[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN211236203U - Magnetic field sensing device - Google Patents

Magnetic field sensing device Download PDF

Info

Publication number
CN211236203U
CN211236203U CN201921629696.9U CN201921629696U CN211236203U CN 211236203 U CN211236203 U CN 211236203U CN 201921629696 U CN201921629696 U CN 201921629696U CN 211236203 U CN211236203 U CN 211236203U
Authority
CN
China
Prior art keywords
magnetoresistive sensor
magnetic field
magnetization direction
sensor group
bridge arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921629696.9U
Other languages
Chinese (zh)
Inventor
袁辅德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isentek Inc
Original Assignee
Isentek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isentek Inc filed Critical Isentek Inc
Priority to CN201921629696.9U priority Critical patent/CN211236203U/en
Application granted granted Critical
Publication of CN211236203U publication Critical patent/CN211236203U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

本实用新型提供一种磁场感测装置,包括多个平均电阻彼此不同的磁阻传感器群、第一及第二磁化方向设定元件。这些磁阻传感器群的数量为四。第一、第二磁阻传感器群的一部分耦接而成第一电桥臂。第一、第二磁阻传感器群的另一部分耦接而成第二电桥臂。第三、第四磁阻传感器群的一部分耦接而成第三电桥臂。第三、第四磁阻传感器群的另一部分耦接而成第四电桥臂。第一至第四电桥臂共同耦接成一惠斯同电桥。第一、第二磁化方向设定元件分别与第一至第四磁阻传感器群中的二磁阻传感器群重叠设置。磁场感测装置能够有效地消除零场输出偏移而具有准确的测量结果。

Figure 201921629696

The utility model provides a magnetic field sensing device, comprising a plurality of magnetoresistive sensor groups with different average resistances, and first and second magnetization direction setting elements. The number of these magnetoresistive sensor groups is four. A portion of the first and second magnetoresistive sensor groups are coupled to form a first bridge arm. Another portion of the first and second magnetoresistive sensor groups are coupled to form a second bridge arm. A portion of the third and fourth magnetoresistive sensor groups are coupled to form a third bridge arm. Another portion of the third and fourth magnetoresistive sensor groups are coupled to form a fourth bridge arm. The first to fourth bridge arms are coupled together to form a Wheatstone bridge. The first and second magnetization direction setting elements are respectively arranged to overlap with two magnetoresistive sensor groups in the first to fourth magnetoresistive sensor groups. The magnetic field sensing device can effectively eliminate the zero field output offset and have an accurate measurement result.

Figure 201921629696

Description

磁场感测装置Magnetic field sensing device

技术领域technical field

本实用新型涉及一种磁场感测装置。The utility model relates to a magnetic field sensing device.

背景技术Background technique

随着科技的发展,具有导航与定位功能的电子产品也越来越多样化。电子罗盘在车用导航、飞航以及个人手持式装置的应用领域中提供了相当于传统罗盘的功能。而为了实现电子罗盘的功能,磁场感测装置变成了必要的电子元件。With the development of science and technology, electronic products with navigation and positioning functions are becoming more and more diverse. Electronic compasses provide functions equivalent to traditional compasses in the application fields of car navigation, aviation, and personal handheld devices. In order to realize the function of the electronic compass, the magnetic field sensing device becomes a necessary electronic component.

在一般的磁场感测装置中,其通过磁阻感测元件以构成惠斯同电桥(Wheatstonebridge),并通过电路的输出信号而测量外在磁场。但是,磁阻感测元件在制造过程中,由于制程因素(蚀刻制程、掀离制程等)而导致不同区域的磁阻感测元件具有不同的电阻,且电阻的差异相当明显,即电阻的不匹配现象。导致现有的磁场感测装置在还没测量外在磁场之前即具有明显的零场输出偏移(Zero-field Output offset),进而导致测量结果不准确。In a general magnetic field sensing device, the magnetoresistive sensing element is used to form a Wheatstone bridge, and the external magnetic field is measured by the output signal of the circuit. However, during the manufacturing process of the magnetoresistive sensing element, due to process factors (etching process, lift-off process, etc.), the magnetoresistive sensing element in different regions has different resistances, and the difference in resistance is quite obvious, that is, the resistance is different. matching phenomenon. As a result, the existing magnetic field sensing device has an obvious zero-field output offset (zero-field output offset) before measuring the external magnetic field, thereby causing inaccurate measurement results.

实用新型内容Utility model content

本实用新型提供一种磁场感测装置,其能够有效地消除零场输出偏移而具有准确的测量结果。The utility model provides a magnetic field sensing device, which can effectively eliminate the zero-field output offset and have accurate measurement results.

本实用新型的一实施例提出一种磁场感测装置,包括多个磁阻传感器群、第一磁化方向设定元件及第二磁化方向设定元件。这些磁阻传感器群的平均电阻彼此不同,且各磁阻传感器群包括多个磁阻传感器。这些磁阻传感器群包括第一至第四磁阻传感器群。第一磁阻传感器群中的一部分与第二磁阻传感器群的一部分耦接而成第一电桥臂。第一磁阻传感器群中的另一部分与第二磁阻传感器群的另一部分耦接而成第二电桥臂。第三磁阻传感器群中的一部分与第四磁阻传感器群的一部分耦接而成第三电桥臂。第三磁阻传感器群中的另一部分与第四磁阻传感器群的另一部分耦接而成第四电桥臂。第一至第四电桥臂共同耦接成惠斯同电桥。第一磁化方向设定元件,与第一至第四磁阻传感器群中的二磁阻传感器群重叠设置。第二磁化方向设定元件,与第一至第四磁阻传感器群中的另二磁阻传感器群重叠设置。An embodiment of the present invention provides a magnetic field sensing device, which includes a plurality of magnetoresistive sensor groups, a first magnetization direction setting element and a second magnetization direction setting element. The average resistances of these magnetoresistive sensor groups are different from each other, and each magnetoresistive sensor group includes a plurality of magnetoresistive sensors. These magnetoresistive sensor groups include first to fourth magnetoresistive sensor groups. A part of the first magnetoresistive sensor group is coupled with a part of the second magnetoresistive sensor group to form a first bridge arm. Another part of the first magnetoresistive sensor group is coupled with another part of the second magnetoresistive sensor group to form a second bridge arm. A part of the third magnetoresistive sensor group is coupled with a part of the fourth magnetoresistive sensor group to form a third bridge arm. Another part of the third magnetoresistive sensor group is coupled with another part of the fourth magnetoresistive sensor group to form a fourth bridge arm. The first to fourth bridge arms are commonly coupled to form a Wheat bridge. The first magnetization direction setting element is arranged to overlap with the two magnetoresistive sensor groups in the first to fourth magnetoresistive sensor groups. The second magnetization direction setting element is arranged to overlap with the other two magnetoresistive sensor groups in the first to fourth magnetoresistive sensor groups.

在本实用新型的一实施例中,在第一至第四电桥臂中,其内的线路接法为S型回路接法。In an embodiment of the present invention, in the first to fourth bridge arms, the circuit connection method is an S-type loop connection method.

在本实用新型的一实施例中,在第一至第四电桥臂中,其内的线路接法为S型线路接法与直线线路接法。In an embodiment of the present invention, in the first to fourth bridge arms, the circuit connection methods in them are S-type circuit connection method and straight circuit connection method.

在本实用新型的一实施例中,上述的磁场感测装置还包括电流产生器。电流产生器用以产生电流至第一磁化方向设定元件与第二磁化方向设定元件,其中电流在第一磁化方向设定元件内的流向与电流在第二磁化方向设定元件内的流向相反。In an embodiment of the present invention, the above-mentioned magnetic field sensing device further includes a current generator. The current generator is used for generating current to the first magnetization direction setting element and the second magnetization direction setting element, wherein the current flowing in the first magnetization direction setting element is opposite to the current flowing in the second magnetization direction setting element .

在本实用新型的一实施例中,上述的第一磁化方向设定元件与第一磁阻传感器群与第二磁阻传感器群重叠设置,且第二磁化方向设定元件与第三磁阻传感器群与第四磁阻传感器群重叠设置。In an embodiment of the present invention, the above-mentioned first magnetization direction setting element, the first magnetoresistive sensor group and the second magnetoresistive sensor group are arranged overlappingly, and the second magnetization direction setting element and the third magnetoresistive sensor The group overlaps with the fourth magnetoresistive sensor group.

在本实用新型的一实施例中,上述的第一磁化方向设定元件与第一磁阻传感器群与第二磁阻传感器群重叠设置,且第二磁化方向设定元件与第三磁阻传感器群与第四磁阻传感器群重叠设置。In an embodiment of the present invention, the above-mentioned first magnetization direction setting element, the first magnetoresistive sensor group and the second magnetoresistive sensor group are arranged overlappingly, and the second magnetization direction setting element and the third magnetoresistive sensor The group overlaps with the fourth magnetoresistive sensor group.

在本实用新型的一实施例中,上述的第一电桥臂与第二电桥臂与第一端点耦接。第二电桥臂与第四电桥臂与第二端点耦接。第三电桥臂与第四电桥臂与第三端点耦接。第四电桥臂与所述第一电桥臂与第四端点耦接。第一端点、第二端点、第三端点与第四端点彼此不同。In an embodiment of the present invention, the above-mentioned first bridge arm and second bridge arm are coupled to the first terminal. The second bridge arm and the fourth bridge arm are coupled to the second terminal. The third bridge arm and the fourth bridge arm are coupled to the third terminal. The fourth bridge arm is coupled to the first bridge arm and the fourth terminal. The first endpoint, the second endpoint, the third endpoint, and the fourth endpoint are different from each other.

在本实用新型的一实施例中,上述的各磁阻传感器的延伸方向垂直于第一磁化方向设定元件与第二磁化方向设定元件的延伸方向。In an embodiment of the present invention, the extending directions of the above-mentioned magnetoresistive sensors are perpendicular to the extending directions of the first magnetization direction setting element and the second magnetization direction setting element.

在本实用新型的一实施例中,上述的磁阻传感器的种类为异向性磁阻传感器。In an embodiment of the present invention, the type of the above-mentioned magnetoresistive sensor is an anisotropic magnetoresistive sensor.

基于上述,在本实用新型实施例的磁场感测装置中,其具有平均电阻彼此不同的多个第一、第二、第三、第四磁阻传感器,通过将第一至第四磁阻传感器相互交叉耦接的方式,以形成惠司同电桥的第一、第二、第三与第四电桥臂,因此制程因素所造成的相关误差可以分散于这些电桥臂中,藉此能够有效地消除零场输出偏移而具有准确的测量结果。Based on the above, in the magnetic field sensing device of the embodiment of the present invention, it has a plurality of first, second, third and fourth magnetoresistive sensors with different average resistances. The way of cross-coupling to form the first, second, third and fourth bridge arms of the Huistong bridge, so the related errors caused by the process factors can be dispersed in these bridge arms, which can effectively The zero-field output offset is effectively eliminated with accurate measurement results.

为让本实用新型的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present utility model more obvious and easy to understand, the following examples are given and described in detail in conjunction with the accompanying drawings as follows.

附图说明Description of drawings

图1是本实用新型一实施例的磁场感测装置的示意图。FIG. 1 is a schematic diagram of a magnetic field sensing device according to an embodiment of the present invention.

图2是图1的磁场感测装置的有效电路图。FIG. 2 is an active circuit diagram of the magnetic field sensing device of FIG. 1 .

图3A与图3B为图1中异向性磁阻传感器的不同布局方法。3A and 3B illustrate different layout methods of the anisotropic magnetoresistive sensor in FIG. 1 .

图4是本实用新型另一实施例的磁场感测装置的示意图。FIG. 4 is a schematic diagram of a magnetic field sensing device according to another embodiment of the present invention.

附图标记说明:Description of reference numbers:

100、100a:磁场感测装置;100, 100a: magnetic field sensing device;

110:磁阻传感器群;110: magnetoresistive sensor group;

112:第一磁阻传感器群;112: the first magnetoresistive sensor group;

114:第二磁阻传感器群;114: the second magnetoresistive sensor group;

116:第三磁阻传感器群;116: the third magnetoresistive sensor group;

118:第四磁阻传感器群;118: the fourth magnetoresistive sensor group;

120:第一磁化方向设定元件;120: the first magnetization direction setting element;

130:第二磁化方向设定元件;130: the second magnetization direction setting element;

140:电流产生器;140: current generator;

ARM1、ARM1a:第一电桥臂;ARM1, ARM1a: the first bridge arm;

ARM2、ARM2a:第二电桥臂;ARM2, ARM2a: the second bridge arm;

ARM3、ARM3a:第三电桥臂;ARM3, ARM3a: the third bridge arm;

ARM4、ARM4a:第四电桥臂;ARM4, ARM4a: the fourth bridge arm;

D:延伸方向;D: extension direction;

D1、D2:方向;D1, D2: direction;

FF:铁磁膜;FF: ferromagnetic film;

GND:接地端;GND: ground terminal;

H:外在磁场;H: external magnetic field;

I:电流;I: current;

M:磁化方向;M: magnetization direction;

MR:磁阻传感器;MR: magnetoresistive sensor;

SB:短路棒;SB: Shorting bar;

SD:感测方向;SD: sensing direction;

VDD:电压供应端;V DD : voltage supply terminal;

WHB:惠斯同电桥。WHB: Wheatstone bridge.

具体实施方式Detailed ways

图1是本实用新型一实施例的磁场感测装置的示意图。图2是图1的磁场感测装置的有效电路图。图3A与图3B为图1中异向性磁阻传感器的不同布局方法。FIG. 1 is a schematic diagram of a magnetic field sensing device according to an embodiment of the present invention. FIG. 2 is an active circuit diagram of the magnetic field sensing device of FIG. 1 . 3A and 3B illustrate different layout methods of the anisotropic magnetoresistive sensor in FIG. 1 .

请参照图1,在本实施例中,磁场感测装置100包括多个磁阻传感器群110、第一、第二磁化方向设定元件120、130与电流产生器140。于以下段落中会详细说明上述各元件。Referring to FIG. 1 , in this embodiment, the magnetic field sensing device 100 includes a plurality of magnetoresistive sensor groups 110 , first and second magnetization direction setting elements 120 and 130 and a current generator 140 . Each of the above elements will be described in detail in the following paragraphs.

于本实施例中,各磁阻传感器群110包括多个磁阻传感器MR,各磁阻传感器MR的延伸方向例如是方向D2。这些磁阻传感器群110的数量例如是四个,分别被称为第一、第二、第三、第四磁阻传感器群112、114、116、118。因制程因素,导致在不同区域的磁阻传感器群110的平均电阻彼此不同。在图1中,以不同的剖面来标示属于第一至第四磁阻传感器群112、114、116、118中的磁阻传感器MR。In this embodiment, each magnetoresistive sensor group 110 includes a plurality of magnetoresistive sensors MR, and the extending direction of each magnetoresistive sensor MR is, for example, the direction D2. The number of these magnetoresistive sensor groups 110 is, for example, four, which are referred to as first, second, third, and fourth magnetoresistive sensor groups 112 , 114 , 116 , and 118 , respectively. Due to process factors, the average resistances of the magnetoresistive sensor groups 110 in different regions are different from each other. In FIG. 1 , the magnetoresistive sensors MR belonging to the first to fourth magnetoresistive sensor groups 112 , 114 , 116 , 118 are marked with different cross sections.

承上述,磁阻传感器MR是指其电阻可经由外在磁场变化而对应改变的传感器。磁阻传感器MR可为异向性磁阻传感器(Anisotropic Magneto-Resistive resistor,AMRresistor)。于本实施例中,磁阻传感器MR的延伸方向为方向D2。参照图3A以及图3B,异向性磁阻传感器MR例如是具有理发店招牌(barber pole)状结构,也即其表面设有相对于异向性磁阻传感器MR的延伸方向D倾斜45度延伸的多个短路棒(electrical shorting bar)SB,这些短路棒SB彼此相间隔且平行地设置于铁磁膜(ferromagnetic film)FF上,而铁磁膜FF为异向性磁阻传感器MR的主体,其延伸方向即为异向性磁阻传感器MR的延伸方向。异向性磁阻传感器MR的感测方向SD垂直于延伸方向D。此外,铁磁膜FF的相对两端可制作成尖端状(tapered)。As mentioned above, the magnetoresistive sensor MR refers to a sensor whose resistance can be changed correspondingly through the change of the external magnetic field. The magnetoresistive sensor MR may be an anisotropic magnetoresistive sensor (Anisotropic Magneto-Resistive resistor, AMRresistor). In this embodiment, the extending direction of the magnetoresistive sensor MR is the direction D2. Referring to FIGS. 3A and 3B , the anisotropic magnetoresistive sensor MR has, for example, a barber pole-like structure, that is, the surface of the anisotropic magnetoresistive sensor MR is provided with an extension extending at an angle of 45 degrees relative to the extending direction D of the anisotropic magnetoresistive sensor MR. a plurality of electrical shorting bars SB, these shorting bars SB are spaced apart from each other and arranged in parallel on a ferromagnetic film FF, and the ferromagnetic film FF is the main body of the anisotropic magnetoresistive sensor MR, Its extension direction is the extension direction of the anisotropic magnetoresistive sensor MR. The sensing direction SD of the anisotropic magnetoresistive sensor MR is perpendicular to the extending direction D. In addition, opposite ends of the ferromagnetic film FF may be tapered.

于本实施例中,第一、第二磁化方向设定元件120、130可为通过通电而产生磁场的线圈、导线、金属片、导体中的任一者或其组合,且第一、第二磁化方向设定元件120、130的延伸方向例如是方向D1,且方向D1垂直于方向D2。In this embodiment, the first and second magnetization direction setting elements 120 and 130 can be any one or a combination of coils, wires, metal sheets, and conductors that generate a magnetic field by energizing, and the first and second magnetization direction setting elements 120 and 130 The extension direction of the magnetization direction setting elements 120 and 130 is, for example, the direction D1, and the direction D1 is perpendicular to the direction D2.

于本实施例中,电流产生器140是指用以提供电流的电子元件。In this embodiment, the current generator 140 refers to an electronic component for providing current.

为了要说明本实施例的磁场感测装置100的配置效果,于以下的段落会搭配图3A与图3B简介本实施例的磁场感测装置100测量磁场的基本原理。In order to explain the configuration effect of the magnetic field sensing device 100 of the present embodiment, the following paragraphs will introduce the basic principle of the magnetic field sensing device 100 of the present embodiment for measuring the magnetic field in conjunction with FIG. 3A and FIG. 3B .

请参照图3A与图3B,异向性磁阻传感器MR在开始测量外在磁场H之前,可先通过第一、第二磁化方向设定元件120、130来设定其磁化方向。在图3A中,第一、第二磁化方向设定元件120、130可通过通电产生沿着延伸方向D(或称长轴方向)的磁场,以使异向性磁阻传感器MR具有磁化方向M。Referring to FIGS. 3A and 3B , before the anisotropic magnetoresistive sensor MR starts to measure the external magnetic field H, its magnetization direction can be set by the first and second magnetization direction setting elements 120 and 130 . In FIG. 3A , the first and second magnetization direction setting elements 120 and 130 can generate a magnetic field along the extension direction D (or the long axis direction) by energizing, so that the anisotropic magnetoresistive sensor MR has the magnetization direction M .

接着,第一、第二磁化方向设定元件120、130不通电,以使异向性磁阻传感器MR开始测量外在磁场H。当没有外在磁场H时,异向性磁阻传感器MR的磁化方向M维持在延伸方向D上,此时电流产生器140可施加电流I,使电流I从异向性磁阻传感器MR的左端流往右端,则短路棒SB附近的电流I的流向会与短路棒SB的延伸方向垂直,而使得短路棒SB附近的电流I流向与磁化方向M夹45度,此时异向性磁阻传感器MR的电阻值为R。Next, the first and second magnetization direction setting elements 120 and 130 are not energized, so that the anisotropic magnetoresistive sensor MR starts to measure the external magnetic field H. When there is no external magnetic field H, the magnetization direction M of the anisotropic magnetoresistive sensor MR is maintained in the extending direction D. At this time, the current generator 140 can apply the current I, so that the current I flows from the left end of the anisotropic magnetoresistive sensor MR. If it flows to the right end, the flow direction of the current I near the shorting bar SB will be perpendicular to the extension direction of the shorting bar SB, so that the current I near the shorting bar SB will flow 45 degrees to the magnetization direction M. At this time, the anisotropic magnetoresistive sensor The resistance value of MR is R.

当有外在磁场H朝向垂直于延伸方向D的方向时,异向性磁阻传感器MR的磁化方向M会往外在磁场H的方向偏转,而使得磁化方向与短路棒附近的电流I流向的夹角大于45度,此时异向性磁阻传感器MR的电阻值有-ΔR的变化,即成为R-ΔR,也就是电阻值变小,其中ΔR大于0。When the external magnetic field H faces the direction perpendicular to the extension direction D, the magnetization direction M of the anisotropic magnetoresistive sensor MR will be deflected in the direction of the external magnetic field H, so that the magnetization direction and the current I near the shorting bar are clamped. When the angle is greater than 45 degrees, the resistance value of the anisotropic magnetoresistive sensor MR has a change of -ΔR, that is, it becomes R-ΔR, that is, the resistance value becomes smaller, and ΔR is greater than 0.

然而,若如图3B所示,当图3B的短路棒SB的延伸方向设于与图3A的短路棒SB的延伸方向夹90度的方向时(此时图3B的短路棒SB的延伸方向仍与异向性磁阻传感器MR的延伸方向D夹45度),且当有外在磁场H时,此外在磁场H仍会使磁化方向M往外在磁场H的方向偏转,此时磁化方向M与短路棒SB附近的电流I流向的夹角会小于45度,如此异向性磁阻传感器MR的电阻值会变成R+ΔR,也即异向性磁阻传感器MR的电阻值变大。However, as shown in FIG. 3B , when the extending direction of the shorting bar SB in FIG. 3B is set at a direction of 90 degrees from the extending direction of the shorting bar SB in FIG. 3A (at this time, the extending direction of the shorting bar SB in FIG. 3B is still 45 degrees with the extension direction D of the anisotropic magnetoresistive sensor MR), and when there is an external magnetic field H, in addition, the magnetic field H will still deflect the magnetization direction M to the direction of the external magnetic field H, at this time, the magnetization direction M and The angle between the current I near the shorting bar SB will be less than 45 degrees, so the resistance value of the anisotropic magnetoresistive sensor MR will become R+ΔR, that is, the resistance value of the anisotropic magnetoresistive sensor MR will increase.

此外,通过第一、第二磁化方向设定元件120、130将异向性磁阻传感器MR的磁化方向M设定为图3A所示的反向时,之后在外在磁场H下的图3A的异向性磁阻传感器MR的电阻值会变成R+ΔR。再者,通过磁化方向设定元件130将异向性磁阻传感器MR的磁化方向M设定为图3B所示的反向时,之后在外在磁场H下的图3B的异向性磁阻传感器MR的电阻值会变成R-ΔR。In addition, when the magnetization direction M of the anisotropic magnetoresistive sensor MR is set to the opposite direction shown in FIG. The resistance value of the anisotropic magnetoresistive sensor MR becomes R+ΔR. Furthermore, when the magnetization direction M of the anisotropic magnetoresistive sensor MR is set to the opposite direction shown in FIG. 3B by the magnetization direction setting element 130, the anisotropic magnetoresistive sensor of FIG. 3B under the external magnetic field H after that The resistance value of MR becomes R-ΔR.

根据上述,在本实施例中,磁阻传感器群110中的磁阻传感器MR会因为外在磁场导致其电阻产生变化,并可通过惠斯同电桥WHB的电压输出端的差分信号来判断外在磁场的方向与大小。但,若因制程因素导致不同区域的磁阻传感器MR的电阻值R差异过大,则惠斯同电桥WHB会在还没测量外来磁场之前就会有一个明显的零场输出偏移。因此,本实施例的磁场感测装置100的至少一个目的是要解决上述零场输出偏移的问题。According to the above, in this embodiment, the resistance of the magnetoresistive sensor MR in the magnetoresistive sensor group 110 changes due to the external magnetic field, and the external magnetic field can be used to determine the external differential signal through the differential signal of the voltage output terminal of the Wheat bridge WHB The direction and magnitude of the magnetic field. However, if the resistance value R of the magnetoresistive sensor MR in different regions is too different due to process factors, the Wheat bridge WHB will have an obvious zero-field output offset before measuring the external magnetic field. Therefore, at least one purpose of the magnetic field sensing device 100 of the present embodiment is to solve the above-mentioned problem of zero-field output offset.

于以下的段落中会详细地说明本实施例的磁场感测装置100中的各元件配置方式。The configuration of each element in the magnetic field sensing device 100 of this embodiment will be described in detail in the following paragraphs.

请参照图1,大体上来说,于本实施例中,第一磁化方向设定元件120与第一、第二磁阻传感器群112、114重叠设置,且设置于第一、第二磁阻传感器群112、114的下方。第二磁化方向设定元件130与第三、第四磁阻传感器群116、118重叠设置,且设置于第三、第四磁阻传感器群116、118的下方。电流产生器140通过导线与第一、第二磁化方向设定元件120、130耦接,以构成S型回路。当电流产生器140产生电流I后,电流I通过导线流入第一、第二磁化方向设定元件120、130中,其在第一磁化方向设定元件120内的电流方向为方向D1,而其在第二磁化方向设定元件130内的电流方向为方向D1的反方向,即在第一、第二磁化方向设定元件120、130内的电流流向互为反平行(anti-parallel)。因此,第一磁化方向设定元件120例如是将第一、第二磁阻传感器群112、114的磁化方向M设定为方向D2,第二磁化方向设定元件130例如是将第三、第四磁阻传感器群116、118的磁化方向设定为方向D2的反方向。Referring to FIG. 1 , generally speaking, in this embodiment, the first magnetization direction setting element 120 is disposed overlapping the first and second magnetoresistive sensor groups 112 and 114 , and is disposed on the first and second magnetoresistive sensors Below the clusters 112,114. The second magnetization direction setting element 130 is disposed overlapping the third and fourth magnetoresistive sensor groups 116 and 118 and is disposed below the third and fourth magnetoresistive sensor groups 116 and 118 . The current generator 140 is coupled to the first and second magnetization direction setting elements 120 and 130 through wires to form an S-shaped loop. After the current generator 140 generates the current I, the current I flows into the first and second magnetization direction setting elements 120 and 130 through the wires. The current direction in the first magnetization direction setting element 120 is the direction D1, and the The direction of the current in the second magnetization direction setting element 130 is the opposite direction of the direction D1, that is, the current flow directions in the first and second magnetization direction setting elements 120 and 130 are anti-parallel to each other. Therefore, the first magnetization direction setting element 120, for example, sets the magnetization direction M of the first and second magnetoresistive sensor groups 112 and 114 to the direction D2, and the second magnetization direction setting element 130, for example, sets the third and second magnetization direction setting elements to the direction D2. The magnetization directions of the four magnetoresistive sensor groups 116 and 118 are set to be opposite to the direction D2.

请再参照图1,细部来说,于本实施例中,通过将平均电阻彼此不同的第一至第四磁阻传感器群112~118的磁阻传感器MR混接(interdigitate)的方式耦接成惠斯同电桥WHB的第一至第四电桥臂ARM1~ARM4,以将电阻之间的差异分散至各电桥臂中。所谓的磁阻传感器群110中的平均电阻是指:将在相应的磁阻传感器群110中的所有磁阻传感器MR的电阻的算术平均数。举例来说,于图1中可看出:第一磁阻传感器群112的磁阻传感器MR有三个,那么第一磁阻传感器群112的平均电阻就是把这三个磁阻传感器MR(112)加总起来后再做算术平均,其他的以此类推。于以下的段落中会详细说明各电桥臂的耦接方式。Referring to FIG. 1 again, in this embodiment, the magnetoresistive sensors MR of the first to fourth magnetoresistive sensor groups 112 ˜ 118 having different average resistances are coupled by interdigitate. The first to fourth bridge arms ARM1 to ARM4 of the Wheat bridge WHB are used to disperse the difference between the resistances into the bridge arms. The so-called average resistance in the magnetoresistive sensor group 110 refers to the arithmetic mean of the resistances of all the magnetoresistive sensors MR in the corresponding magnetoresistive sensor group 110 . For example, it can be seen in FIG. 1 that there are three magnetoresistive sensors MR in the first magnetoresistive sensor group 112, so the average resistance of the first magnetoresistive sensor group 112 is the three magnetoresistive sensors MR(112) After adding up, do the arithmetic average, and so on. The coupling method of each bridge arm will be described in detail in the following paragraphs.

于本实施例中,第一电桥臂ARM1例如是由第一磁阻传感器群112中的一部分(一个)与第二磁阻传感器群114的一部分(两个)耦接而成。In this embodiment, the first bridge arm ARM1 is, for example, formed by coupling a part (one) of the first magnetoresistive sensor group 112 and a part (two) of the second magnetoresistive sensor group 114 .

第二电桥臂ARM2例如是由第一磁阻传感器群112中的另一部分(两个)与第二磁阻传感器群114的另一部分(一个)耦接而成。The second bridge arm ARM2 is, for example, formed by coupling another part (two) of the first magnetoresistive sensor group 112 and another part (one) of the second magnetoresistive sensor group 114 .

于本实施例中,第三电桥臂ARM3例如是由第三磁阻传感器群116中的一部分(两个)与第四磁阻传感器群118的一部分(一个)耦接而成。In this embodiment, the third bridge arm ARM3 is, for example, formed by coupling a part (two) of the third magnetoresistive sensor group 116 and a part (one) of the fourth magnetoresistive sensor group 118 .

第四电桥臂ARM4例如是由第三磁阻传感器群116中的另一部分(一个)与第四磁阻传感器群118的一部分(两个)耦接而成。The fourth bridge arm ARM4 is, for example, formed by coupling another part (one) of the third magnetoresistive sensor group 116 and a part (two) of the fourth magnetoresistive sensor group 118 .

承上述,也就是说,于本实施例中,各电桥臂ARM1~ARM4皆由磁化方向相同的磁阻传感器MR耦接而成。于本实施例中,各电桥臂ARM1~ARM4内的导线接法是S型接法。由另一观点观之,在各电桥臂ARM1~ARM4中,两两磁阻传感器MR之间的导线为弯曲的导线。Based on the above, that is to say, in this embodiment, each of the bridge arms ARM1 - ARM4 is formed by coupling the magnetoresistive sensors MR with the same magnetization direction. In this embodiment, the wire connection method in each bridge arm ARM1 - ARM4 is an S-type connection method. From another point of view, in each of the bridge arms ARM1 to ARM4, the wires between the two magnetoresistive sensors MR are bent wires.

请同时参照图1与图2,于本实施例的磁场感测装置100中,第一、第二电桥臂ARM1、ARM2与第一端点P1耦接。第二、与第四电桥臂ARM2、ARM4与第二端点P2耦接。第三、第四电桥臂ARM3、ARM4与第三端点P3耦接。第四、第一电桥臂ARM4、ARM1与第四端点P4耦接。第一至第四端点P1~P4彼此不同,其中第一端点P1例如是作为电压供应端VDD,第二、第四端点P2、P4例如是作为电压输出端,第三端点P3例如是作为接地端GND,但本实用新型并不以此为限。Please refer to FIG. 1 and FIG. 2 simultaneously. In the magnetic field sensing device 100 of the present embodiment, the first and second bridge arms ARM1 and ARM2 are coupled to the first terminal P1. The second and fourth bridge arms ARM2 and ARM4 are coupled to the second terminal P2. The third and fourth bridge arms ARM3 and ARM4 are coupled to the third terminal P3. Fourth, the first bridge arms ARM4 and ARM1 are coupled to the fourth terminal P4. The first to fourth terminals P1-P4 are different from each other, wherein the first terminal P1 is for example a voltage supply terminal V DD , the second and fourth terminals P2 and P4 are for example a voltage output terminal, and the third terminal P3 is for example a voltage output terminal. The ground terminal is GND, but the present invention is not limited to this.

承上述,在本实施例的磁场感测装置100中,其具有平均电阻彼此不同的第一至第四磁阻传感器群112、114、116、118。磁场感测装置100通过将第一至第四磁阻传感器群112、114、116、118以上述相互交叉耦接的方式,形成惠斯同电桥WHB的第一、第二、第三与第四电桥臂ARM1~ARM4,因此制程因素所造成的相关误差可通过上述耦接方式而分散于这些电桥臂ARM1~ARM4中,藉此能够有效地消除零场输出偏移而具有准确的测量结果。As mentioned above, in the magnetic field sensing device 100 of the present embodiment, the first to fourth magnetoresistive sensor groups 112 , 114 , 116 , and 118 whose average resistances are different from each other are provided. The magnetic field sensing device 100 forms the first, the second, the third and the third of the Wheat bridge WHB by coupling the first to fourth magnetoresistive sensor groups 112 , 114 , 116 and 118 to each other in the above-mentioned manner. Four bridge arms ARM1-ARM4, so the related errors caused by process factors can be dispersed in these bridge arms ARM1-ARM4 through the above-mentioned coupling method, thereby effectively eliminating the zero-field output offset and having accurate measurement result.

在此必须说明的是,下述实施例沿用前述实施例的部分内容,省略了相同技术内容的说明,关于相同的元件名称可以参考前述实施例的部分内容,下述实施例不再重复赘述。It must be noted here that the following embodiments use parts of the previous embodiments, omitting the description of the same technical content, and the same component names can refer to part of the previous embodiments, which will not be repeated in the following embodiments.

图4是本实用新型另一实施例的磁场感测装置的示意图。FIG. 4 is a schematic diagram of a magnetic field sensing device according to another embodiment of the present invention.

请参照图4,图4的磁场感测装置100a大体上类似于图1的磁场感测装置100,其主要差异为:第一、第二磁化方向设定元件120、130与第一至第四磁阻传感器群112、114、116、118之间的设置关系不同、第一至第四电桥臂ARM1a~ARM4a内的磁阻传感器数量、性质与导线接法皆有不同,于以下的段落中会详细说明上述差异为何。Please refer to FIG. 4 , the magnetic field sensing device 100 a of FIG. 4 is substantially similar to the magnetic field sensing device 100 of FIG. 1 , and the main differences are: the first and second magnetization direction setting elements 120 , 130 and the first to fourth The arrangement relationship among the magnetoresistive sensor groups 112, 114, 116, and 118 is different, and the number, properties and wire connection methods of the magnetoresistive sensors in the first to fourth bridge arms ARM1a-ARM4a are all different. In the following paragraphs The reason for the above differences will be explained in detail.

于本实施例中,第一磁化方向设定元件120与第一、第四磁阻传感器群112、118重叠设置且设置于第一、第四磁阻传感器群112、118下方,而第二磁化方向设定元件130则与第二、第三磁阻传感器群114、116重叠设置且设置于第二、第三磁阻传感器群114、116下方。由于电流产生器140所产生的电流I在第一、第二磁化方向设定元件120、130内的电流方向分别为方向D1与方向D1的反向,因此第一磁化方向设定元件120将第一、第四磁阻传感器群112、118内的磁阻传感器MR的磁化方向M设定为方向D2,第二磁化方向设定元件130将第二、第三磁阻传感器群114、116内的磁阻传感器MR的磁化方向M设定为方向D2的反向。In this embodiment, the first magnetization direction setting element 120 is disposed overlapping the first and fourth magnetoresistive sensor groups 112 and 118 and is disposed below the first and fourth magnetoresistive sensor groups 112 and 118 , and the second magnetization The direction setting element 130 overlaps with the second and third magnetoresistive sensor groups 114 and 116 and is disposed below the second and third magnetoresistive sensor groups 114 and 116 . Since the current directions of the current I generated by the current generator 140 in the first and second magnetization direction setting elements 120 and 130 are the direction D1 and the opposite direction of the direction D1, respectively, the first magnetization direction setting element 120 will 1. The magnetization direction M of the magnetoresistive sensors MR in the fourth magnetoresistive sensor groups 112 and 118 is set as the direction D2, and the second magnetization direction setting element 130 sets the magnetization direction M of the second and third magnetoresistive sensor groups 114 and 116 The magnetization direction M of the magnetoresistive sensor MR is set to be the reverse of the direction D2.

于本实施例中,第一电桥臂ARM1a例如是由第一磁阻传感器群112中的一部分(三个)与第二磁阻传感器群114的一部分(三个)耦接而成。In this embodiment, the first bridge arm ARM1a is, for example, formed by coupling a part (three) of the first magnetoresistive sensor group 112 and a part (three) of the second magnetoresistive sensor group 114 .

于本实施例中,第二电桥臂ARM2a例如是由第一磁阻传感器群112中的另一部分(三个)与第二磁阻传感器群114的另一部分(三个)耦接而成。In this embodiment, the second bridge arm ARM2a is, for example, formed by coupling another part (three) of the first magnetoresistive sensor group 112 and another part (three) of the second magnetoresistive sensor group 114 .

于本实施例中,第三电桥臂ARM3a例如是由第三磁阻传感器群116中的一部分(三个)与第四磁阻传感器群118的一部分(三个)耦接而成。In this embodiment, the third bridge arm ARM3a is, for example, formed by coupling a part (three) of the third magnetoresistive sensor group 116 and a part (three) of the fourth magnetoresistive sensor group 118 .

于本实施例中,第四电桥臂ARM4a例如是由第三磁阻传感器群116中的另一部分(三个)与第四磁阻传感器群118的另一部分(三个)耦接而成。In this embodiment, the fourth bridge arm ARM4a is, for example, formed by coupling another part (three) of the third magnetoresistive sensor group 116 and another part (three) of the fourth magnetoresistive sensor group 118 .

应注意的是,上述各电桥臂ARM1a~ARM4a所构成的惠斯同电桥的等效电路也可参照图2的等效电路,其说明类似于图1,于此不再赘述。It should be noted that the equivalent circuit of the Wheat bridge formed by the bridge arms ARM1a-ARM4a can also refer to the equivalent circuit of FIG. 2, and the description thereof is similar to that of FIG.

承上述,也就是说,于本实施例中,各电桥臂ARM1a~ARM4a由磁化方向不同的磁阻传感器MR耦接而成。此外,各电桥臂ARM1a~ARM4a内的接线接法也稍有不同。详细来说,在各电桥臂ARM1a~ARM4a中,部分磁阻传感器MR之间的导线接法例如是S型接法,而另一部分磁阻传感器MR之间的导线接法例如是直线接法。Based on the above, that is to say, in this embodiment, each bridge arm ARM1a-ARM4a is formed by coupling the magnetoresistive sensors MR with different magnetization directions. In addition, the wiring connections in the bridge arms ARM1a to ARM4a are also slightly different. In detail, in each bridge arm ARM1a to ARM4a, the wire connection between some of the magnetoresistive sensors MR is, for example, the S-type connection, and the wire connection between the other part of the magnetoresistive sensors MR is, for example, the straight connection. .

综上所述,在本实用新型实施例的磁场感测装置中,其具有平均电阻彼此不同的多个第一、第二、第三、第四磁阻传感器,通过将第一至第四磁阻传感器相互交叉耦接的方式,以形成惠司同电桥的第一、第二、第三与第四电桥臂,因此制程因素所造成的相关误差可通过相互交叉耦接的方式而分散于这些电桥臂中,藉此能够有效地消除零场输出偏移而具有准确的测量结果。To sum up, in the magnetic field sensing device of the embodiment of the present invention, there are a plurality of first, second, third and fourth magnetoresistive sensors with different average resistances. The resistance sensors are cross-coupled to each other to form the first, second, third and fourth bridge arms of the Huistong bridge. Therefore, the related errors caused by the process factors can be dispersed in the cross-coupling method. In these bridge arms, the zero-field output offset can be effectively eliminated to have accurate measurement results.

虽然本实用新型已以实施例揭示如上,然其并非用以限定本实用新型,任何所属技术领域中技术人员,在不脱离本实用新型的精神和范围内,当可作些许的更改与润饰,故本实用新型的保护范围当视所附权利要求所界定者为准。Although the present utility model has been disclosed above with examples, it is not intended to limit the present utility model. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present utility model. Therefore, the protection scope of the present utility model shall be determined by those defined by the appended claims.

Claims (9)

1.一种磁场感测装置,其特征在于,包括:1. a magnetic field sensing device, is characterized in that, comprises: 多个磁阻传感器群,所述多个磁阻传感器群的平均电阻彼此不同,且各所述磁阻传感器群包括多个磁阻传感器,其中所述多个磁阻传感器群包括第一至第四磁阻传感器群;a plurality of magnetoresistive sensor groups, the average resistances of the plurality of magnetoresistive sensor groups are different from each other, and each of the magnetoresistive sensor groups includes a plurality of magnetoresistive sensors, wherein the plurality of magnetoresistive sensor groups include first to first Four magnetoresistive sensor groups; 第一磁阻传感器群中的一部分与第二磁阻传感器群的一部分耦接而成第一电桥臂;A part of the first magnetoresistive sensor group is coupled with a part of the second magnetoresistive sensor group to form a first bridge arm; 所述第一磁阻传感器群中的另一部分与所述第二磁阻传感器群的另一部分耦接而成第二电桥臂;Another part of the first magnetoresistive sensor group is coupled with another part of the second magnetoresistive sensor group to form a second bridge arm; 第三磁阻传感器群中的一部分与第四磁阻传感器群的一部分耦接而成第三电桥臂;A part of the third magnetoresistive sensor group is coupled with a part of the fourth magnetoresistive sensor group to form a third bridge arm; 所述第三磁阻传感器群中的另一部分与所述第四磁阻传感器群的另一部分耦接而成第四电桥臂;Another part of the third magnetoresistive sensor group is coupled with another part of the fourth magnetoresistive sensor group to form a fourth bridge arm; 所述第一至所述第四电桥臂共同耦接成惠斯同电桥;The first to the fourth bridge arms are commonly coupled to form a Wheat bridge; 第一磁化方向设定元件,与所述第一至所述第四磁阻传感器群中的二磁阻传感器群重叠设置;以及a first magnetization direction setting element, provided to overlap with two magnetoresistive sensor groups in the first to fourth magnetoresistive sensor groups; and 第二磁化方向设定元件,与所述第一至所述第四磁阻传感器群中的另二磁阻传感器群重叠设置。The second magnetization direction setting element is arranged to overlap with the other two magnetoresistive sensor groups in the first to the fourth magnetoresistive sensor groups. 2.根据权利要求1所述的磁场感测装置,其特征在于,其中,在所述第一至所述第四电桥臂中,其内的线路接法为S型回路接法。2 . The magnetic field sensing device according to claim 1 , wherein, in the first to the fourth bridge arms, the circuit connections therein are S-type loop connections. 3 . 3.根据权利要求1所述的磁场感测装置,其特征在于,其中,在所述第一至所述第四电桥臂中,其内的线路接法为S型回路接法与直线接法。3 . The magnetic field sensing device according to claim 1 , wherein, in the first to the fourth bridge arms, the circuit connections therein are S-loop connection and straight-line connection. 4 . Law. 4.根据权利要求1所述的磁场感测装置,其特征在于,还包括:4. The magnetic field sensing device according to claim 1, further comprising: 电流产生器,用以产生电流至所述第一磁化方向设定元件与所述第二磁化方向设定元件,a current generator for generating current to the first magnetization direction setting element and the second magnetization direction setting element, 其中所述电流在所述第一磁化方向设定元件内的流向与所述电流在所述第二磁化方向设定元件内的流向相反。Wherein the flow of the current in the first magnetization direction setting element is opposite to the flow direction of the current in the second magnetization direction setting element. 5.根据权利要求4所述的磁场感测装置,其特征在于,其中,所述第一磁化方向设定元件与所述第一磁阻传感器群与所述第二磁阻传感器群重叠设置,且所述第二磁化方向设定元件与所述第三磁阻传感器群与所述第四磁阻传感器群重叠设置。5 . The magnetic field sensing device according to claim 4 , wherein the first magnetization direction setting element, the first magnetoresistive sensor group and the second magnetoresistive sensor group are arranged to overlap, And the second magnetization direction setting element, the third magnetoresistive sensor group and the fourth magnetoresistive sensor group are arranged to overlap. 6.根据权利要求4所述的磁场感测装置,其特征在于,其中,所述第一磁化方向设定元件与所述第一磁阻传感器群与所述第二磁阻传感器群重叠设置,且所述第二磁化方向设定元件与所述第三磁阻传感器群与所述第四磁阻传感器群重叠设置。6 . The magnetic field sensing device according to claim 4 , wherein the first magnetization direction setting element, the first magnetoresistive sensor group and the second magnetoresistive sensor group are arranged to overlap, And the second magnetization direction setting element, the third magnetoresistive sensor group and the fourth magnetoresistive sensor group are arranged to overlap. 7.根据权利要求1所述的磁场感测装置,其特征在于,其中,7. The magnetic field sensing device according to claim 1, wherein, 所述第一电桥臂与所述第二电桥臂与第一端点耦接;the first bridge arm and the second bridge arm are coupled to the first terminal; 所述第二电桥臂与所述第四电桥臂与第二端点耦接;the second bridge arm and the fourth bridge arm are coupled to the second terminal; 所述第三电桥臂与所述第四电桥臂与第三端点耦接;以及the third bridge arm and the fourth bridge arm are coupled to the third terminal; and 所述第四电桥臂与所述第一电桥臂与第四端点耦接,the fourth bridge arm is coupled to the first bridge arm and the fourth terminal, 其中所述第一端点、所述第二端点、所述第三端点与所述第四端点彼此不同。wherein the first endpoint, the second endpoint, the third endpoint and the fourth endpoint are different from each other. 8.根据权利要求1所述的磁场感测装置,其中各所述磁阻传感器的延伸方向垂直于所述第一磁化方向设定元件与所述第二磁化方向设定元件的延伸方向。8 . The magnetic field sensing device according to claim 1 , wherein an extension direction of each of the magnetoresistive sensors is perpendicular to the extension directions of the first magnetization direction setting element and the second magnetization direction setting element. 9 . 9.根据权利要求1所述的磁场感测装置,其中所述磁阻传感器的种类为异向性磁阻传感器。9. The magnetic field sensing device according to claim 1, wherein the type of the magnetoresistive sensor is an anisotropic magnetoresistive sensor.
CN201921629696.9U 2019-09-27 2019-09-27 Magnetic field sensing device Active CN211236203U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921629696.9U CN211236203U (en) 2019-09-27 2019-09-27 Magnetic field sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921629696.9U CN211236203U (en) 2019-09-27 2019-09-27 Magnetic field sensing device

Publications (1)

Publication Number Publication Date
CN211236203U true CN211236203U (en) 2020-08-11

Family

ID=71923965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921629696.9U Active CN211236203U (en) 2019-09-27 2019-09-27 Magnetic field sensing device

Country Status (1)

Country Link
CN (1) CN211236203U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578322A (en) * 2019-09-27 2021-03-30 爱盛科技股份有限公司 Magnetic field sensing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578322A (en) * 2019-09-27 2021-03-30 爱盛科技股份有限公司 Magnetic field sensing device

Similar Documents

Publication Publication Date Title
JP5044070B2 (en) Magnetic field detection device
CN108072850B (en) Magnetic field sensing device
TWI665460B (en) Magnetic field sensing device and magnetic field sensing apparatus
CN103376426B (en) Magnetic field sensor
US10551447B2 (en) Magnetic field sensing apparatus
CN101587174A (en) Magnetic sensor
US9810748B2 (en) Tunneling magneto-resistor device for sensing a magnetic field
CN103278783B (en) Magnetic field sensor and hall device
TWI638140B (en) Magnetic field sensing apparatus
CN210142176U (en) Magnetic field sensing device
CN110794348B (en) Magnetic field sensing device
CN109541280A (en) Integrated current sensors
CN110857952A (en) current sensor
CN211236203U (en) Magnetic field sensing device
JPH07190804A (en) Magnetic field measuring device with magnetoresistive sensor device
TWI705262B (en) Magnetic field sensing apparatus
CN210142177U (en) Magnetic field sensing device
CN110837066A (en) Magnetic field sensing device
CN112578322A (en) Magnetic field sensing device
CN112051523B (en) Magnetic field sensing device
CN110857951B (en) current sensor
TWI703338B (en) Electric current sensor
TWI723412B (en) Magnetic field sensing apparatus
CN117930095A (en) Anisotropic magnetoresistive sensing structure and sensor thereof
TWI714107B (en) Electric current sensor

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant