DE102007023756A1 - Plant and process for the continuous industrial production of alkylalkoxysilanes - Google Patents
Plant and process for the continuous industrial production of alkylalkoxysilanes Download PDFInfo
- Publication number
- DE102007023756A1 DE102007023756A1 DE102007023756A DE102007023756A DE102007023756A1 DE 102007023756 A1 DE102007023756 A1 DE 102007023756A1 DE 102007023756 A DE102007023756 A DE 102007023756A DE 102007023756 A DE102007023756 A DE 102007023756A DE 102007023756 A1 DE102007023756 A1 DE 102007023756A1
- Authority
- DE
- Germany
- Prior art keywords
- reactor
- reactors
- reaction
- catalyst
- units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000009776 industrial production Methods 0.000 title claims description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 61
- 239000003054 catalyst Substances 0.000 claims abstract description 34
- 150000001336 alkenes Chemical class 0.000 claims abstract description 14
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 12
- -1 HSi compound Chemical class 0.000 claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 21
- 239000010935 stainless steel Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 20
- 239000002815 homogeneous catalyst Substances 0.000 claims description 15
- 238000012856 packing Methods 0.000 claims description 13
- 239000000376 reactant Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 7
- 150000004756 silanes Chemical class 0.000 claims description 6
- 239000007858 starting material Substances 0.000 claims description 6
- 238000010924 continuous production Methods 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000010970 precious metal Substances 0.000 claims description 3
- 229910000077 silane Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 150000001735 carboxylic acids Chemical class 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000010626 work up procedure Methods 0.000 abstract description 5
- 239000000047 product Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000006459 hydrosilylation reaction Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010923 batch production Methods 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 150000001282 organosilanes Chemical class 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002638 heterogeneous catalyst Substances 0.000 description 3
- RSKGMYDENCAJEN-UHFFFAOYSA-N hexadecyl(trimethoxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](OC)(OC)OC RSKGMYDENCAJEN-UHFFFAOYSA-N 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000003622 immobilized catalyst Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000005046 Chlorosilane Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical class Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- DFVOXRAAHOJJBN-UHFFFAOYSA-N 6-methylhept-1-ene Chemical compound CC(C)CCCC=C DFVOXRAAHOJJBN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-N Formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
- C07F7/1872—Preparation; Treatments not provided for in C07F7/20
- C07F7/1876—Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-C linkages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00788—Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00822—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00826—Quartz
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00831—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00837—Materials of construction comprising coatings other than catalytically active coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00867—Microreactors placed in series, on the same or on different supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00869—Microreactors placed in parallel, on the same or on different supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00871—Modular assembly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00889—Mixing
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
Die vorliegende Erfindung betrifft eine Anlage, einen Reaktor und ein Verfahren zur kontinuierlichen industriellen Durchführung einer Umsetzung, wobei man ein alpha,beta-ungesättigtes Olefin A mit einer HSi-Verbindung B in Gegenwart eines Katalysators C und optional weiterer Hilfsstoffe umsetzt und die Anlage mindestens auf der Eduktzusammenführung (3) für die Komponenten A (1) und B (2), mindestens einem Multielementreaktor (5), der seinerseits mindestens zwei Reaktoreinheiten in Form von auswechselbaren Vorreaktoren (5.1) und mindestens eine weitere den Vorreaktoren nachgeschaltete Reaktoreinheit (5.3) beinhaltet, und auf einer Produktaufarbeitung (8) basiert.The present invention relates to a plant, a reactor and a process for the continuous industrial implementation of a reaction, wherein reacting an alpha, beta-unsaturated olefin A with an HSi compound B in the presence of a catalyst C and optionally further auxiliaries and the system at least the Eduktzusammenführung (3) for the components A (1) and B (2), at least one multi-element reactor (5), which in turn includes at least two reactor units in the form of replaceable pre-reactors (5.1) and at least one further pre-reactor downstream reactor unit (5.3) , and based on a product work-up (8).
Description
Die vorliegende Erfindung betrifft einen neuen Reaktor und eine Anlage zur kontinuierlichen industriellen Herstellung von Alkylalkoxysilanen durch Umsetzung eines α,β-ungesättigten Olefins mit einer HSi-Verbindung sowie ein diesbezügliches Verfahren.The The present invention relates to a new reactor and a plant for the continuous industrial production of alkylalkoxysilanes by reaction of an α, β-unsaturated Olefins with a HSi compound and a related Method.
Organosilane,
wie Vinylchlor- bzw. Vinylalkoxysilane (
Mikrostrukturierte
Reaktoren als solche, beispielsweise für eine kontinuierliche Herstellung
von Polyetheralkoholen (
Daher bestand die Aufgabe, für die industrielle Herstellung von Alkylalkoxysilanen eine weitere Möglichkeit bereitzustellen. Insbesondere bestand das Anliegen, eine weitere Möglichkeit für die kontinuierliche Herstellung solcher Organosilane bereitzustellen, wobei man bestrebt war, oben genannte Nachteile zu minimieren.Therefore the task was up for the industrial production of alkylalkoxysilanes another possibility provide. In particular, there was the concern, another possibility for the to provide continuous production of such organosilanes, while trying to minimize the above-mentioned disadvantages.
Die gestellte Aufgabe wird erfindungsgemäß entsprechend den Angaben in den Patentansprüchen gelöst.The Asked object is inventively according to the information in the claims solved.
Bei
der vorliegenden Erfindung wurde in überraschender Weise gefunden,
dass man die Hydrosilylierung einer HSi-enthaltenden Komponente B,
insbesondere eines Hydrogenalkoxysilans, mit einem α,β-ungesättigten
Olefin (Komponente A) in Gegenwart eines Katalysators C in einfacher
und wirtschaftlicher Weise in einem industriellen Maßstab und
kontinuierlich in einer auf einem Multielementreaktor (
So
kann vorteilhaft durch den Einsatz eines Multielementreaktors (
Dabei können in besonders vorteilhafter Weise Vorreaktoren eingesetzt werden, die mit Füllkörpern ausgestattet sind, wodurch noch gezielter und effektiver eine Abscheidung von Hydrolysat bzw. -partikel und damit eine Verringerung der Verstopfungsneigung und Stillstandzeiten der Anlage durch Ablagerungen und Anbackungen im Reaktor erzielt werden kann.there can be used in a particularly advantageous manner, pre-reactors, equipped with packing which makes it even more targeted and effective to separate Hydrolyzate or particles and thus a reduction in the tendency to clog and downtime of the plant due to deposits and caking can be achieved in the reactor.
Anders als bei einem Batch-Ansatz ist es bei der vorliegenden Erfindung möglich, die Edukte unmittelbar vor dem Multielementreaktor kontinuierlich vorzumischen, dabei kann das Vormischen auch kalt erfolgen, anschließend im Multielementreaktor zu erwärmen und dort zielgerichtet und kontinuierlich umzusetzen. Auch kann dem Eduktgemisch ein Katalysator zugesetzt werden. Anschließend kann das Produkt kontinuierlich aufgearbeitet werden, z. B. in einer Eindampfung, Rektifikation und/oder in einem Kurzweg- bzw. Dünnschichtverdampfer – um nur einige Möglichkeiten zu nennen. Die bei der Umsetzung frei werdende Reaktionswärme kann im Multielementreaktor vorteilhaft über die im Verhältnis zum Reaktorvolumen große Oberfläche der Reaktorinnenwände und – sofern vorgesehen – an ein Wärmeträgermedium abgeführt werden. Ferner ist bei der vorliegenden Anwendung von Multielementreaktoren eine deutliche Steigerung der Raum-Zeit-Ausbeute von schnellen, wärmetönenden Umsetzungen möglich. Ermöglicht wird dies durch eine schnellere Vermischung der Edukte, ein höheres mittleres Konzentrationsniveau der Edukte als beim Batchverfahren, d. h. keine Limitierung durch Eduktverarmung, und/oder eine Anhebung der Temperatur, die in der Regel eine zusätzliche Beschleunigung der Reaktion bewirken kann. Darüber hinaus ermöglicht die vorliegende Erfindung in vergleichsweise einfacher und wirtschaftlicher Weise die Wahrung der Prozesssicherheit. So konnte bei vorliegender Erfindung eine drastische Prozessintensivierung, insbesondere Verkürzung der Prozesszeit unter Reaktionsbedingungen um mehr als 99 % gegenüber dem Standard-Batchverfahren, erzielt werden. Es wurden gleichzeitig auch erhöhte Ausbeuten von bis zu 15 % durch höhere Umsätze und Selektivitäten erzielt. Bevorzugt wurden die vorliegenden Umsetzungen in einem Edelstahlmultielementreaktor durchgeführt. Somit kann für die Durchführung besagter Umsetzungen auf den Einsatz von Sonderwerkstoffen in vorteilhafter Weise verzichtet werden. Darüber hinaus kann durch die kontinuierliche Fahrweise bei unter Druck durchzuführenden Umsetzungen eine längere Standzeit der Reaktoren aus Metall festgestellt werden, da das Material gegenüber einer Batchfahrweise deutlich langsamer ermüdet. Zudem konnte die Reproduzierbarkeit gegenüber vergleichbaren Untersuchungen bei Batchverfahren deutlich verbessert werden. Zusätzlich besteht beim vorliegenden Verfahren ein deutlich verringertes Scale-Up-Risiko bei der Übertragung der Ergebnisse aus dem Labor- bzw. Technikumsmaßstab. Insbesondere kann beim vorliegenden kontinuierlichen Verfahren unter Nutzung einer erfindungsgemäßen Anlage, wobei ein Multielementreaktor vorteilhaft mindestens einen auswechselbaren, vorzugsweise mit Füllkörpern gefüllten Vorreaktor beinhaltet, eine überraschend lange Anlagenlaufzeit auch ohne Stillstände, die durch Anbackungen bzw. Ablagerungen bedingt sind, ermöglicht werden. Darüber hinaus wurde in überraschender Weise gefunden, dass es beim vorliegenden Verfahren besonders vorteilhaft ist, den Multielementreaktor vor dem Start der eigentlichen Umsetzung mit dem Reaktionsgemisch, insbesondere wenn dieses einen Homogenkatalysator in erhöhter Konzentration enthält, zu betreiben, d. h. vorzukonditionieren. Durch diese Maßnahme kann eine unerwartet rasche Einstellung konstanter Prozessbedingungen auf hohem Niveau bewirkt werden.Unlike a batch approach, it is possible in the present invention to premix the reactants immediately before the multi-element reactor, while the pre-mixing can also be done cold, then in the multi-element reactor to he warm and there targeted and continuously implement. It is also possible to add a catalyst to the educt mixture. Subsequently, the product can be worked up continuously, z. As in a evaporation, rectification and / or in a Kurzweg- or thin-film evaporator - to name just a few options. The heat of reaction liberated during the reaction can advantageously be removed in the multielement reactor via the large surface area of the interior walls of the reactor in relation to the reactor volume and, if provided, to a heat transfer medium. Furthermore, in the present application of multielement reactors, a significant increase in the space-time yield of fast, heat-dissipating reactions is possible. This is made possible by a faster mixing of the educts, a higher average concentration level of the starting materials than in the batch process, ie no limitation by educt depletion, and / or an increase in temperature, which can usually cause an additional acceleration of the reaction. In addition, the present invention enables the preservation of process reliability in a comparatively simple and economical manner. Thus, in the present invention, a drastic process intensification, in particular shortening of the process time under reaction conditions by more than 99% compared to the standard batch process can be achieved. At the same time, increased yields of up to 15% were achieved by higher conversions and selectivities. Preferably, the present reactions were carried out in a stainless steel multi-element reactor. Thus, for the implementation of said implementations can be dispensed with the use of special materials in an advantageous manner. In addition, can be determined by the continuous procedure in reactions to be carried out under pressure a longer service life of the metal reactors, since the material fatigue compared to a batch mode significantly slower. In addition, the reproducibility compared to comparable studies in batch processes could be significantly improved. In addition, there is a significantly reduced scale-up risk in the transfer of the results from the laboratory or pilot plant scale in the present method. In particular, in the present continuous process using a system according to the invention, wherein a multi-element reactor advantageously contains at least one interchangeable, preferably filled with preforms pre-reactor, a surprisingly long system life even without stoppages, which are caused by caking or deposits are made possible. Moreover, it has surprisingly been found that in the present process it is particularly advantageous to operate, ie precondition, the multielement reactor prior to the start of the actual reaction with the reaction mixture, especially if it contains a homogeneous catalyst in an increased concentration. By this measure, an unexpectedly rapid adjustment of constant process conditions can be effected at a high level.
Gegenstand
der vorliegenden Erfindung ist somit eine Anlage zur kontinuierlichen
industriellen Durchführung
einer Umsetzung, wobei man ein α,β-ungesättigtes
Olefin A mit einer HSi-Verbindung B in Gegenwart eines Katalysators
C und optional weiterer Hilfsstoffe umsetzt und die Anlage mindestens
auf der Eduktzusammenführung
(
Gegenstand
der vorliegenden Erfindung ist ferner ein Multielementreaktor (
Bevorzugt
sind dabei Vorreaktoren (
Den
So
ist
Ferner kann man den jeweiligen zuvor genannten Stoffströmen optional weitere Hilfsstoffe zusetzen.Further you can optionally the respective streams mentioned further auxiliaries enforce.
Dabei
versteht man unter einer Reaktoreinheit ein Element des Multielementreaktors
(
So
beinhaltet eine erfindungsgemäße Anlage
einen oder mehrere Multielementreaktoren (
Dabei weist der Reaktor- bzw. Reaktionsraum mindestens einer Reaktoreinheit bevorzugt einen halbkreisförmigen, halbovalförmigen, runden, ovalen, dreieckigen, quadratischen, rechteckigen oder trapezförmigen Querschnitt senkrecht zur Strömungsrichtung auf. Bevorzugt besitzt ein solcher Querschnitt eine Querschnittsfläche von 75 μm2 bis 75 cm2.In this case, the reactor or reaction space of at least one reactor unit preferably has a semicircular, semi-oval, round, oval, triangular, square, rectangular or trapezoidal cross-section perpendicular to the flow direction. Such a cross section preferably has a cross-sectional area of 75 μm 2 to 75 cm 2 .
Besonders
bevorzugt sind Querschnittsflächen
mit 0,7 bis 120 mm2 und alle numerisch dazwischen
liegenden Zahlenwerte. Bei runden Querschnittsflächen ist ein Durchmesser von ≥ 30 μm bis < 15 mm, insbesondere
150 μm bis
10 mm, bevorzugt. Eckige Querschnittsflächen weisen vorzugsweise Kantenlängen von ≥ 30 μm bis < 15 mm, vorzugsweise
0,1 bis 12 mm, auf. Dabei können
in einem Multielementreaktor (
Ferner
beträgt
die Strukturlänge
in einer Reaktoreinheit, d. h. von Eintritt des Reaktions- bzw. Produktstroms
in die Reaktoreinheit, vgl. z. B. (
In einer erfindungsgemäßen Anlage bevorzugt man Reaktoreinheiten, deren jeweiliges Reaktionsvolumen (auch als Reaktorvolumen bezeichnet, d. h. das Produkt aus Querschnittsfläche und Strukturlänge) 0,01 ml bis 100 l, einschließlich aller numerisch dazwischen liegenden Zahlenwerte, beträgt. Besonders bevorzugt beträgt das Reaktorvolumen einer Reaktoreinheit einer erfindungsgemäßen Anlage 0,05 ml bis 10 l, ganz besonders bevorzugt 1 ml bis 5 l, ganz besonders bevorzugt 3 ml bis 2 l, insbesondere 5 ml bis 500 ml.In a plant according to the invention it is preferred to reactor units, their respective reaction volume (also referred to as reactor volume, i.e. the product of cross-sectional area and Structure length) 0.01 ml to 100 l, inclusive of all numerically intervening numerical values. Especially is preferred the reactor volume of a reactor unit of a plant according to the invention 0.05 ml to 10 l, most preferably 1 ml to 5 l, very particularly preferably 3 ml to 2 l, in particular 5 ml to 500 ml.
Weiter
können
erfindungsgemäße Anlagen auf
einem oder mehreren Multielementreaktoren (
Vorliegende
Multielementreaktoren (
Ferner
kann ein Multielementreaktor (
Dabei kann man insbesondere Edelstahlkapillaren, Reaktoren bzw. Vorreaktoren, die vorteilhaft aus einem hochfesten, hochtemperaturbeständigen sowie nicht rostenden Edelstahl bestehen, verwenden; beispielsweise aber nicht ausschließlich bestehen Vorreaktoren, Kapillaren, Blockreaktoren, Rohrbündelwärmetauscherreaktoren usw. aus Stahl des Typs 1.4571 oder 1.4462, vgl. insbesondere auch Stahl gemäß DIN 17007. Darüber hinaus kann die dem Reaktionsraum zugewandte Oberfläche einer Edelstahlkapillare bzw. eines Multielementreaktors mit einer Polymerschicht, beispielsweise einer fluorhaltigen Schicht, u. a. Teflon, oder einer keramischen Schicht, vorzugsweise einer gegebenenfalls porösen SiO2-, TiO2- oder Al2O3-Schicht, insbesondere zur Aufnahme eines Katalysators, ausgestattet sein.In particular, it is possible to use stainless steel capillaries, reactors or pre-reactors which advantageously consist of a high-strength, high-temperature-resistant and stainless steel; for example, but not exclusively, pre-reactors, capillaries, block reactors, shell-and-tube heat exchanger reactors, etc., are made of steel of the type 1.4571 or 1.4462, cf. In particular, the steel facing the reaction chamber surface of a stainless steel capillary or a multi-element reactor with a polymer layer, for example a fluorine-containing layer, including Teflon, or a ceramic layer, preferably an optionally porous SiO 2 -, TiO 2 - or Al 2 O 3 layer, in particular for receiving a catalyst, be equipped.
Insbesondere
kann man vorteilhaft einen integrierten Blockreaktor einsetzen,
wie er beispielsweise als temperierbarer Blockreaktor, aufgebaut aus
definiert strukturierten Metallplatten (nachfolgend auch Ebene genannt),
aus
Die Herstellung besagter strukturierter Metallplatten bzw. Ebenen, aus denen dann ein Blockreaktor erstellt werden kann, kann beispielsweise durch Ätzen, Drehen, Schneiden, Fräsen, Prägen, Walzen, Funkenerodieren, Laserbearbeitung, Plasmatechnik oder einer anderen Technik der an sich bekannten Bearbeitungsmethoden erfolgen. So werden mit äußerster Präzision wohl definierte und gezielt angeordnete Strukturen, beispielsweise Rillen oder Fugen, auf einer Seite einer Metallplatte, insbesondere einer Metallplatte aus Edelstahl, eingearbeitet. Dabei finden die jeweiligen Rillen bzw. Fugen ihren Anfang in der Regel auf einer Stirnseite der Metallplatte, sind durchgängig und enden in der Regel auf der gegenüber liegenden Stirnseite der Metallplatte. Manchmal findet die Nutenaufteilung (Splitting) auch in Form einer Baumstruktur auf der Platte statt.The Production of said structured metal plates or planes which then a block reactor can be created, for example, by etching, turning, Cutting, milling, Embossing, rolling, Spark erosion, laser processing, plasma technology or another Technique of the known processing methods done. So be with the utmost precision well-defined and targeted structures, for example Grooves or joints, on one side of a metal plate, in particular a metal plate made of stainless steel, incorporated. The find respective grooves or joints usually start on one Front side of the metal plate, are continuous and usually ends opposite lying end face of the metal plate. Sometimes the groove layout takes place (Splitting) also in the form of a tree structure on the plate instead.
So
zeigt
In
erfindungsgemäßen Anlagen
bevorzugt man insbesondere einen Multielementreaktor (
In
der Regel führen
bereits Spuren von Wasser zur Hydrolyse der Alkoxy- bzw. Chlorsilanedukte und
so zu Ablagerungen bzw. Anbackungen. Der besondere Vorteil einer
solchen Ausführungsform
eines Vorreaktors (
Im
Allgemeinen beruht eine erfindungsgemäße Anlage für die kontinuierliche industrielle Durchführung von
Umsetzungen auf einer Eduktzusammenführung (
Dabei
können
die Eduktkomponenten A und B jeweils aus einer Bevorratungseinheit
mittels Pumpen und optional mittels Differenzwägesystem kontinuierlich im
Bereich (
Dabei
wird der Multielementreaktor (
Der
Produkt- bzw. Rohproduktstrom (
Ist
es erforderlich, die Umsetzung der Komponenten A und B in Gegenwart
eines Katalysators C durchführen
zu müssen,
so kann man in vorteilhafter Weise einen homogenen Katalysator durch
Zudosieren in den Eduktstrom einsetzen. Man kann aber auch einen
Suspensionskatalysator verwenden, den man ebenfalls dem Eduktstrom
zudosieren kann. Dabei sollte der maximale Partikeldurchmesser des Suspensionskatalysators
weniger als 1/3, vorteilhafter 1 %, bevorzugt 1 ‰, der Ausdehnung der kleinsten
freien Querschnittsfläche
einer Reaktoreinheit des Multielementreaktors (
So
ist
Man
kann einen homogenen Katalysator C oder einen Suspensionskatalysator
C aber auch einem Gemisch aus A und B, das in Leitung (
In gleicher Weise wie bei einem Homogenkatalysator kann man den Eduktkomponenten A und B auch weitere, vorwiegend flüssige Hilfsstoffe, beispielsweise – aber nicht ausschließlich – Aktivatoren, Initiatoren, Stabilisatoren, Inhibitoren, Löse- bzw. Verdünnungsmittel usw., zusetzen.In The same way as with a homogeneous catalyst can be the reactant components A and B also other, mainly liquid excipients, for example - but not exclusively - activators, initiators, Stabilizers, inhibitors, solvents or diluent etc., add.
Man
kann aber auch einen Multielementreaktor (
Im
Allgemeinen basiert eine erfindungsgemäße Anlage zur kontinuierlichen
industriellen Durchführung
der Umsetzung einer besagten Verbindung A mit einer Verbindung B
optional in Gegenwart eines Katalysators sowie weiterer Hilfsstoffe
auf mindestens einer Eduktzusammenführung (
Ein weiterer, besonders hervorzuhebender Vorteil einer erfindungsgemäßen Anlage zur kontinuierlichen industriellen Durchführung einer Umsetzung α,β-ungesättigter Verbindungen A mit einer HSi-Verbindung B besteht darin, dass man nun über eine Möglichkeit verfügt, auch kleine Spezialprodukte mit Absatzmengen zwischen 5 kg und 50 000 t p. a., vorzugsweise 10 kg bis 10 000 t p. a., in einfacher und wirtschaftlicher Weise kontinuierlich und flexibel herzustellen. Dabei können unnötige Stillstandzeiten, die Ausbeute, die Selektivität beeinflussende Temperaturspitzen und -schwankungen sowie zu lange Verweilzeiten und damit unerwünschte Nebenreaktionen vorteilhaft vermieden werden. Insbesondere kann man eine solche Anlage auch unter ökonomischen, ökologischen und kundenfreundlichen Gesichtspunkten optimal zur Herstellung vorliegender Silane nutzen.One further, particularly noteworthy advantage of a system according to the invention for the continuous industrial implementation of a reaction α, β-unsaturated Compounds A with an HSi compound B is that now over a possibility features, also small special products with sales volumes between 5 kg and 50 000 t p. a., Preferably 10 kg to 10 000 t p. a., in simple and economical to produce continuously and flexibly. It can unnecessary Downtimes, the yield, the selectivity affecting temperature peaks and fluctuations and too long residence times and thus undesirable side reactions advantageous be avoided. In particular one can such a plant also under economic, ecological and customer-friendly aspects optimal for the production of existing Use silanes.
Somit
ist weiter Gegenstand der vorliegenden Erfindung ein Verfahren zur
kontinuierlichen industriellen Herstellung eines Alkylalkoxysilans
der allgemeinen Formel (I)
wobei man die Umsetzung der Eduktkomponenten
A und B in Gegenwart eines Katalysators C sowie optional weiterer
Komponenten in einem Multielementreaktor (
wherein the reaction of the educt components A and B in the presence of a catalyst C and optionally further components in a multi-element reactor (
Bevorzugt
führt man
dabei die Umsetzung in mindestens einem Multielementreaktor (
Ferner wird bei erfindungsgemäßen Verfahren bevorzugt, dass man Reaktoreinheiten einsetzt, deren jeweiliger Querschnitt halbkreisförmig, halbovalförmig, rund, oval, dreieckig, quadratisch, rechteckig oder trapezförmig ausgeführt ist.Further is in process of the invention prefers that reactor units are used, their respective Semicircular cross-section, semi-oval-shaped, round, oval, triangular, square, rectangular or trapezoidal.
Dabei setzt man vorteilhaft Reaktoreinheiten ein, deren jeweilige Querschnittsfläche 75 μm2 bis 75 cm2 beträgt.Advantageously, reactor units are used whose respective cross-sectional area is 75 μm 2 to 75 cm 2 .
Weiter setzt man vorzugsweise solche Reaktoreinheiten ein, die eine Strukturlänge von 5 cm bis 200 m, besonders bevorzugt 10 cm bis 120 m, ganz besonders bevorzugt 15 cm bis 80 m, insbesondere 18 cm bis 30 m, einschließlich aller möglichen Zahlenwerte, die von den zuvor genannten Bereichen eingeschlossen werden, aufweisen.Further it is preferable to use such reactor units having a structure length of 5 cm to 200 m, more preferably 10 cm to 120 m, especially preferably 15 cm to 80 m, in particular 18 cm to 30 m, including all potential Numerical values included by the aforementioned ranges be, have.
So setzt man beim erfindungsgemäßen Verfahren geeigneterweise Reaktoreinheiten ein, deren jeweiliges Reaktionsvolumen 0,01 ml bis 100 l einschließlich aller numerisch dazwischen liegenden Zahlenwerte beträgt, vorzugsweise 0,1 ml bis 50 l, besonders bevorzugt 1 ml bis 20 l, ganz besonders bevorzugt 2 ml bis 10 l, insbesondere 5 ml bis 5 l.So one sets in the method according to the invention suitably reactor units, their respective reaction volume 0.01 ml to 100 l including of all numerically intervening numerical values, preferably 0.1 ml to 50 l, more preferably 1 ml to 20 l, most preferably 2 ml to 10 l, especially 5 ml to 5 l.
Beim
erfindungsgemäßen Verfahren
kann man die besagte Umsetzung ebenfalls vorteilhaft in einer Anlage
mit einem Multielementreaktor (
Insbesondere
bevorzugt man dabei einen Multielementreaktor (
Ferner bevorzugt man, dass beim erfindungsgemäßen Verfahren die mit dem Edukt/Produktgemisch in Kontakt stehende Oberfläche der Reaktoreinheiten des Multielementreaktors mit einem Katalysator belegt ist.Further it is preferred that in the process according to the invention with the reactant / product mixture in contact surface the reactor units of the multi-element reactor with a catalyst is occupied.
Sofern man im Rahmen des erfindungsgemäßen Verfahrens die Umsetzung der Komponenten A und B in Gegenwart eines homogenen Katalysators C durchführt, wurde überraschenderweise gefunden, dass es besonders vorteilhaft ist, den Multielementreaktor durch einen oder mehrere Spülgänge mit einem Gemisch aus Homogenkatalysator C und Komponente B oder aus Homogenkatalysator C und den Komponenten A und B oder einem kurzzeitigen Betrieb der Anlage, beispielsweise für 10 bis 120 Minuten und optional mit einer höheren Katalysatorkonzentration, vorzukonditionieren.Provided one in the context of the method according to the invention the reaction of components A and B in the presence of a homogeneous Catalyst C is carried out, was surprisingly found that it is particularly advantageous to the multi-element reactor by one or more rinses with a mixture of homogeneous catalyst C and component B or from Homogeneous catalyst C and components A and B or a short-term operation the plant, for example 10 to 120 minutes and optionally with a higher catalyst concentration, precondition.
Die für die Vorkonditionierung des Multielementreaktors eingesetzten Stoffe können aufgefangen und später dem Eduktstrom zumindest anteilig dosiert werden oder direkt der Produktaufarbeitung zugeführt und aufgearbeitet werden.The for the Preconditioning of the multi-element reactor used substances can caught and later the educt stream are at least proportionally dosed or directly the Product processing supplied and be worked up.
Durch die oben beschriebene Vorkonditionierung des Multielementreaktors, insbesondere wenn er aus Edelstahl besteht, kann man in überraschender und vorteilhafter Weise schneller einen konstanten Betriebszustand bei maximaler Ausbeute erzielen.By the preconditioning of the multi-element reactor described above, especially if it is made of stainless steel, you can in surprising and advantageously a faster operating state faster achieve at maximum yield.
Beim erfindungsgemäßen Verfahren kann man die besagte Umsetzung in der Gas- und/oder Flüssigphase durchführen. Dabei kann das Reaktions- bzw. Produktgemisch ein-, zwei- oder dreiphasig vorliegen. Vorzugsweise führt man beim erfindungsgemäßen Verfahren die Umsetzung einphasig, insbesondere in der Flüssigphase, durch.At the inventive method you can perform the said reaction in the gas and / or liquid phase. there the reaction or product mixture can be one, two or three phases available. Preferably leads in the method according to the invention the implementation of single phase, in particular in the liquid phase, by.
So
betreibt man das erfindungsgemäße Verfahren
bzw. Umsetzung vorteilhaft unter Einsatz eines Multielementreaktors
(
In
der Regel beträgt
der Differenzdruck in einer erfindungsgemäßen Anlage, d. h. zwischen Eduktzusammenführung (
Die Umsetzung kann man erfindungsgemäß bei einer Lineargeschwindigkeit (LV) von 1 bis 1·104 h–1 i. N. durchführen. Dabei liegt die Strömungsgeschwindigkeit des Stoffstroms in den Reaktoreinheiten bevorzugt im Bereich von 0,0001 bis 1 m/s i. N., besonders bevorzugt 0,005 bis 0,7 m/s, insbesondere 0,05 bis 0,3 m/s, und aller möglichen Zahlen innerhalb der zuvor genannten Bereiche. Bezieht man das bei erfindungsgemäßer Umsetzung vorherrschende Verhältnis von Reaktoroberfläche (A) auf das Reaktorvolumen (V), so bevorzugt man ein A/V-Verhältnis von 20 bis 5 000 m2/m3 – einschließlich aller numerisch möglicher Einzelwerte, die in dem genannten Bereich liegen – zur vorteilhaften Durchführung des erfindungsgemäßen Verfahrens. Das A/V-Verhältnis ist dabei ein Maß für den Wärmeübergang sowie möglicher heterogener (Wand-)einflüsse.The reaction can be inventively at a linear velocity (LV) of 1 to 1 · 10 4 h -1 i. N. Perform. The flow rate of the stream in the reactor units is preferably in the range of 0.0001 to 1 m / s i. N., more preferably 0.005 to 0.7 m / s, in particular 0.05 to 0.3 m / s, and all possible numbers within the aforementioned ranges. If the ratio of reactor surface area (A) to reactor volume (V) is predominant in the reaction according to the invention, an A / V ratio of 20 to 5,000 m 2 / m 3 is preferred, including all numerically possible individual values which are mentioned in the cited US Pat Range lie - for the advantageous implementation of the method according to the invention. The A / V ratio is a measure of the heat transfer and possible heterogeneous (wall) influences.
So
führt man
die Umsetzung bei erfindungsgemäßen Verfahren
vorteilhaft bei einer mittleren Verweilzeit von ≤ 200 Minuten, vorzugsweise 10
Sekunden bis 60 Minuten, besonders bevorzugt 1 bis 30 Minuten, ganz
besonders bevorzugt 2 bis 20 Minuten, insbesondere 3 bis 10 Minuten,
durch. Auch hier wird wieder auf alle möglichen Zahlenwerte, die der genannte
Bereich offenbart, gesondert hingewiesen. Als Komponente A kann
man beim erfindungsgemäßen Verfahren
beispielsweise – aber
nicht ausschließlich – folgende α,β-ungesättigten
Olefine oder entsprechende Gemische daraus einsetzen:
Guten-1,
Isobuten [H2C=C(CH3)2], Vinylcyclohexen-3, Octen-1, Isoocten,
insbesondere Hexadecen-1.Thus, the reaction in the novel process is advantageously carried out at a mean residence time of ≦ 200 minutes, preferably 10 seconds to 60 minutes, more preferably 1 to 30 minutes, most preferably 2 to 20 minutes, especially 3 to 10 minutes. Here again, all possible numerical values disclosed by the named area are referred to separately. As component A, in the process according to the invention, for example-but not exclusively-the following α, β-unsaturated olefins or corresponding mixtures thereof can be used:
Good-1, isobutene [H 2 C = C (CH 3 ) 2 ], vinylcyclohexene-3, octene-1, isooctene, especially hexadecene-1.
Als
Komponenten B eignen sich beim erfindungsgemäßen Verfahren Silane der allgemeinen Formel
(II)
So setzt man erfindungsgemäß bevorzugt Trimethoxysilan (TMOS), Triethoxysilan (TEOS), Methyldimethoxysilan oder Methyldiethoxysilan ein.So If according to the invention it is preferred to use trimethoxysilane (TMOS), triethoxysilane (TEOS), methyldimethoxysilane or methyldiethoxysilane one.
Die Komponenten A und B setzt man beim erfindungsgemäßen Verfahren bevorzugt in einem molaren Verhältnis A zu B von 1 : 5 bis 100 : 1, besonders bevorzugt 1 : 4 bis 5: 1, ganz besonders bevorzugt 1 : 2 bis 2 : 1, einschließlich aller möglichen Zahlen innerhalb der zuvor genannten Bereiche, ein. Insbesondere bevorzugt man die Fahrweise mit einem Überschuss an Olefinkomponente, beispielsweise 1 zu 0,1 bis 0,5.The Components A and B are preferably employed in the process according to the invention a molar ratio A to B from 1: 5 to 100: 1, more preferably 1: 4 to 5: 1, most preferably 1: 2 to 2: 1, including all possible numbers within the aforementioned areas. Especially preferred the driving style with a surplus to olefin component, for example 1 to 0.1 to 0.5.
Das erfindungsgemäße Verfahren führt man bevorzugt in Gegenwart eines Homogenkatalysators C durch. Man kann das erfindungsgemäße Verfahren aber auch ohne den Zusatz eines Katalysators betreiben, wobei dann in der Regel mit einem deutlichen Rückgang der Ausbeute zu rechnen ist.The inventive method one leads preferentially in the presence of a homogeneous catalyst C by. But you can the process of the invention but operate without the addition of a catalyst, in which case usually with a significant decline the yield is expected.
Insbesondere nutzt man das erfindungsgemäße Verfahren für die Durchführung einer Hydrosilylierungsreaktion zur Herstellung von Organosilanen gemäß Formel (I), wobei man insbesondere Homogenkatalysatoren aus der Reihe Pt-Komplexkatalysator, beispielsweise solche vom Karstedt-Typ, wie Pt(0)-Divinyltetramethyldisiloxan in Xylol, PtCl4, H2[PtCl6] bzw. H2[PtCl6]·6H2O, vorzugsweise einen „Speyer-Katalysator", cis-(Ph3P)2PtCl2, Komplexkatalysatoren von Pd, Rh, Ru, Cu, Ag, Au, Ir oder solche von anderen Übergangs- bzw. Edelmetallen. Dabei kann man die an sich bekannten Komplexkatalysatoren in einem organischen, vorzugsweise polaren Lösemittel zu beispielsweise – aber nicht ausschließlich – Ether, wie THF, Ketonen, wie Aceton, Alkoholen, wie Isopropanol, aliphatischen oder aromatischen Kohlenwasserstoffen, wie Toluol, Xylol, lösen.In particular, the process according to the invention is used for carrying out a hydrosilylation reaction for the preparation of organosilanes of the formula (I), in particular homogeneous catalysts from the series Pt complex catalyst, for example those of the Karstedt type, such as Pt (0) -divinyltetramethyldisiloxane in xylene, PtCl 4 , H 2 [PtCl 6 ] or H 2 [PtCl 6 ] · 6H 2 O, preferably a "Speyer catalyst", cis- (Ph 3 P) 2 PtCl 2 , Complex catalysts of Pd, Rh, Ru, Cu, Ag, Au, Ir or those of other transitional or noble metals., The known complex catalysts in an organic, preferably polar solvent for example - but not exclusively - ethers, such as THF, ketones, such as acetone, alcohols, such as isopropanol, aliphatic or aromatic hydrocarbons, such as toluene, xylene, solve.
Zusätzlich kann man dem Homogenkatalysator bzw. der Lösung des Homogenkatalyators einen Aktivator zusetzen, beispielsweise in Form einer organischen oder anorganischen Säure, wie HCl, H2SO4, H3PO4, Mono- bzw. Dicarbonsäuren, HCOOH, H3C-COOH, Propionsäure, Oxalsäure, Bernsteinsäure, Citronensäure, Benzoesäure, Phthalsäure – um nur einige zu nennen.In addition, one can add to the homogeneous catalyst or the solution of Homogenkatalyators an activator, for example in the form of an organic or inorganic acid such as HCl, H 2 SO 4 , H 3 PO 4 , mono- or dicarboxylic acids, HCOOH, H 3 C-COOH , Propionic Acid, Oxalic Acid, Succinic Acid, Citric Acid, Benzoic Acid, Phthalic Acid - just to name a few.
Darüber hinaus kann der Zusatz einer organischen oder anorganischen Säure zum Reaktionsgemisch eine andere vorteilhafte Funktion übernehmen, beispielsweise als Stabilisator bzw. Inhibitor für Verunreinigungen im Spurenbereich.Furthermore may be the addition of an organic or inorganic acid to Reaction to take another advantageous function, For example, as a stabilizer or inhibitor of impurities in trace amounts.
Sofern man beim erfindungsgemäßen Verfahren einen Homogenkatalysator oder einen Suspensionskatalysator verwendet, setzt man die Olefinkomponente A zum Katalysator, bezogen auf das Metall, vorzugsweise in einem molaren Verhältnis von 2 000 000 : 1 bis 1 000 : 1, besonders bevorzugt von 1 000 000 : 1 bis 4 000 : 1, insbesondere von 500 000 : 1 bis 10 000 : 1, und aller möglichen Zahlenwerte innerhalb der zuvor genannten Bereiche, ein.Provided in the method according to the invention uses a homogeneous catalyst or a suspension catalyst, if the olefin component A is added to the catalyst, based on the metal, preferably in a molar ratio of 2,000,000: 1 to 1 000: 1, more preferably from 1 000 000: 1 to 4 000: 1, in particular from 500 000: 1 to 10 000: 1, and all possible Numerical values within the aforementioned ranges, a.
Man kann aber auch einen immobilisierten Katalysator bzw. Heterogenkatalysator aus der Reihe der Übergangs- bzw. Edelmetalle bzw. einen entsprechenden Multielementkatalysator für die Durchführung der Hydrosilylierungsreaktion einsetzen. So kann man beispielsweise – aber nicht ausschließlich – Edelmetallschlämme oder Edelmetall auf Aktivkohle verwenden. Man kann aber auch ein Festbett für die Aufnahme eines Heterogenkatalysators im Bereich des Multielementreaktors vorsehen. So kann man beispielsweise – aber nicht ausschließlich – auch Heterogenkatalysatoren, die auf einem Träger, wie Kugeln, Stränge, Pellets, Zylinder, Rührern usw. aus u. a. SiO2, TiO2, Al2O3, ZrO2, in den Reaktionsbereich der Reaktoreinheiten einbringen.However, it is also possible to use an immobilized catalyst or heterogeneous catalyst from the series of transition metals or noble metals or a corresponding multielement catalyst for carrying out the hydrosilylation reaction. So you can, for example - but not exclusively - use precious metal sludge or precious metal on activated carbon. But you can also provide a fixed bed for receiving a heterogeneous catalyst in the field of multi-element reactor. Thus, for example-but not exclusively-heterogeneous catalysts which are supported on a carrier, such as spheres, strands, pellets, cylinders, stirrers, etc., inter alia SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , in the reaction region of the reactor units contribute.
Beispiele
für integrierte
Blockreaktoren mit Katalysatorfestbett sind unter
Ferner kann man als Hilfsstoffe Löse- bzw. Verdünnungsmittel, wie Alkohole, aliphatische sowie aromatische Kohlenwasserstoffe, Ether, Ester, Ketone, CKW, FCKW – um nur einige zu nennen – einsetzen. Solche Hilfsstoffe können beispielsweise in der Produktaufarbeitung aus dem Produkt entfernt werden.Further can one dissolve as auxiliaries or diluents, such as alcohols, aliphatic and aromatic hydrocarbons, Ethers, esters, ketones, CHCs, CFCs - just to name a few - use. Such adjuvants can for example, removed in the product processing from the product become.
Ebenfalls kann man beim vorliegenden Verfahren Inhibitoren, beispielsweise Polymerisationsinhibitoren oder entsprechende Gemische, als zusätzliche Hilfsstoffe einsetzen.Also can be in the present process inhibitors, for example Polymerization inhibitors or corresponding mixtures, as additional Use excipients.
Im
Allgemeinen führt
man das erfindungsgemäße Verfahren
wie folgt durch:
In der Regel dosiert man zunächst die
Eduktkomponenten A, B und gegebenenfalls C sowie gegebenenfalls
weitere Hilfsstoffe und mischt. Dabei ist man bestrebt, einen Homogenkatalysator
mit einer Genauigkeit von ≤ ±20 %,
vorzugsweise ≤ ±10 % zu
dosieren. In besonderen Fällen
kann man den Homogenkatalysator sowie optional weitere Hilfsstoffe
in das Gemisch aus den Komponenten A und B auch erst kurz vor Eintritt
in den Multielementreaktor dosieren. Anschließend kann man das Eduktgemisch
dem Multielementreaktor zuführen
und die Komponenten unter Temperaturkontrolle umsetzen. Man kann
aber auch den Multielementreaktor zunächst mit einem katalysatorhaltigen
Edukt bzw. Eduktgemisch spülen
bzw. vorkonditionieren, bevor man die Temperatur zur Durchführung der
Umsetzung vorfährt.
Man kann die Vorkonditionierung des Multielementreaktors aber auch
unter leicht erhöhter
Temperatur durchführen. Die
im Multielementreaktor zusammengeführten bzw. erhaltenen Produktströme (Rohprodukt)
kann man nachfolgend in einer Produktaufarbeitung der erfindungsgemäßen Anlage
in geeigneter Weise aufarbeiten. Das Verfahren wird bevorzugt kontinuierlich betrieben.
Die Aufarbeitung kann beispielsweise – aber nicht ausschließlich – mittels
Destillation mit Rektifikation erfolgen.In general, the process according to the invention is carried out as follows:
As a rule, the reactant components A, B and, if appropriate, C are metered in, and optionally further auxiliaries, and the mixture is mixed. It is endeavored to meter a homogeneous catalyst with an accuracy of ≤ ± 20%, preferably ≤ ± 10%. In special cases, it is also possible to meter the homogeneous catalyst and optionally further auxiliaries into the mixture of components A and B only shortly before entry into the multielement reactor. Subsequently, it is possible to feed the starting material mixture to the multielement reactor and to react the components under temperature control. However, it is also possible first to rinse or precondition the multielement reactor with a catalyst-containing educt or reactant mixture before the temperature is advanced to carry out the reaction. It is also possible to carry out the preconditioning of the multielement reactor at a slightly elevated temperature. The product streams (crude product) combined or obtained in the multielement reactor can subsequently be worked up in a suitable manner in a product work-up of the plant according to the invention. The process is preferably operated continuously. The work-up can be carried out, for example-but not exclusively-by distillation with rectification.
So kann man das erfindungsgemäße Verfahren unter Verwendung einer erfindungsgemäßen Anlage in vorteilhafter Weise kontinuierlich mit einem Produktaustrag von 5 kg bis 50 000 t p. a. betreiben und beispielsweise – aber nicht ausschließlich – Hexadecyltrimethoxysilan vorteilhaft herstellen.So you can the process of the invention using a system according to the invention in an advantageous Continuously with a product output of 5 kg to 50 000 t p. a. and, for example, but not limited to hexadecyltrimethoxysilane produce advantageous.
Die vorliegende Erfindung wird durch das nachfolgende Beispiel näher erläutert, ohne den Gegenstand zu beschränken.The The present invention is further illustrated by the following example, without to restrict the subject.
Beispielexample
Herstellung von HexadecyltrimethoxysilanPreparation of hexadecyltrimethoxysilane
Die
für die
kontinuierliche Herstellung von Hexadecyltrimethoxysilan (Dynasylan® 9116)
verwendete Anlage bestand im Wesentlichen aus den Eduktvorratsbehältern, HPLC-Pumpen, Regel-, Mess-
und Dosiereinheiten, einem T-Mischer, vier parallel geschalteten,
wechselbaren und mit Füllkörpern bestückten Vorreaktoren
aus Edelstahl (jeweils Durchmesser 10 mm, Länge 50 mm, Edelstahlkügelchen
mit durchschnittlich 1,5 mm Durchmesser als Füllkörper), einem integrierten Blockreaktor
aus Edelstahl (hold up von rd. 200 cm3),
vgl. hierzu auch
Zunächst wurde bei Raumtemperatur Hexadecen-1 (Reinheit 93 %, Degussa AG) und eine acetonische, HOAc-haltige Lösung von H2PtCl6·6H2O (53 g in 11 Aceton) in einem molaren Verhältnis Olefin : Pt = 12 500 : 1 dosiert bzw. gemischt und im T-Mischer mit Trimethoxysilan (TMOS, Degussa AG) in einem molaren Verhältnis Olefin : TMOS = 1 : 0,15 gemischt und dem Reaktorsystem zugeführt. Dabei betrug der Druck 25 ± 10 bar. Beim Anfahren der Anlage sollte ein möglichst H2O-freier Zustand der Anlage angestrebt werden. Ferner wurde die Anlage vor der Anhebung der Temperatur im Reaktor mit Eduktgemisch für 2 Stunden gespült. Bei einer Durchsatzmenge von in Summe 10 kg/h wurde die Temperatur in den Reaktoren vorgefahren, auf 140 °C eingestellt und über 14 Tage kontinuierlich betrieben. Nach Reaktor wurden in zeitlichen Abständen Proben für GC-WLD-Messungen entnommen. Der Umsatz, bezogen auf das Olefin, lag im Durchschnitt bei 35 % (einschließlich umgelagertes Olefin) und die Selektivität, bezogen auf TMOS, lag bei 99 %. So erhaltenes Rohprodukt wurde kontinuierlich in den unter Vakuum betriebenen Dünnschichtverdampfer gefahren, aus dem Sumpf kontinuierlich Produkt entnommen und durch Strippen mittels Inertgas restliches TMOS entfernt.First, at room temperature hexadecene-1 (purity 93%, Degussa AG) and an acetonic, HOAc-containing solution of H 2 PtCl 6 · 6H 2 O (53 g in 11 acetone) in a molar ratio of olefin: Pt = 12 500: 1 metered or mixed and mixed in the T-mixer with trimethoxysilane (TMOS, Degussa AG) in a molar ratio of olefin: TMOS = 1: 0.15 and fed to the reactor system. The pressure was 25 ± 10 bar. When starting up the system, the system should be kept as free of H 2 O as possible. Furthermore, the system was rinsed for 2 hours prior to raising the temperature in the reactor with educt mixture. At a total throughput of 10 kg / h, the temperature was advanced in the reactors, adjusted to 140 ° C and operated continuously for 14 days. After reactor samples were taken at intervals for GC-WLD measurements. The conversion based on the olefin was on average 35% (including rearranged olefin) and the selectivity based on TMOS was 99%. The crude product thus obtained was run continuously into the thin-film evaporator operated under a vacuum, product was continuously withdrawn from the bottom and stripping by means of inert gas removed residual TMOS.
Claims (23)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007023756A DE102007023756A1 (en) | 2006-08-10 | 2007-05-22 | Plant and process for the continuous industrial production of alkylalkoxysilanes |
EP07787261A EP2049246A1 (en) | 2006-08-10 | 2007-07-09 | System and process for continuous industrial preparation of alkylalkoxysilanes |
PCT/EP2007/056985 WO2008017562A1 (en) | 2006-08-10 | 2007-07-09 | System and process for continuous industrial preparation of alkylalkoxysilanes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006037408 | 2006-08-10 | ||
DE102006037408.8 | 2006-08-10 | ||
DE102007023756A DE102007023756A1 (en) | 2006-08-10 | 2007-05-22 | Plant and process for the continuous industrial production of alkylalkoxysilanes |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102007023756A1 true DE102007023756A1 (en) | 2008-02-14 |
Family
ID=38722646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102007023756A Withdrawn DE102007023756A1 (en) | 2006-08-10 | 2007-05-22 | Plant and process for the continuous industrial production of alkylalkoxysilanes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2049246A1 (en) |
DE (1) | DE102007023756A1 (en) |
WO (1) | WO2008017562A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018210886A1 (en) * | 2018-07-03 | 2020-01-09 | Evonik Degussa Gmbh | Process for the preparation of alkylalkoxysilanes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580523A (en) * | 1994-04-01 | 1996-12-03 | Bard; Allen J. | Integrated chemical synthesizers |
DE19858856A1 (en) * | 1998-12-19 | 2000-06-21 | Merck Patent Gmbh | Process for the preparation of aryl metal compounds and their reaction with electrophiles |
DE19920794A1 (en) * | 1999-05-06 | 2000-11-09 | Merck Patent Gmbh | Process for the preparation of bead polymers |
DE19959249A1 (en) * | 1999-12-08 | 2001-07-19 | Inst Mikrotechnik Mainz Gmbh | Modular micro reaction system |
US7485454B1 (en) * | 2000-03-10 | 2009-02-03 | Bioprocessors Corp. | Microreactor |
DE10014298A1 (en) * | 2000-03-23 | 2001-09-27 | Merck Patent Gmbh | Reduction of aliphatic, aromatic or heteroaromatic organic compounds comprises mixing the organic compound in liquid or dissolved form with a hydride in liquid or dissolved form in a microreactor |
DE10333174A1 (en) * | 2003-07-22 | 2005-02-17 | Cpc Cellular Process Chemistry Systems Gmbh | Method of performing an in situ quenching reaction |
GB0413400D0 (en) * | 2004-06-16 | 2004-07-21 | Accentus Plc | Catalytic plant and process |
US20090036702A1 (en) * | 2004-10-28 | 2009-02-05 | Wacker Chemie Ag | Production of organosilanes in the presence of iridium-catalysts and cocatalysts |
-
2007
- 2007-05-22 DE DE102007023756A patent/DE102007023756A1/en not_active Withdrawn
- 2007-07-09 EP EP07787261A patent/EP2049246A1/en not_active Withdrawn
- 2007-07-09 WO PCT/EP2007/056985 patent/WO2008017562A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
EP2049246A1 (en) | 2009-04-22 |
WO2008017562A1 (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007023759A1 (en) | Plant and process for the continuous industrial production of fluoroalkylchlorosilane | |
DE102007023757A1 (en) | Plant and method for the continuous industrial production of organosilanes | |
DE102007023763A1 (en) | Plant, reactor and process for the continuous industrial production of polyetheralkylalkoxysilanes | |
DE102007023760A1 (en) | Plant, reactor and process for continuous industrial production of 3-methacryloxypropylalkoxysilanes | |
DE102006060352A1 (en) | A process for producing an olefin oxide or a chemical derivable from an olefin oxide | |
DE102007023762A1 (en) | Plant and process for the continuous industrial production of 3-glycidyloxypropylalkoxysilanes | |
DE102007023756A1 (en) | Plant and process for the continuous industrial production of alkylalkoxysilanes | |
DE102007023764A1 (en) | Plant and apparatus for continuous industrial production of 3-chloropropylchlorosilanes | |
DE19619138C2 (en) | Process for the production of vinylated organic silicon compounds | |
CN1697814A (en) | Process for producing (meth)acrylic acid or (meth)acrolein | |
CN101362774A (en) | System and process for continuous industrial preparation of 3-glycidyl-oxypropylalkoxysilanes | |
CN101121727A (en) | System, reactor and process for continuous industrial preparation of 3-methacryloyloxypropylalkoxysilanes | |
CN101121728A (en) | System and process for continuous industrial preparation of alkylalkoxysilanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20111201 |