DE102009014764B4 - Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen - Google Patents
Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen Download PDFInfo
- Publication number
- DE102009014764B4 DE102009014764B4 DE102009014764.0A DE102009014764A DE102009014764B4 DE 102009014764 B4 DE102009014764 B4 DE 102009014764B4 DE 102009014764 A DE102009014764 A DE 102009014764A DE 102009014764 B4 DE102009014764 B4 DE 102009014764B4
- Authority
- DE
- Germany
- Prior art keywords
- slice
- point
- section
- image
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 210000003484 anatomy Anatomy 0.000 title claims abstract description 21
- 230000002792 vascular Effects 0.000 title description 5
- 238000000513 principal component analysis Methods 0.000 claims abstract description 5
- 238000005457 optimization Methods 0.000 claims abstract description 4
- 238000012800 visualization Methods 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 238000002591 computed tomography Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4887—Locating particular structures in or on the body
- A61B5/489—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/466—Displaying means of special interest adapted to display 3D data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/64—Analysis of geometric attributes of convexity or concavity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20036—Morphological image processing
- G06T2207/20044—Skeletonization; Medial axis transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
- G06T2207/20096—Interactive definition of curve of interest
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2219/00—Indexing scheme for manipulating 3D models or images for computer graphics
- G06T2219/008—Cut plane or projection plane definition
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Theoretical Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Geometry (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Verfahren zur Visualisierung tubulärer anatomischer Strukturen in medizinischen 3D-Bildaufnahmen mit folgenden Schritten:a) Bereitstellen von 3D-Bilddaten der tubulären anatomischen Struktur,b) in den 3D-Bilddaten Ermitteln einer Mittellinie (201) der tubulären anatomischen Struktur,c) Selektieren eines Punktes (P) der Mittellinie (201),d) Erzeugen eines dem Punkt (P) zugeordneten 2D-Schnittbildes, wobei das 2D-Schnittbild eine Schnittebene (205) in den 3D-Bilddaten repräsentiert, die relativ zu einem Teilstück (208) der Mittellinie (201), das den Punkt (P) sowie einen vorgebbaren Teilstückanfangs- und Teilstückendpunkt (203, 204) des Teilstücks (208) umfasst, derart angeordnet ist, dass für jeden Mittellinienpunkt des Teilstücks (208) ein orthogonaler Abstand (207) zur Schnittebene (205) gleich oder kleiner einem vorgegebenen Wert R ist, wobei R größer als ein Wert Rgewählt wird, und wobei Rden Wert von R angibt, für den genau eine solche Schnittebene (205) bestimmbar ist,d1) Festlegen der dreidimensionalen Orientierung der Schnittebene des 2D-Schnittbildes mittels einer Hauptkomponentenanalyse aller Mittellinienpunkte des Teilstücks (208)e) visuelles Anzeigen des 2D-Schnittbildes, dadurch gekennzeichnet, dass nach Schritt e) die Schritte c), d) und e) erneut durchlaufen werden und in Schritt d) ein gütemaßabhängiges Optimierungsverfahren zur Bestimmung einer 3D-Orientierung der Schnittebene (205) durchgeführt wird, wobei als Gütemaß ein Winkel α zwischen einer ersten 2D-Schnittebenennormalen und einer zweiten 2D-Schnittebenennormalen verwendet wird, wobei sich die erste 2D-Schnittebenennormale auf ein, in Schritt e) bereits angezeigtes erstes 2D-Schnittbild bezieht, und sich die zweite 2D-Schnittebenennormale auf ein, in einem dem Schritt e) nachfolgenden Schritt d) erzeugtes zweites 2D-Schnittbild mit einer zweiten Schnittebene bezieht, und wobei die 3D-Orientierung des zweiten Schnittebene (205) derart bestimmt wird, dass der Winkel α minimiert wird.
Description
- Die vorliegende Erfindung liegt auf dem Gebiet der Medizintechnik und betrifft ein Verfahren sowie eine Vorrichtung zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen. Derartige 3D-Bildaufnahmen, bzw. entsprechende 3D-Bilddaten, lassen sich mittels bekannter bildgebender medizinischer Verfahren, wie beispielsweise der Computertomographie (CT), der Kernspinresonanztomographie (NRT), der Magnetresonanztomographie (MRT), oder der Sonographie gewinnen. Dabei wird typischerweise ein Stapel von 2D-Schnittbildaufnahmen eines Untersuchungsobjektes erzeugt, der insgesamt die 3D-Bildaufnahme bildet.
- Die Befundung von medizinischen 3D-Bildaufnahmen wird heute überwiegend anhand von visuell dargestellten 2D-Schnittbildern durchgeführt, die auf Basis der aufgenommenen 3D-Bilddaten erzeugt werden. Diese Praxis findet auch dann Anwendung, wenn die in den 3D-Bildaufnahmen zu analysierenden Strukturen eine tubuläre Geometrie aufweisen. Beispiele tubulärer Strukturen sind tubuläre Hohlorgane, wie das Kolon, oder Gefäße, wie bspw. die Aorta oder die Koronargefäße. In den letztgenannten Fällen steht bei der Befundung der tubulären Strukturen insbesondere die Analyse von krankhaften Veränderungen, zumeist an den Innenwänden der tubulären Struktur im Mittelpunkt. Als Beispiel sei hier eine stenotische Region in einem Gefäßabschnitt genannt. Aus medizinischer Sicht gilt es dabei herauszufinden, inwieweit die verengte Region einen Einfluss auf die medizinische Gesamtfunktion des Gefäßabschnitts hat. Im vorliegenden Beispiel der Gefäßverengung bedeutet dies, dass der Arzt die 3D-Bildaufnahme dahingehend analysiert, ob trotz Gefäßverengung durch das Gefäß noch genügend Blut fließen kann, damit bspw. der Herzmuskel noch ausreichend mit Sauerstoff versorgt wird.
- Für die Befundung von tubulären Strukturen wird im Stand der Technik, in den aufgenommenen 3D-Bilddaten eine Mittellinie (engl. „centerline“) ermittelt, die die in den 3D-Bilddaten abgebildete 3-dimensionale tubuläre Struktur repräsentiert. Hierzu werden im Stand der Technik bekannte Skelettierungs- oder Verdünnungsverfahren verwendet. Diese Mittellinie dient dabei als Pfad für die Visualisierung mit 2D-Schnittbildern. Das heißt, zu einem manuell selektierbaren Punkt der Mittellinie (zu jedem zur Mittellinie gehörenden Bildvoxel) werden im Allgemeinen ein im selektierten Punkt orthogonal zur Mittellinie stehendes 2D-Querschnittsbild (engl. „Cross Section“) der tubulären Struktur und zwei 2D-Schnittbilder mit tangentialen Schnittebenen berechnet und visuell angezeigt. Zumeist stehen alle drei Ebenen senkrecht zueinander. Durch wiederholtes Selektieren von Punkten der Mittellinie werden entsprechende, den jeweils selektierten Punkt enthaltende 2D-Schnittbilder erzeugt und angezeigt. Insbesondere beim kontinuierlichen Selektieren nebeneinander liegender Punkte der Mittellinie, entsprechend bspw. eines kontinuierlichen Vor- und Zurückbewegens entlang des Pfades, kann die tubuläre Struktur mittels der dabei jeweils angezeigten 2D-Schnittbilder befundet werden.
- Das Problem bei dieser Vorgehensweise ist jedoch, dass vor allem bei stark gekrümmten tubulären Strukturen oder auch bei tubulären Strukturen, die ihre Krümmung zwar schwach, aber häufig ändern, die beschriebenen 2D-Schnittbilder (Tangentialebenen) beim „kontinuierlichen Abfahren des Pfades“ von Bild zu Bild sehr stark „springen“. Somit wird der Anzeigeverlauf beim kontinuierlichen Durchlaufen der Struktur sehr unruhig, was vom befundenden Arzt eine erhöhte Aufmerksamkeit erfordert und die Gefahr von Fehlinterpretationen der angezeigten 2D-Schnittbilder erhöht.
- Aus der
US 2002 /0 118 869 A1 - Aufgabe der Erfindung ist es, ein Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen anzugeben, bei dem die vorstehend beschriebenen Probleme vermieden werden und ein schnelleres und zuverlässigeres Befunden tubulären anatomischen Strukturen ermöglicht wird.
- Die Aufgabe wird mit dem Verfahren gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
- Erfindungsgemäß umfasst das Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen folgende Schritte:
- Schritt a):
- Bereitstellen von 3D-Bilddaten der tubulären anatomischen Struktur. Die 3D-Bilddaten sind dabei typischerweise mittels eines bildgebenden medizinischen Verfahrens, bspw. der Compu-ter-, Kernspinresonanz-, Magnetresonanztomographie , oder der Sonographie erzeugt worden. Grundsätzlich lässt sich das Verfahren auf alle 3D-Bilddaten anwenden, in denen tubuläre Strukturen abgebildet sind, die untersucht werden sollen.
- Schritt b):
- In den 3D-Bilddaten Ermitteln einer Mittellinie der tubulären anatomischen Struktur. Im Stand der Technik sind hierzu anwendbare Verfahren bekannt. Vorteilhafterweise erfolgt das Ermitteln der Mittellinie mittels Skelettieren oder Verdünnen der 3D-Bilddaten. In besonders bevorzugter Weise erfolgt das Ermitteln der Mittellinie mittels Segmentieren und anschließendem Skelettieren der 3D-Bilddaten.
- Schritt c):
- Selektieren eines Punktes P der Mittellinie. Das Selektieren des Punktes P kann automatisiert oder vorzugsweise durch manuelle Eingabe einer Bedienperson erfolgen. In letzterem Fall wird vorzugsweise zuvor die in den 3D-Bilddaten ermittelte Mittellinie visuell angezeigt. Die Bedienperson kann somit interaktiv den Punkt P auf der Mittellinie der tubulären Struktur auswählen. Vorzugsweise erfolgt das Selektieren des Punktes P durch eine Bedienperson mittels einer Eingabeeinheit, bspw. einer Computer-Maus, einer Tastatur, einer Sprachsteuerungseinheit etc.
- Schritt d):
- Erzeugen eines dem Punkt P zugeordneten 2D-Schnittbildes. Dabei repräsentiert das hierbei erzeugte 2D-Schnittbild eine Schnittebene in den 3D-Bilddaten, die relativ zu einem Teilstück der Mittellinie, das den Punkt P sowie einen vorgebbaren Teilstückanfangs- und Teilstückendpunkt des Teilstücks umfasst, derart angeordnet ist, dass für jeden Mittellinienpunkt des Teilstücks ein orthogonaler Abstand zur Schnittebene kleiner oder gleich einem vorgegebenen Wert R ist. In diesem Zusammenhang sei darauf hingewiesen, dass in diesem Dokument unter orthogonalem Abstand ein Abstand verstanden wird, der auf der Schnittebene senkrecht steht. Der Wert R wird erfindungsgemäß so gewählt, dass er größer als ein Wert Rkrit ist, wobei Rkrit den Wert von R angibt, für den genau eine solche Schnittebene gemäß vorstehenden Bedingungen ermittelbar ist. (Anmerkung: für R kleiner als Rkrit lässt sich keine Schnittebene ermitteln, die den angegebenen Bedingungen genügt.)
- In besonders vorteilhafter Weise wird der Wert R derart gewählt, dass R kleiner oder gleich dem maximalen Querschnittsradius der tubulären Struktur entlang des Teilstücks ist, insbesondere dass R kleiner oder gleich der Hälfte dieses maximalen Querschnittsradius ist. Natürlich ist R dabei stets größer als Rkrit. Damit wird sichergestellt, dass das 2D-Schnittbild entlang des betrachteten Teilstücks der Mittellinie innerhalb der tubulären Struktur verläuft und so insbesondere eine optimale Befundung bspw. von inneren Gefäßwänden möglich ist.
- In diesem Verfahrensschritt d) erfolgt damit zunächst ein Vorgeben eines Teilstücks (Ausschnitts) der Mittellinie durch Festlegen eines Teilstückanfangs- und Teilstückendpunktes auf der Mittelinie. Zur Festlegung (Vorgabe) des Teilstücks ergeben sich folgende vorteilhaften Ausführungsformen des Verfahrens.
- Das Festlegen oder Vorgeben des Teilstückanfangspunktes und/oder des Teilstückendpunktes kann manuell durch eine Bedienperson oder automatisiert in Abhängigkeit des Punktes P erfolgen. In besonders vorteilhafter Weise werden der Teilstückanfangspunkt und der Teilstückendpunkt derart vorgegeben, dass der Punkt P entlang der Mittellinie gleich weit vom Teilstückanfangspunkt und vom Teilstückendpunkt entfernt ist. In einer alternativen Ausführungsform werden der Teilstückanfangspunkt und/oder der Teilstückendpunkt automatisiert in Abhängigkeit von der Wahl des Punktes P, den Werten R und Rkrit vorgegeben. Ist die Mittellinie stark gekrümmt, so werden bspw. der Teilstückanfangspunkt und/oder der Teilstückendpunkt in Abhängigkeit des Punktes P so verändert, dass dadurch die Länge des Teilstücks verkleinert wird, bis bei dem gegebenen R unter den erfindungsgemäßen vorstehend angegebenen Bedingungen eine Schnittebene bestimmbar ist.
- In einer alternativen Ausführungsform ist der Teilstückanfangspunkt oder der Teilstückendpunkt identisch mit dem Punkt P. Weiterhin kann der Abstand zwischen Teilstückanfangs- und Teilstückendpunkt entlang der Mittellinie vorteilhafterweise abhängig vom maximalen Querschnittsradius der tubulären Struktur entlang der Mittellinie vorgegeben werden. In besonders vorteilhafter Weise wird als Abstand zwischen Teilstückanfangs- und Teilstückendpunkt entlang der Mittellinie das 5-bis 50-fache, vorteilhafterweise das 20-fache, insbesondere das 10-fache, des maximalen Querschnittsradius der tubulären Struktur entlang der Mittellinie vorgegeben.
- Schritt e):
- Visuelles Anzeigen des erzeugten 2D-Schnittbildes. Dies erfolgt typischerweise auf einem Monitor oder Bildschirm. Natürlich eignen sich hierfür weitere, dem Fachmann bekannte Anzeigemittel.
- Zusätzlich zu der vorstehend in Schritt d) beschriebenen abstandsabhängigen Ermittlung eines 2D-Schnittbildes, wird die dreidimensionale Orientierung der Schnittebene des 2D-Schnittbildes mittels einer Hauptkomponentenanalyse aller Mittellinienpunkte des Teilstücks festgelegt. Dabei wird die 3D-Orientierung der Schnittebene durch jene zwei, als Ergebnis der Hauptkomponentenanalyse erhaltenen Vektoren definiert, die die größte und zweitgrößte räumliche Varianz der Mittellinienpunkte des Teilstücks repräsentieren.
- Alternativ oder zusätzlich kann die Festlegung der 3D-Orientierung der Schnittebene in Schritt d) mittels eines gütemaßabhängigen Optimierungsverfahrens durchgeführt werden. Dabei kann das Gütemaß ein oder mehrere Parameter umfassen. So wird in einer ersten Ausführungsvariante als Gütemaß die Anzahl der Mittellinienpunkte des Teilstücks verwendet, deren orthogonaler Abstand zur Schnittebene kleiner als ein vorgebbarer Wert r mit Rkrit < r < R ist. Angewandt auf die 3D-Bilddaten entspricht die Anzahl dieser Mittellinienpunkte, einer entsprechenden Anzahl von Bildvoxeln, die das Teilstück der Mittellinie in den 3D-Bilddaten repräsentieren.
- Erfindungsgemäß werden nach dem Schritt e) die Schritte c), d), und e) erneut wiederholt durchlaufen. Dadurch ist insbesondere eine kontinuierliche Visualisierung der tubulären Struktur entlang der in Schritt b) erzeugten Mittellinie möglich, ohne dass ein „Springen“ bzw. schnelle Richtungsänderungen zwischen den in Schritt e) angezeigten 2D-Schnittbildern entsteht.
- Dabei wird im Schritt d) ein gütemaßabhängiges Optimierungsverfahren zur Bestimmung einer 3D-Orientierung der Schnittebene durchgeführt, wobei als Gütemaß ein Winkel α zwischen einer ersten 2D-Schnittebenennormalen und einer zweiten 2D-Schnittebenennormalen verwendet wird, wobei sich die erste 2D-Schnittebenennormale auf ein, in Schritt e) bereits angezeigtes erstes 2D-Schnittbild bezieht, und sich die zweite 2D-Schnittebenennormale auf ein, in einem dem Schritt e) nachfolgenden Schritt d) erzeugtes zweites 2D-Schnittbild mit einer zweiten Schnittebene bezieht, und wobei die 3D-Orientierung des zweiten Schnittebene derart bestimmt wird, dass der Winkel α minimiert wird.
- Zusätzlich zu dem erfindungsgemäß erzeugten, dem Punkt P zugeordneten 2D-Schnittbild, kann in Schritt d) ein dem Punkt P zugeordnetes 2D-Querschnittsbild erzeugt und in Schritt e) angezeigt werden, wobei das 2D-Querschnittsbild in den 3D-Bilddaten eine Schnittebene repräsentiert, die im Punkt P orthogonal zur Mittellinie der tubulären Struktur ausgerichtet ist. Vorteilhafter Weise werden in Schritt d) für den Punkt P zwei 2D-Schnittbilder und ein 2D-Querschnittsbild erzeugt. Eine einfache Interpretierbarkeit der erzeugten 2D-Schnittbilder ergibt sich, wenn die zuvor genannten zwei 2D-Schnittbilder und das 2D-Querschnittsbild jeweils Schnittebenen in den 3D-Bilddaten aufweisen, die orthogonal zueinander angeordnet sind.
- Das beschriebene Verfahren hat den Vorzug, dass bei einer Befundung entlang der Mittellinie der tubulären anatomischen Strukturen ein „Springen“ aufeinanderfolgender Anzeigen von 2D-Schnittbildern bzw. schnelle Richtungswechsel vermieden werden. Zugleich ergibt sich eine optimale Ansicht der untersuchten tubulären Struktur. Damit wird insgesamt ein schnelleres, weniger fehleranfälliges, benutzerfreundliches und damit effizienteres Befunden ermöglicht. an dem Punkt P orthogonal zur Mittellinie der tubulären ana¬ tomischen Struktur ausgerichtet ist.
- Ausführungsbeispiele der Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung gemäß den Unteransprüchen sind in den folgenden schematischen Zeichnungen dargestellt. Es zeigen:
-
1 ein Ablaufschema des erfindungsgemäßen Verfahrens, -
2 eine schematisierte 2D-Darstellung der im Verfahrensschritt b) ermittelten Mittellinie der tubulären Struktur sowie einer erfindungsgemäß erzeugten 2D-Schnittebene, und -
3 einen schematischen Aufbau einer nicht zur Erfindung gehörenden Vorrichtung. -
1 zeigt schematisch die Abfolge der Verfahrensschritte des erfindungsgemäßen Verfahrens100 zur Visualisierung tubulärer anatomischer Strukturen in medizinischen 3D-Bildaufnahmen. In Schritt101 erfolgt ein Bereitstellen von 3D-Bilddaten der tubulären anatomischen Struktur. In Schritt102 erfolgt ein Ermitteln einer Mittellinie201 der tubulären anatomischen Struktur in den 3D-Bilddaten. In Schritt104 erfolgt ein Selektieren eines Punktes P der Mittellinie201 . In Schritt105 erfolgt ein Erzeugen eines, dem Punkt P zugeordneten 2D-Schnittbildes, wobei das 2D-Schnittbild eine Schnittebene205 in den 3D-Bilddaten repräsentiert, die relativ zu einem Teilstück208 der Mittellinie201 , das den Punkt P sowie einen vorgebbaren Teilstückanfangs- und Teilstückendpunkt203 ,204 des Teilstücks208 umfasst, derart angeordnet ist, dass für jeden Mittellinienpunkt des Teilstücks208 ein orthogonaler Abstand207 zur Schnittebene205 kleiner oder gleich einem vorgegebenen Wert R ist. Dabei wird der Wert R größer als ein Wert Rkrit gewählt, wobei Rkrit den Wert von R angibt, für den genau eine solche Schnittebene205 bestimmbar ist. Die 3D-Orientierung der Schnittebene205 wird mittels Hauptkomponentenanalyse aller Mittellinienpunkte des Teilstücks208 bestimmt, wobei die 3D-Orientierung durch jene zwei dabei erhaltenen Vektoren definiert wird, die die größte und zweitgrößte räumliche Varianz der Mittellinienpunkte des Teilstücks208 repräsentieren. Durch Vorgabe der 3D-Orientierung und des Wertes R kann eindeutig eine Schnittebene in den 3D-Bilddaten ermittelt werden. - In Schritt
106 erfolgt ein visuelles Anzeigen des ermittelten 2D-Schnittbildes. Nach dem visuellen Anzeigen des 2D-Schnittbildes wird das Verfahren beginnend mit Schritt104 wiederholt ausgeführt. Das Bezugszeichen107 kennzeichnet den sich wiederholenden Verfahrensablauf. - In einer besonders bevorzugten Verfahrensvariante erfolgt das Selektieren des Punktes P in Verfahrensschritt
104 in Form eines kontinuierlichen Wanderns entlang des Teilstückes208 der Mittellinie201 , wobei das Wandern in zwei Richtungen möglich ist. Dieses „Entlangwandern“ an der Mittellinie201 wird vorzugsweise von einer Bedienperson mittels eines Eingabemittels, wie bspw. einer Computer-Mouse, gesteuert bzw. veranlasst. -
2 zeigt eine schematisierte 2D-Darstellung der in Verfahrensschritt b) ermittelten Mittellinie201 der tubulären Struktur sowie einer erfindungsgemäß erzeugten 2D-Schnittebene 205. Die Darstellung veranschaulicht somit die Verhältnisse nach Ausführung des Verfahrensschrittes d). Die tubuläre anatomische Struktur wird nach dem Skelettieren /Verdünnen durch seine Mittellinie201 repräsentiert. Auf der Mittellinie wurde der Punkt P selektiert. Der Teilstückanfangs- und Teilstückendpunkt203 ,204 wurden automatisch derart selektiert, dass der Punkt P entlang der Mittellinie201 gleich weit entfernt vom Teilstückanfangs- und Teilstückendpunkt203 ,204 liegt. Das so definierte Teilstück208 der Mittellinie201 wird in der Darstellung durch eine größere Strichstärke der Mittellinie201 hervorgehoben. Die gestrichelten Linien kennzeichnen den Bereich, für den gilt, dass der orthogonale Abstand zwischen den Mittellinienpunkten des Teilstücks208 zur Schnittebene205 kleiner oder gleich einem vorgegebenen Wert R (Bezugszeichen206 ) ist. Anhand der schraffierten Bereiche207 zwischen dem Teilstück208 und der Schnittebene205 wird der jeweilige orthogonale Abstand zwischen den Mittellinienpunkten des Teilstücks208 zur Schnittebene205 veranschaulicht. -
3 zeigt den schematischen Aufbau einer Vorrichtung300 zur Visualisierung tubulärer anatomischer Strukturen in medizinischen 3D-Bildaufnahmen. Die Vorrichtung umfasst ein Speichermodul301 mit dem 3D-Bilddaten der tubulären anatomischen Struktur gespeichert werden, ein erstes Modul302 mit dem basierend auf den 3D-Bilddaten eine Mittellinie201 der tubulären anatomischen Struktur ermittelt wird, ein zweites Modul303 mit der ein Punkt P auf der Mittellinie201 selektiert wird, ein drittes Modul304 mit dem aus den 3D-Bilddaten ein dem Punkt (P) zugeordnetes 2D-Schnittbild erzeugt wird, wobei das 2D-Schnittbild eine Schnittebene205 in den 3D-Bilddaten repräsentiert, die relativ zu einem Teilstück208 der Mittellinie201 , das Punkt P sowie einen vorgebbaren Teilstückanfangs- und Teilstückendpunkt203 ,204 des Teilstücks208 umfasst, derart angeordnet ist, dass für jeden Mittellinienpunkt des Teilstücks208 ein orthogonaler Abstand207 zur Schnittebene205 kleiner oder gleich einem vorgegebenen Wert R istzugeordnete 2D-Schnittbild visuell dargestellt wird.
Claims (10)
- Verfahren zur Visualisierung tubulärer anatomischer Strukturen in medizinischen 3D-Bildaufnahmen mit folgenden Schritten: a) Bereitstellen von 3D-Bilddaten der tubulären anatomischen Struktur, b) in den 3D-Bilddaten Ermitteln einer Mittellinie (201) der tubulären anatomischen Struktur, c) Selektieren eines Punktes (P) der Mittellinie (201), d) Erzeugen eines dem Punkt (P) zugeordneten 2D-Schnittbildes, wobei das 2D-Schnittbild eine Schnittebene (205) in den 3D-Bilddaten repräsentiert, die relativ zu einem Teilstück (208) der Mittellinie (201), das den Punkt (P) sowie einen vorgebbaren Teilstückanfangs- und Teilstückendpunkt (203, 204) des Teilstücks (208) umfasst, derart angeordnet ist, dass für jeden Mittellinienpunkt des Teilstücks (208) ein orthogonaler Abstand (207) zur Schnittebene (205) gleich oder kleiner einem vorgegebenen Wert R ist, wobei R größer als ein Wert Rkrit gewählt wird, und wobei Rkrit den Wert von R angibt, für den genau eine solche Schnittebene (205) bestimmbar ist, d1) Festlegen der dreidimensionalen Orientierung der Schnittebene des 2D-Schnittbildes mittels einer Hauptkomponentenanalyse aller Mittellinienpunkte des Teilstücks (208) e) visuelles Anzeigen des 2D-Schnittbildes, dadurch gekennzeichnet, dass nach Schritt e) die Schritte c), d) und e) erneut durchlaufen werden und in Schritt d) ein gütemaßabhängiges Optimierungsverfahren zur Bestimmung einer 3D-Orientierung der Schnittebene (205) durchgeführt wird, wobei als Gütemaß ein Winkel α zwischen einer ersten 2D-Schnittebenennormalen und einer zweiten 2D-Schnittebenennormalen verwendet wird, wobei sich die erste 2D-Schnittebenennormale auf ein, in Schritt e) bereits angezeigtes erstes 2D-Schnittbild bezieht, und sich die zweite 2D-Schnittebenennormale auf ein, in einem dem Schritt e) nachfolgenden Schritt d) erzeugtes zweites 2D-Schnittbild mit einer zweiten Schnittebene bezieht, und wobei die 3D-Orientierung des zweiten Schnittebene (205) derart bestimmt wird, dass der Winkel α minimiert wird.
- Verfahren gemäß
Anspruch 1 , dadurch gekennzeichnet, dass vor Schritt c) ein Schritt b1) durchgeführt wird, in dem eine Anzeige der in Schritt b) ermittelten Mittellinie (201) erfolgt. - Verfahren gemäß
Anspruch 2 , dadurch gekennzeichnet, dass nach Schritt e) das Verfahren beginnend mit Schritt b1) erneut durchlaufen wird. - Verfahren gemäß einem der
Ansprüche 1 bis3 , dadurch gekennzeichnet, dass der Teilstückanfangspunkt und der Teilstückendpunkt (203, 204) derart vorgegeben werden, dass der Punkt (P) entlang der Mittellinie (201) gleich weit vom Teilstückanfangspunkt und vom Teilstückendpunkt (203, 204) entfernt ist. - Verfahren gemäß einem der
Ansprüche 1 bis4 , dadurch gekennzeichnet, dass der Abstand zwischen Teilstückanfangs- und Teilstückendpunkt (203, 204) entlang der Mittellinie (201) abhängig vom maximalen Querschnittsradius der tubulären Struktur entlang der Mittellinie (201) vorgegeben wird. - Verfahren gemäß
Anspruch 5 , dadurch gekennzeichnet, dass als Abstand zwischen Teilstückanfangs- und Teilstückendpunkt (203, 204) entlang der Mittellinie (201) das 5- bis 50-fache, vorteilhafter Weise das 20-fache, insbesondere das 10-fache, des maximalen Querschnittsradius der tubulären Struktur entlang der Mittellinie (201) vorgegeben wird. - Verfahren gemäß einem der
Ansprüche 1 bis6 , dadurch gekennzeichnet, dass in Schritt d) zusätzlich ein dem Punkt (P) zugeordnetes 2D-Querschnittsbild erzeugt und in Schritt e) angezeigt wird, wobei das 2D-Querschnittsbild in den 3D-Bilddaten eine Schnittebene (205) repräsentiert, die an dem Punkt (P) orthogonal zur Mittellinie (201) der tubulären Struktur ausgerichtet ist. - Verfahren gemäß
Anspruch 7 , dadurch gekennzeichnet, dass in Schritt d) für den Punkt (P) zwei 2D-Schnittbilder und das 2D-Querschnittsbild erzeugt werden. - Verfahren gemäß
Anspruch 8 , dadurch gekennzeichnet, dass die zwei 2D-Schnittbilder und das 2D-Querschnittsbild jeweils Schnittebenen (205) in den 3D-Bilddaten aufweisen, die orthogonal zueinander angeordnet sind. - Verfahren gemäß einem der
Ansprüche 1 bis9 , dadurch gekennzeichnet, dass der Wert R derart gewählt wird, dass der Wert R kleiner oder gleich dem maximalen Querschnittsradius der tubulären Struktur entlang des Teilstücks (208) ist, insbesondere dass der Wert R gleich oder kleiner der Hälfte des maximalen Querschnittsradius ist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009014764.0A DE102009014764B4 (de) | 2008-05-28 | 2009-03-25 | Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen |
US12/453,950 US8165378B2 (en) | 2008-05-28 | 2009-05-28 | Method and apparatus for visualizing tubular anatomical structures, in particular vessel structures, in medical 3D image records |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008025537 | 2008-05-28 | ||
DE102008025537.8 | 2008-05-28 | ||
DE102009014764.0A DE102009014764B4 (de) | 2008-05-28 | 2009-03-25 | Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102009014764A1 DE102009014764A1 (de) | 2009-12-10 |
DE102009014764B4 true DE102009014764B4 (de) | 2019-05-23 |
Family
ID=41268966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102009014764.0A Expired - Fee Related DE102009014764B4 (de) | 2008-05-28 | 2009-03-25 | Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen |
Country Status (2)
Country | Link |
---|---|
US (1) | US8165378B2 (de) |
DE (1) | DE102009014764B4 (de) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101288102B (zh) * | 2005-08-01 | 2013-03-20 | 拜奥普蒂根公司 | 用于分析从样本所获得的三维数据集的方法和系统 |
JP4671204B2 (ja) * | 2008-07-09 | 2011-04-13 | ザイオソフト株式会社 | 医用画像表示制御装置及び医用画像表示制御プログラム |
ES2377303B1 (es) * | 2009-06-05 | 2013-02-01 | Vodafone España S.A.U. | Método y sistema para recomendar fotografías. |
GB2475722B (en) * | 2009-11-30 | 2011-11-02 | Mirada Medical | Measurement system for medical images |
US9053562B1 (en) | 2010-06-24 | 2015-06-09 | Gregory S. Rabin | Two dimensional to three dimensional moving image converter |
US8705827B2 (en) * | 2011-04-15 | 2014-04-22 | Georgia Tech Research Corporation | Scatter correction methods |
US9992021B1 (en) | 2013-03-14 | 2018-06-05 | GoTenna, Inc. | System and method for private and point-to-point communication between computing devices |
EP3035884B1 (de) * | 2013-08-13 | 2022-11-23 | Regents of the University of Minnesota | Computervisualisierung anatomischer elemente |
WO2015048178A2 (en) * | 2013-09-25 | 2015-04-02 | Heartflow, Inc. | Systems and methods for visualizing elongated structures and detecting branches therein |
CN109863534B (zh) * | 2016-10-25 | 2023-08-01 | 皇家飞利浦有限公司 | 用于分割解剖结构的二维图像的方法和装置 |
JP7133828B2 (ja) * | 2017-10-17 | 2022-09-09 | 国立大学法人千葉大学 | 内視鏡画像処理プログラム及び内視鏡システム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020118869A1 (en) | 2000-11-28 | 2002-08-29 | Knoplioch Jerome F. | Method and apparatus for displaying images of tubular structures |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6151404A (en) * | 1995-06-01 | 2000-11-21 | Medical Media Systems | Anatomical visualization system |
US6331116B1 (en) * | 1996-09-16 | 2001-12-18 | The Research Foundation Of State University Of New York | System and method for performing a three-dimensional virtual segmentation and examination |
JP4030660B2 (ja) * | 1998-07-27 | 2008-01-09 | ジーイー横河メディカルシステム株式会社 | 画像表示方法および画像表示装置 |
US6718193B2 (en) * | 2000-11-28 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for analyzing vessels displayed as unfolded structures |
DE10119454A1 (de) | 2001-04-20 | 2002-10-31 | Siemens Ag | Verfahren zur navigationsgestützten bildlichen Darstellung positionsabhängiger Messinformationen von längsförmigen Körperorganen |
US7200251B2 (en) * | 2001-09-28 | 2007-04-03 | The University Of North Carolina | Methods and systems for modeling objects and object image data using medial atoms |
US7787683B2 (en) * | 2004-12-20 | 2010-08-31 | Siemens Medical Solutions Usa, Inc. | Tree structure based 2D to 3D registration |
US7379062B2 (en) * | 2005-08-01 | 2008-05-27 | Barco Nv | Method for determining a path along a biological object with a lumen |
US7623900B2 (en) * | 2005-09-02 | 2009-11-24 | Toshiba Medical Visualization Systems Europe, Ltd. | Method for navigating a virtual camera along a biological object with a lumen |
JP4808477B2 (ja) * | 2005-11-25 | 2011-11-02 | ザイオソフト株式会社 | 画像処理方法及び画像処理プログラム |
-
2009
- 2009-03-25 DE DE102009014764.0A patent/DE102009014764B4/de not_active Expired - Fee Related
- 2009-05-28 US US12/453,950 patent/US8165378B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020118869A1 (en) | 2000-11-28 | 2002-08-29 | Knoplioch Jerome F. | Method and apparatus for displaying images of tubular structures |
Also Published As
Publication number | Publication date |
---|---|
US20090297010A1 (en) | 2009-12-03 |
US8165378B2 (en) | 2012-04-24 |
DE102009014764A1 (de) | 2009-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009014764B4 (de) | Verfahren zur Visualisierung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen | |
DE102007056256B4 (de) | Gerät zur Generierung einer Risikometrik bei weicher Plaque in Gefäßen und maschinenlesbares Medium hierfür | |
DE102011076233B4 (de) | Verfahren und Computersystem zur Erkennung einer statistisch relevanten Normvariante der Gefaßstruktur eines Patienten mit Hilfe tomographischer Bilddatensatze | |
DE102012207629B4 (de) | CT-Bildrekonstruktion im erweiterten Messfeld | |
DE102004043694B4 (de) | Verfahren zur Segmentierung anatomischer Strukturen aus 3D-Bilddaten unter Nutzung topologischer Information | |
DE102006012015A1 (de) | Verfahren und Systeme zur Überwachung einer Tumorbelastung | |
DE102007053510A1 (de) | Verfahren und Systeme zur verbesserten Plaquevisualisierung | |
EP3332710B1 (de) | Charakterisierung von plaque | |
DE102010036538A1 (de) | System und Verfahren zum Kompensieren einer respiratorischen Bewegung in akquirierten radiographischen Bildern | |
DE102005050007A1 (de) | Vorrichtung und Verfahren zur Analyse von Gewebeklassen entlang röhrenförmiger Strukturen | |
DE102006039921A1 (de) | System und Verfahren zum automatischen Atemwegevaluieren für Multi-Schnitt Computertomographie (MSCT) Bilddaten unter Verwendung eines Atemweglumendurchmessers, einer Atemwegwanddicke und eines Bronchien-Arterien-Verhältnisses | |
DE10349661B4 (de) | Einrichtung und Verfahren zur Überwachung der Parameterwahl beim Betrieb eines technischen Gerätes | |
DE102006018413A1 (de) | MR-Tomograph mit einem System zur Kontrastoptimierung von MRT-Bildern | |
EP3332736B1 (de) | Verfahren zur erfassung eines dentalen objekts | |
DE10160530A1 (de) | Verfahren und Anlage zur Magnetresonanz-Bildgebung | |
DE10139832A1 (de) | Hohe-Ganghöhenrekonstruktion von Mehrfachschnitt-CT-Abtastungen | |
DE102009032257A1 (de) | Verfahren und Vorrichtung zur automatisierten Ermittlung der Mittellinie zumindest eines Teilstücks einer tubulären Gewebestruktur | |
DE102008025535B4 (de) | Verfahren zur Sichtung tubulärer anatomischer Strukturen, insbesondere Gefäßstrukturen, in medizinischen 3D-Bildaufnahmen | |
DE102016215831A1 (de) | Automatische Generierung synthetischer Projektionen | |
DE102013202313A1 (de) | Verfahren und Vorrichtung zur Korrektur von Bewegungsartefakten bei einem computertomographischen Bild | |
DE102006032990A1 (de) | Verfahren und Vorrichtung zur Bestimmung des räumlichen Verlaufs einer Gefäßachse in Volumendatensätzen der medizinischen Bildgebung | |
EP3287077B1 (de) | Angulationsplanung für eine dreidimensionale angiographie | |
DE102004043263B4 (de) | Verfahren zur Erzeugung von Localiser-Schichtbildern eines Untersuchungsvolumens eines Patienten und zugehörige Magnetresonanzanlage | |
DE102010009701A1 (de) | Verfahren zur Identifikation einer Verengung eines Hohlgefäßes, Recheneinheit und Datenträger | |
DE102016218899B4 (de) | Auswertung medizinischer Daten mit einer Zeitauflösung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
8120 | Willingness to grant licences paragraph 23 | ||
R016 | Response to examination communication | ||
R079 | Amendment of ipc main class |
Free format text: PREVIOUS MAIN CLASS: A61B0019000000 Ipc: A61B0034100000 |
|
R081 | Change of applicant/patentee |
Owner name: SIEMENS HEALTHCARE GMBH, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |