DE1794400C3 - Verwendung von 4,4'-disubstituierten Stilbenderivaten als optische Aufhellungsmittel - Google Patents
Verwendung von 4,4'-disubstituierten Stilbenderivaten als optische AufhellungsmittelInfo
- Publication number
- DE1794400C3 DE1794400C3 DE1794400A DE1794400A DE1794400C3 DE 1794400 C3 DE1794400 C3 DE 1794400C3 DE 1794400 A DE1794400 A DE 1794400A DE 1794400 A DE1794400 A DE 1794400A DE 1794400 C3 DE1794400 C3 DE 1794400C3
- Authority
- DE
- Germany
- Prior art keywords
- formula
- acid
- melting point
- theory
- found
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/02—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D271/10—1,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
- C07D271/107—1,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles with two aryl or substituted aryl radicals attached in positions 2 and 5
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/353—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06L—DRY-CLEANING, WASHING OR BLEACHING FIBRES, FILAMENTS, THREADS, YARNS, FABRICS, FEATHERS OR MADE-UP FIBROUS GOODS; BLEACHING LEATHER OR FURS
- D06L4/00—Bleaching fibres, filaments, threads, yarns, fabrics, feathers or made-up fibrous goods; Bleaching leather or furs
- D06L4/60—Optical bleaching or brightening
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Description
worin A und Ai gleich oder verschieden sind und je
einen Aryl- oder Aralkenylrest oder einen heterocyclischen Rest von aromatischem Charakter darstellen, R für Wasserstoff, Halogen, eine Alkyl-, Cyano-
oder Carboxylgruppe sowie deren substitutive und
funktioneile Derivate steht, als optische Aufhellungsmittel für organische Materialien.
2. Verwendung nach Anspruch 1 von Stilbenderivaten der Formel
A1-C
N-
CH = CH
worin A2 einen Phenyl-, Naphthyl- oder Styrylrest
bedeutet, welcher seinerseits einen bis zwei Substituenten Q enthalten kann, wobei Q ein Wasserstoffatom, ein Halogenatom, eine Alkyl- oder Alkoxygruppe mit 1 bis 8 'Kohlenstoffatomen, eine
Phenylgruppe, eine freie oder neutralisierte Carboxylgruppe oder eine funktionell abgewandelte
Carboxylgruppe, eine freie oder neutralisierte Sulfonsäuregruppe, eine Sulfonsäureester- oder eine
Sulfonsäureamidgruppe darstellt
3. Verwendung von Stilbenderivaten nach den
C-A,
Il "
-N
Ansprüchen 1 und 2 zum optischen Aufhellen von synthetischen Polyamidfasern aus der Spinnschmelze.
4. Verwendung von Stilbenderivaten nach den Ansprüchen 1 und 2 als optische Aufhellungsmittel
für Fasermaterialien aus synthetischen Polyamiden, gesättigten Polyestern oder Poly-a-Olefinen, wobei
diese nach dem Foulardier- oder äquivalenten Färbeverfahren aufgebracht und nachträglich einer
thermischen Behandlung unterzogen werden.
Die vorliegende Erfindung betrifft die Verwendung von neuen, wertvollen 4,4'-disubstituierten Stilbenderivaten der allgemeinen Formel
reihe in Betracht, als Aralkenylrest vorzugsweise
Styrylreste, die im Benzolkern weitersubstituiert sein
können, und als heterocyclische Reste von aromatischem Charakter in erster Linie Pyridin-, Furan- und
Thiophenreste.
Von vorwiegendem Interesse sind vor allem solche Verbindungen gemäß vorstehender allgemeiner Formel
(1), die durch die nachstehende Formel (1 a) wiedergegeben werden können:
worin A und Ai gleich oder verschieden sind und je
einen Aryl- oder Aralkenylrest oder einen heterocyclischen Rest von aromatischem Charakter darstellen, R
für Wasserstoff, Halogen, eine Alkyl-, Cyano- oder Carboxylgruppe sowie deren substitutive und funktioneile Derivate wie Halogenalkyl, Carbonsäureester
oder -amid usw. steht, als optische Aufhellungsmittel für organische Materialien.
Als Arylreste kommen beispielsweise solche der Naphthalinreihe oder insbesondere solche der Benzol-
N-
C-
-N
CH ---- CH
// V
(la)
N-
-N
In dieser Formel bedeutet A2 einen Phenyl-,
Naphthyl- oder Styrylrest, der gegebenenfalls noch weitere, vorzugsweise bis zu 2 Substituenten Q
enthalten kann, wobei O ein Wasserstoffatom, ein
Halogenatom wie insbesondere Chlor, eine Alkyl- oder
Alkoxygruppe mit 1 bis 8 Kohlenstoffatomen, eine Phenylgruppe, eine freie oder neutralisierte Carboxylgruppe oder eine funktionell abgewandeile Carboxyl-
gruppe wie eine Carbonsäureestergruppe, eine Carbonsäureamidgruppe
oder eine Nitrilgruppe, eine freie oder neutralisierte Sulfonsäuregruppe, eine Sulfonsäureestergruppe
oder eine Sulfonsäureamidgruppe darstellt
Unter diesen neuen 4,4'-disubstituierten Stilbenen der
Formel (1) seien diejenigen besonders hervorgehoben, welche einen symmetrischen Aufbau besitzen und der
Formel
-C
Q N-
und insbesondere der Formel
und insbesondere der Formel
CH = CH
= CH
entsprechen, wobei Q die unter Formel (la) angegebene
Bedeutung besitzt <.':>d Qi eine Alkylgruppe mit 1 bis 4
Kohlenstoffatomen darstellt
Die neuen Stilbenderivate der Formeln (1) und (la) können nach an sich bekannten Methoden hergestellt
werden.
Zu symmetrischen Verbindungen der Formel (1), d. h,
zu symmetrischen 4,4'-Di-[l"3",4"-oxdiazolyl-(2")]-stilbenen,
kann man gelangen, indem man Acylhydrazine der Formel
NH
worin die beiden A gleiche Reste der angegebenen Art darstellen, mit wasserabspaltenden Mitteln wie insbesondere
Thionylchlorid behandelt
Die symmetrischen Acylhydrazine der Formel (4) lassen sich ihrerseits herstellen durch Umsetzung im Molekularverhältnis 1 :2 von Stilben-4,4'-dicarbonsäuredihydrazid der Formel
Die symmetrischen Acylhydrazine der Formel (4) lassen sich ihrerseits herstellen durch Umsetzung im Molekularverhältnis 1 :2 von Stilben-4,4'-dicarbonsäuredihydrazid der Formel
CH =
mit Monocarbonsäurechloriden der Formel
O
A-C
Ausgangsstoffe für die Herstellung der Acylhydrazide der Formel (4) verwenden lassen, seien erwähnt:
(6) Benzolcarbonsäuren der Formel
45
Cl
oder von Stilben-4,4'-dicarbonsäure-dichlorid der Formel
CH = CH
Cl
\ .
Cl
Cl
(7)
50 bzw.
-COOH
(10)
Q Q
mit Monocarbonsäurehydraziden der Formel
A-C (8)
NH-NH2
Als Beispiele für Carbonsäuren der Formel A-COOH, deren Halogenide oder Hydrazide sich als
worin Q die im Zusammenhang mit der Formel (la) angegebene Bedeutung hat, wie
bo 2s 3»oder4-MethylbenzoIcarbonsäure,
2-, 3- oder 4-ChIorbenzolcarbonsäure, 4-tertButylbenzolcarbonsäure,
4-n-Octylbenzolcarbonsäure, 2-, 3- oder 4-Methoxybenzolcarbonsäure,
<,-, 2-, 3-oder 4-Äthoxybenzolcarbonsäure,
4-Octyloxybenzolcarbonsäure, 2-, 3- oder 4-SuIfobenzolcarbonsäure,
2-, 3- oder4-Carboxybenzolcarbonsäure,
ferner
Naphthalin-«- oder -/3-carbonsäure,
Zimtsäure,
2-Chlor-zimtsäure,
2- oder 3-MethyI-zimtsäure,
Pyridin-2-, -S-oder-^carbonsäure,
Furan-2-carbonsäure und
Thiophencarbonsäuren wie
Thiophen-2-carbonsäure,
Pyridin-2-, -S-oder-^carbonsäure,
Furan-2-carbonsäure und
Thiophencarbonsäuren wie
Thiophen-2-carbonsäure,
3- oder S-Methylthiophen^-carbonsäure,
S^-Dimethylthiophen^-carbonsäure.
S^-Dimethylthiophen^-carbonsäure.
Die für die Herstellung der symmetrischen Dioxdiazolyl-stilbene
der Formel (1) und der Ausgangsstoffe der Formel (4) erforderlichen Umsetzungen können in
üblicher, an sich bekannter Weise ausgeführt werden. So erfolgt die Umsetzung der Säurechloride mit den
Säurehydraziden zweckmäßig in Gegenwart säurebindender Mittel, z. B. in Pyridinbasen wie Picoline oder
Pyridin selbst
Als wasserabspaltendes Mittel für die Umwandlung der Acylhydrazine der Formel (4) in symmetrische
Di-oxdi-azolyl-stilbene der Formel (1) eignet sich
Thionylchlorid besonders gut, unter anderem deshalb, weil man den Ringschluß in einem Überschuß dieses
zugleich als Lösungsmittel dienenden Wasserabspaltungsmittel ausführen und hierauf das nichtverbrauchte
Thionylchlorid leicht abtrennen kann.
Als besonders günstig hat sich die Umsetzung zu den entsprechenden Acylhydrazinen in hochsiedenden,
inerten nichtpolaren oder höchstens schwachpolarcn
organischen Lösungsmitteln, wie beispielsweise o-Dichlorbenzol oder Trichlorbenzol in Gegenwart der
ίο stöchiometrisch notwendigen Menge an Pyridinbasen
bei Temperaturen zwischen 50 und 1500C erwiesen, weil
der anschließende Ringschluß zum 13,4-Oxdiazol ohne
Zwischenabscheidung des Acylhydrazins durch Eintropfen von etwas mehr als der stöchiometrisch notwendigen
Menge Thionylchlorid bei Siedetemperatur des Reaktionsgemisches (bei Temperaturen zwischen 120
und 2200C) sehr rasch und in glatter Weise erfolgt, & h.
die Herstellung von Verbindungen der Formel (1) und (la) von den Hydrazinen ausgehend überraschenderweise
in einem Einstufen-Verfahren durchgeführt werden kann.
Zu asymmetrischen Stilbendenva .en der Formel (1) kann man gelangen, indem man Diacylhydrazine der
Formel
CH = CH
HN-
NH
C-A,
(H)
worin A und Ai verschiedene Reste der angegebenen Art bedeuten, mit wasserabspaltenden Mitteln wie
insbesondere Thionylchlorid behandelt
Die Diacylhydrazine der Formel (11) können derart gewonnen werden, daß man Monocarbonsäurehydrazide der Formel (8) in Gegenwart von organischen Lösungsmitteln, wie z. B. Chlorbenzol, mit Stilben-4,4'-dicarbonsäure-monomethylesterchlorid der Formel
Die Diacylhydrazine der Formel (11) können derart gewonnen werden, daß man Monocarbonsäurehydrazide der Formel (8) in Gegenwart von organischen Lösungsmitteln, wie z. B. Chlorbenzol, mit Stilben-4,4'-dicarbonsäure-monomethylesterchlorid der Formel
CH = CH
(12)
OCH3
umsetzt, die gebildeten Acylhydrazine der Formel
O O
A-C C
HN-NH
CH = CH
OCH3
(13)
gegebenenfalls nach vorheriger Isolierung, mit wasserabspaltenden Mitteln wie insbesondere Thionylchlorid
behandelt, in den Oxdiazolyl-stilbenderivaten der Formel
CH = CH / V
(14)
OCH3
die am Stilbenrest gebundene Carbonsäure-methylestergruppe
in eine Carbonsäurehydrazidgruppe überführt und die entsprechenden Monoacylhydrazine mit
Monocarbonsäurechloriden der Formel
dabei diejenigen der weiter oben angegebenen Monocarbonsäuren
in Frage.
Zu neuen 4,4'-disubstituierten Stilbenen der Formel (1) kann man auch in der Weise gelangen, daß man
Mischungen aus Schwefel (in stöchiometrischem Überschuß) und MethylphenylQxdiazQlen der Formel
A1-C
(15)
Cl
65
zu den Diacylhydrazinen der Formel (11) kondensiert.
Als Monocarbonsäu. echloride der Formel (15) kommen A-C
N-
CH3
(16)
-N
auf höhere Temperaturen oberhalb 200°C erhitzt.
Dieses Verfahren läßt sich schematisch wie folgt wiedergeben:
C C-A
N N
2 H,S
/ \
A-C C
A-C C
Il !!
N N
W
N N
N N
FJn weiteres Verfahren zur Herstellung von 4.4'-disiibstituierten Stilbenen der Formel (1) besteht darin, dal?
man Dihydrostilbcnvcrbindungen der Formel
CH, -CH,
. (17)
worin A und Ai die eingangs angegebene Bedeutung besitzen, mit dehydrogenierenden Mitteln, z. B. mit jn
Schwefel, Chlor oder mit Palladium und Luft, behandelt.
Die Oxdiazol-Derivate der vorliegenden Erfindung können gleichfalls durch Einwirkung von Imidoäthern
auf die entsprechenden Carbonsäurehydrazide bei erhöhten Temperaturen und in Gegenwart eines ΐϊ
Lösungsmittels hergestellt werden.
Gegenüber den in der DT-PS 10 27 675 offenbarten
optischen Aufhellungsmitteln erbringen die erfindungsgemäß als optische Aufhellungsmittel einsetzbaren
4,4'-disubstituierten Stilbene auf synthetischen Textilfa- -in
sern und in der Spinnschmelze den überraschenden Vorteil eines höheren Weißgrades.
Die neuen optischen Aufheller der eingangs umschriebenen Zusammensetzung besitzen in gelöstem
oder feinverteiltem Zustand eine mehr oder weniger 4-1
ausgeprägte Fluoreszenz. Sie können zum optischen Aufhellen der verschiedensten hochmolekularen oder
niedermolekularen organischen Materialien bzw. organische Substanzen enthaltenden Materialien verwendet
werden.
Hierfür seien beispielsweise, ohne daß durch die nachfolgende Aufzählung irgendeine Beschränkung
hierauf ausgedrückt werden soll, die folgenden Gruppen
von organischen Materialien, soweit eine optische Aufhellung derselben in Betracht kommt zu nennen: ·
I. Synthetische organische hochmolekulare oder höhermolelculare Materialien:
a) Polymerisationsprodukte auf Basis mindestens eine polymerisierbare Kohlenstoff-Kohlen- ω stoff-Doppelbindung enthaltender organischer Verbindungen, d. h, deren Homo- oder Copolymerisate sowie deren Nachbehandlungsprodukte wie beispielsweise Vernetzungs-, Pfropfungs- oder Abbauprodukte, Polymerisat-Verschnitte, wofür beispielhaft genannt seien:
Polymerisate auf Basis von «^-ungesättigten Carbonsäuren, insbesondere von Acrylverbindungsn (wie z. B. Acrylestern, Acrylsäuren Acrylnitril, Arxylamiden und deren Derivater oder deren Methacryl-Annloga), von Olefin-Kohlenwasserstoffen (wie z. B. Äthylen, Propy len. Isobutylen, Styrole, Dienen wie besonder; Butadien, Isopren, d. h. also auch Kautschuke und kautschukähnliche Polymerisate, fernei sogenannte ABS-Polymerisate), Polymerisate auf Basis von Vinyl- und Vinyliden-Verbindun gen (wie z. B. Vinylestern, Vinylchlorid, Vinyl sulfonsäure, Vinyläther, Vinylalkohol, Vinyli denchlorid, Vinylcarbazol) von halogenierter Kohlenwasserstoffen (Chloropren, hochhaloge nierte Äthylene), von ungesättigten Aldehyder und Ketonen (z. B. Acrolein), von Allylverbin düngen, Pfropfpolymerisationsprodukte (ζ. Β durch Aufpfropfen von Vinylmonomeren), Ver netzungsprodukte, die beispielsweise mittels bi oder mehrfunktionellen Vernetzern wie Divi nylbenzol, mehrfunktionellen Allylverbindun gen oder Bis-Acryl-Verbindungen oder durcr partiellen Abbau (Hydrolyse, Depolymensa tion) oder Modifizierung reaktiver Gruppierun gen (z. B. Veresterung, Veretherung, Halogenie rung, Selbstvernetzung) erhältlich sind;
a) Polymerisationsprodukte auf Basis mindestens eine polymerisierbare Kohlenstoff-Kohlen- ω stoff-Doppelbindung enthaltender organischer Verbindungen, d. h, deren Homo- oder Copolymerisate sowie deren Nachbehandlungsprodukte wie beispielsweise Vernetzungs-, Pfropfungs- oder Abbauprodukte, Polymerisat-Verschnitte, wofür beispielhaft genannt seien:
Polymerisate auf Basis von «^-ungesättigten Carbonsäuren, insbesondere von Acrylverbindungsn (wie z. B. Acrylestern, Acrylsäuren Acrylnitril, Arxylamiden und deren Derivater oder deren Methacryl-Annloga), von Olefin-Kohlenwasserstoffen (wie z. B. Äthylen, Propy len. Isobutylen, Styrole, Dienen wie besonder; Butadien, Isopren, d. h. also auch Kautschuke und kautschukähnliche Polymerisate, fernei sogenannte ABS-Polymerisate), Polymerisate auf Basis von Vinyl- und Vinyliden-Verbindun gen (wie z. B. Vinylestern, Vinylchlorid, Vinyl sulfonsäure, Vinyläther, Vinylalkohol, Vinyli denchlorid, Vinylcarbazol) von halogenierter Kohlenwasserstoffen (Chloropren, hochhaloge nierte Äthylene), von ungesättigten Aldehyder und Ketonen (z. B. Acrolein), von Allylverbin düngen, Pfropfpolymerisationsprodukte (ζ. Β durch Aufpfropfen von Vinylmonomeren), Ver netzungsprodukte, die beispielsweise mittels bi oder mehrfunktionellen Vernetzern wie Divi nylbenzol, mehrfunktionellen Allylverbindun gen oder Bis-Acryl-Verbindungen oder durcr partiellen Abbau (Hydrolyse, Depolymensa tion) oder Modifizierung reaktiver Gruppierun gen (z. B. Veresterung, Veretherung, Halogenie rung, Selbstvernetzung) erhältlich sind;
b) andere Polymerisationsprodukte wie z. B. durcl
Ringöffnung erhältlich, z. B. Polyamide von
Polycaprolactam-Typ, ferner Formaldehyd-Po
lymerisate, oder Polymere, die sowohl übe: Polyaddition als auch Polykondensation erhält
lieh sind wie Polyäther, Polythioether, Polyacetale,
Thioplaste;
c) Polykondensationsprodukte oder Vorkondensate auf Basis bi- oder polyfunktionellei
Verbindungen mit kondensationsfähigen Gruppen, deren Homo- und Mischkondensationsprodukte
sowie Produkte der Nachbehandlung wofür beispielhaft genannt seien:
Polyester, gesättigte (z.B. Polyäthylentere phthalate) oder ungesättigte (z. B. Maleinsäure
Polyester, gesättigte (z.B. Polyäthylentere phthalate) oder ungesättigte (z. B. Maleinsäure
Dialkohol-Polykondensate sowie deren Vernetzungsprodukte
mit anpolymerisierbaren Vinylmonorreren), unverzweigte sowie verzweigte
(auch auf Basis höherwertiger Alkohole, wie z. B. Alkydharze), ί
Polyamide (z.B. Hexamethylendiamin-adipat), Maleinatharze, Melaminharze, Phenolharze
(Novolake), Anilinharze, Furanharze, Carbamidharze bzw. auch deren Vorkondensate und
analog gebaute Produkte, Polyrarbonate, SiIi- ι ο
konharze und andere;
d) Polyadditionsprodukte wie Polyurethane (vernetzt und unvernetzt), Epoxydharze.
II. Halbsynthetische organische Materialien wie z. B. Celluloseester bzw. Mischester (Acetal, Propionat), Nitrocellulose, Celluloseäther, regenerierte Cellulose (Viskose, Kupferammoniak-Cellulose) oder deren Nachbehandlungsprodukte, Casein-Kunststoffe.
II. Halbsynthetische organische Materialien wie z. B. Celluloseester bzw. Mischester (Acetal, Propionat), Nitrocellulose, Celluloseäther, regenerierte Cellulose (Viskose, Kupferammoniak-Cellulose) oder deren Nachbehandlungsprodukte, Casein-Kunststoffe.
Hl. Natürliche organische Materialien animalischen -><> odd vegetabilischen Ursprungs, beispielsweise auf
Basis von Cellulose oder Proteinen wie Wolle, Baumwolle, Seide, Bast Jute, Hanf, Felle und Haare,
Leder, Holzmassen in feiner Verteilung, Naturharze (wie Kolophonium, insbesondere Lackharze), >
> ferner Kautschuk, Guttapercha, Balata sowie deren Nachbehandlungs- und Modifizierungsprodukte
(Härtung und Vernetzung), Abbau (Hydrolyse, Depolymerisation), Aufbau (Pfropfung), Abwandlung
reaktionsfähiger Gruppen (Acylierung, Halo- jo genierung, Vernetzung).
Die in Betracht kommenden organischen Materialien können in den verschiedenartigsten Verarbeitungszuständen
(Rohstoffe, Halbfabrikate oder Fertigfabrikate) r> und Aggregatzuständen vorliegen. Sie können einmal in
Form der verschiedenartigsten geformten Gebilde vorliegen, d. h. also z. B, vorwiegend als dreidimensional
ausgedehnte Körper wie Blöcke, Platten, Profile, Rohre, SpritzguBfonnlinge oder verschiedenartigste Werkstük- w
ke, Schnitzel oder Granulate, Schaumstoffe; vorwiegend als zweidimensional ausgebildete Körper wie Filme,
Folien, Lacke, Bänder, Überzüge, Imprägnierungen und Beschichtungen oder vorwiegend als eindimensional
ausgebildete Körper wie Fäden, Fasern, Flocken, Borsten, Drähte. Die besagten Materialien können
andererseits auch in ungeformten Zuständen in den verschiedenartigsten homogenen und inhomogenen
Verteilungsformen und Aggregatzuständen vorliegen, z. B. als Pulver, Lösungen, Emulsionen, Dispersionen, so
Latices (Beispiele: Lacklösungen, Polymerisat-Dispersionen), Sole, Gelee, Kitte, Pasten, Wachse, Kleb- und
Spachtelmassen.
Fasermaterialien können beispielsweise als endlose Fäden, Stapelfasern, Flocken, Strangware, textile Fäden,
Garne, Zwirne, Faservliese, Filze, Watten, Beflockungs-Gebilde oder als textile Gewebe oder textile Verbundstoffe.
Gewirke sowie als Papiere und Pappen oder Papiermassen vorliegen.
Besondere Bedeutung kommt den erfindungsgemäß ω
anzuwendenden Verbindungen für die Behandlung von textlien organischen Materialien, insbesondere textlien
Geweben, zu. Sofern Fasern, weiche als Stapelfasern oder endlose Fasern, in Form von Strängen, Geweben,
Gewirken, Vliesen, benockten Substraten oder Verbundstoffen vorliegen können, erfindungsgemäß optisch
aufzuhellen sind, so geschieht dies mit Vorteil in wässerigem Medium, worin die betreffenden Substrate
ir f tiiiverteilter Form (Suspensionen, gegebenenfalls
Lösungen) vorliegen.
Gegebenenfalls können bei der Behandlung Dispergiermittel zugesetzt werden, wie z. B. Seifen, Polyglykoläther
von Fettalkoholen, Fettaminen oder Alkylphenolen, Cellulosesulfitablauge oder Kondensationspro
dukte von gegebenenfalls alkylierten Naphthalinsulfonsäuren mit Formaldehyd. Als besonders zweckmäßig
erweist es sich, in neutralem, schwach alkalischem oder saurem Bade zu arbeiten. Ebenso ist es vorteilhaft, wenn
die Behandlung bei erhöhten Temperaturen von etwa 50 bis 100° C, beispielsweise bei Siedetemperatur des Bades
oder in deren Nähe (etwa 90° C) erfolgt. Für die erfindungsgemäße Veredlung kommen auch Lösungen
in organischen Lösungsmitteln in Betracht.
Die erfindungsgemäß zu verwendenden neuen optischen Aufhellmittel können ferner den Materialien
vor oder während deren Verformung zugesetzt bzw. einverleibt werden. So kann man sie beispielsweise bei
der Herstellung von Filmen, Folien, Bändern oder Formkörpern der Preßmasse oder Spritzgußmasse
beifügen oder vor dem Verspinnen in der Spinnmasse lösen, dispergieren oder anderweitig fein verteilen. Die
optischen Aufheller können auch den Ausgangssubstanzen, Reaktionsgemischen oder Zwischenprodukten zur
Herstellung voll- oder halbsynthetischer organischer Materialien zugesetzt werden, also auch vor oder
während der chemischen Umsetzung, beispielsweise bei einer Polykondensation (also auch Vorkondensaten), bei
einer Polymerisation (also auch Prepolymeren) oder einer Polyaddition.
Die neuen optischen Aufheller können selbstverständlich auch überall dort eingesetzt werden, wo
organische Materialien der oben angedeuteten Art mit anorganischen Materialien in irgendeiner Form kombiniert
werden (typische Beispiele: Waschmittel, Weißpigmente in organischen Substanzen).
Die erfindungsgemäß verwendeten optisch aufhellenden Substanzen zeichnen sich durch besonders gute
Hitzebeständigkeit, Lichtechtheit und Migrierbestä-.-digkeit aus.
Die Menge der erfindungsgemäß zu verwendenden neuen optischen Aufheller, bezogen auf das optisch
aufzuhellende Material, kann in weiten Grenzen schwanken. Schon mit sehr geringen Mengen, in
gewissen Fällen z. B. solche von 0,001 Gewichtsprozent,
kann ein deutlicher und haltbarer Effekt erzielt werden. Es können aber auch Mengen bis zu etwa 0,5
Gewichtsprozent und mehr zur Anwendung gelangen. Für die meisten praktischen Belange sind vorzugsweise
Mengen zwischen 0,01 und 0,2 Gewichtsprozent von Interesse.
Die erfindungsgemäß als Aufhellmittel verwendeten Verbindungen können beispielsweise auch wie folgt
eingesetzt werden:
a) in Mischung mit Farbstoffen oder Pigmenten oder als Zusatz zu Färbebädern, Druck-, Ätz- oder
Reservepasten. Ferner auch zur Nachbehandlung von Färbungen, Drucken oder Ätzdrucken;
b) in Mischungen mit sogenannten »Carriers« Antioxydantien, Lichtschutzmitteln, Hitzestabilisatoren,
chemischen Bleichmitteln oder als Zusatz zu Bleichbädern;
c) in Mischung mit Vernetzen?, Appreturmittel wie
Stärke oder synthetisch zugänglichen Appreturen. Die erfindungsgemäß verwendeten Verbindungen
können vorteilhaft auch den zur Erzielung einer
knitterfesten Ausrüstung benützten Flotten zugesetzt
werden;
d) in Kombination mit Waschmitteln. Die Waschmittel und Aufhellmittel können den zu benützenden
Waschbädern getrennt zugefügt werden. Es ist auch vorteilhaft, Waschmittel zu verwenden, die die
Aufhellungsmittel beigemischt enthalten. Als Waschmittel eignen sich beispielsweise Seifen,
Salze von Sulfonatwaschmitteln, wie z. B. von sulfonierten am 2-Kohlenstoffatom durch höhere
Alkylreste substituierten Benzimidazolcn, ferner Salze von Monocarbonsäureestern der 4-Sulfophthalsäure
mit höheren Fettalkoholen, weiterhin Salze von Fettalkoholsulfonaten, Alkylarylsulfonsäuren
oder Kondensationsprodukten von höheren Fettsäuren mit aliphatischen Oxy- oder Aminosulfonsäuren.
Ferner können nichtionogene Waschmittel herangezogen werden, z. B. Polyglykolether,
die sich von Athyienoxyd und höheren Feiiaikoholen,
Alkylphenolen oder Fettaminen ableiten;
e) in Kombination mit polymeren Trägermaterialien (Polymerisations-, Polykondensations- oder Polyadditionsprodukten),
in welche die Aufheller gegebenenfalls neben anderen Substanzen in gelöster oder dispergierter Form eingelagert sind,
z. B. bei Beschichtungs-, Imprägnier- oder Bindemitteln (Lösungen, Dispersionen, Emulsionen) für
Textilien, Vliese, Papier, Leder;
f) als Zusätze zu den verschiedensten industriellen Produkten, um dieselben marktfähiger zu machen
oder Nachteile in der Gebrauchsfähigkeit zu vermeiden, zum Beispiel als Zusatz zu Leimen,
Klebemitteln, Anstrichstoffen.
Wird das Aufhellverfahren mit anderen Behandlungsoder Veredelungsmethoden kombiniert, so erfolgt die
kombinierte Behandlung vorteilhaft mit Hilfe entsprechender beständiger Präparate. Solche Präparate sind
dadurch charakterisiert, daß sie optisch aufhellende Verbindungen der eingangs angegebenen allgemeinen
Formel sowie Dispergiermittel, Waschmittel, Carrier, Farbstoffe, Pigmente oder Appreturmittel enthalten.
Bei der Behandlung von Fasersubstraten (insbesondere Polyestern) mit den erfindungsgemäß zu verwendenden
optischen Aufhellern kann man vorteilhafterweise so vorgehen, daß man diese Fasern mit den wässerigen
Dispersionen der Aufhellmittel bei Temperaturen unter 75° C, z. B. bei Raumtemperatur, imprägniert und einer
trockenen Wärmebehandlung bei Temperaturen über
empfiehlt, das Fasermaterial vorher noch bei mäßig erhöhter Temperatur, z. B. bei mindestens 60° C bis etwa
100° C, zu trocknen. Die Wärmebehandlung in trockenem
Zustand erfolgt dann vorteilhaft bei Temperaturen zwischen 120 und 225° C, beispielsweise durch Erwärmen
in einer Trockenkammer, durch Bügeln im angegebenen Temperaturintervall oder auch durch
Behandeln mit trockenem, überhitztem Wasserdampf. Die Trocknung und trockene Wärmebehandlung
können auch unmittelbar nacheinander ausgeführt oder in einen einzigen Arbeitsgang zusammengelegt werden.
Herstellungsvorschrift A
12,6 g des Bis-diacylhydrazins der Formel
O O
O O
HN-NH
CH=CH
O O
Y /
HN-NH
(18)
werden in 150 ml Thionylchlorid unter Rühren während neutral gewaschen und getrocknet Man erhält etwa
24 Stunden am Rückfluß gehalten. Danach wird der 45 10,4 g, entsprechend 88,8% der Theorie, 4,4'-Di-[5"-phe-
Überschuß an Thionylchlorid abdestilliert, der Rück- nyl-l",3",4"-oxdiazolyl-(2")]-stilben der Formel
stand mit Wasser zerrieben, genutscht, mit Wasser
Il V=/ | -CH | = CH — | N=/ Il | .J | |
/ C |
il -N |
II N- |
|||
N- | O / \ |
||||
O / \ |
|||||
\ C- |
|||||
-N | |||||
(19)
in Form eines gelben Pulvers, das bei 312^ bis 313° C
schmilzt Nach dreimaligem Umkristallisieren aus o-Dichlorbenzol unter Zuhilfenahme von Bleicherde
werden blaßgrünstichiggelbe, sehr feine Nädelchen vom Schmelzpunkt 319° C erhalten.
Analyse für C30H20O2N4 (468,49):
Berechnet: C 76,91, H 430, N 11,96;
gefunden: C 7636, H 4,16, N 12,04.
gefunden: C 7636, H 4,16, N 12,04.
Das als Ausgangsmaterial verwendete Bis-dü;^ylhydrazin
der Formel (18) kann wie folgt hergestellt werden.
14,0 g Benzoesäure-monohydrazid werden in 300 ml Pyridin verrührt und bei 5 bis 10° C 14,5 g Stilben-4,4'-dicarbonsäure-dichlorid
eingetragen. Man rührt eine Stunde zuerst unter Eiskühlung, danach bei Raumtemperatur
nach und erwärmt das farblose, ziemlich dickflüssige Reaktionsprodukt im Verlaufe einer weiteren
Stunde auf 90 bis 95° C. Nach 5- bis' östündigem Rühren bei 90 bis 95° C wird das Reaktionsgemisch auf
Raumtemperatur gekühlt und in 5000 ml Wasser
hi Eingetragen. Man nutscht das Reaktionsprodukt
wäscht es zuerst mit kaltem, danach mit heißem Wasser und trocknet
Man erhält etwa 22,6 g, entsprechend 80,7 Vo der
13
Theorie, an Bis-diacylhydrazin der Formel (18) in Form eines farblosen Pulvers, das bei 345 bis 345,5" C schmilzt.
In ähnlicher Weise können die nachfolgenden Dioxdiazol-derivate hergestellt werden:
H3CO
Ausbeute: 81 °/p der Theorie.
Hellgelbe, feine Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 287 bis 288° C.
-OCH3
N-
-N
in Analyse für C32H24O4N4 (528,54):
Berechnet: C 72,71, H 4,58, N 10,60; gefunden: C 72,24, H 4,49, N 10,37.
CH-CH-
-C
N-
Cl
Ausbeu»e: 81,9% der Theorie. Grünstichighellgelbe, glänzende Nädelchen
und Flitter aus Trichlorbenzol. Schmelzpunkt: 379 bis 380° C.
2n Analyse für C30Hi8O2N4Cl2 (537,41):
Berechnet: C 67,05, H 338, N 10,43; gefunden: C 67,03, H 33, N 10,40.
CH, | y |
H3C-C- | |
CH, | |
/ -C Il |
|
Il N- |
|
O / \ |
|
\ C H |
|
Il -N |
/ C H |
Il N- |
O / \ |
\ C M |
Il -N |
CH, -C-CH,
CH, (22)
Ausbeute: 67,6% der Theorie. Blaßgrünstichiggelbe, sehr feine Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 349 bis 350° C.
Analyse für C38H36O2N4 (580,70):
Berechnet: C 78,59, H 6,25, N 9,65; gefunden: C 78,41, H 6,33, N 9,84.
c-
Il
-N
-CH = V7
Ausbeute: 77,4% der Theorie. Blaßgelbe, glänzende, sehr feine Kristalle
aus o-Dichlorbenzol. Schmelzpunkt: 352 bis 353° C.
Analyse für C42Hj8O2N4 (620,68):
Berechnet: C 81,27, H 4,55, N 9,03; gefunden: C 81,10, H 4,63, N 9,15.
CH
Il
CH
CH
Il , c—c
' Il
N-
-CH = CH // V
O | CH M |
S | -CH Il |
|
\ Il c—c Il \ |
Il CH / |
|||
/ C |
Il \ -N |
|||
N- | ||||
Ausbeute: 82,6% der Theorie. Gelbe, feine, glänzende Kristalle aus
o-Dichlorbenzol.
Schmelzpunkt: 296 bis 297° C.
Schmelzpunkt: 296 bis 297° C.
Ausbeute; 88,5% der Theorie. Grünstichighellgelbe, feine, verfilzte
Nädelchen aus Dimethylformamid. Schmelzpunkt: 367 bis 368° C.
Analyse für C26Hi6O2N4S2 (480,57):
Berechnet: C 6438, H 3,36, N 11,66; gefunden: C 64,48, H 334, N 11,63.
CH = CH Analyse für Cj8Hi8O2N6 (470,47):
Berechnet: C 71,48, H 3,86, N 17,86; gefunden: C 71,47, H 338, N 17,88.
15
Ausbeute: 78,4% der Theorie. Hellgelbe, sehr feine Kristalle aus
Dimethylformamid. Schmelzpunkt: 368 bis 3690C
10
AHaIySeHSrC28H18O2N6 (470,47,1:
Berechnet: C 71,48, H 336, N 17,86; gefunden: C 71,42, H 4,12, N 17,89.
Herstellungsvorschrift B
33,1 g des His-diacylhydrazins der Formel
H3C-fCH2>r-O
O O
HN-NH
O O
O O
HN-NH
(27)
werden in 300 ml Thionylchlorid unter Rühren während gewaschen und getrocknet Man erhält etwa 14,9 g
24 Stunden am Rückfluß gehalten. Danach wird der entsprechend 41% der Theorie, 4,4'-Di-[5"-p-octoxy-
Oberschuß an Thionylchlorid abdestilliert, der Rück- 30 phenyl-l",3",4"-oxdiazolyl-(2")]stilben der Formel
stand mit Wasser zerrieben, genutscht, mit Wasser
H3C-(CH2^O
CH
in Form eines gelben Pulvers, das nach mehrmaligem Umkristallisieren, zuerst aus Dimethylformamid, dann
aus Dioxan, unter Zuhilfenahme von Aktivkohle bei 287°C schmilzt
Hellgelbe, feine Kristalle.
Hellgelbe, feine Kristalle.
Analyse für CwH5^4N4 (72431):
Berechnet: C 76,21, H 7,23, N 7,73;
gefunden: C 76,49, H 733, N 730. Das als Ausgangsmaterial verwendete Bis-diacylhydrazin
der Formel (27) kann nach den Angaben des Beispiels 1 aus 14,8 g Stilben^'-dicarbonsäure-dihydrazid
(durch Einwirkung von Hydrazinhydrat im
so Überschuß auf Stilben^'-dicarbonsäure-diäthylester
bei erhöhter Temperatur erhältlich) und 28,4 g p-n-Oc-
tyloxybenzoylchlorid durch Umsetzung in Pyridin in
sehr guter Ausbeute dargestellt werden.
In analoger Weise können die nachfolgenden
Dioxdiazol-derivate hergestellt werden:
CH3
\=/ Il Il
N- N
// V
N-
-N
Ausbeute: 46,2% der Theorie. Helle grünstichiggelbe, sehr feine
verfilzte NSdelchen aus o-Dichlorbenzol.
Schmelzpunkt: 305 bis 306° C. Analyse für CmHj4OjN4 (496,54):
Berechnet: C 77,40, H 4,87, N 11,28; gefunden: C 77,66, H 5,03, N
909 816/22
N N
Ausbeute: 52,4% der Theorie.
Blaßgelbe, sehr feine Kristalle aus
o-DichlorbenzoL
Schmelzpunkt: 336 bis 337° C.
(30)
Berechnet: C 77,40, H 4,87, N 11,28;
gefunden: C 77,26, H 5,03, N 11,41.
4,7 g der Verbindung der Formel
(31)
werden mit 032 g Schwefelblumen zusammengeschmolzen und die Schmelze während 30 Minuten bei
290 bis 3000C gerührt Man löst die Schmelze während
des Abkühlens in 50 ml o-Dichlorbenzol und verdünnt
die ausgeschiedene Kristallmasse mit 50 ml Methanol. Nach dem Kühlen, Nutschen, Waschen mit Methanol
und Trocknen werden etwa 23 g, entsprechend 62% der Theorie, 4,4'-Di-[5"-phenyl-l"3",4"-oxdiazolyl-(2")l·
stilben der Formel (19) in Form eines bräunlichgelben, kristallinen Pulvers vom Schmelzpunkt 292 bis 295° C
erhalten. Nach fünfmaligem Umkristallisieren aus o-Dichlorbenzol unter Zuhilfenahme von Bleicherde
werden hellgelbe, glänzende, verfilzte Nädelchen vom Schmelzpunkt 317 bis 318° C erhalten.
Berechnet: C 7631, H 4,30, N 11,96;
gefunden: C 7637, H 435, N 12,00.
Die als Ausgangsprodukt verwendete Verbindung der Formel (31) kann nach den Angaben der
Herstellungsvorschrift A aus Dibenzyl-4,4'-dicarbonsäure-dichlorid und Benzoesäure-monohydrazid und
anschließendem Ringschluß mit Thionylchlorid hergestellt werden. Nach Umkristallisation aus Tetrachloräthylen werden farblose, glänzende, verfilzte Nädelchen
vom Schmelzpunkt 239 bis 240° C erhalten.
Berechnet: C 7658, H 4,71, N 11,91;
gefunden: C 7634, H 4,76, N 11,76.
In ähnlicher Weise werden aus 5,8 g der Verbindung ίο der Formel
CH
(Farblose, glänzende Kristallenen aus Tetrachloräthylen.
Schmelzpunkt: 282 bis 283° C.
(582,72):
Berechnet: C 7832, H 6,57, N 9,62;
gefunden: C 78,47, H 6,70, N 9,88;)
etwa 2,5 g, entsprechend 43% der Theorie, der
Verbindung der Formel (22) erhalten, welche nach fünfmaligem Umkristallisieren aus Tetrachloräthylen
helle, grünstichiggelbe, glänzende Nädelchen vom Schmelzpunkt 344 bis 345° C ergeben.
Berechnet: C 78,59, H 6,25, N 9,65;
gefunden: C 7833, H 6,55, N 956.
46,5 g 2-[4'-Methylphenyl-(l '^-ph
azol der Formel
N-
—N
l-l 3,4-oxdi-
CH3 (33)
werden mit 6,4 g Schwefelblumen zusammengeschmolzen und die Schmelze während IV2 Stunden bei 290" C
gerührt Nach Beendigung der Entwicklung von Schwefelwasserstoff wird die Schmelze während des
Abkühlens mit 400 ml Tetrachloräthylen gelöst und danach auf Raumtemperatur gekühlt Nach dem
Nutschen, Waschen mit Tetrachloräthylen und Trock-
nen erhält man etwa 25,9 g, entsprechend 55,4% der
Theorie, 4,4'-Di-[5"-phenyl-l"ß'f,4"-oxdiazolyK2")]-stilben der Formel (19) in Form eines braunstichiggelben Pulvers, das nach mehrmaligem Umkristallisieren
aus o-DichlorbenzoI unter Zuhilfenahme von Bleicherde
helle, grünstichiggelbe, glänzende KristäJlchen vom
Schmelzpunkt 315 bis 316"C ergibt
(468:49):
Berechnet: C 76,91, H 430, N 11,96; gefunden: C 77,07, H 4,56, N 11,78.
7,4 g Stilben-^'-dicarbonsäure-dihydrazid, 8,75 g
3-Chlorbenzoylchlorid und 8 g Pyridin werden in 200 ml
10
trockenem o-DJchlorbenzol unter Rühren im Verlauf
von 30 Minuten auf 100 bis UO0C erwärmt, eine Stunde
bei dieser Temperatur nachgerührt und danach im Verlauf von 15 bis 30 Minuten auf 165 bis 1700C
aufgeheizt Zu der farblosen Suspension des Reaktionsprodukts werden bei 165 bis 1700C unter energischem
Rühren 8 g Thionylchlorid in 15 Minuten zugetropft, wobei allmählich eine hellgelbe Färbung auftritt Man
rührt weitere 5 Minuten bei dieser Temperatur nach, kühlt danach auf etwa 5° C ab und gibt während des
Abkühlens 200 ml Methanol zu. Nach dem Nutschen, Waschen mit Methanol und Trocknen werden etwa
11,7 g, entsprechend 87,1% der Theorie, 4,4'-Di-[5"-mchIor-phenyH",3",4"-oxdiazolyl-(2")>stiIben der Formel
CH=CH
(34)
N-
-N
in Form eines blaßgrünstichiggelben Pulvers erhalten,
das bei 334 bis 335° C schmilzt Nach dreimaligem Umkristallisieren aus o-Dichlorbenzol unter Zuhilfenahme von Bleicherde werden blaßgrüne, feine Kristalle
vom Schmelzpunkt 338 bis 339° C erhalten.
Berechnet: C 67,05, H 338, N 10,43;
gefunden: C 66,90, H 3,28, N 10,22.
In ähnlicher Weise können die nachfolgenden Dioxdiazol-derivate hergestellt werden:
CH3
Ausbeute: 77,8% der Theorie.
Hellgelbe, feine, verfilzte Nädelchen aus o-Dichlorbenzol.
Schmelzpunkt: 299 bis 3000C
40
Berechnet: C 77,84, H 538, N 10,68;
gefunden: C 77,69, H 538, N 10,58.
OCH3
Ausbeute: 78,5% der Theorie.
Hellgelbes, feinkristallines Pulver aus o-Dichlorbenzol.
Schmelzpunkt: 281 bis 283° C
CH = CH
CH,
Bertchnet: C 7336, H 5,07, N 10,07; gefunden: C 72,82, H 5,01, N 10,11.
(36)
OCH3
OCH3
(37)
Ausbeute: 83% der Theorie.
Blaßgelbe, feine, glänzende Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 343 bis 344° C.
Berechnet: C 6433, H 3,71, N 938; gefunden: C 64,05, H 3,50, N 9,09.
21
CH=GH
CH = CH
(38)
H3CO
Ausbeute: 433% der Theorie. Blaßgelbes, feinkristallines Pulver aus
Trichlorbenzol.
Schmelzpunkt: 358 bis 360° C
Analyse für C34H24O2N4 (520,56):
Berechnet: C 78,44, H 4,65, N 10,76; gefunden: C 78,09, H 431, N 10,59.
CH = CH
20
Berechnet: C 69^5, H 4,14, N 9,59; gefunden: C 69,79, H 4,13, N 9,52.
CH = CH
Ausbeute: 71,8% der Theorie. Blaßgrünstichiggelbes, feinkristallines
Pulver aus o-Dichlorbenzol. Schmelzpunkt: > 4000C
Berechnet: C 71,24, H 5,03, N 8,75; gefunden: C 71,04, H 4,95, N 8,75.
CH = CH
Ausbeute: 88,5% der Theorie. Blaßgelbes, feinkristallines Pulver aus
o-Dichlorbenzol.
Schmelzpunkt: 342 bis 343° C.
Berechnet: C 60,39, H 3,38, N 9,39;
gefunden: C 60,03, H 3,49, N 9,33.
Herstellungsvorschrift F 30^ g Stilben^'-dicarbonsäure-dichlorid, 30,0 g
von 15 bis 30 Minuten unter Rühren auf 100 bis HO0C erwärmt, eine Stunde bei dieser Temperatur nachge
rührt und danach im Verlauf von 2C bis 30 Minuten auf
170° C aufgeheizt Zu der nahezu farblosen Suspension werden bei 165 bis 1700C in 20 Minuten 32 g
Thionylchlorid unter energischem Rühren zugetropft Man rührt das nun gelbe, nahezu gelöste Reaktionspro
dukt noch 5 Minuten bei dieser Temperatur nach, kühlt
darauf auf etwa 5° C ab und gibt während des Abkühlens 600 ml Methanol zu. Nach dem Nutschen, Waschen mit
Methanol und Trocknen werden etwa 41,8 g, entspre-
p-Methyl-benzoesäure-hydrazid und 32 g Pyridin wer- chend 843% der Theorie, 4,4'-Di-[5"-m-methyl-phenylden in 600 m! trockenem o-Dichlorbenzol im Verlauf 55 l",3",4"-oxdia7.olyl·(2")]-stilben der Formel
CH = CH
o 9*
:/Xc-A
(42)
N-
-N
in Form eines hellgelben Pulvers vom Schmelzpunkt bis 268° C erhalten.
Dreimaliges Umkristallisieren aus o-Dichlorbenzol es
unter Zuhilfenahme von Bleicherde ergibt helle
grünstichiggelbe, fefre Nädelchen, die bei 273 bis 274°C In ähnlicher Weise können die nachfolgenden
schmelzen. Dioxdiazof-Derivate hergestellt werden.
Analyse für CwH24O2N4 (496,54):
fKunden: C 76,99, H 5,02, N 11,15.
23
CXH,
/λ
C C-C
Ii Ii Ν
N N
V-CH 24
Ii
-N
CXH,
Ausbeute: 70,4% der Theorie.
Gelbe, glänzende NäHelchen aus o-Dichlorbenzol.
Schmelzpunkt: 273 bis 274° C.
C)C H,
H,CO
Ausbeute: 673% der Theorie.
Schmelzpunkt: 326 bis 328° C. Gelbes, feinkristallines Pulver aus o-Dichlorbenzol.
Analyse für C32H24O4N4 (528,54):
Berechnet: C 72,71, H 4,58, N 10,60;
ίο gefunden: C 72,26, H 4,46, N 10,36.
O | C | —. ' | ν CII C | X-CH | Il | O | -c' | C 6937, C 69,06, |
Y-/
π \ - |
CXH, ( ' |
N | N — | N >—C |
Il -N |
^V-OCH | ||||||
\ι | nalyse für C34H28O6N | 4 (588,60)· | ||||||||
»(Ι | Berechnet: gefunden: |
H 4,80, N H 4,72, N |
||||||||
aus | — | N | C | H -ί"~Λ | N Ii c- |
9^2; 9,55. |
||||
N — Jl C |
||||||||||
Ausbeute: 83^% der Theorie.
Helle, grünstichiggelbe, verfilzte Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 337 bis 338° C.
Analyse für C38H24O2N4 (568,60):
Berechnet: C 80,26, H 4,25, N 9,85;
gefunden: C 80,18, H 4,29, N 9,9t.
-CH-.; X | O | \ | |
x | \ / | ||
<f V CH | |||
\ / | |||
V-c | |||
ii | |||
N |
CH =
Ausbeute: 92,2% der Theorie. Hellgelbe, sehr feine, glänzende Nädelchen
aus Trichlorbenzol.
Schmelzpunkt: 362 bis 364° C.
Schmelzpunkt: 362 bis 364° C.
Ausbeute: 83% der Theorie.
HeHgeibe, sehr feine Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 322° C.
HeHgeibe, sehr feine Kristalle aus o-Dichlorbenzol.
Schmelzpunkt: 322° C.
c—
-N
CH | / o' |
/ C i| |
O | C |
CH | -CH ii |
il N- |
-N | |
\ |
Il
c— / |
|||
1 lUdUVUIV· \S<^ft tV \jCr 1 tiC
Gelbes, feinkristallines Pulver aus o-Dichlorbenzol.
Schmelzpunkt: 275 bis 279° C.
Schmelzpunkt: 275 bis 279° C.
45 Analyse für C46H32O2N4 (672,75):
Berechnet: C 82,12, H 4,79, N 833; gefunden: C 81,40, H 5,07, N 831.
CH=CH
-c
Ii
N-
Il
-N
Analyse für C28H18O2N6 (470,47):
Berechnet: C 71,48, H 3,86, N 17,86; gefunden: C 71,75, H 339, N 17,90.
CH
Analyse für C2SHj4OiN4 (448,42):
Berechnet: C 69,64, H 3,60, N gefunden: C 6930, H 3,79, N
CH -C1H
υ Il
-C C-C
■ / Il
S N
Il
Ausbeute: 86% der Theorie.
Gefue, sehr feine Kristalle aus Trichlorbenzol.
Schmelzpunkt: 355 bis 356° C.
CH CH 26
CH
C C-C
il Il
N N
CH
Il
C-^
> (49)
Analyse für C38H24O2N4S2 (632,76):
Berechnet: C 72,13, H 3,82, N 8,85; gefunden: C 71,44, H 4,09, N 8,65.
Herstellungsvorschrift C 4.39 g des Hydrazides der Formel
O
\
C-
H2N-HN' N N
3.16g 4-Carba'thoxy-stilbcn-4-carbonsaurechlorid der Formel
(50)
CH = CH
H5C2O
Cl
(51)
und 2,4 g Pyridin werden in 75 ml trockenem o-Dichlorbenzol
im Verlauf von 15 Minuten unter Rühren auf 100 bis 110°C erwärmt, eine Stunde bei dieser Temperatur
nachgerührt und danach im Verlauf von 15 bis 30 Minuten auf 170° C aufgeheizt. Zu der blaßgelben
Suspension des Reaktionsprodukts werden bei 165 bis 170° C in 15 Minuten 3,0 g Thionylchlorid unter
energischem Rühren zugetropft Man rührt noch 5
r> Minuten bei dieser Temperatur nach, kühlt darauf auf etwa 5°C ab und gibt während des Abkühlens 100 ml
Methanol zu. Nach dem Nutschen, Waschen mit Methanol und Trocknen werden etwa 6,2 g, entsprechend
88,8% der Theorie, 4-[5"-p-tertButylphenyll"3",4"-oxdiazolyl-(2")]-4'-[5"'-(4""'-carbäthoxy-stilbenyl-(4""))-r"3'",4'"-oxdiazolyl-(2'")]-stilben
der Formel
H5C2O
C
C
Ii
ο
CH=CH
N-
-N
CH=CH N-
-N
CH,
CH,
(52)
erhalten, welche nach dreimaligem Umkristallisieren 45 konzentrierter Salzsäure angesäuert, der entstandene
aus viel o-Dichlorbenzol in Form eines blaßgelben, Niederschlag genutscht, neutral gewaschen und gefeinkristallinen
Pulvers vom Schmelzpunkt 351 bis trocknet. Man erhält etwa 231 g 4'-Carbäthoxy-stilben-352°
C anfallen. 4-carbonsäure der Formel
Analyse für Q5H38O4N4 (698,79):
Berechnet: C 7734, H 5,48, N 8,02;
gefunden: C 7738, H 5,52, N 7,95.
gefunden: C 7738, H 5,52, N 7,95.
Die als Ausgangsmaterial verwendeten Stilben-Derivate der Formeln (50) und (51) können folgendermaßen
hergestellt werden:
324 g Stiiben-4,4'-dicarbonsäurediäthylester werden in 1000 ml Äthanol und 4000 ml Dioxan gelöst und die
Lösung bei 40° C mit 100 ml 10 n-Natriumhydroxydlösung versetzt Nach einstündigem Rührer, bei 40° C wird
die entstandene dicke, cremefarbige Paste auf etwa 20°C abgekühlt genutscht, mit Dioxan gewaschen und
gut abgepreßt Das feuchte Nutschgut wird in 10 000 ml 5%iger Salzsäure während 2 Stunden gerührt, genutscht
und mit Wasser neutral gewaschen. Nun wird das rohe Nutschgut in 2000 ml 1 η-wässeriger Triäthanolaminlösung
während 60 Minuten gerührt und ungelöstes Material durch Filtration entfernt Das Filtrat wird mit
50 OCH
CH=CH
VOH
(53)
a!s farbloses Pulver, dessen Schmelzpunkt (230 bis 300° C) stark von der Erhitzungsgeschwindigkeit abhängt
Analyse für Ci8H16O4 (29631):
Berechnet: C 72,96, H 5,44, 0 21,60; gefunden: C 72,75, H 5,40, O 2134.
Durch dreistündiges Kochen in überschüssigem Thionylchlorid erhält man aus der soeben beschriebenen
Säure in einer Ausbeute von 97% der Theorie das
4'-Carbäthoxy-stilben-4-carbonsäurechlorid der Formel
(51).
Farblose Kristalle aus Trichloräthylen vom Schmelzpunkt 134 bis 136° C.
Analyse für Ci8Hi5O3CI (314,77):
Berechnet: C 68,68, H 4,80, Cl 11,26;
gefunden: C 68ΛίΗ H 4,83, Cl 11,54.
gefunden: C 68ΛίΗ H 4,83, Cl 11,54.
31 g 4'-Carbäthoxy-stilben-4-carbonsäurechlorid der Formel (51), 19,3 g p-tert.Butyl-benzoesäurehydraztd
und 16 g Pyridin werden in 500 ml trockenem
H5C2O
o-Dichlorbenzol im Verlauf von 40 Minuten unter
Rühren auf 100 bis 1100C erwärmt, Vh Stunden bei
dieser Temperatur nachgeriihrt und danach im Verlauf von 30 Minuten auf 165° C aufgeheizt Zu der nahezu
farblosen Suspension werden bei 165° C in 15 Minuten
24 g Thionylchlorid unter energischem Rühren zugetropft. Man rührt das nun gelbe Reaktionsprodukt noch
5 Minuten bei dieser Temperatur nach und kühlt darauf auf etwa 15° C ab, gibt 500 ml Methanol zu und nutscht
das ausgefallene 2-[4"-Carbäthoxy-stilbenyl-(4')]-5-[4'" tert.butyl-phenyl (1"')J 1,3,4-oxdiazol der Formel
CH,
Nach dem Waschen mit Methanol und Trocknen werden etwa 25,1 g, entsprechend 55,5% der Theorie,
eines blaßgelben, feinkristallinen Pulvers erhalten, das bei 198 bis 199,5"C schmilzt. Dreimaliges Umkristallisieren
aus Tetrachloräthylen unter Zuhilfenahme von Bleicherde ergibt blaßgelbe, sehr feine Nädelchen vom
Schmelzpunkt 200,5 bis 201,5° C.
Analyse für CmH28O3N2 (452,53):
(54)
Berechnet: C 76,97, H 6,24, N 6,19;
gefunden: C 76,67, H 6,20, N 6,10.
gefunden: C 76,67, H 6,20, N 6,10.
Der Ester der Formel (54) wird in Methylglykol mit
einem Überschuß an Hydrazinhydrat durch 48stündiges
>■> Sieden am leichten Rückfluß in das Hydrazid der
Formel (50) übergeführt. Schmelzpunkt: 262°C, unter Zersetzung.
In ähnlicher Weise können die nachfolgenden Dioxdiazol-Derivate hergestellt werden:
/ C Il |
c— Il |
C-H-O | CH, |
Il
N- |
Il
-N |
CH, | |
O ' \ |
/ —c Il |
||
Il
N- |
|||
O / \ |
|||
\ c— |
|||
-N |
(55)
Ausbeute: 88,9% der Theorie.
Hellgelbes, feinkristallines Pulver aus
o-Dichlorbenzol.
Schmelzpunkt: 361 bis 362° C.
Hellgelbes, feinkristallines Pulver aus
o-Dichlorbenzol.
Schmelzpunkt: 361 bis 362° C.
Analyse für C4IH31O3N5 (641,73):
Berechnet: C 76,74, H 4,87, N 10,91;
gefunden: C 76,42, H 4,78, N 10,79.
gefunden: C 76,42, H 4,78, N 10,79.
CH
, Il
c—c
CH 0
Il / \
c—c c
// V
CH = CH
// V
C C
CH,
C—CH,
N-
-N
N-
CH,
(56)
Ausbeute: 85% der Theorie.
Gelbe, feine Kristalle aus Trichlorbenzol.
Schmelzpunkt: 379 bis 380° C.
Schmelzpunkt: 379 bis 380° C.
Analyse für C39H23O3N5S (647,76):
Berechnet: C 7232, H 4,51, N 10,81;
gefunden: C 7134, H 4,48, N 10,79.
Berechnet: C 7232, H 4,51, N 10,81;
gefunden: C 7134, H 4,48, N 10,79.
Beispie! 1
Gebleichtes Gewebe aus Polyamid-Stapelfaser (Ny- t>o
lon-Spun) wird bei einem Flottenverhältnis von 1 :40
während 60 Minuten bei 60 bis 1000C in einem Bad behandelt, welches, bezogen auf das Fasermaterial,
0,025% der Verbindung der Formel (24) und 2 g pro Liter eines Dispergiermittels (Anlagerungsprodukt von ti
35 Mol Äthyienoxyd an 1 Mol Octadecylalkr-bol)
enthält Nach dem Spülen und Trocknen zeigt das so behandelte Gewebe eine hervorragende Aufhellung.
Verwendet man an Stelle des Gewebes aus Polyamid-Stapelfaser ein Gewebe aus Polyamid-Filament,
so gelangt man zu ähnlich guten Aufhelleffekten.
Ein Gewebe aus Polyäthylenglykolterephthalat (»Dacron«)
wird am Foulard mit einer wässerigen Dispersion behandelt, die pro Liter Wasser 2 g der Verbindung der
Formeln (20) und (24) und als Dispergator 2 g des Aniagerungsprodukts von 35 MoI Äthyienoxyd an 1 MoI
Octadecylalkohol enthält Nach dem Trocknen bei 70°C und anschließendem Erhitzen auf 2200C während 30
Sekunden werden hervorragende Weißeffekte von guter Lichtechtheit erhalten.
10 000 g eines aus Hexamethylendiaminadipat in bekannter Weise hergestellten Polyamids in Schnitzelform
werden mit 30 g Titandioxyd (Rutil-Modifikation)
und 5 g einer der Verbindungen der Formeln (20), (22),
(29), (30), (32) oder (42) in einem Rollgefäß während 12
Stunden gemischt Die so behandelten Schnitzel werden
in einem mit öl oder Diphenyldampf auf 3C0 bis 3100C
beheizten Kessel, nach Verdrängung des Luftsauerstoffes durch überhitzten Wasserdampf, geschmolzen und
während einer halben Stunde gerührt Die Schmelze wird hierauf unter Stickstoffdruck von 5 Atü durch eine
Spinndüse ausgepreßt und das derart gesponnene, abgekühlte Filament auf eine Spinnspule aufgewickelt.
Die entstandenen Fäden zeigen einen ausgezeichneten, thermofixierbeständigen Aufhelleffekt von guter
Wasch- und Lichtechtheit.
Verwendet man in diesem Beispiel als Ausgangsmaterial ein Polyamid, das aus ε-Caprolactam hergestellt
wurde, so erhält man ebenfalls ausgezeichnete, thermofixierbeständige Aufhelleffekte von guter Wasch- und
Lichtechtheit.
100 g Polyester-Granulat aus Polyterephthalsäureäthylenglykolester
werden innig mit 0,04 g der Verbindung der Formel (20) oder (42) vermischt und bei 285° C
unter Rühren geschmolzen. Nach dem Ausspinnen der Spinnmasse durch übliche Spinndüsen werden stark
aufgehellte Polyesterfasern erhalten.
2) Man kann die Verbindungen der Formeln (20) oder (42) auch vor oder während der Polykondensation zum
Polyester den Ausgangsstoffen zusetzen.
100 g Polypropylen »Fibre-Grade« werden innig mit 0,02 g der Verbindung der Formel (28) vermischt und bei
280 bis 290° C unter Rühren geschmolzen. Nach dev.i
Ausspinnen durch übliche Spinndüsen und Verstrecken werden Polypropylenfasern von ausgezeichnetem, lichtechtem
Aufhelleffekt erhalten.
Eine innige Mischung aus 100 g Polyvinylchlorid, 3 g Stabilisator (Ba/Cd-Komplex), 2 g Titandioxyd, 59 ml
Dioctylphthalat und 0,02 bis 0,1 g der Verbindung der Forme! (22) wird auf einem Kalander bei Ί50 bis 155" C
zu einer Folie ausgewalzt. Die so gewonnene Polyvinylchloridfolie
besitzt einen wesentlich höheren Weißgehalt als eine Folie, welche die Di-oxdiazolverbindung
nicht enthält.
Eine ebenfalls gute optische Aufhellung wird erzielt, wenn man Polyvinylchlorid durch Polyäthylen ersetzt
und bei einer Temperatur von 130 bis 135° C arbeitet.
Gebleichter Baumwollstoff wird im Flottenverhältnis 1 : 30 während 30 Minuten in einer 60° C warmen Flotte
gewaschen, die pro Liter folgende Zusätze enthält:
0.024 g des Aufhellers der Formel
NaO1S
/ C Il |
Il N- |
O / \ |
\ C Il |
Il -N |
// V CH = CH
C |
N- |
O / \ |
\ C Il |
Il -N |
/V
SO1Na
1 g aktives Chlor (Javellelauge),
4 g eines Waschpulvers folgender Zusammensetzung:
15,00% Dodecylbenzolsulfonat.
10,00% Natrium-laurylsulfonat,
40,00% Natriumtripolyphosphat.
25,75% Glaubersalz, calciniert,
10,00% Natrium-laurylsulfonat,
40,00% Natriumtripolyphosphat.
25,75% Glaubersalz, calciniert,
7,00% Natrium-metasilikat,
2,00% Carboxymethylcellulose,
0,25% Äthylendiamintetraessigsäure.
Nach dem Spülen und Trocknen weist das Gewebe einen sehr starken AufhellefTekt von guter Licht-. Säure-
und Chlorechtheit auf.
Der vorstehend genannte Aufheller kann erhalten werden durch Kondensation von Benzol-1-carbonsäure'4-sulfor.säurechlorid
mit Phenol in Gegenwart von Pyridin zu
HOOC-Ci1H4-SO2O-CtH5
Umwandlung der Carboxylgruppe in eine Carbonsäurechloridgruppe, Kondensation mit Stilbendicarbonsäure-dihydrazid
zur korrespondieren Di-acyl-Verbindung,
NaQ3S
bo Ringschlußreaktion mittels Thionylchlorid zum Stilbenbis-oxdiazol-Derivat
und anschließender Verseifung der Phenylestergruppierungen.
Ein Polyamidfasergewebe (Perlon) wird im Flottenverhältnis 1 :40 bei 6O0C in ein Bad eingebracht, das
(bezogen auf das Stoffgewicht) 0,2% des Aufhellers der Formel
sowie pro Liter 1 g 80%ige Essigsäure und 0,25 g eines Anlagerungsprodukts von 30 bis 35 Mol Athylenoxyd an
31
32
ein MoI technischen Stearylalkohol enthält Man Spulen und Trocknen erhält man einen s
erwärmt innerhalb von 30 Minuten auf Kochtemperatur Aufhelleffekt von sehr guter Lichtechtheit
und hält während 30 Minuten beim Sieden. Nach dem
Vergleichsbeispiel Es wurden folgende Verbindungen verglichen:
Verbindung A)
NaO3S
SO3Na gemäß deutscher Patentschrifi 1027 675, Beispiel
Verbindung B)
NaO3S
SO3Na gemäß deutscher Patentschrift 10 27 675, Beispiel
SO3Na
SO3Na
Verbindung C)
N N
CH =
N N
v Il Ii
X—C C
CH3
CH3
gemäß vorliegender Anmeldung, Herstellungsvorschrift B, Formel (29).
Verbindung D)
N N
Il Il
CH = CH
OCH3
gemäß vorliegender Anmeldung, Herstellungsvorschrift F, Formel (43).
gemäß vorliegender Anmeldung, Herstellungsvorschrift F, Formel (43).
Verbindung E)
CH3 N N
I J Il Il
I j—^
H3C-C-<f V-C C-
N N
Il Il yf-K
-c c^y
° OCH3
CH = CH / \=/
CHj O
gemäß vorliegender Anmeldung, Herslcllungsvorschrift A, Formel (22).
33
gemäß vorliegender Anmeldung, Herste!lungsvorschrift E, Formel (39).
Verbindung G)
N N
Cl
gemäß vorliegender Anmeldung, Herstellungsvorschrift E, Formel (34).
Die vorstehend definierten Verbindungen werden jeweils in eine Polyamid-Spinnmasse aus r-Caprolactam
gemäß Verfahrensweise des Beispiels 3 der vorliegenden Patentanmeldung eingearbeitet.
Am Filament wird der Weißgrad nach S t e η s b y ermittelt und die Lichtechtheit geprüft.
Prüfungsresultate: | Nullprobe | Weißgrad | Lichtecht |
(ohne Aufheller) | (Stensby) | heitsnote | |
81 | 112 | 1 | |
Verbindung A | 81 | 108 | 1 |
Verbindung B | 81 | 130 | 6 |
Verbindung C | 81 | 130 | 6 |
Verbindung D | 81 | 129 | 6 |
Verbindung E | 81 | 124 | 6 |
Verbindung F | 81 | 131 | 6 |
Verbindung G | |||
Ergebnis:
Die erfindungsgemäßen Verbindungen zeigen wesentlich höheren AufhellerefTekt. Sie sind insbesondere aber
durch hohe Lichtechtheit ausgezeichnet, während die bekannten Vergleichsprodukte speziell bezüglich der Lichtechtheit
unzureichend sind.
Claims (1)
- Patentansprüche: 1. Verwendung vor; Stilbenderivaten der allgemeinen FormelR R<ζ V-CH = CHN NIlN--N
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH779664A CH418287A (de) | 1964-06-15 | 1964-06-15 | Verwendung von neuen 4,4'-disubstituierten Stilbenen als optisch aufhellende Substanzen für textile organische Materialien |
Publications (2)
Publication Number | Publication Date |
---|---|
DE1794400B2 DE1794400B2 (de) | 1978-08-24 |
DE1794400C3 true DE1794400C3 (de) | 1979-04-19 |
Family
ID=4330608
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19651545684 Pending DE1545684A1 (de) | 1964-06-15 | 1965-06-10 | Neue 4,4'-disubstituierte Stilbene,Verfahren zu deren Herstellung und Anwendung |
DE1794400A Expired DE1794400C3 (de) | 1964-06-15 | 1965-06-10 | Verwendung von 4,4'-disubstituierten Stilbenderivaten als optische Aufhellungsmittel |
DE1965C0036092 Granted DE1794400A1 (de) | 1964-06-15 | 1965-06-10 | Neue 4,4'-disubstituierte stilbene, verfahren zu deren herstellung und anwendung |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE19651545684 Pending DE1545684A1 (de) | 1964-06-15 | 1965-06-10 | Neue 4,4'-disubstituierte Stilbene,Verfahren zu deren Herstellung und Anwendung |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE1965C0036092 Granted DE1794400A1 (de) | 1964-06-15 | 1965-06-10 | Neue 4,4'-disubstituierte stilbene, verfahren zu deren herstellung und anwendung |
Country Status (11)
Country | Link |
---|---|
US (1) | US3511834A (de) |
AT (1) | AT256766B (de) |
BE (1) | BE665400A (de) |
CH (2) | CH474555A (de) |
DE (3) | DE1545684A1 (de) |
ES (1) | ES314189A1 (de) |
FR (1) | FR1445769A (de) |
GB (1) | GB1106477A (de) |
IL (1) | IL23721A (de) |
NL (1) | NL141233B (de) |
SE (2) | SE322756B (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH554391A (de) * | 1971-03-31 | 1974-09-30 | Ciba Geigy Ag | Verwendung von 2-stilbenyl-4-styryl-v-triazolen zum optischen aufhellen von organischen materialien ausserhalb der textilindustrie. |
US3923677A (en) * | 1971-03-31 | 1975-12-02 | Ciba Geigy Ag | 2-Stilbenyl-4-styryl-v-triazoles, their use for the optical brightening of organic materials, and processes for their manufacture |
FR2203819B1 (de) * | 1972-10-18 | 1978-09-15 | Ciba Geigy Ag | |
US4012360A (en) * | 1973-12-03 | 1977-03-15 | Ciba-Geigy Corporation | Bis-salicyloyl-dicarboxylic acid dihydrazides as stabilizers for polyolefines |
DE2712686C2 (de) * | 1977-03-23 | 1986-09-04 | Bayer Ag, 5090 Leverkusen | 4-Triazinyl-4'-benzoxazolyl- bzw. 4'-phenyl-stilben-derivate |
WO1993001252A1 (en) * | 1991-07-12 | 1993-01-21 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent element |
US5420288A (en) * | 1992-04-14 | 1995-05-30 | Ricoh Company, Ltd. | Electroluminescent device comprising oxadiazole compounds luminescent material, oxadiazole compounds for the device, and method of producing oxadiazole compounds |
CN114573721B (zh) * | 2022-03-17 | 2023-07-25 | 壹科环塑新材料科技(深圳)有限公司 | 可快速降解的生物塑料及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH420046A (de) * | 1964-09-14 | 1967-03-15 | Ciba Geigy | Verwendung von neuen 4-Azolyl-4'-oxdiazolyl-stilbenen als optische Aufhellmittel für textile organische Materialien |
-
1964
- 1964-06-15 CH CH358365A patent/CH474555A/de not_active IP Right Cessation
- 1964-06-15 CH CH779664A patent/CH418287A/de unknown
-
1965
- 1965-06-10 DE DE19651545684 patent/DE1545684A1/de active Pending
- 1965-06-10 DE DE1794400A patent/DE1794400C3/de not_active Expired
- 1965-06-10 DE DE1965C0036092 patent/DE1794400A1/de active Granted
- 1965-06-10 FR FR20306A patent/FR1445769A/fr not_active Expired
- 1965-06-11 GB GB24805/65A patent/GB1106477A/en not_active Expired
- 1965-06-11 SE SE7726/65A patent/SE322756B/xx unknown
- 1965-06-13 IL IL23721A patent/IL23721A/xx unknown
- 1965-06-14 AT AT536665A patent/AT256766B/de active
- 1965-06-14 ES ES0314189A patent/ES314189A1/es not_active Expired
- 1965-06-14 BE BE665400A patent/BE665400A/xx unknown
- 1965-06-14 NL NL656507581A patent/NL141233B/xx unknown
-
1967
- 1967-09-05 US US665298A patent/US3511834A/en not_active Expired - Lifetime
-
1968
- 1968-05-22 SE SE6956/68A patent/SE342234B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
BE665400A (de) | 1965-12-14 |
IL23721A (en) | 1969-05-28 |
AT256766B (de) | 1967-09-11 |
CH418287A (de) | 1967-02-15 |
CH474555A (de) | 1969-06-30 |
DE1794400B2 (de) | 1978-08-24 |
NL141233B (nl) | 1974-02-15 |
US3511834A (en) | 1970-05-12 |
SE342234B (de) | 1972-01-31 |
FR1445769A (fr) | 1966-07-15 |
SE322756B (de) | 1970-04-20 |
ES314189A1 (es) | 1966-02-16 |
GB1106477A (en) | 1968-03-20 |
DE1545684A1 (de) | 1970-01-02 |
NL6507581A (de) | 1965-12-16 |
CH779664A4 (de) | 1966-03-15 |
DE1794400A1 (de) | 1975-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1594833C3 (de) | ||
DE1900537C2 (de) | Styrylnaphthalin-Derivate, Verfahren zu deren Herstellung und deren Verwendung | |
EP0003784A1 (de) | Distyryl-Verbindungen, sowie deren Herstellung und Verwendung als Weisstöner und Laserfarbstoff | |
DE1294923B (de) | Optische Aufhellmittel | |
EP0136259B1 (de) | 4-Heterocyclylvinyl-4'-styryl-biphenyle | |
DE1594861B2 (de) | Verfahren zum stufenweisen Blei chen von Cellulosematerial | |
DE1794400C3 (de) | Verwendung von 4,4'-disubstituierten Stilbenderivaten als optische Aufhellungsmittel | |
DE1294918B (de) | Optische Aufhellmittel | |
DE1294921B (de) | Optische Aufhellmittel | |
EP0023027A1 (de) | Mischungen von optischen Aufhellern, deren Herstellung und Verwendung | |
DE1594824C3 (de) | Verwendung von neuen Stilbenyl-1,3,4oxdiazol-Derivaten | |
DE1294917B (de) | Optisches Aufhellmittel | |
DE2712686C2 (de) | 4-Triazinyl-4'-benzoxazolyl- bzw. 4'-phenyl-stilben-derivate | |
DE1594825A1 (de) | Benzoxazolyl-1,3,4-oxdiazol-Derivate als optische Aufheller | |
EP0000346B1 (de) | Chinoxalinverbindungen, Verfahren zu deren Herstellung, deren Verwendung zum Weisstönen organischer Materialien und damit weissgetönte Materialien | |
DE2535612A1 (de) | Neue stilbenverbindungen | |
DE2060288A1 (de) | Neue Bis-aroxazolyl-Verbindungen,Verfahren zu deren Herstellung und deren Verwendung | |
DE1719353A1 (de) | Aryloxazolderivate als optische Aufhellmittel | |
EP0022491B1 (de) | Neue Stilbenverbindungen, Verfahren zu deren Herstellung und deren Verwendung als optische Aufheller | |
DE1294922B (de) | Optische Aufhellmittel | |
CH532629A (de) | Verfahren zum optischen Aufhellen mit neuen Bis-aroxazolyl-Verbindungen | |
DE1594831A1 (de) | Neue Oxdiazolverbindungen | |
DE2535615A1 (de) | Verfahren zur herstellung von styrolderivaten, neue styrolderivate und deren verwendung als optische aufhellmittel | |
DE2650456A1 (de) | Fluoreszenzfarbstoffe | |
DE1794386A1 (de) | Verwendung von bis-stilben-verbindungen als optische aufhellmittel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C3 | Grant after two publication steps (3rd publication) | ||
EHV | Ceased/renunciation |