweils bezogen auf das Ge­ wicht des Basisformkörpers, enthält.
17. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der Basisformkörper weiterhin einen oder mehrere Stoffe aus den Gruppen der Enzyme, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder, Farb- und/oder Duftstoffe in Gesamtmengen von 6 bis 30 Gew.-%, vorzugsweise von 7, 5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Basisformkörpers, enthält.
18. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der Kernformkörper [Teil b)] mindestens einen Aktivstoff aus der Gruppe der Enzyme, Tenside, soil-release-Polymere, Desintegrationshilfsmittel, Bleichmittel, Bleichaktivatoren, Bleichkatalysatoren, Silberschutzmittel und Mischun­ gen hieraus, enthält.
19. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Bleichaktivatoren enthält.
20. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Enzyme enthält.
21. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Korrosionsschutzmittel enthält.
22. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß der Basisformkörper oder der in den Basisformkörper eingefügte Kernformkörper oder die Hohlraumfüllung Bleichmittel enthält, während mindestens ein anderer Teil Tenside, vorzugsweise nichtionische Tenside, unter besonderer Bevor­ zugung alkoxylierter Alkohole mit 10 bis 24 Kohlenstoffatomen und 1 bis 5 Alkylen­ oxideinheiten, enthält.
23. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß mindestens zwei der drei Formkörperregionen (Basisformkörper, Kernformkörper, Hohlraumfüllung) denselben Wirkstoff in unterschiedlichen Mengen enthalten.
24. Verfahren zur Herstellung mehrphasiger Wasch- oder Reinigungsmittelformkörper, gekennzeichnet durch die Schritte
  • a) Verpressen teilchenförmiger Vorgemische zu Formkörpern, die mindestens eine Kavität aufweisen,
  • b) Herstellung von Formkörpern, die mindestens anteilsweise in die Kavität einfügbar sind,
  • c) Befüllen eines Teils der Kavität mit Aktivsubstanz in fester, flüssiger, hochviskoser oder plastischer Form,
  • d) Einsetzen der Verfahrensendprodukte des Verfahrensschritts b) in die Kavität der Verfahrensendprodukte des Verfahrensschritts a),
  • e) optionale Nachbehandlung der Formkörper.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die teilchenförmigen Vor­ gemische in Schritt a) ein Schüttgewicht von mindestens 500 g/l, vorzugsweise minde­ stens 600 g/l und insbesondere mindestens 700 g/l aufweisen.
26. Verfahren nach einem der Ansprüche 24 oder 25, dadurch gekennzeichnet, daß die teilchenförmigen Vorgemische in Schritt a) Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400 µm, aufweisen.
27. Verfahren nach einem der Ansprüche 24 bis 26, dadurch gekennzeichnet, daß die Ver­ pressung in Schritt a) bei Preßdrücken von 0,01 bis 50 kNcm-2, vorzugsweise von 0,1 bis 40 kNcm-2 und insbesondere von 1 bis 25 kNcm-2 erfolgt.
28. Verfahren nach einem der Ansprüche 24 bis 27, dadurch gekennzeichnet, daß in Schritt a) mehrschichtige Formkörper in an sich bekannter Weise hergestellt werden, indem mehrere unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden.
29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemi­ sche aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Enzyme enthält.
30. Verfahren nach einem der Ansprüche 28 oder 29, dadurch gekennzeichnet, daß in Schritt a) zweischichtige Formkörper hergestellt werden, indem zwei unterschiedliche teilchenförmige Vorgemische aufeinander gepreßt werden, von denen eines ein oder mehrere Bleichmittel und das andere ein oder mehrere Bleichaktivatoren enthält.
31. Verfahren nach einem der Ansprüche 24 bis 30, dadurch gekennzeichnet, daß die Formkörper in Schritt b) durch Gießverfahren, Strangpressen, Extrusion oder Sinterung hergestellt werden.
32. Verfahren nach einem der Ansprüche 24 bis 30, dadurch gekennzeichnet, daß die Formkörper in Schritt b) durch Tablettierung hergestellt werden.
33. Verfahren nach einem der Ansprüche 24 bis 32, dadurch gekennzeichnet, daß die Ka­ vität in Schritt c) mit einer Mischung aus Haftvermittlern) und Aktivsubstanzen) be­ füllt wird.
34. Verfahren nach einem der Ansprüche 24 bis 33, dadurch gekennzeichnet, daß die Ka­ vität in Schritt c) mit mindestens einer Aktivsubstanz aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmit­ tel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Auf­ heller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren befüllt wird.
35. Kombination aus (einem) Wasch- oder Reinigungsmittelformkörper(n) nach einem der Ansprüche 1 bis 24 und einem den oder die Wasch- und Reinigungsmittelformkörper enthaltenden Verpackungssystem, dadurch gekennzeichnet, daß das Verpackungssy­ stem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2/Tag aufweist, wenn das Verpackungssystem bei 23°C und einer relativen Gleich­ gewichtsfeuchtigkeit von 85% gelagert wird.
36. Waschverfahren zum Waschen von Textilien in einer Haushaltswaschmaschine, da­ durch gekennzeichnet, daß man einen oder mehrere Wasch- oder Reinigungsmittel­ formkörper nach einem der Ansprüche 1 bis 24 in die Einspülkammer der Waschma­ schine einlegt und ein Waschprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper eingespült werden.
37. Waschverfahren zum Waschen von Textilien in einer Haushaltswaschmaschine, da­ durch gekennzeichnet, daß man einen oder mehrere Wasch- und Reinigungsmittel­ formkörper nach einem der Ansprüche 1 bis 24 mit oder ohne Dosierhilfe in die Waschtrommel der Waschmaschine einlegt und ein Waschprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper aufgelöst werden.
38. Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, da­ durch gekennzeichnet, daß man einen oder mehrere Wasch- und Reinigungsmittel­ formkörper nach einem der Ansprüche 1 bis 24 in die Dosierkammer der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf sich die Dosierkammer öffnet und der bzw. die Formkörper aufgelöst werden.
39. Reinigungsverfahren zum Reinigen von Geschirr in einer Geschirrspülmaschine, da­ durch gekennzeichnet, daß man einen oder mehrere Wasch- und Reinigungsmittel­ formkörper nach einem der Ansprüche 1 bis 24 mit oder ohne Dosierhilfe in den Spül­ raum der Spülmaschine einlegt und ein Spülprogramm ablaufen läßt, in dessen Verlauf der bzw. die Formkörper aufgelöst werden.
DE1999139992 1999-08-24 1999-08-24 Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen Withdrawn DE19939992A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999139992 DE19939992A1 (de) 1999-08-24 1999-08-24 Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999139992 DE19939992A1 (de) 1999-08-24 1999-08-24 Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen

Publications (1)

Publication Number Publication Date
DE19939992A1 true DE19939992A1 (de) 2001-03-01

Family

ID=7919354

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999139992 Withdrawn DE19939992A1 (de) 1999-08-24 1999-08-24 Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen

Country Status (1)

Country Link
DE (1) DE19939992A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060965A1 (en) * 2000-02-17 2001-08-23 The Procter & Gamble Company Detergent tablet
DE10243311A1 (de) * 2002-09-18 2004-04-01 Henkel Kgaa Befüllte Muldentabletten und Verfahren zu ihrer Herstellung
WO2006045451A1 (de) * 2004-10-22 2006-05-04 Henkel Kommanditgesellschaft Auf Aktien Wasch- oder reinigungsmittel
DE202007002295U1 (de) 2007-02-13 2008-06-26 Lorenz, Anneliese F. Seifen mit optischen oder elastischen Eigenschaften
DE19941266B4 (de) * 1999-08-31 2017-07-13 Henkel Ag & Co. Kgaa Formkörper mit speziell geformter Kavität, Verfahren zu dessen Herstellung und Wasch- und Reinigungsverfahren unter Einsatz dieses Formkörpers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941266B4 (de) * 1999-08-31 2017-07-13 Henkel Ag & Co. Kgaa Formkörper mit speziell geformter Kavität, Verfahren zu dessen Herstellung und Wasch- und Reinigungsverfahren unter Einsatz dieses Formkörpers
WO2001060965A1 (en) * 2000-02-17 2001-08-23 The Procter & Gamble Company Detergent tablet
DE10243311A1 (de) * 2002-09-18 2004-04-01 Henkel Kgaa Befüllte Muldentabletten und Verfahren zu ihrer Herstellung
WO2006045451A1 (de) * 2004-10-22 2006-05-04 Henkel Kommanditgesellschaft Auf Aktien Wasch- oder reinigungsmittel
DE202007002295U1 (de) 2007-02-13 2008-06-26 Lorenz, Anneliese F. Seifen mit optischen oder elastischen Eigenschaften

Similar Documents

Publication Publication Date Title
EP1299517B1 (de) Maschinengeschirrspülmittel mit zusatznutzen
EP1322743B1 (de) Muldentabletten und verfahren zu ihrer herstellung
EP1305396B1 (de) Kompartiment-hohlkörper enthaltend wasch-, reinigungs- oder spülmittelportion
EP1192241B1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
DE10010760A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit nicht-gepreßten Anteilen
DE10223266C1 (de) Verwendung Einspülkammer-dosierbare Tabletten-Portionen
EP1298195A1 (de) Semiautomatische Dosierung
DE10062582A1 (de) Befüllte Wasch- und Reinigungsmittelformkörper
DE19932765A1 (de) Befüllte Wasch- und Reinigungsmittelformkörper
EP1563052B1 (de) VERFAHREN ZUR HERSTELLUNG BEFÜLLTER WASCH- UND REINIGUNGSMITTELFORMKöRPER II
WO2004046297A1 (de) Verfahren zur herstellung befüllter wasch- und reinigungsmittelformkörper
EP1360271B1 (de) Wasch- und reinigungsmittelformkörper mit beschichtung
DE10003429A1 (de) Wasch- oder Reinigungsmittelportion mit kontrollierter Wirkstofffreisetzung
EP1157090B2 (de) Verfahren zur herstellung mehrphasiger wasch- und reinigungsmittelformkörper
DE19959875A1 (de) Preßverfahren für mehrphasige Formkörper
DE19945849A1 (de) Mehrkomponentenpackung
DE10233564A1 (de) Wasch- und Reinigungsmittelportionen mit Umhüllung
DE19939992A1 (de) Wasch- oder Reinigungsmittelformkörper mit befülltem Hohlvolumen
DE19941266B4 (de) Formkörper mit speziell geformter Kavität, Verfahren zu dessen Herstellung und Wasch- und Reinigungsverfahren unter Einsatz dieses Formkörpers
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
DE19941265A1 (de) Formkörper mit speziell geformter Lochfüllung
DE20022229U1 (de) Maschinengeschirrspülmittel mit Zusatznutzen
DE10253214A1 (de) Portionierte Mittel mit unterschiedlichen Bestandteilen
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
DE10048058A1 (de) Muldentabletten und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee