[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

DE19645556A1 - Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper - Google Patents

Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper

Info

Publication number
DE19645556A1
DE19645556A1 DE19645556A DE19645556A DE19645556A1 DE 19645556 A1 DE19645556 A1 DE 19645556A1 DE 19645556 A DE19645556 A DE 19645556A DE 19645556 A DE19645556 A DE 19645556A DE 19645556 A1 DE19645556 A1 DE 19645556A1
Authority
DE
Germany
Prior art keywords
variable
controller
variables
neural network
missile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19645556A
Other languages
English (en)
Inventor
Uwe Krogmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bodenseewerk Geratetechnik GmbH filed Critical Bodenseewerk Geratetechnik GmbH
Priority to DE19645556A priority Critical patent/DE19645556A1/de
Publication of DE19645556A1 publication Critical patent/DE19645556A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/0285Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks and fuzzy logic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper mit einem Suchkopf, der ein Bild eines das Ziel enthaltenden Gesichtsfeldes erfaßt und Bildverarbeitungs-Mittel zur Erzeugung von Meßgrößen enthält, welche die Relativbewegung zwischen Ziel und Flugkörper wiedergeben, Mitteln zur Erzeugung von Steuersignalen aus diesen Meßgrößen, und einem auf die Bewegungen des Flugkörpers ansprechenden Referenzsystem.
Flugkörper der hier vorliegenden Art haben einen Suchkopf, der ein Gesichtsfeld erfaßt. In dem Gesichtsfeld wird ein zu treffendes Ziel beobachtet. Der Suchkopf liefert Informationen über die Lage und Bewegung des Ziels im Gesichtsfeld. Aus diesen Informationen werden Lenksignale gewonnen, durch welche über Lenkmittel, z. B. aerodynamische Steuerflächen, der Flugkörper auf das Ziel geführt wird. Der Suchkopf kann dabei einen im Flugkörper kardanisch gelagerten Sucher enthalten, der kreiselstabilisiert und so von den Bewegungen des Flugkörpers entkoppelt ist. Der Sucher wird in Abhängigkeit von Ablagesignalen auf das Ziel ausgerichtet gehalten. Es kann aber auch ein strukturfest ("strap-down") im Flugkörper gehalterter Sucher vorgesehen sein, wobei die Bewegungen des Flugkörpers im inertialen Raum durch ein Referenzsystem bestimmt und bei der Signalauswertung berücksichtigt werden. Das Referenzsystem kann ein Trägheits-Referenzsystem sein. Zusätzlich oder statt dessen kann auch ein Empfänger für die Satelliten- Navigation (GPS) vorgesehen sein. Der Sucher ist üblicherweise ein bilderfassender Sensor, z. B. ein Matrixdetektor. Ein solcher Sucher, auf den das Gesichtsfeld durch ein abbildendes optisches System abgebildet wird, liefert ein Bild des Gesichtsfeldes mit dem Ziel in Form eines Rasters von mehr oder weniger hellen Bildelementen (Pixels). Dieses Bild wird einer Bildverarbeitung unterworfen. Aus der Bildverarbeitung werden Lenksignale abgeleitet.
Stand der Technik
Es ist bekannt, den kreiselstabilisierten Sucher ständig dem Ziel nachzuführen. Der Sucher liefert dabei Zielablage­ Signale, welche durch eine Nachführregelung auf praktisch null geregelt werden. Die hierzu erforderlichen Nachführsignale liefern ein Maß für die Drehgeschwindigkeit der Sichtlinie zwischen Suchkopf und Ziel im inertialen Raum. Die Lenksignale werden proportional zu dieser Sichtlinien-Drehgeschwindigkeit gemacht. Man bezeichnet diese Art der Lenkung als "Proportional-Navigation".
Es ist auch bekannt, bei einem strukturfest im Flugkörper angeordneten "Strap-Down"-Sucher die Nachführung anhand der Signale des ebenfalls strukturfest angebrachten Trägheitsreferenz-Systems zu simulieren und aus der Bewegung des so erhaltenen "virtuellen Suchers" die Sichtlinien-Drehgeschwindigkeit zu bestimmen (US-A- 5,253,823; DE-C-43 39 187).
Die DE-C-42 18 600 beschreibt eine Einrichtung zur Bestimmung von Bewegungsgrößen eines Flugkörpers, der mit einem bilderfassenden Sensor versehen ist. Dabei werden aus dem optischen Fluß der von dem Sensor erfaßten Bilder durch trainierte neuronale Netze Daten erzeugt, welche die Bewegungsgrößen des Flugkörpers wiedergeben.
Die DE-A-41 30 164 beschreibt einen Flugregler mit einem neuronalen Netz, welches durch Trainieren als dynamisches Modell des Flugzeugs ausgebildet ist. Auf das Netz sind in jedem aktuellen Zeittakt Vektoren von Zustandsgrößen aufgeschaltet, die dem aktuellen Zeittakt und den vorhergehenden Zeittakten zugeordnet sind, sowie Vektoren, von Stellgrößen, die dem aktuellen Zeittakt und vorhergehenden Zeittakten zugeordnet sind. Ferner sind auf das neuronale Netz Vektoren von Stellgrößen aufgeschaltet, die für zukünftige Zeittakte vorgesehen sind. Das neuronale Netz liefert Schätzwerte der Zustandsvektoren, die nach dem dynamischen Modell für zukünftige Zeittakte zu erwarten sind. Es wird die Differenz dieser Zustandsvektoren für die zukünftigen Zeittakte und der Sollwerte dieser zukünftigen Zustandsvektoren gebildet. Diese Differenzen sind auf einen als neuronales Netz ausgebildeten Optimierer aufgeschaltet. Der Optimierer ist ebenfalls als neuronales Netz ausgebildet und so trainiert, daß er ein inverses Modell der Regelstrecke "Flugzeug" darstellt. Der Optimierer liefert Vektoren der Stellgrößen für zukünftige Zeittakte. Einer der für zukünftige Zeittakte vorgesehenen Vektoren von Stellgrößen ist als aktueller Stellgrößen-Vektor auf das Flugzeug aufschaltbar.
Die DE-A-42 40 789 betrifft eine Einrichtung zum Bewerten von Situationen oder Szenarien, die mit einer Mehrzahl von Sensoren beobachtet werden. Aus den Informationen der Sensoren werden unter Verwendung wissensbasierter Regeln Merkmale hergeleitet. Diese Merkmale sind auf die Eingänge eines neuronalen Netzes aufgeschaltet. Das neuronale Netz ist trainiert, aus diesen Informationen an Ausgängen einen Klassifikations-Vektor zu erzeugen. Ein erster Speicher dient zur Festlegung von Zugehörigkeits-Funktionen, die jeweils in einzelnen überlappenden Wertebereichen definiert sind. Diese Zugehörigkeits-Funktionen geben einen Grad der Zugehörigkeit einer Eingangsgröße zu einem dem betreffenden Wertebereich zugeordneten linguistischen Wert (z. B. "groß") an. Der von dem neuronalen Netz erhaltene Klassifikations- Vektor ist auf eine mit dem ersten Speicher verbundene unscharfe Logikschaltung ("Fuzzy Logic") aufgeschaltet zum Umsetzen der Komponenten des Klassifikations-Vektors als Eingangsgrößen in linguistische Werte entsprechend den von dem ersten Speicher vorgegebenen Wertebereichen zu diesen Komponenten und zur Festlegung von Zugehörigkeits-Graden nach Maßgabe der gespeicherten Zugehörigkeits-Funktionen. Ein zweiter Speicher dient als Regel-Basis zur Festlegung und Speicherungen von Regeln zur Verknüpfung von linguistischen Eingangs-Werten. Aus den linguistischen Eingangs-Werten werden nach Maßgabe der gespeicherten Regeln linguistische Ausgangs-Werte gebildet. Eine Korrelations-Logikschaltung dient zur Korrelation der Zugehörigkeits-Grade nach Maßgabe der Regeln für die Verknüpfung der linguistischen Eingangs-Werte zur Bildung von Zugehörigkeits-Graden für die linguistischen Ausgangs- Werte. Aus den so veränderten Zugehörigkeits- Funktionen der für die einzelnen Komponenten angesprochenen linguistischen Ausgangs-Werte wird ein Vektor gebildet, der eine Situations-Bewertung wiedergibt.
Die Entwicklung der Technik geht hin zu immer schnelleren und immer manövrierfähigeren Zielen (Flugzeugen, Cruise Missiles, interkontinental-Raketen). Solche Ziele erfordern immer schnellere und immer manövrierfähigere Flugkörper: Der Flugkörper muß eine hohe Geschwindigkeit erreichen. Die Flugzeit des Flugkörpers - und damit die für Bahnkorrekturen zur Verfügung stehende Zeit - wird dadurch verkürzt. Der Flugkörper muß daher sehr schnell auf Änderungen der relativen Lage von Flugkörper und Ziel reagieren. Flugkörper nach dem Stand der Technik sind diesen erhöhten Anforderungen nicht gewachsen.
Es sind verschiedene Fuzzy-Inferenz-Systeme mit neuronalen Netzwerken bekannt. Ein Beispiel hierfür ist das "ANFIS", das in dem Buch von R. Jang "Adaptive Network-Based Fuzzy Inference System" Seiten 23 bis 26 beschrieben ist. Ein anderes Neuro-Fuzzy-Netzwerk, das "NEFCON-Modell", ist beschrieben in dem Buch von D. Nauck et al. "Neuronale Netze und Fuzzy Systeme", Vieweg Verlag, 1994, Seiten 318 bis 325.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper so auszubilden, daß sie den Flugkörper mit hoher Trefferquote auch zu sehr schnellen und manövrierfähigen Zielen zu führen gestattet.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß
  • (a) die Steuersignale erzeugenden Mittel eine trainierte, wissensbasierte Signalverarbeitungs-Einheit enthalten
  • (b) auf die wissensbasierte Signalverarbeitungs-Einheit als weitere Eingänge Meßgrößen aufgeschaltet sind, die den Bewegungs-Zustand des Flugkörpers wiedergeben und aus Meßgrößen des Referenzsystems des Flugkörpers abgeleitet sind, und
  • (c) die Signalverarbeitungs-Einheit zur Erzeugung optimaler Lenksignale unter Berücksichtigung der Bewegungen des Ziels und der Flugzustände des Flugkörpers selbst trainiert ist.
Übliche Suchköpfe liefern nur Signale, welche die Drehgeschwindigkeit der Sichtlinie vom Flugkörper zum Ziel bezogen auf den inertialen Raum wiedergeben, wobei der Suchkopf real oder virtuell auf das Ziel ausgerichtet gehalten wird. Bei hoch-manövrierfähigen Zielen kann diese Ausrichtung u.u. nicht garantiert werden. Durch die Bildverarbeitung können aber aus der Bewegung und Darstellung des Ziels im Gesichtsfeld des Suchkopfs weitere Meßdaten gewonnen werden, welche Flugmanöver des Ziels erkennen oder vorhersagen lassen. Solche Meßdaten können Abstand und Abstandsänderung des Ziels oder Informationen über die Fluglage eines Ziels bekannter Grundform (Flugzeug) im Raum sein. Aus solchen Meßdaten lassen sich Bewegungen des Ziels vorhersagen. Die Sichtlinie vom Flugkörper zum Ziel wird auch durch die Bewegung des Flugkörpers selbst beeinflußt. Wenn man anhand der Meßgrößen des Trägheits-Referenzsystems diese Bewegungen im Raum bestimmt, kann man daraus Änderungen des Sichtlinien- Vektors im inertialen Raum vorhersagen. Durch Berücksichtigung dieser Meßgrößen wird es möglich, schneller und individueller auf Flugmanöver des Ziels durch geeignete Lenksignale zu reagieren, als wenn nur die aus einer Nachführschleife gewonnene Sichtlinien- Drehgeschwindigkeit allein als Meßgröße zur Verfügung steht. Der Zusammenhang zwischen den so gewonnenen Meßgrößen und den sich daraus ergebenden optimalen Lenksignalen ist aber sehr komplex und hochgradig nichtlinear. Eine mathematische Behandlung solcher Zusammenhänge ist praktisch nicht möglich. Dieses Problem wird durch Verwendung einer trainierten, wissensbasierten Signalverarbeitungs-Einheit gelöst. Eine solche trainierte, wissensbasierte Signalverarbeitungs-Einheit "lernt" die Zusammenhänge, indem zu einer Vielzahl von Eingangs- Vektoren die zugehörigen optimalen Lenksignale mit den von der Signalverarbeitungs-Einheit gelieferten Lenksignalen verglichen werden und die Signalverarbeitungs-Einheit bei Abweichungen entsprechend modifiziert wird. Das kann z. B. durch Veränderung der Gewichte eines neuronalen Netzes und/oder durch Modifizierung von Regeln einer unscharfen Logik geschehen.
Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
Ein Ausführungsbeispiel der Erfindung ist nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.
Kurze Beschreibung der Zeichnungen
Fig. 1 ist ein Blockdiagramm und veranschaulicht die Struktur und die Wirkungsweise eines Lenksystems für Flugkörper mit einer Vorrichtung der vorerwähnten Art zur Erzeugung von Lenksignalen.
Fig. 2 ist ein Blockdiagramm und zeigt die bei dem Lenksystem von Fig. 1 benutzten Baugruppen.
Fig. 3 ist eine schematische Darstellung des Flugkörpers, der durch drei verschiedene, in geeigneter Kombination ansteuerbare Lenkvorrichtungen gelenkt wird.
Fig. 4 veranschaulicht die Funktion des Suchkopfes und des nachgeschalteten Schätzers.
Fig. 5 ist eine schematische Darstellung und zeigt für eine Achsrichtung die Funktion des Flugreglers.
Fig. 6 ist eine schematische Darstellung und veranschaulicht im Vergleich zu Fig. 5, daß auch die Funktion "optimales Lenkgesetz" ähnlich wie ein Regler in einem geschlossenen Regelkreis liegt, so daß für diese Lenkgesetz-Funktion die gleichen Strukturen anwendbar sind wie für den nichtlinearen Regler von Fig. 5.
Fig. 7 zeigt eine andere Struktur des Reglers, bei welchem die Parameter des Reglers mittels eines neuronalen Netzwerkes in Abhängigkeit vom jeweiligen Flugzustand veränderbar sind.
Fig. 8 zeigt die Grundstruktur eines Reglers, der mit verschiedenen "lokalen" Reglern aufgebaut ist, die bei verschiedenen Arbeitspunkten eines ausgedehnten, mehrdimensionalen Regelbereiches arbeiten, wobei die Ausgangsgrößen der verschiedenen lokalen Regler in Abhängigkeit vom jeweiligen Flugzustand kombiniert werden.
Fig. 9 ist eine schematische Darstellung und veranschaulicht in einem vereinfachten, zweidimensionalen Fall von Machzahl und Höhe den mehrdimensionalen Regelbereich und die Arbeitspunkte der Regler.
Fig. 10 ist eine schematische Darstellung und veranschaulicht die Aufteilung des Regelbereiches in Bereiche, die durch linguistische Angaben "klein" (S), "mittel" (M) und "groß" (L) für die den Flugzustand charakterisierenden Meßgrößen definiert sind wobei jeweils die "Zugehörigkeits- Funktionen" der unscharfen Logik ("Fuzzy Logic") eingezeichnet sind.
Fig. 11 ist eine Blockdarstellung und zeigt die Bildung von "Zugehörigkeitsgraden" der Meßgrößen zu den verschiedenen linguistischen Bereichen und die Bildung von, wiederum linguistischen, Angaben nach in einer Regelbasis festgelegten Regeln sowie die "Defuzzyfizierung" der linguistischen Angaben zur Bildung scharfer Werte für die Koeffizienten zur Linearkombination der Regler-Ausgangssignale der lokalen Regler.
Fig. 12 ist eine Blockdarstellung und zeigt die Linearkombination der Regler-Ausgangssignale der lokalen Regler zur Bildung eines Ausgangssignals des nichtlinearen Reglers oder der Funktion "Optimales Lenkgesetz" von Fig. 1.
Fig. 13 zeigt die Struktur eines (an sich bekannten) mit unscharfer Logik arbeitenden, lernenden Inferenzsystems, das bei dem vorliegenden Lenksystem für Flugkörper angewandt werden kann.
Fig. 14 zeigt eine Struktur des Reglers, bei welcher die Kombination der Regler-Ausgangssignale der lokalen Regler mittels eines geeignet trainierten neuronalen Netzwerkes erfolgt.
Fig. 15 zeigt eine Struktur des Reglers, bei welcher einem (bekannten) H-Regler ein dynamisches, neuronales Netzwerk als neuronaler Teil des Reglers parallelgeschaltet und mittels eines flugzustandabhängigen Referenzmodells trainierbar ist.
Fig. 16 ist eine schematische Darstellung des dynamischen neuronalen Netzwerkes.
Fig. 17 zeigt einen Regler der ein mit unscharfer Logik aufgebautes Inferenz-System und zwei neuronale Netzwerke enthält, die ein Lernen des Reglers ermöglichen.
Fig. 18 zeigt die Struktur eines weiteren mit einem neuronalen Netzwerk und unscharfer Logik arbeitenden Reglers.
Bevorzugte Ausführung der Erfindung
Ein Ziel 10 ist in Fig. 1 durch ein Ziel-Lenksystem 12 und die "Zieldynamik" 14 repräsentiert. Das Ziel-Lenksystem 12 liefert einen Vektor u T(t) von Lenksignalen. Das Ziel 10 führt dementsprechend Bewegungen aus, die durch einen Vektor x T(t) dargestellt sind. Das Ziel 10 ist hoch­ manövrierfähig, so daß sich der Vektor x T(t) u.u. sehr schnell ändern kann.
Das Ziel 10 wird von einem Suchkopf 16 erfaßt. Der Suchkopf 16 sitzt strukturfest ("strap-down") in dem Flugkörper. Der Suchkopf 16 bewegt sich daher mit dem Flugkörper. Der Suchkopf 16 weist einen bilderfassenden Sensor in Form eines Matrixdetektors auf. Das von dem Suchkopf 16 erfaßte Bild hängt nicht nur von der Bewegung des Ziels 10 im Raum sondern auch von der Bewegung des Flugkörpers im Raum ab. Diese Bewegung des Flugkörpers ist in Fig. 1 durch einen Vektor x M(t) dargestellt. Der Suchkopf 16 beobachtet die Relativbewegung von Ziel und Flugkörper, d. h. die Differenz der beiden Vektoren x T(t) - x M(t). Das ist in Fig. 1 durch einen Summierpunkt 18 symbolisiert.
Der Suchkopf 16 enthält bildverarbeitende Mittel, welche einen Vektor z(t) liefern. Dieser Vektor z(t) enthält Meßgrößen, welche den Inhalt des von dem Sensor des Suchkopfes 16 beobachteten Bildes wiedergeben. Das Bild enthält mehr oder weniger helle Bildelemente. Durch die bildverarbeitenden Mittel können daraus Informationen über das Ziel gewonnen werden, beispielsweise über die Größe und Helligkeit, über die Lage des Schwerpunktes und die Form des Zielbildes. Wenn der Suchkopf einen kardanisch gelagerten Sensor aufweist, sind weitere Informationen die Rahmenwinkel der kardanischen Lagerung. Bei einem flugkörperfesten Sensor kann eine "virtuelle Kardanlagerung" rechnerisch simuliert werden, die einer Nachführung einer Sichtlinie nach dem Ziel entspricht. Es können dann durch die Bildverarbeitung "virtuelle Kardanwinkel" berechnet werden. Alle diese Größen, die unmittelbar noch nichts über den Bewegungszustand des Zieles im Raum aussagen, sind in dem Vektor z(t) zusammengefaßt.
Mit 20 ist ein strukturfestes Trägheits-Referenzsystem (IRS) bezeichnet. Das Trägheits-Referenzsystem 20 liefert Meßgrößen, welche in einem Vektor z M(t) zusammengefaßt sind. Diese Meßgrößen umfassen Beschleunigungen ªM und Winkel- Geschwindigkeiten pM, qM, rM Flugkörpers. Der Vektor z M(t) ist auf einen Rechner 22 aufgeschaltet, welcher aus den Meßgrößen z M(t) und der bekannten Kinematik des Flugkörpers einen Vektor x M(t) berechnet, der den Bewegungszustand, nämlich Position, Fluglage, und Geschwindigkeit und deren Änderungen wiedergibt. Dieser Vektor x M(t) von aus Messungen berechneten Meßgrößen entspricht dem Vektor x M(t), der sich aus der durch Block 24 dargestellten Flugkörper-Dynamik ergibt und symbolisch auf den Summierpunkt 18 geschaltet ist.
Statt eines Trägheits-Referenzsystems oder zusätzlich zu einem solchen kann in dem Flugkörper auch ein Empfänger für die Satelliten-Navigation (GPS-Empfänger) vorgesehen sein.
Die Vektoren z(t) von dem Suchkopf 16 und x M(t) von dem Rechner 22 beaufschlagen einen wissensbasierten, optimalen Schätzer 26. Der Schätzer 26 ist durch Einbringen von Wissen und Lernen so trainiert, daß er optimale Schätzwerte für die Relativbewegung zwischen Ziel und Flugkörper liefert. Diese Schätzwerte sind in einem Vektor x(t) zusammengefaßt. Die Schätzwerte umfassen nicht nur die Drehgeschwindigkeit der Sichtlinie sondern auch noch andere sich aus der Bildverarbeitung (z(t)) oder der Bewegung des Flugkörpers (x M(t)) ergebende Meßgrößen.
Die Querbeschleunigung ªM und die Winkelgeschwindigkeit ωM=[pM, qM, rM] des Flugkörpers sind, wie in Fig. 1 durch die Linie 31 dargestellt ist, auf den Flugregler 30 zurückgeführt.
Die Funktion des Schätzers ist nachstehend anhand von Fig. 4 näher erläutert.
In Fig. 4 symbolisiert ein Block 27 das von dem Suchkopf 16 erfaßtes Ziel in seiner Umwelt, d. h. die Lagekoordinaten, Geschwindigkeits- und Beschleunigungs-Komponenten, Winkelgeschwindigkeits-Komponenten, Fluglage usw. jeweils relativ zu dem Sucher und damit zu dem Flugkörper. Eine Funktion "f" bildet dieses "Ziel in Umwelt" 27 auf im Suchkopf verfügbare Meßsignale ab. Diese Meßsignale können z. B. folgende Größen umfassen: reale oder virtuelle Sucher- Rahmenwinkel sowie Größe, Form, Schwerpunkt, Lage und Intensität des Zielbildes oder Änderungen solcher Größen. Das sind Größen, die sich aus den mehr oder weniger hellen und dunkelen Pixeln des von dem Sucher des Suchkopfes erfaßten Bildes ergeben. Diese unmittelbar von dem Suchkopf gelieferten Größen umfassen nicht die tatsächlichen Lage­ und Bewegungsgrößen des Ziels. Um solche Lage- und Bewegungsgrößen zu gewinnen, müssen die Suchkopf-Meßsignale mit einer zu der Funktion "f" inversen Funktion "f-1" abgebildet werden. Dann erhält man eine verarbeitbare Information über die Bewegung des Ziels relativ zu dem Suchkopf bzw. Flugkörper. Diese Information ist in Fig. 4 durch einen Block 29 dargestellt. Die Funktion "f-1" muß gefunden werden.
Die Lösung dieses Problems ist nicht eindeutig und numerisch schlecht konditioniert. Eine algorithmische Bestimmung von "f-1" ist daher sehr schwierig, wenn nicht unmöglich. Aus diesem Grunde werden hier wissensbasierte Methoden zur Gewinnung eines Schätzwertes "f-1" der Funktion f-1 oder gleich des Vektors x(t) angewandt. Der Vektor x(t) enthält als Komponenten Schätzwerte der relativen Bewegungszustands-Größen, also der Größen, die den Bewegungszustand des Ziels relativ zu dem Suchkopf bzw. Flugkörper bestimmen. Zu diesem Zweck werden neuronale Netzwerke, unscharfe Logik (Fuzzy Logic) in Form von Fuzzy-Assoziativspeichern oder Fuzzy-Inferenz-Systeme oder auch eine Kombination von Neuro-Fuzzy-Techniken eingesetzt. Einfachere jedoch nicht so leistungsfähige Lösungen können auch mit einem erweiterten Kalman-Filter oder einem Fuzzy- Kalman-Filter erreicht werden.
Der auf diese Weise erhaltene Vektor x(t) wird nach einem durch einen Block 28 dargestellten optimalen Lenkgesetz verarbeitet und liefert kommandierte Beschleunigungen des Flugkörpers. Diese kommandierten Beschleunigungen sind in einem Vektor ªMC(t) zusammengefaßt. Die kommandierten Beschleunigungen beaufschlagen einen nichtlinearen Flugregler 30 des Flugkörpers. Der nichtlineare Flugregler 30 liefert Lenkkommandos, die zu einem Vektor u M(t) zusammengefaßt sind. Diese Lenkkommandos wirken auf das Lenksystem des Flugkörpers und erzeugen entsprechend der durch Block 24 dargestellten Flugkörper-Dynamik den durch Vektor x M(t) wiedergegebenen Bewegungszustand des Flugkörpers.
Der Aufbau des Lenksystems ist in Fig. 2 als Blockdiagramm dargestellt.
Der Suchkopf enthält einen bildauflösenden Sensor 32 mit einem in der Brennebene eines abbildenden optischen Systems angeordneten Matrix-Detektor mit einer zweidimensionalen Anordnung von Detektor-Elementen. Der Sensor 32 liefert ein Muster von Helligkeitswerten entsprechend dem von dem abbildenden optischen System auf dem Matrix-Detektor erzeugten Bild des Gesichtsfeldes. Der Sensor 32 bildet einen Teil einer Sensor-Baugruppe 34, die zusätzlich eine Baugruppe 36 zur Messung von Bewegungsgrößen (Beschleunigungen und Winkelgeschwindigkeiten) enthält. Die Sensor-Baugruppe 34 enthält eine signalverarbeitende Einrichtung 38 zur Signal-Verarbeitung der von der Baugruppe 36 gemessenen Bewegungsgrößen. Die Ausgangs-Daten der Einrichtung 38 an einem Ausgang 40 sind auf einen Eingang 42 einer signalverarbeitenden Einrichtung 44 geschaltet. Auf einen zweiten Eingang 46 der Einrichtung 44 sind die Ausgangs-Daten des bildauflösenden Sensors 32 geschaltet. Die signalverarbeitende Einrichtung 44 liefert ebenso wie die signalverarbeiende Einrichtung 38 an einem Ausgang 48 Daten, welche die Bewegungsgrößen des Flugkörpers wiedergeben. Die Daten an den Ausgängen 40 und 48 werden durch eine Datenfusions-Einrichtung 50 zur Erzielung optimaler Werte für die Bewegungsgrößen kombiniert. An einem Ausgang 52 der Sensor-Baugruppe 34 erscheinen unmittelbar die Ausgangs-Daten des bildauflösenden Sensors 32. An einem Ausgang 54 der Sensor- Baugruppe 34 erscheinen die optimierten Werte für die Bewegungsgrößen.
Die Sensor-Baugruppe 34 ist nach Art der DE-C-42 18 600 aufgebaut.
Nach der DE-C-42 18 600 werden aus dem "optischen Fluß" der von dem Sensor erfaßten Bilder durch trainierte neuronale Netze Daten erzeugt, welche die Bewegungsgrößen, also Geschwindigkeits-Vektor v und Winkelgeschwindigkeits-Vektor ω sowie Lagewinkel ψ, ϑ, ϕ oder Anstell- und Schiebewinkel α bzw. β des Flugkörpers wiedergeben. Zu diesem Zweck wird durch Messung der Zeitverläufe der Intensität an einer bestimmten Zahl von Detektor-Elementen des Sensors 34 ein Vektor c von Bewegungs-Parametern. Der Vektor c ist einerseits mit den durch die Bewegung des Flugkörpers und des Sensors 32 hervorgerufenen Intensitäten und andererseits mit den Bewegungsgrößen v und ω verknüpft. Die Elemente des Vektors c sind nichtlineare Funktionen der Bewegungsgrößen. Aus dem Vektor c werden die Bewegungsgrößen gewonnen.
Die Signale des Sensors 32 (oder eine bestimmte Anzahl dieser Signale) sind den Eingang 46 der Einrichtung 44 geschaltet. Die Einrichtung 44 enthält zwei neuronale Netze. Ein erstes neuronales Netz erhält als Eingangsdaten die gemessenen Intensitäten von ausgewählten Detektor- Elementen des Sensors 32. Diese Intensitäten sind zu einem Intensitäts-Vektor I zusammengefaßt. Das erste neuronale Netz ist so trainiert, daß es aus dem Intensitäts-Vektor die Bewegungsgrößen v und ω des Flugkörpers erzeugt.
Die beiden neuronalen Netze sind von unterschiedlichem Typ:
Wegen der räumlichen und zeitlichen Abhängigkeit des Vektors c der Bewegungs-Parameter von dem Intensitätsvektor I wird zur Bestimmung des Vektors c der Bewegungs-Parameter aus den Intensitäts-Verläufen ein rückgekoppeltes Netz verwendet. Ein solches Netz ist besonders für zeitliche und räumlich veränderliche Abbildungen geeignet. Zwischen den Bewegungs-Parametern des Vektors c und den Bewegungsgrößen v und ω des Flugkörpers besteht ein assoziativer Zusammenhang. Zu jedem Vektor c gehören bestimmte Werte von v und l. Zur assoziativen Speicherung dieses Zusammenhangs ist ein mehrschichtiges Netz mit ausschließlich Vorwärts- Verbindungen vorgesehen.
Die von der Baugruppe 38 ermittelten Bewegungsgrößen sind auch auf die neuronalen Netze aufgeschaltet. Diese Aufschaltung erfolgt in der Weise, daß Gewichte der beiden neuronalen Netze der signalverarbeitenden Einrichtung 44 im Sinne einer "Vorkenntnis" verändert werden.
Die von der bildverarbeitenden Einrichtung 44 erhaltenen Werte der Bewegungsgrößen und die durch Verarbeitung der Signale von der Baugruppe 36 erhaltenen Bewegungsgrößen sind auf die Datenfusions-Einrichtung 50 geschaltet. Die Datenfusions-Einrichtung 50 ist ein Prozessor der ein erweitertes ("extended") Kalman-Filter, ein neuronales Netzwerk oder ein Fuzzy-Neuronales Netzwerk beinhaltet. Die Datenfusions-Einrichtung wirkt als Bewegungsgrößen- Schätzer. Die Datenfusions-Einrichtung überlagert die Bewegungsgrößen-Information von der Baugruppe 36 mit der Bewegungsgrößen-Information von dem Sucher 32 und der signalverarbeitenden Einrichtung 44. Die von der Datenfusions-Einrichtung gelieferten Bewegungsgrößen sind optimale Schätzwerte, die sich aus den von der Baugruppe 36 und dem Sucher 32 abgeleiteten Bewegungsgrößen ergeben. Die Bestimmung der Bewegungsgrößen aus der Bildinformation des bilderfassenden Sensors 32 und die Bestimmung der Bewegungsgrößen durch die inertiale Baugruppe 36 stellen zwei einander vorteilhaft ergänzende Meßvorgänge dar. Die Bewegungsgrößen-Information von der Baugruppe 36 verbessert die Funktion der neuronalen Netze. Die Bewegungsgrößen werden auch bei Wegfall der Bild-Information etwa durch Wolken oder ein Kontrastloses Bild weiter gemessen.
Die inertiale Baugruppe 36 enthält eine Mehrzahl von inertialen Sensoren. Diese sind so angeordnet, daß sie von der gleichen inertialen Meßgröße, z. B. Beschleunigung, beaufschlagt sind. Die inertialen Sensoren sind Quarz- oder Silizium-Beschleunigungsmesser (QAS) und Quarz- oder Silizium- Drehgeschwindigkeits-Sensoren (QRS). Diese Sensoren sind an sich bekannt und enthalten jeweils einen miniaturisierten Resonator, dessen Resonanzverhalten durch die inertiale Meßgröße beeinflußt ist. Die Signale der Sensoren sind auf Signalverarbeitungs-Mittel mit einem neuronalen Netz geschaltet, das anhand von wirksamen inertialen Meßgrößen und zugeordneten Ausgangs-Meßsignalen trainiert ist. Zur Messung der inertialen Meßgröße über einen ausgedehnten Meßbereich hinweg ist eine Mehrzahl von Sensoren mit unterschiedlichen Meßbereichen vorgesehen, von denen jeder in einem Teilbereich des ausgedehnten Meßbereichs arbeitet. Zur Messung der inertialen Meßgröße in jedem Teilbereich ist ebenfalls eine Mehrzahl von im wesentlichen übereinstimmenden Sensoren vorgesehen, wobei die Meßgröße in dem Teilbereich aus Signalen aller dieser Sensoren ausgebildet ist.
Eine in der beschriebenen Weise aufgebaute Sensor-Baugruppe weist, wie geschildert, besondere Vorteile auf. Die Anwendbarkeit des hier allgemein beschriebenen Lenksystems ist jedoch nicht auf diese Art der Sensor-Baugruppe beschränkt. Statt dessen könnte auch ein einfacher bilderfassender Sensor in Verbindung mit einem konventionellen Trägheits-Referenzsystem verwendet werden.
Mit 56 ist eine übliche Bildverarbeitung bezeichnet. Die Bildverarbeitung 56 erhält unmittelbar die Bild­ informationen von den Detektor-Elementen des bildauflösenden Sensors 32. Die Bildverarbeitung 56 erkennt ein Ziel und liefert dessen Bildablage. Die Ausgangs-Daten der Bildverarbeitung 56 sind auf eine signalverarbeitende Einrichtung 58 geschaltet, welche eine "virtuelle" Ausrichtung des Sensors 32 auf das Ziel vornimmt. Der Sensor 32 ist strukturfest an dem Flugkörper angeordnet. Der Sucher 32 bewegt sich daher mit dem Flugkörper im Raum. Bewegungen des Flugkörpers führen zu scheinbaren Bewegungen des Ziels in dem vom Sensor 32 erfaßten Bild. Diese scheinbaren Bewegungen werden in der Bildverarbeitung 56 dadurch kompensiert, daß auf die Bildverarbeitung 56 zusätzlich die Bewegungsgrößen von der Datenfusions- Einrichtung 50 aufgeschaltet sind. Es erfolgt dabei eine Koordinaten-Transformation der Koordinaten der verschiedenen Bildelemente (Pixel) nach Maßgabe der Winkelbewegung des Flugkörpers, derart, daß der inertiale Raum im so transformierten Gesichtsfeld stillstehend erscheint. Bewegungen des Ziels in dem transformierten Gesichtsfeld beruhen auf Bewegungen des Ziels im inertialen Raum. Das ist die "Strap-Down"-Analogie zu der Kreisel- Stabilisierung eines den Sensor 32 tragenden Rahmens im inertialen Raum, durch welche der Sensor mechanisch von den Bewegungen des Flugkörpers entkoppelt würde.
Das Ziel hat üblicherweise eine Zielablage, d. h. es liegt nicht z. B. in der Mitte des transformierten Gesichtsfeldes. Bei einen kreiselstabilisierten Sensor entspräche dies dem Zustand, daß der Sensor nicht genau auf das Ziel ausgerichtet ist, das Ziel also nicht auf der optischen Achse des abbildenden optischen Systems liegt. Es erfolgt dann eine Nachführung eines "virtuellen Rahmens" derart daß der Sensor auf dem "virtuellen Rahmen" dem Ziel nachgeführt wird. Das ist praktisch ein Algorithmus für eine weitere Koordinaten-Transformation die in Abhängigkeit von der Zielablage ständig so erfolgt, daß die Zielablage praktisch auf null gehalten wird. In Fig. 2 ist dieser Algorithmus als Regler 58 dargestellt. Auf den Regler 58 ist als Eingang die Zielablage von dem Ausgang 60 der Bildverarbeitung 56 aufgeschaltet. Der Regler 58 liefert an einem Ausgang 62 Signale, welche den Sensor auf dem "virtuellen Rahmen" auf das Ziel ausgerichtet halten. Diese Signale sind in einer Regelschleife 64 auf die Bildverarbeitung 56 aufgeschaltet. Diese Signale liefern gleichzeitig ein Maß für die Winkelgeschwindigkeit der Sichtlinie zum Ziel.
Eine solche "Ausrichtung" eines "virtuellen Rahmens" auf ein Ziel ist beispielsweise bekannt durch die oben erwähnten Dokumente US-A-5,253,823 und DE-C-43 39 187. Das hier beschriebene Lenksystem braucht aber nicht notwendig mit einem solchen Sucher mit "virtueller Plattform" zu arbeiten. Es kann auch eine andere Art der Bildverarbeitung erfolgen.
Die Winkelgeschwindigkeit der Sichtlinie, die Rahmenwinkel und, wie im Zusammenhang mit Fig. 1 erläutert wurde, andere Meßgrößen sind auf einen "lernenden Autopiloten" 66 aufgeschaltet. Der lernende Autopilot 66 umfaßt die Blöcke 26, 28 und 30 von Fig. 1. Die von dem Autopilot 66 gelieferten Lenksignale sind auf Stellmotoren aufgeschaltet, durch welche eine Lenkung des Flugkörpers 68 erfolgt. Die Stellmotoren sind in Fig. 2 als ein Block 70 "Stellmotor-Baugruppe" dargestellt.
Wie aus Fig. 3 ersichtlich ist, wird der Flugkörper auf drei Arten gelenkt. Es erfolgt eine aerodynamische Lenkung durch den Ausschlag von Steuerflächen 72. Der Ausschlag der Steuerflächen 72 bewirkt eine Änderung des Anstellwinkels. Diese Änderung des Anstellwinkels bewirkt wiederum eine Querbeschleunigung. Diese konventionelle Art der Lenkung ist vergleichsweise träge. Weiter erfolgt eine Lenkung durch Änderung des Schubvektors 74. Auch hierdurch wird der Anstellwinkel verändert. Schließlich wird durch seitlich am Flugkörper angeordnete Schubdüsen 76 unmittelbar ein Querschub des Flugkörpers 68 erzeugt. Dieser Querschub ist in Fig. 3 durch einen Vektor 80 dargestellt. Es ergibt sich eine resultierende Querbeschleunigung, die in Fig. 3 durch einen Vektor 82 dargestellt ist.
Die drei Arten der Lenkung werden so kombiniert, daß der Flugkörper in optimaler Weise auf das Ziel geführt wird. Der Grad der Anwendung jeder der drei Arten von Lenkung ist analytisch nur sehr schwer zu bestimmen. Aus diesem Grund ist der Autopilot als lernender Autopilot ausgebildet, der zur Erzeugung optimaler Lenksignale für jede der drei Arten von Lenkung und deren Kombinationen trainiert ist.
Durch die beschriebene Lenkung wird die Treffergenauigkeit des Flugkörpers wesentlich verbessert. Die verbesserte Treffergenauigkeit gestattet die Verwendung kleinerer Flugkörper. Die Verkleinerung des Flugkörpers erhöht wiederum die Manövrierfähigkeit des Flugkörpers.
Fig. 1 zeigt den Block 28 "Optimales Lenkgesetz" und den Block 30 "Flugregler". In beiden Fällen handelt es sich prinzipiell um "Regler" mit einem auf null zu regelnden Eingang und einem den Eingang beeinflussenden Ausgang. In beiden Fällen sind die Regler nichtlinear. In beiden Fällen ist der Zusammenhang zwischen Eingangs-Größe und Ausgangs- Größe im gesamten Regelbereich nur sehr schwer algorithmisch darstellbar. Für beide "Regler" können daher ähnliche wissensbasierte und lernende Strukturen angewandt werden, wenn auch die Auslegung dieser Strukturen zur Erzielung des optimalen Lenkgesetzes und für den Flugregler im allgemeinen unterschiedlich ist.
Die Ähnlichkeit der Blöcke 28 und 30 als "Regler" ist nachstehend anhand der Fig. 5 und 6 erläutert.
Fig. 5 zeigt den nichtlinearen Flugregler 30 und seinen Regelkreis, wobei der Einfachheit halber jeweils nur eine Komponente von Beschleunigung und Winkelgeschwindigkeit, nämlich eine Seitenbewegung, berücksichtigt ist.
Der Flugregler 30 erhält als Führungsgröße eine kommandierte Querbeschleunigung ac. Dieser Führungsgröße ac ist eine gemessene Querbeschleunigung aM am Eingang des Flugreglers entgegengeschaltet. Das ist durch den Summierpunkt 84 und die Schleife 86 in Fig. 5 dargestellt. Die gemessene Querbeschleunigung ac bildet eine Komponente des Vektors z M(t) in Fig. 5, die über die Verbindung 31 auf den Eingang des Flugreglers 30 geschaltet ist. In entsprechender Weise ist in Fig. 5 die Komponente rM der von dem Trägheits-Referenzsystem 20 in Fig. 1 gemessenen Winkelgeschwindigkeit des Flugkörpers 68 auf den Eingang des Flugreglers zurückgeführt. Die Komponente rM bildet auch eine Komponente des Vektors z M(t) und wird über die Verbindung 31 übertragen. Der Flugregler 30 liefert in Fig. 5 eine auf die Dynamik des Flugkörpers einwirkende Stellgröße ζ, die wieder eine Komponente des Stellgrößen- Vektors u M(t) in Fig. 1 ist.
In ähnlicher Weise bildet das "optimale Lenkgesetz" einen "Regler". Das ist in Fig. 6 wieder für nur eine Komponente dargestellt.
"Führungsgröße" ist hier die Querbeschleunigung aT des Ziels. Diese wird im "Summierpunkt" verglichen mit der Querbeschleunigung aM des Flugkörpers. "Meßfühler" für Abweichungen von Regel- und Führungsgröße ist hier der Sensor 32 des Suchkopfes 16 und der nachgeschaltete Schätzer 26. Der "Meßfühler" liefert das Eingangssignal des "Reglers" 28 in Form des geschätzten Vektors x(t), welcher die Relativbewegung des Ziels zu dem Flugkörper wiedergibt. Das sind vor allem Änderungen der Sichtlinie zum Ziel. Diese Änderungen werden auf null geregelt. Das geschieht dadurch, daß nach einem durch Block 28 vorgegebenen optimalen Lenkgesetz Lenkkommandos, z. B. ac auf den nachgeschalteten Flugregler gegeben werden, welche dieser Änderung entgegenwirken, die Differenz x(t) am Summierpunkt 18 also zu null machen. Grundsätzlich geht es auch wieder darum, mit den Bewegungen des Flugkörpers den Bewegungen des Ziels zu folgen und die Sichtlinie raumfest zu halten. Das ist aber bei hoch-manövrierfähigen Zielen und schnellen Flugkörpern nicht einfach mit einer Proportionalität zwischen Sichtlinien-Drehgeschwindigkeit und Lenkkommando sondern erfordert kompliziertere Zusammenhänge. Der Flugregler könnte hier auch ein konventioneller Flugregler sein.
Aus den Fig. 5 und 6 ist erkennbar, daß sowohl das optimale Lenkgesetz als auch der Flugregler 30 in einem geschlossenen Regelkreis liegen und die Funktion eines "Reglers" haben. Die Strukturen, welche Lernen und Nichtlinearitäten gestatten, können daher für beide Teile 28 und 30 der wissensbasierten Signalverarbeitungs-Einheit anwendbar sein. Nachstehend sind einige Beispiele für solche Strukturen unter Bezugnahme auf die Fig. 7 bis 18 im einzelnen dargestellt. Die Beispiele sind sowohl für den Flugregler 30 als auch für das "optimale Lenkgesetz" anwendbar, auch wenn die Strukturen der Anschaulichkeit halber im allgemeinen anhand des Flugreglers 30 erläutert sind.
Es ist bekannt, die Parameter des verwendeten Flugreglers (30 in Fig. 5) flugzustandsabhängig anzupassen. Man bezeichnet diese Methode als "Gain-Scheduling". Diese Methode ist auch bei einer Anordnung nach Fig. 1 und 2 anwendbar. Dabei muß aber der funktionale Zusammenhang zwischen den Flugzustandsgrößen wie der Machzahl, der Höhe, dem Anstell- oder Schiebewinkel usw. und den Parametern des Flugreglers bekannt sein. Die Parameter können in einem Speicher oder regelbasiert in einem Fuzzy-Inferenz-System abgelegt sein. Die Parameter können aber auch von einem neuronalen Netzwerk oder einem mit unscharfer Logik arbeitenden (Fuzzy) neuronalen Netzwerk erlernt und gespeichert werden. Damit kann die algorithmische Modellierung der Zusammenhänge entfallen.
Diese Methode hat jedoch bei bestimmten Reglern, z. B. H-Reglern, Nachteile. Mit dem betreffenden Regler kann die charakteristische Gleichung des Regelkreises derart strukturiert sein, daß bei bestimmten Parameter-Variationen durch deren Verknüpfung in der charakteristischen Gleichung die Stabilität des Regelkreises reduziert oder aufgehoben wird.
Eine andere, in dieser Hinsicht günstigere Struktur des Reglers zeigt Fig. 7. Hier werden mittels neuronaler Netzwerke die Parameter eines Reglers (Flugreglers) so verändert, daß das Verhalten des Regelkreises einem vom Flugzustand abhängigen Referenz-Modell entspricht.
Die Grundstruktur enthält wieder einen Regler (Flugregler) 116 und eine Regelstrecke 118 mit Rückführung von aM und r ähnlich wie in Fig. 5.
Über ein flugzustandsabhängiges Referenz-Modell wird ein Soll-Verhalten des Regelkreises vorgegeben. Das Referenz- Modell ist in Fig. 7 durch einen Block 104 dargestellt. Auf den Block 104 sind über Eingänge 106 die den Flugzustand kennzeichnenden Größen aufgeschaltet. Das Referenzmodell 104 kann als Übertragungsfunktion in Form eines Algorithmus oder als dynamisches neuronales Netzwerk realisiert sein. Das Referenz-Modell 104 ist von dem Lenksignal, d. h. von der kommandierten Querbeschleunigung ac beaufschlagt. Es liefert an einem Ausgang 108 einen Querbeschleunigungs-Wert ag, welcher der Querbeschleunigung entspricht, die bei einem gewünschten Verhalten des Regelkreises aus Flugregler und Regelstrecke auftreten würde. Diese Querbeschleunigung ag wird in einem Summierpunkt 110 verglichen mit der an der Regelstrecke (am Flugkörper) 118 tatsächlich auftretenden Querbeschleunigung aM verglichen. Die Differenz ΔaM beaufschlagt ein erstes neuronales Netzwerk 112. Auf das neuronale Netzwerk 112 ist weiterhin über Eingang 114 die Stellgröße ζ des Reglers 116 aufgeschaltet. Das Netzwerk ist als dynamisches, neuronales Netzwerk realisiert. Es modelliert das nicht-lineare, dynamische Verhalten der Regelstrecke 118 zusammen mit der inversen Abhängigkeit von Änderungen der Stellgröße infolge von Änderungen der Parameter des Reglers 116. Dieses Modell ist in einer Trainingsphase als Wissen erworben worden. Das erste neuronale Netzwerk 112 verändert die Gewichte eines zweiten neuronalen Netzwerkes 120. Das zweite neuronale Netzwerk 120 verknüpft die den Flugzustand kennzeichnenden Größen an Eingängen 122 mit den Parametern des Reglers 116 und stellt sich flugzustandsabhängig ein. In Fig. 7 ist das dadurch dargestellt, daß der Ausgang 124 des neuronalen Netzwerkes 112 mit einem Pfeil 126 an dem das neuronale Netzwerk 120 darstellenden Block verbunden ist und der Ausgang 128 mit einem Pfeil 130 an dem den Flugregler 116 darstellenden Block verbunden ist. Das zweite neuronale Netzwerk 120 ist ein statisches Netzwerk, das beispielsweise als "Feedforward"-Netzwerk realisiert sein kann. Das zweite neuronale Netzwerk 120 modelliert die Abhängigkeit der Parameter des Reglers vom Flugzustand.
Eine weitere bei der Vorrichtung von Fig. 1 und 2 sowohl für den Flugregler als auch zur Darstellung des "optimalen Lenkgesetzes" anwendbare Struktur des Reglers ist in den Fig. 8 bis 12 dargestellt.
Optimales und stabiles Verhalten eines Reglers hängt vom Flugzustand ab. Es wäre wünschenswert, den Arbeitspunkt eines nicht-linearen oder robusten linearen Reglers (H-Reglers) im Raum der Flugzustandsgrößen auf den jeweiligen Flugzustand zu legen. Um diesen Zustand anzunähern, sind bei der Ausführung von Fig. 8 eine Mehrzahl n von Reglern vorgesehen, deren Arbeitspunkte in geeigneter Weise über den Regelbereich im Raum der Flugzustandsgrößen verteilt sind. Das sind in Fig. 8 die Regler 130.1, 130.2 . . . 130.n. Fig. 9 zeigt schematisch die Lage von drei solchen Arbeitspunkten 132.1, 132.2 und 132.3 in einem Regelbereich 134. Der Einfachheit der Darstellung halber sind hier nur zwei Flugzustandsgrößen, nämlich die Flughöhe h und die Machzahl Ma berücksichtigt. Der "Raum" der Flugzustandsgrößen kann natürlich vieldimensional sein. Jeder der Regler 130.1, 130.2 . . . 130.n liefert eine Stellgröße ζ₁, ζ₂ . . . ζn. Die Ausgangs-Stellgröße der gesamten Regler-Anordnung 136 ist
ζ = f(ζ₁ ζ₂ . . . ζn.
Im einfachsten Fall ist die Ausgangs-Stellgröße ζ eine Linearkombination der Stellgrößen der einzelnen Regler 130.1, 130.2 . . . 130.n, beispielsweise für drei Rechner:
ζ = acζ₁ + bcζ₂ + ccζ₃.
Die Überlagerung geschieht mittels eines Überlagerungs- Elementes 138, auf welches die Stellgrößen der Regler 130.1, 130.2 . . . 130.n aufgeschaltet sind. Das Überlagerungs-Element 138 liefert die Ausgangs-Stellgröße ζ an einem Ausgang 140.
Eine mögliche Ausbildung des Überlagerungs-Elementes 138 ist nachstehend unter Bezugnahme auf die Fig. 9 bis 12 beschrieben.
In der schematischen Darstellung von Fig. 9 und 10 ist ein zweidimensionaler Arbeitsraum mit den Größen Höhe h und Machzahl Ma aufgespannt. Der Regelbereich 134 enthält z. B. neun Arbeitspunkte (jeweils von einem zugehörigen Bereich umgeben). Die Arbeitspunkte sind in Fig. 9 und 10 mit "1" bis "9" bezeichnet. Die Arbeitspunkte "1", "5" und "9" entsprechen dabei den Arbeitspunkten 132.1, 132.2 und 132.3 der Regler 130.1, 130.2 bzw. 130.3. Den verschiedenen um die Arbeitspunkte "1" bis "9" gebildeten Bereichen werden "linguistische" Werte der Flugzustandsgrößen h und Ma zugeordnet. Diese Werte sind hier "klein" (S), mittel (M) und groß (L). Wie aus Fig. 11 ersichtlich ist, ist jedem der Bereiche eine "Zugehörigkeits-Funktion" m zugeordnet. Die Zugehörigkeits-Funktionen sind durch die Kurven 142, 144 und 146 für die Bereiche S, M bzw. L der Höhe h und durch die Kurven 148, 150 und 152 für die Bereiche S, M und L der Machzahl Ma wiedergegeben. Wie aus Fig. 10 ebenfalls ersichtlich ist, überlappen sich die verschiedenen Bereiche etwas. Es kann also sein, daß ein bestimmter Wert z. B. der Höhe h zu einem gewissen, sich aus der Zugehörigkeits- Funktion 142 ergebenden Grad "klein" ist, also dem Bereich S angehört, und zu einem gewissen Grad "mittel" ist, also dem Bereich M angehört.
In Fig. 11 ist der Vorgang der Bestimmung der Zugehörigkeitsgrade der Flugzustandsgrößen h und Ma ("Fuzzifizieren") durch einen Block 154 dargestellt. Die dabei nach Maßgabe von Zugehörigkeits-Funktionen m erhaltenen Zugehörigkeitsgrade der Flugzustandsgrößen zu den in Fig. 10 gezeigten linguistischen Wertebereichen werden einer Regelbasis 156 zugeführt.
Die Regelbasis 156 enthält gespeichert Inferenz-Regeln in der Form "Wenn . . dann" (If . . then). Für die verschiedenen Arbeitspunkte oder Bereiche "1" bis "9" wird festgelegt:
"1" Wenn Ma = S und h = S, dann ζ₁ = a₁ζ₁ + b₁ζ₂ + c₁ζ₃ + d₁
"2" Wenn Ma = S und h = M, dann ζ₂ = a₂ζ₁ + b₂ζ₂ + c₂ζ₃ + d₂
. . .
"9" Wenn Ma = L und h = L, dann ζ₉ = a₉ζ₁ + b₉ζ₂ + c₉ζ₃ + d₃.
Es müssen nun die Koeffizienten ai, bi, ci und di (i = 1, 2,. . .9) bestimmt werden. Zu diesem Zweck sind (für di = 0) weitere Regeln vorgegeben und in der Regelbasis 156 gespeichert, durch welche den Koeffizienten ebenfalls linguistische Werte "klein" (S), "mittel" (M) und "groß" (L) zugeordnet werden. Diese Regeln lauten:
"1" Wenn Ma = S und h = S, dann a₁ = b, b₁ = M, c₁ = S
"2" Wenn Ma = S und h = M, dann a₂ = M, b₂ = M, c₂= S
. . .
"9" Wenn Ma = L und h = L, dann a₁ = S, b₁ = M, c₁ = L.
Dabei sind die ai, bi, ci entweder null oder kleiner als 1.
Entsprechend den Zugehörigkeits-Funktionen der Flugzustandsgrößen kann ein Wert der Flugzustandsgröße mit einem bestimmten Zugehörigkeitsgrad u. U. mehreren der Bereiche S, M und L angehören. Dementsprechend können mit einem entsprechenden Gewicht mehrere der vorstehend angegebenen Regeln für die Koeffizienten ai, bi, ci anwendbar sein. Aus den Zugehörigkeits-Funktionen der Koeffizienten können dann nach bekannten Methoden der unscharfen Logik (vgl. z. B. die DE-A-42 40 789) scharfe Werte für die einzelnen Koeffizienten in Abhängigkeit von der Lage des durch die Flugzustandsgrößen im Arbeitsbereich des Reglers relativ zu den Arbeitspunkten 132.1, 132.2 und 132.3 der Regler 130.1, 130.2 . . . bestimmt werden. Diese "Defuzzifizierung" ist in Fig. 12 durch einen Block "Defuzzyfizierer" 158 dargestellt. Der Defuzzyfizierer 158 liefert einen Vektor scharfer Koeffizienten [ac, bc, cc].
Damit wird in der in Fig. 12 dargestellten Weise ein Regler- Ausgangssignal ζ erzeugt. In Fig. 12 ist das in Fig. 11 dargestellte Fuzzy-Inferenzsystem mit 160 bezeichnet. Auf das Fuzzy-Inferenzsystem 160 sind die Flugzustandsgrößen Ma und h aufgeschaltet. Das Fuzzy-Inferenzsystem 160 liefert bei drei Reglern 130.1, 130.2 und 130.3 die drei Koeffizienten ac, bc und cc. Eine Schaltung 162, auf welche die drei Koeffizienten ac, bc und cc und die Ausgangs- Signale ζ₁, ζ₂ und ζ₃ der drei Regler 130.1, 130.2 bzw. 130.3 aufgeschaltet sind, bildet die Linearkombination dieser Ausgangssignale ζ₁, ζ₂ und ζ₃ mit den Koeffizienten ac, bc und cc und liefert diese als Regler-Ausgangssignal ζ an einem Ausgang 164.
Die heuristisch gefundene Zuordnung der linguistischen Wertebereiche zu den Koeffizienten der Linearkombination in den Konsequenzteilen der oben angegebenen Regeln kann bei extrem gekrümmten nicht-linearen und zeitvariablen Regelflächen im Arbeitsraum an bestimmten Arbeitspunkten zu einem unbefriedigenden Regelverhalten führen. Diese Schwierigkeiten werden bei der Anordnung von Fig. 13 vermieden. Bei dieser Anordnung werden die Koeffizienten ai, bi, ci und di eines Systems der in Fig. 8 dargestellten Art systematisch erlernt. Zu diesem Zweck werden in einer Simulation ausgehend von den z. B. drei Reglern 130.1, 130.2 und 130.3 in Fig. 8 für drei ausgewählte Arbeitspunkte 132.1, 132.2 bzw. 132.3 in Fig. 9 eine Vielzahl von im Arbeitsraum verteilten Arbeitspunkten angefahren. Die Koeffizienten des Fuzzy-Inferenz-Systems 160 werden dabei nach einem Gütekriterium für das Gesamtverhalten optimiert.
Fig. 13 zeigt eine Netzwerk-Struktur eines solchen lernenden Fuzzy-Inferenz-Systems.
An Eingängen 166 und 168 sind die Flugzustandsgrößen Machzahl Ma und Höhe h aufgeschaltet. Die Flugzustandsgrößen sind in der unter Bezugnahme auf Fig. 10 erläuterten Weise in linguistische Werte S, M und L umgesetzt. Das ist in Fig. 13 durch die entsprechend gekennzeichneten Prozessoren 170 bzw. 172 dargestellt, welche die jeweiligen Zugehörigkeits-Funktionen modellieren. Die Ausgangsgrößen der Prozessoren 170 bzw. 172 sind die Zugehörigkeitsgrade der den linguistischen Werten entsprechenden Zugehörigkeits-Funktionen für die an dem jeweiligen Eingang anliegende Flugzustandsgröße Ma oder h.
Eine Schicht 174 besteht aus Prozessor-Einheiten Π, die die jeweils eine der oben angegebenen neun Regeln repräsentieren. Die einzelnen Prozessor-Einheiten Π der Schicht 174 sind abhängig von dem Bedingungsteil der jeweiligen Regel (Wenn) mit je einem die Zugeörigkeits- Funktion repräsentierenden Prozessoren 170 und 172 verbunden. Die Ausgangswerte der Prozessor-Einheiten Π sind die "Aufschaltstärken" w₁ . . . w₉ der jeweiligen Regel, die sich als Produkt der Zugehörigkeitsgrade (Eingangsverbindungen der Π-Blöcke) ergeben.
Eine Schicht 176 enthält Prozessor-Einheiten N, welche die relativen Erfüllungsgrade wi der einzelnen Regeln berechnen.
Die Prozessor-Einheiten in der nachfolgende Schicht 178 bildet die Produkte der relativen Erfüllungsgrade wi und einer Linearkombination ζi der scharfen Stellgrößen ζ₁, ζ₂ und ζ₃ der drei Regler.
Diese Produkte wiζi werden in einer weiteren Schicht 180 summiert und liefern an einem Ausgang 182 den Regler- Ausgangswert, d. h. die Stellgröße ζ.
Die Anordnung von Fig. 13 verwendet einen hybriden Lernalgorithmus, um die Zugehörigkeits-Funkionen der Eingangsgrößen und die Koeffizienden der Linearkombination zu trainieren. Das ist in Fig. 13 durch die Pfeile 184 bzw. 186 angedeutet. Bei dem Lernverfahren erfolgt eine Optimierung der Zugehörigkeits-Funktionen in Abhängigkeit von dem Fehler zwischen optimaler und tatsächlicher Stellgröße ζ. Die Koeffizienten der Linearkombination werden für einen bestimmten Trainingsdaten-Satz nach der Methode der kleinsten Fehlerquadrate bestimmt.
Zur Kombination der Signale der einzelnen Regler 130.1, 130.2 . . . 130.n kann auch ein neuronales Netzwerk benutzt werden. Eine solche Anordnung ist in Fig. 14 dargestellt. Das neuronale Netzwerk ist in Fig. 15 mit 190 bezeichnet. Auf das neuronale Netzwerk 190 sind an Eingängen 192 und 194 die Flugzustandsgrößen Machzahl Ma und Höhe h aufgeschaltet. Es können natürlich außer diesen beiden Flugzustandsgrößen noch weitere den Flugzustand kennzeichnende Größen aufgeschaltet werden. Weiterhin erhält das neuronale Netzwerk 190 von den Reglern 130.1, 130.2 . . . 130.n die Ausgangssignale ζ₁, ζ₂ . . . ζn. Das neuronale Netzwerk 190 ist ein Feedforward-Netzwerk. Ein solches Netzwerk ist in der Lage, jeden beliebigen nicht­ linearen Zusammenhang "fN" zwischen den Eingangsgrößen des Netzwerkes und seiner Ausgangsgröße, hier der Regler- Ausgangsgröße ζ (Stellgröße) zu erlernen. Damit bildet es, ausgehend von Reglern, die für die betrachteten Arbeitspunkte 132.1, 132.2 . . . ausgelegt sind, jede beliebige nicht-lineare Regelfläche im Arbeitsraum nach. Die Regler-Ausgangsgröße ζ erscheint an einem Ausgang 196. Die Abbildungsfunktion "fN" wird während einer off-line Trainingsphase erlernt.
Eine andere Struktur des Reglers ist in Fig. 15 dargestellt. In Fig. 15 ist hier als Regler 200 beispielsweise ein linearer H-Regler vorgesehen. Der Regler 200 ist durch ein dynamisches neuronales Netzwerk 202 ergänzt.
Auf den Eingang des H-Reglers ist die in einem Summierpunkt 204 gebildete Differenz einer kommandierten Querbeschleunigung ac (oder einer sonstigen Führungsgröße) und einer an einer Regelstrecke (dem Flugkörper) gemessenen Querbeschleunigung aM aufgeschaltet. Weiterhin erfolgt über eine Rückführschleife 207 eine Rückführung z. B. der gemessenen Gier-Drehgeschwindigkeit rM. Der H-Regler 200 liefert an einem Ausgang 206 eine Regler-Stellgröße ζR.
Mit 208 ist ein Referenz-Modell ähnlich wie in Fig. 7 bezeichnet. Das Referenz-Modell ist an einem Eingang 210 von der kommandierten Querbeschleunigung ac beaufschlagt. An Eingängen 212 des Referenz-Modells 208 liegen die Flugzustandsgrößen. Das Referenz-Modell liefert an einem Ausgang 214 eine gewünschte Referenz-Regelgröße (Querbeschleunigung) ag. Die Referenz-Querbeschleunigung ag wird in einem Summierpunkt 216 mit der an der Regelstrecke (Flugkörper) gemessenen Querbeschleunigung aM verglichen. In Abhängigkeit von der Differenz ΔaM können die Gewichte des neuronalen Netzwerkes verändert werden.
Auf das dynamische neuronale Netzwerk 202 ist an einem Eingang 218 die kommandierte Querbeschleunigung ac aufgeschaltet. An einem Eingang 220 des neuronalen Netzwerkes liegt die rückgeführte, gemessene Gier- Drehgeschwindigkeit rM. An einem dritten Eingang 222 des neuronalen Netzwerkes 202 liegt die Differenz von kommandierter und gemessener Querbeschleunigung, die im Summierpunkt 204 gebildet und auf den Regler 200 aufgeschaltet ist. An einem Eingang 224 des neuronalen Netzwerkes liegt schließlich die Stellgröße ζR, die von dem Regler 200 geliefert wird. Das neuronale Netzwerk 202 liefert als Ausgangsgröße eine Stellgröße ζN an einem Ausgang 226. In einem Summierpunkt 228 werden die Stellgröße ζR des Reglers 200 und die Stellgröße ζN des neuronalen Netzwerkes 202 überlagert. Dadurch entsteht eine Stellgröße ζ des Gesamtreglers, welche die Regelstrecke 230 beaufschlagt.
Der H-Regler 200 sorgt zunächst einmal für eine stabile Grundkonfiguration des Regelkreises in einem bestimmten Arbeitspunkt. Die zu erwartenden Störungen können bei der Auslegung dieses Reglers 200 von vornherein berücksichtigt werden. Durch die Erweiterung um ein dynamisches neuronales Netzwerk kann der Gesamtregler Nichtlinearitäten oder zeitvariable Parameter und Abweichungen der Störungen von den bei dem Entwurf des H-Reglers gemachten Annahmen berücksichtigen. Der Regler 200 verhält sich zusammen mit dem neuronalen Netzwerk 202 in allen Arbeitspunkten so, wie es durch das Referenz-Modell 208 des Regelkreises vorgegeben ist.
Das neuronale Netzwerk 202 wird in einer off-line Trainingsphase trainiert. Wenn zeitvariante Eigenschaften der Regelstrecke dies erfordern, kann das neuronale Netzwerk 202 während des Einsatzes fortlaufend weiter lernen. Als "Lernsignal" dient in beiden Fällen die Differenz zwischen der Ausgangsgröße des Regelkreises, d. h. im vorliegenden Beispiel einer gemessene Querbeschleunigung aM eines Flugkörpers, und der Referenz-Querbeschleunigung ag. Das neuronale Netzwerk erlernt im Arbeitsraum die Abweichungen der nicht-linearen Regelfläche von der linearen Regelfläche, die der H-Regler 200 im Arbeitsraum erzeugt.
Es ist vorstellbar, daß das dynamische neuronale Netzwerk die nicht-lineare Regelfläche im Arbeitsraum direkt und nicht nur deren Abweichungen von der durch den H-Regler 200 gegebenen linearen Regelfläche erlernt. In diesem Fall könnte der H-Regler 200 entfallen.
Fig. 16 zeigt ein Beispiel eines für die Anwendung in der Anordnung von Fig. 15 geeigneten, dynamischen neuronalen Netzwerkes. Das Netzwerk von Fig. 17 ist ein dynamisches Netzwerk mit mehreren Schichten und ausschließlich Vorwärtsvernetzung. Eingangsgrößen sind über Eingänge 232 auf eine Eingangsschicht 234 aufgeschaltet. Jedes der Elemente der Eingangsschicht 234 ist über gewichtete Verbindungen 236 mit jedem Element einer ersten verborgenen Schicht 238 verbunden. Jedes der Elemente der ersten verborgenen Schicht 238 ist wiederum mit jedem der Elemente einer (nicht dargestellten) weiteren verborgenen Schicht oder der Ausgangsschicht 240 verbunden. An Ausgängen 242 der Ausgangsschicht erscheinen Ausgangsgrößen des neuronalen Netzwerkes. Die Ausgangsgrößen werden, wie durch Block 244 dargestellt ist, zur Bildung der Stellgröße ζN kombiniert. An den in Fig. 16 oberen Eingängen liegen die Größen, die in Fig. 15 an den Eingängen 218, 220, 222 und 224 anliegen. Die Ausgangsgrößen sind außerdem über ein Verzögerungsglied 246 um einen Rechnertakt verzögert in einer Rückführschleife 248 auf die in Fig. 16 unteren Eingänge geschaltet. Durch diese verzögerte Rückführung wird das dynamische Verhalten des neuronalen Netzwerkes erreicht.
Die Verbindungsgewichte werden nach einem durch Block 250 dargestellten Lern-Algorithmus gelernt, wobei als Eingangsgröße für den Lern-Algorithmus 250 die Differenz ΔaM wie in Fig. 15 dient.
Eine weitere mögliche Struktur des Reglers ist in Fig. 17 dargestellt.
Der Regler ist in Fig. 17 generell mit 260 bezeichnet. Mit 262 ist eine Regelstrecke bezeichnet. Eine Führungsgröße, beispielsweise im Falle eines Flugreglers die kommandierte Querbeschleunigung ac wird in einem Summierpunkt 264 mit der entsprechenden, an der Regelstrecke 262 gemessenen Regelgröße, in dem Beispiel der gemessenen Querbeschleunigung aM verglichen. Die Differenz ist auf den Eingang 266 des Reglers 260 geschaltet. In dem Regler 260 ist ein Regelwerk mit Regeln der "Wenn. . .dann"-Form in unscharfer Logik gespeichert. Dieses Regelwerk ist in Fig. 17 durch einen Block 268 dargestellt. Der Regler 260 enthält weiterhin ein erstes neuronales Netzwerk 270 und ein zweites neuronales Netzwerk 272.
Das erste neuronale Netzwerk 270 ist einmal über Verbindung 274 von der Differenz ac-aM von kommandierter und gemessener Querbeschleunigung und zum anderen über Verbindung 276 von der Stellgröße ζ am Ausgang 278 des Reglers 260 beaufschlagt. Das neuronale Netz 272 wird angesteuert mit einer Größe ag, die sich als Gütekriterium aus der kommandierten Querbeschleunigung ac und der gemessenen Querbeschleunigung aM ergibt. Die Bildung der Gütekriteriums-Funktion ist durch einen Block 280 dargestellt. Die beiden Größen ac und aM liegen an Eingängen 282 bzw. 284 des Blocks 280 an. Die Größe ag erscheint an einem Ausgang 286 des Blocks 280. Weiterhin sind auf einen Eingang 288 des zweiten neuronalen Netzes 272 Vektoren w(n) aufgeschaltet, die von dem ersten neuronalen Netz 270 geliefert werden.
Die Vektoren w(n) bestimmen die anwendbaren Regeln des Regelwerkes 268 und deren Aufschaltstärke. Der Ausgang 290 des neuronalen Netzwerkes 272 bestimmt die Formen der zu einer Regel gehörigen Zugehörigkeits-Funktionen m(n) und deren Lage im Meßbereich der betreffenden Variablen. Die Zugehörigkeits-Funktionen sind durch Blöcke 292, 294 und 296 dargestellt. Die sich aus der Verarbeitung einer oder mehreren Regeln ergebenden linguistischen Werte für die Stellgröße ζ mit von ac abhängigen Zugehörigkeitsgraden und Zugehörigkeitsfunktionen sind in Fig. 17 durch einen Block 298 dargestellt. Diese Größen werden in bekannter Weise (siehe DE-A-42 40 789) durch einen "Defuzzyfizierer" in die scharfe Stellgröße ζ am Ausgang 278 des Reglers 260 umgesetzt.
Es handelt sich um einen mit unscharfer Logik arbeitenden Regler (Fuzzy-Regler). Die beiden neuronalen Netzwerke 270 und 272 gestatten es dem Regler, zu lernen. Die Netzwerke 270 und 272 adaptieren durch Lernen die Zugehörigkeits- Funktionen der unscharfen Variablen, die Zahl der für die Regelung verwendeten Regeln sowie die "Aufschaltstärke" der Regeln. Das Lernen wird über eine Gütekriteriums-Funktion ag intern im Regler 260 gesteuert. Durch Anwendung der sog. "Reinforcement"-Lernmethode, die ein unüberwachtes Lernen ermöglicht, ist ein Lernen off-line, d. h. vor dem Einsatz, als auch on-line während des Einsatzes möglich.
Fig. 18 zeigt die Struktur eines weiteren zur Festlegung des Lenkgesetzes und/oder als Flugregler verwendbaren Reglers. Dieser Regler basiert auf dem Prinzip des eingangs erwähnten "NEFCON-Modells".
Das neuronale Netzwerk von Fig. 18 enthält drei Schichten 310, 312 und 314. Die Eingangsschicht erhält an Eingängen 316, 318, 320 (und anderen Eingängen) die verschiedenen Größen Δa, ag . . . rM wie sie z. B. auch in Fig. 7 benutzt werden. Die verschiedenen Größen an den Eingängen 316, 319, 320 usw. werden mit Gewichten µik auf die Elemente der verborgenen Schicht 312 aufgeschaltet. Diese Gewichte µik entsprechen den Zugehörigkeits-Funktionen der verschiedenen linguistischen Wertebereiche für die verschiedenen Größen. Sie sind also Funktionen µiki) der Eingangsgrößen, die hier durch ζi symbolisiert sind. Die "verborgene Schicht" 312 repräsentiert Regeln Rk der "Wenn . . dann"-Form. Die Gewichte vk zwischen der verborgenen Schicht 312 und der Ausgabeschicht 314 entsprechen ebenfalls Zugehörigkeits- Funktionen, und zwar den Zugehörigkeits-Funktionen der Regel-Konklusionen der Regeln Rk. Der einzige Ausgang der Schicht 314 ist dann eine Stellgröße η. Die Regelbasis wird durch Lernen optimiert. Dabei werden die Parameter des "Fuzzy"-Reglers durch Backmapping bestimmt.

Claims (18)

1. Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper mit
  • - einem Suchkopf (16), der ein Bild eines das Ziel (10) enthaltenden Gesichtsfeldes erfaßt und Bildverarbeitungs-Mittel (56, 58, 64)) zur Erzeugung von Meßgrößen (z(t)) enthält, welche die Bewegung des Ziels (10) relativ zu dem Flugkörper (68) wiedergeben,
  • - Mitteln (26, 28) zur Erzeugung von Lenksignalen aus diesen Meßgrößen,
  • - und einem auf die Bewegungen des Flugkörpers ansprechenden Referenzsystem (20),
dadurch gekennzeichnet, daß
  • (a) die Lenksignale erzeugenden Mittel eine trainierte, wissensbasierte Signalverarbeitungs-Einheit (26) enthalten,
  • (b) auf die wissensbasierte Signalverarbeitungs-Einheit (26, 28) als weitere Eingänge Meßgrößen (x M(t)) aufgeschaltet sind, die den Bewegungs-Zustand des Flugkörpers (68) wiedergeben und aus Meßgrößen (z M(t)) des Referenzsystems (20) des Flugkörpers (68) abgeleitet sind, und
  • (c) die Signalverarbeitungs-Einheit (26, 28) zur Erzeugung optimaler Lenksignale (ªMC(t)) unter Berücksichtigung der Bewegungen des Ziels (10) und der Bewegungs-Zustände (x M(t)) des Flugkörpers (68) selbst trainiert ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Bildverarbeitungs-Mittel (16) einen Vektor (z(t)) von Meßgrößen liefern, welcher außer der Sichtlinie und Sichtlinien-Drehrate Meßgrößen enthält, welche Abstand und Abstands-Änderungen sowie die Lage des Ziels im Raum wiedergeben.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Signalverarbeitungs-Einheit
  • - einen wissensbasiertem optimalen Schätzer (26) enthält, der aus den Vektoren (z(t); x M(t)) der von den Bildverarbeitungs-Mitteln gelieferten Meßgrößen und den Bewegungs-Zustände des Flugkörpers einen Vektor (x(t)) von Schätzwerten liefert, welche die Relativbewegung von Ziel und Flugkörper wiedergeben, und
  • - trainierte Mittel (28), auf welche der Vektor (x(t)) von Schätzwerten der Relativbewegung aufgeschaltet ist und welche kommandierte Querbeschleunigungen (ªMC(t)) zur Lenkung des Flugkörpers liefern.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die kommandierten Querbeschleunigungen (ªMC(t)) auf einen nichtlinearen, trainierten Flugregler aufgeschaltet sind, der Lenkkommandos (u M(t)) für Lenkmittel des Flugkörpers (68) erzeugt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Flugkörper (68) eine Mehrzahl von unterschiedlichen Lenkeinrichtungen (72, 74, 78) aufweist und der Flugregler so trainiert ist, daß die verschiedenen Lenkmittel optimal zur Erzeugung der kommandierten Querbeschleunigungen angesteuert werden.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Lenkeinrichtungen verstellbare Steuerflächen, eine Schubvektor-Steuerung und seitliche Düsen zur Erzeugung eines Querschubs umfassen.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Referenzsystem ein Trägheits- Referenzsystem aufweist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Referenzsystem ein Satelliten- Navigationssystem (z. B. GPS) enthält.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Signalverarbeitungs-Einheit eine Regler-Struktur enthält, bei welcher
  • (a) ein Regler (116) mit Parametern an seinem Eingang von der Differenz einer Führungsgröße (ac) und einer an der Regelstrecke gemessenen Regelgröße (aM) beaufschlagt ist,
  • (b) ein Referenz-Modell (104) des Regelkreises vorgesehen ist, auf welches die Führungsgröße (ac) und Flugzustandsgrößen aufgeschaltet sind und welche eine Referenz-Regelgröße (ag) liefert,
  • (c) auf ein erstes neuronales Netzwerk (112) die von dem Regler (116) gelieferte Stellgröße (ζ) sowie die Differenz (ΔaM) von gemessener Regelgröße (aM) und Referenz-Regelgröße (ag) aufgeschaltet ist,
  • (d) ein zweites neuronales Netzwerk (120) von den Flugzustandsgrößen beaufschlagt ist,
  • (e) die Gewichte des zweiten neuronalen Netzwerk (120) durch die Ausgangsgrößen des ersten neuronalen Netzwerkes (112) veränderbar sind und
  • (f) die Parameter des Reglers (116) durch die Ausgangsgrößen des zweiten neuronalen Netzwerkes (120) veränderbar sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Signalverarbeitungs-Einheit eine Regler-Struktur enthält, bei welcher
  • (a) eine Mehrzahl (n) von lokalen Reglern (130.1. . .130.n) mit unterschiedlichen Arbeitspunkten in einem Arbeitsbereich vorgesehen ist, die jeder von einer Regelabweichung (Δa) beaufschlagt ist und jeder eine Stellgröße (ζ₁. . .ζn) liefert und
  • (b) die von den verschiedenen lokalen Reglern (130.1. . .130.n) gelieferten Stellgrößen (ζ₁. . .ζn) auf ein Überlagerungs-Element (138) aufgeschaltet sind, das eine Stellgröße (ζ) des aus den lokalen Reglern (130.1. . .130.n) aufgebauten Reglers als Funktion (ζf(ζ₁. . .ζn)) der von den lokalen Reglern (130.1. . .130.n) gelieferten Stellgrößen (ζ₁. . .ζn) bildet.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das Überlagerungs-Element
  • (a) die Stellgröße (ζ) des Reglers als Linearkombination der Stellgrößen (ζ₁. . .ζn) der lokalen Regler (130.1. . .130.n) bildet und
  • (b) die Koeffizienten der Linearkombination durch ein mit unscharfer Logik arbeitendes Inferenzsystem ermittelt werden.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß das Inferenzsystem
  • (a) einen Fuzzyfizierer (154) enthält, auf welchen Flugzustandsgrößen (Ma, h) aufgeschaltet sind und welcher Zugehörigkeitsgrade linguistischer Werte (S, M, L) der Flugzustandsgrößen (Ma, h) nach Maßgabe von Zugehörigkeits-Funktionen (m) liefert,
  • (b) eine Regelbasis (156) enthält, in der Inferenz- Regeln (wenn. . .dann) abgelegt sind, welche linguistische Werte der Flugzustandsgrößen mit linguistischen Werten der Koeffizienten von Linearkombinationen der Stellgrößen (ζ₁. . .ζn) der lokalen Regler (130.1. . .130.n) verknüpfen, wobei diese Linearkombinationen Schätzwerte von Stellgrößen für die durch die linguistischen Werte der Flugzustandsgrößen bestimmten Bereiche des Arbeitsraumes darstellen, und die Regelbasis (156) Zugehörigkeits-Funktionen der Konsequenzteile der Regeln liefern, und
  • (c) einen Defuzzyfizierer (158) enthält, welcher aus den Zugehörigkeits-Funktionen der Konsequenzteile der Regeln nach Maßgabe der Flugzustandsgrößen (Ma, h) scharfe Werte der Koeffizienten (ac, bc, cc) erzeugt, mit denen die Stellgrößen (ζ₁. . .ζn) der lokalen Regler (130.1. . .130.n) zur Bildung der Stellgröße (ζ) des Reglers linearkombiniert sind.
13. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß zur Bildung der Stellgröße ein lernendes Fuzzy- Inferenz-System (Fig. 13) vorgesehen ist.
14. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das Überlagerungs-Element ein neuronales Netzwerk (190) ist.
15. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Signalverarbeitungs-Einheit eine Regler-Struktur enthält, bei welcher
  • (a) ein stabiler, fester Regler (200) vorgesehen ist, auf welchen die Differenz einer Führungsgröße (ac) und der an einer Regelstrecke (230) gemessenen Regelgröße (aM) aufgeschaltet ist und welcher eine Regler-Stellgröße (ζR) liefert,
  • (b) ein Referenz-Modell (208) des Regelkreises vorgesehen ist, auf welches die Führungsgröße (ac) sowie Flugzustandsgrößen aufschaltbar sind und welches eine Referenz-Regelgröße (ag) liefert,
  • (c) ein neuronales Netzwerk vorgesehen ist,
  • - auf dessen Eingänge (218, 222, 224) die Führungsgröße (ac), die Differenz von Führungsgröße (ac) und gemessener Regelgröße (aM), und die Regler-Stellgröße (ζR) aufgeschaltet sind,
  • - dessen Gewichte in Abhängigkeit von der Differenz (ΔaM) von Referenz-Regelgröße (ag) und gemessener Regelgröße (aM) veränderbar sind, und
  • - der eine Netzwerk-Stellgröße (ζN) liefert, und
  • (d) in einem Summierpunkt (228) die Netzwerk-Stellgröße (ζN) der Regler-Stellgröße (ζR) zur Bildung einer auf die Regelstrecke (230) aufgeschalteten Stellgröße (ζ) überlagert ist.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das neuronale Netzwerk (202) ein dynamisches neuronales Netzwerk mit mehreren Schichten und Vorwärtsvernetzung (Fig. 17) ist.
17. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Signalverarbeitungs-Einheit eine Regler-Struktur enthält, bei welcher
  • (a) die Differenz einer Führungsgröße (ac) und einer an einer Regelstrecke (262) gemessenen Regelgröße (aM) in linguistische, unscharfe Werte umgesetzt und auf ein mit unscharfer Logik arbeitendes Regelwerk (268) mit Inferenz-Regeln (Wenn. . .dann) aufgeschaltet ist,
  • (b) ein erstes neuronales Netzwerk (270) vorgesehen ist, das einerseits von der Differenz der Führungsgröße (ac) und der an der Regelstrecke (262) gemessenen Regelgröße (aM) und andererseits von der auf die Regelstrecke (262) aufgeschalteten Stellgröße (ζ) beaufschlagt ist und das Vektoren (w(n)) von "Aufschaltstärken" liefert,
  • (c) die Konsequenzteile der Regeln des Regelwerkes (268) mit den von dem ersten neuronalen Netzwerk (270) gelieferten "Aufschaltstärken" (firing strengths) auf Prozessor-Elemente (292, 294, 296) aufgeschaltet sind, welche Zugehörigkeits- Funktionen festlegen,
  • (d) ein zweites neuronales Netzwerk (272) vorgesehen ist, auf welches die "Aufschaltstärken" von dem ersten neuronalen Netzwerk (270) und eine ein Gütekriterium repräsentierende Größe (ag) aufgeschaltet ist und durch welches die von den Prozessor-Elementen (292, 294, 296) festgelegten Zugehörigkeits-Funktionen veränderbar sind,
  • (e) aus den Zugehörigkeits-Funktionen und den "Ausfschaltstärken" Zugehörigkeits-Funktionen m(ζ) für linguistische Werte einer Stellgröße (ζ) gebildet werden,
  • (f) ein Defuzzyfizierer (300) daraus einen scharfen Wert der Stellgröße (ζ) bildet und
  • (g) das zweite neuronale Netzwerk anhand einer Gütekriteriums-Funktion (280) trainierbar ist, die von der Führungsgröße (ac) und der gemessenen Regelgröße (aM) bestimmt ist, wobei
  • (h) die Netzwerke (270, 272) durch Lernen die Zugehörigkeits-Funktionen der unscharfen Variablen, die Zahl der für die Regelung verwendeten Regeln sowie die "Erfüllungsgrade" der Regeln adaptieren, und das Lernen über die Gütekriteriums-Funktion (ag) intern im Regler (260) gesteuert wird.
DE19645556A 1996-04-02 1996-11-05 Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper Withdrawn DE19645556A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19645556A DE19645556A1 (de) 1996-04-02 1996-11-05 Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19612653 1996-04-02
DE19645556A DE19645556A1 (de) 1996-04-02 1996-11-05 Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper

Publications (1)

Publication Number Publication Date
DE19645556A1 true DE19645556A1 (de) 1997-10-30

Family

ID=7789928

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19645556A Withdrawn DE19645556A1 (de) 1996-04-02 1996-11-05 Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper
DE19645562A Withdrawn DE19645562A1 (de) 1996-04-02 1996-11-05 Regelvorrichtung für nichtlineare Regelstrecken

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE19645562A Withdrawn DE19645562A1 (de) 1996-04-02 1996-11-05 Regelvorrichtung für nichtlineare Regelstrecken

Country Status (1)

Country Link
DE (2) DE19645556A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035460A1 (en) * 1998-01-09 1999-07-15 Raytheon Company Neural network trajectory command controller
WO1999066418A2 (en) * 1998-01-09 1999-12-23 Raytheon Company Neural network controller for a pulsed rocket motor tactical missile system
EP0974806A1 (de) * 1998-07-21 2000-01-26 BODENSEEWERK GERÄTETECHNIK GmbH Verfahren zum Trainieren eines neuronalen Netzes für die Lenkung eines Flugkörpers zu einem Ziel
EP0999484A1 (de) * 1998-11-03 2000-05-10 DaimlerChrysler AG Trimmverfahren zum Abgleich eines Simulationssystems mit einem geregelten Referenzsystem
WO2000036362A1 (en) * 1998-12-12 2000-06-22 Bae Systems Plc Combat pilot aid system
EP1014028A1 (de) * 1998-12-15 2000-06-28 Bodenseewerk Gerätetechnik GmbH Lenk,- Navigations- und Regelsystem für Flugkörper
EP1020699A1 (de) * 1998-12-15 2000-07-19 Bodenseewerk Gerätetechnik GmbH Flugkörper
DE10129043A1 (de) * 2001-06-15 2003-01-02 Diehl Munitionssysteme Gmbh Verfahren und Vorrichtungen zum Bestimmen des Auslösens einer Bremseinrichtung für die zielbezogene Korrektur der ballistischen Flugbahn eines Projektils
WO2003009074A1 (en) * 2001-07-16 2003-01-30 Honda Giken Kogyo Kabushiki Kaisha Behavior control apparatus and method
EP1439369A2 (de) * 1998-01-28 2004-07-21 Saab Ab Verfahren und System zum Lenken eines Flugkörpers zum Abfangen eines sich bewegenden Zieles
DE102014004251A1 (de) * 2013-11-20 2015-06-25 Mbda Deutschland Gmbh Lenkflugkörper und Verfahren zum Lenken eines Lenkflugkörpers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10012863C2 (de) 2000-03-16 2003-01-30 Infineon Technologies Ag Schaltungsanordnung zur Regelung nichtlinearer Strecken

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542879B2 (en) 1998-01-09 2003-04-01 Raytheon Company Neural network trajectory command controller
WO1999066418A2 (en) * 1998-01-09 1999-12-23 Raytheon Company Neural network controller for a pulsed rocket motor tactical missile system
WO1999066418A3 (en) * 1998-01-09 2000-03-23 Raytheon Co Neural network controller for a pulsed rocket motor tactical missile system
WO1999035460A1 (en) * 1998-01-09 1999-07-15 Raytheon Company Neural network trajectory command controller
AU731363B2 (en) * 1998-01-09 2001-03-29 Raytheon Company Neural network trajectory command controller
US6473747B1 (en) 1998-01-09 2002-10-29 Raytheon Company Neural network trajectory command controller
EP1439369A3 (de) * 1998-01-28 2004-12-15 Saab Ab Verfahren und System zum Lenken eines Flugkörpers zum Abfangen eines sich bewegenden Zieles
EP1439369A2 (de) * 1998-01-28 2004-07-21 Saab Ab Verfahren und System zum Lenken eines Flugkörpers zum Abfangen eines sich bewegenden Zieles
EP0974806A1 (de) * 1998-07-21 2000-01-26 BODENSEEWERK GERÄTETECHNIK GmbH Verfahren zum Trainieren eines neuronalen Netzes für die Lenkung eines Flugkörpers zu einem Ziel
EP0999484A1 (de) * 1998-11-03 2000-05-10 DaimlerChrysler AG Trimmverfahren zum Abgleich eines Simulationssystems mit einem geregelten Referenzsystem
US6292720B1 (en) 1998-11-03 2001-09-18 Daimlerchrysler Ag Trimming process for adapting a simulation system to an automatically controlled reference system
WO2000036362A1 (en) * 1998-12-12 2000-06-22 Bae Systems Plc Combat pilot aid system
US6658980B1 (en) * 1998-12-12 2003-12-09 British Aerospace Public Limited Co. Combat pilot aid system
EP1020699A1 (de) * 1998-12-15 2000-07-19 Bodenseewerk Gerätetechnik GmbH Flugkörper
EP1014028A1 (de) * 1998-12-15 2000-06-28 Bodenseewerk Gerätetechnik GmbH Lenk,- Navigations- und Regelsystem für Flugkörper
DE10129043A1 (de) * 2001-06-15 2003-01-02 Diehl Munitionssysteme Gmbh Verfahren und Vorrichtungen zum Bestimmen des Auslösens einer Bremseinrichtung für die zielbezogene Korrektur der ballistischen Flugbahn eines Projektils
EP1267141A3 (de) * 2001-06-15 2003-10-29 Diehl Munitionssysteme GmbH & Co. KG Verfahren und Vorrichtungen zum Bestimmen des Auslösens einer Bremseinrichtung für die zielbezogene Korrektur der ballistischen Flugbahn eines Projektils
WO2003009074A1 (en) * 2001-07-16 2003-01-30 Honda Giken Kogyo Kabushiki Kaisha Behavior control apparatus and method
US7054724B2 (en) 2001-07-16 2006-05-30 Honda Giken Kogyo Kabushiki Kaisha Behavior control apparatus and method
DE102014004251A1 (de) * 2013-11-20 2015-06-25 Mbda Deutschland Gmbh Lenkflugkörper und Verfahren zum Lenken eines Lenkflugkörpers

Also Published As

Publication number Publication date
DE19645562A1 (de) 1997-10-09

Similar Documents

Publication Publication Date Title
DE60109772T2 (de) Verfahren, vorrichtung und entwurfverfahren zur steuerung der mehrfacheingabe, mehrfachausgabe (mimo) von parameterabhängigen systemen mit rückkopplungs lti-sierung
DE69126233T2 (de) Vorrichtung zur Steuerung der Lage eines Satelliten in einer geneigten Umlaufbahn
DE102004001318B4 (de) System und Verfahren einer Steer-by-wire-Regelung für Fahrzeuge unter Verwendung einer robusten Regelung
EP1079198B1 (de) Verfahren zur Bestimmung der Relativbewegung zwischen Flugkörper und Ziel
DE102004001319B4 (de) System und Verfahren einer Steer-by-wire-Regelung für Fahrzeuge durch Anwenden einer Mehrfach-Entkopplungs-Regelung
DE19645556A1 (de) Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgende Flugkörper
DE69500465T2 (de) Bahnbehandlung von gelände-erhebungsdaten
DE19950247A1 (de) Regelungsanordnung und Regelungsverfahren für Sstelliten
EP0714013B1 (de) Lenkschleife für Flugkörper
DE10359422B4 (de) Verfahren einer Steer-by-wire-Regelung für Fahrzeuge
DE10011890C2 (de) Verfahren zur Bestimmung der Zustandsgrössen eines sich bewegenden starren Körpers im Raum
DE69931216T2 (de) Flugbahnbefehlssteuerung mit neuronalem netzwerk
DE4218600C2 (de) Einrichtung zur Bestimmung von Bewegungsgrößen eines Flugkörpers
DE2750128C2 (de)
DE69908641T2 (de) Kampffliegerhilfsystem
DE3442598A1 (de) Leitsystem
DE102004001320A1 (de) System und Verfahren einer Steer-by-wire-Regelung für Fahrzeuge mit einem Referenzwinkel-Generator für die Vorderräder
EP1020699B1 (de) Flugkörper
DE10017600A1 (de) Regler, insbesondere Lenkregler für Flugkörper
EP0974806B1 (de) Verfahren zum Trainieren eines neuronalen Netzes für die Lenkung eines Flugkörpers zu einem Ziel
DE69912053T2 (de) Verfahren und Vorrichtung zum Lenken eines Flugkörpers, insbesondere einer Kampfrakete, auf ein Ziel
EP1014028B1 (de) Lenk,- Navigations- und Regelsystem für Flugkörper
DE69601853T2 (de) Verfahren und System zur Steuerung der Lage oder der Orientierung eines Raumfahrzeuges
DE19543048A1 (de) Vorrichtung zur Erzeugung von Lenksignalen für zielverfolgenden Flugkörper
EP0653600A1 (de) Verfahren zur Bestimmung der Sichtliniendrehraten mit einem starren Suchkopf

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: DIEHL BGT DEFENCE GMBH & CO. KG, 88662 UBERLINGEN,

8139 Disposal/non-payment of the annual fee