TWI638140B - Magnetic field sensing apparatus - Google Patents
Magnetic field sensing apparatus Download PDFInfo
- Publication number
- TWI638140B TWI638140B TW106126810A TW106126810A TWI638140B TW I638140 B TWI638140 B TW I638140B TW 106126810 A TW106126810 A TW 106126810A TW 106126810 A TW106126810 A TW 106126810A TW I638140 B TWI638140 B TW I638140B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic field
- magnetoresistive
- sensing device
- magnetization
- magnetoresistors
- Prior art date
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
一種磁場感測裝置,包括磁場感測軸平行於第一方向的多個第一磁電阻單元、磁場感測軸平行於第二方向的多個第二磁電阻單元及用以量測第三方向的磁場分量的磁感測元件。這些第一與第二磁電阻單元配置於磁感測元件旁,並且在二個不同時間電性連接成至少一種惠斯登全橋,以分別量測第四方向與第五方向的磁場分量,並使這種惠斯登全橋輸出分別對應於第四方向及第五方向的磁場分量的二個訊號,第一方向、第二方向、第三方向、第四方向及第五方向彼此不同,第四方向為第一方向與第二方向的和向量方向,第五方向為第一方向與第二方向的差向量方向。A magnetic field sensing device includes a plurality of first magnetoresistance units with a magnetic field sensing axis parallel to the first direction, a plurality of second magnetoresistive units with a magnetic field sensing axis parallel to the second direction, and a third direction for measuring Magnetic sensing component of the magnetic field component. The first and second magnetoresistive units are disposed adjacent to the magnetic sensing element and electrically connected to the at least one Wheatstone full bridge at two different times to respectively measure the magnetic field components of the fourth direction and the fifth direction, And causing the Wheatstone full bridge to output two signals corresponding to the magnetic field components of the fourth direction and the fifth direction, respectively, the first direction, the second direction, the third direction, the fourth direction, and the fifth direction are different from each other, The fourth direction is a sum vector direction of the first direction and the second direction, and the fifth direction is a difference vector direction of the first direction and the second direction.
Description
本發明是有關於一種磁場感測裝置,且特別是有關於一種可偵測三個維度磁場的磁場感測裝置。The invention relates to a magnetic field sensing device, and in particular to a magnetic field sensing device capable of detecting a three-dimensional magnetic field.
隨著可攜式電子裝置的普及,能夠感應地磁方向的電子羅盤之技術便受到重視。當電子羅盤應用於體積小的可攜式電子裝置(如智慧型手機)時,電子羅盤除了需符合體積小的需求之外,最好還能夠達到三軸的感測,這是因為使用者以手握持手機時,有可能是傾斜地握持,且各種不同的握持角度也都可能產生。此外,電子羅盤亦可應用於無人機(drone)(例如遙控飛機、遙控直升機等)上,而此時電子羅盤亦最好能夠達到三軸的感測。With the popularity of portable electronic devices, the technology of an electronic compass capable of sensing the geomagnetic direction has received attention. When an electronic compass is applied to a small portable electronic device (such as a smart phone), in addition to the small volume requirement, the electronic compass is preferably capable of achieving three-axis sensing because the user When holding the phone in your hand, it may be held obliquely, and various holding angles may also occur. In addition, the electronic compass can also be applied to drones (such as remote control aircraft, remote control helicopters, etc.), and the electronic compass is also preferably capable of achieving three-axis sensing.
在習知技術中,一般常利用異向性磁電阻(Anisotropic Magneto-Resistive resistor, AMR resistor)並透過惠斯登電橋(Wheatstone bridge)架構來進行磁場的感測動作,但是習知技術的磁場感測裝置常需要較大的布局面積,造成生產成本的增加。In the prior art, an anisotropic magneto-resistive resistor (AMR resistor) is commonly used and a sensing operation of a magnetic field is performed through a Wheatstone bridge architecture, but a magnetic field of a conventional technique is used. Sensing devices often require a large layout area, resulting in an increase in production costs.
本發明的實施例提供一種磁場感測裝置,包括多個第一磁電阻單元、多個第二磁電阻單元及磁感測元件。這些第一磁電阻單元的磁場感測軸平行於第一方向,這些第二磁電阻單元的磁場感測軸平行於第二方向。磁感測元件用以量測第三方向的磁場分量,其中這些第一磁電阻單元與這些第二磁電阻單元配置於磁感測元件旁,其中,這些第一磁電阻單元與這些第二磁電阻單元在二個不同時間電性連接成至少一種惠斯登全橋,以分別量測第四方向與第五方向的磁場分量,並使此至少一種惠斯登全橋輸出分別對應於第四方向及第五方向的磁場分量的二個訊號,第一方向、第二方向、第三方向、第四方向及第五方向彼此不同,第四方向為第一方向與第二方向的和向量方向,第五方向為第一方向與第二方向的差向量方向。Embodiments of the present invention provide a magnetic field sensing device including a plurality of first magnetoresistive units, a plurality of second magnetoresistive units, and a magnetic sensing element. The magnetic field sensing axes of the first magnetoresistive units are parallel to the first direction, and the magnetic field sensing axes of the second magnetoresistive units are parallel to the second direction. The magnetic sensing component is configured to measure a magnetic field component in a third direction, wherein the first magnetoresistive unit and the second magnetoresistive unit are disposed adjacent to the magnetic sensing component, wherein the first magnetoresistive unit and the second magnetic component The resistance unit is electrically connected to the at least one Wheatstone full bridge at two different times to respectively measure the magnetic field components in the fourth direction and the fifth direction, and the at least one Wheatstone full bridge output corresponds to the fourth Two directions of the magnetic field component of the direction and the fifth direction, the first direction, the second direction, the third direction, the fourth direction, and the fifth direction are different from each other, and the fourth direction is a sum vector direction of the first direction and the second direction The fifth direction is a difference vector direction of the first direction and the second direction.
在本發明的一實施例中,上述的在二個不同時間的任一個時,此至少一種惠斯登全橋所輸出的訊號為對應於第四方向及第五方向的其中一個方向的磁場分量的差分訊號,此時此至少一種惠斯登全橋所產生的對應於第四方向及第五方向中的另一個方向的磁場分量的差分訊號為零。In an embodiment of the invention, the signal output by the at least one Wheatstone bridge is a magnetic field component corresponding to one of the fourth direction and the fifth direction at any of the two different times. The differential signal, at this time, the difference signal of the magnetic field component corresponding to the other of the fourth direction and the fifth direction generated by the at least one Wheatstone bridge is zero.
在本發明的一實施例中,上述的這些第一磁電阻單元與這些第二磁電阻單元分別配置在磁感測元件的相鄰兩側。In an embodiment of the invention, the first magnetoresistive units and the second magnetoresistive units are respectively disposed on adjacent sides of the magnetic sensing element.
在本發明的一實施例中,上述的磁場感測裝置還包括多個磁化方向設定元件,分別配置於這些第一磁電阻單元與這些第二磁電阻單元旁,以分別設定這些第一磁電阻單元與這些第二磁電阻單元的磁化方向。In an embodiment of the invention, the magnetic field sensing device further includes a plurality of magnetization direction setting components respectively disposed adjacent to the first magnetoresistive unit and the second magnetoresistive unit to respectively set the first magnetoresistance The magnetization direction of the unit and these second magnetoresistive units.
在本發明的一實施例中,上述的磁場感測裝置更包括基板,其中磁感測元件、這些第一磁電阻單元、這些第二磁電阻單元與這些磁化方向設定元件配置於基板的表面上,而且這些第一磁電阻單元、這些第二磁電阻單元與這些磁化方向設定元件覆蓋在表面的面積與磁感測元件覆蓋在表面的面積相互分開。In an embodiment of the invention, the magnetic field sensing device further includes a substrate, wherein the magnetic sensing elements, the first magnetoresistive units, the second magnetoresistive units, and the magnetization direction setting elements are disposed on a surface of the substrate And the area of the first magnetoresistive unit, the second magnetoresistive unit and the magnetization direction setting elements covering the surface and the area of the magnetic sensing element covering the surface are separated from each other.
在本發明的一實施例中,上述的此至少一種惠斯登全橋為一個固定不變的惠斯登全橋的連接方式,這些磁化方向設定元件在二個不同時間分別將這些第一磁電阻單元與這些第二磁電阻單元的磁化方向設定成二種不同的組合,以使此種惠斯登全橋在二個不同時間分別量測第四方向及第五方向的磁場分量,並分別輸出對應於第四方向及第五方向的磁場分量的二個訊號。In an embodiment of the invention, the at least one Wheatstone bridge is a fixed connection of a Wheatstone full bridge, and the magnetization direction setting components respectively respectively apply the first magnetics at two different times. The magnetization directions of the resistance unit and the second magnetoresistance units are set to two different combinations, so that the Wheatstone full bridge measures the magnetic field components in the fourth direction and the fifth direction at two different times, respectively Two signals corresponding to the magnetic field components of the fourth direction and the fifth direction are output.
在本發明的一實施例中,上述的這些第一磁電阻單元中的每一個包括多個第一磁電阻,這些第一磁電阻中的一部分與另一部分分別具有相反的磁化方向,以及這些第二磁電阻單元中的每一個包括多個第二磁電阻,這些第二磁電阻中的一部分與另一部分分別具有相反的磁化方向。In an embodiment of the invention, each of the first magnetoresistive units includes a plurality of first magnetoresistors, and some of the first magnetoresistors have opposite magnetization directions and the other portions, respectively. Each of the two magnetoresistive units includes a plurality of second magnetoresistors, one of the second magnetoresistors having an opposite magnetization direction from the other portion.
在本發明的一實施例中,上述的這些第一磁電阻中的一部分與另一部分的磁化方向被設定為相互背向對方,這些第二磁電阻中的一部分與另一部分的磁化方向被設定為相互指向對方。In an embodiment of the invention, the magnetization directions of one of the first magnetoresistors and the other portion are set to face each other, and the magnetization direction of one of the second magnetoresistors and the other portion is set to Point to each other.
在本發明的一實施例中,上述的這些第一磁電阻中的一部分與另一部分的磁化方向被設定為相互指向對方,這些第二磁電阻中的一部分與另一部分的磁化方向被設定為相互指向對方。In an embodiment of the invention, the magnetization directions of one of the first magnetoresistors and the other portion are set to point to each other, and the magnetization directions of one of the second magnetoresistors and the other portion are set to be mutually Point to each other.
在本發明的一實施例中,上述的這些第一磁電阻與這些第二磁電阻為具有延伸方向的異向性磁電阻,這些第一磁電阻與這些第二磁電阻的表面各自具有相對於延伸方向傾斜延伸的多個短路棒,其中在這些第一磁電阻與這些第二磁電阻中磁化方向相同的部分磁電阻表面上的這些短路棒的傾斜方向彼此相反。In an embodiment of the invention, the first magnetoresistors and the second magnetoresistors are anisotropic magnetoresistors having an extending direction, and the surfaces of the first magnetoresistors and the second magnetoresistors are respectively opposite to each other A plurality of shorting bars extending obliquely in the extending direction, wherein the inclination directions of the shorting bars on the surface of the partial magnetoresistance in which the first magnetoresistance and the second magnetoresistance are the same are opposite to each other.
在本發明的一實施例中,上述的磁場感測裝置更包括一切換電路,電性連接這些第一磁電阻單元與這些第二磁電阻單元,其中至少一種惠斯登全橋為二種惠斯登全橋,切換電路在二個不同時間分別將這些第一磁電阻單元與這些第二磁電阻單元電性連接成二種惠斯登全橋,二種惠斯登全橋分別量測第四方向及第五方向的磁場分量,並分別輸出對應於第四方向及第五方向的磁場分量的二個訊號。In an embodiment of the invention, the magnetic field sensing device further includes a switching circuit electrically connecting the first magnetoresistive unit and the second magnetoresistive unit, wherein at least one of the Wheatstone bridges is two kinds of benefits. Stern full bridge, the switching circuit electrically connects these first magnetoresistance units and these second magnetoresistance units into two kinds of Wheatstone bridges at two different times, and the two types of Wheatstone bridges are respectively measured. The magnetic field components of the four directions and the fifth direction respectively output two signals corresponding to the magnetic field components of the fourth direction and the fifth direction.
在本發明的一實施例中,上述的這些第一磁電阻單元與這些第二磁電阻單元中的每一個包括至少一異向性磁電阻。In an embodiment of the invention, each of the first magnetoresistive units and the second magnetoresistive units includes at least one anisotropic magnetoresistance.
在本發明的一實施例中,上述屬於這些第一磁電阻單元中的異向性磁電阻的延伸方向平行於第二方向,屬於這些第二磁電阻單元中的異向性磁電阻的延伸方向平行於第一方向。In an embodiment of the invention, the extending direction of the anisotropic magnetoresistance in the first magnetoresistive unit is parallel to the second direction and belongs to the extending direction of the anisotropic magnetoresistance in the second magnetoresistive unit. Parallel to the first direction.
在本發明的一實施例中,上述的磁場感測裝置更包括一基板,其中磁感測元件、這些第一磁電阻單元與這些第二磁電阻單元配置於基板的表面上,且第一方向與第二方向平行於表面,第三方向垂直於表面。In an embodiment of the invention, the magnetic field sensing device further includes a substrate, wherein the magnetic sensing elements, the first magnetoresistive units and the second magnetoresistive units are disposed on a surface of the substrate, and the first direction The second direction is parallel to the surface, and the third direction is perpendicular to the surface.
在本發明的一實施例中,上述的基板為半導體基板、玻璃基板或電路基板。In an embodiment of the invention, the substrate is a semiconductor substrate, a glass substrate, or a circuit substrate.
在本發明的一實施例中,上述的第一方向、第二方向及第三方向彼此互相垂直,並且第四方向垂直於第五方向,第四方向與第一方向及第二方向均夾45度。In an embodiment of the invention, the first direction, the second direction, and the third direction are perpendicular to each other, and the fourth direction is perpendicular to the fifth direction, and the fourth direction is sandwiched between the first direction and the second direction. degree.
基於上述,本發明實施例的磁場感測裝置,採用磁場感測軸平行於第一方向的多個第一磁電阻單元、磁場感測軸平行於第二方向的多個第二磁電阻單元以及磁感測元件。磁感測元件用以量測第三方向的磁場分量,而這些第一與第二磁電阻單元配置於磁感測元件旁,並且在二個不同時間電性連接成至少一種惠斯登全橋,以分別量測第四方向與第五方向的磁場分量,並使這種惠斯登全橋輸出分別對應於第四方向及第五方向的磁場分量的二個訊號,其中第一方向、第二方向、第三方向、第四方向及第五方向彼此不同,第四方向為第一方向與第二方向的和向量方向,第五方向為第一方向與第二方向的差向量方向。因此,本發明的實施例的磁場感測裝置便能夠具有簡化的結構且同時能實現三維的磁場量測,進而可以具有較小的體積,達到增加應用上的彈性以及降低製作成本的優點。Based on the above, the magnetic field sensing device of the embodiment of the present invention uses a plurality of first magnetoresistive units whose magnetic field sensing axis is parallel to the first direction, a plurality of second magnetoresistive units whose magnetic field sensing axis is parallel to the second direction, and Magnetic sensing component. The magnetic sensing component is configured to measure a magnetic field component in a third direction, and the first and second magnetoresistive elements are disposed adjacent to the magnetic sensing component and electrically connected to at least one Wheatstone full bridge at two different times , respectively, measuring the magnetic field components of the fourth direction and the fifth direction, and causing the Wheatstone full bridge output two signals corresponding to the magnetic field components of the fourth direction and the fifth direction, respectively, wherein the first direction, the first The two directions, the third direction, the fourth direction, and the fifth direction are different from each other, the fourth direction is a sum vector direction of the first direction and the second direction, and the fifth direction is a difference vector direction of the first direction and the second direction. Therefore, the magnetic field sensing device of the embodiment of the present invention can have a simplified structure and at the same time can realize three-dimensional magnetic field measurement, and thus can have a small volume, thereby achieving an advantage of increasing flexibility in application and reducing manufacturing cost.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1A與圖1B為本發明一實施例的磁場感測裝置的概要示意圖。圖1A為本發明的一實施例的磁場感測裝置的上視示意圖,而圖1B為圖1A之磁場感測裝置沿著A-A線的剖面示意圖。請參照圖1A與圖1B,本實施例的磁場感測裝置100包括多個第一磁電阻單元110,多個第二磁電阻單元120,多個磁化方向設定元件130,以及磁感測元件210。1A and 1B are schematic diagrams showing a magnetic field sensing device according to an embodiment of the present invention. 1A is a top view of a magnetic field sensing device according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view of the magnetic field sensing device of FIG. 1A taken along line A-A. Referring to FIG. 1A and FIG. 1B , the magnetic field sensing device 100 of the present embodiment includes a plurality of first magnetoresistive units 110 , a plurality of second magnetoresistive units 120 , a plurality of magnetization direction setting elements 130 , and a magnetic sensing element 210 . .
在本實施例中,這些第一磁電阻單元110、這些第二磁電阻單元120、這些磁化方向設定元件130與磁感測元件210配置在基板150的表面S上,其中第一磁電阻單元110的磁場感測軸平行於第一方向D1,可感應在第一方向D1上的磁場分量,第二磁電阻單元120的磁場感測軸平行於第二方向D2,可感應在第二方向D2上的磁場分量。這些第一磁電阻單元110與第二磁電阻單元120分別配置在磁感測元件210旁,以圖1A所例,第一磁電阻單元110與第二磁電阻單元120分別配置在磁感測元件210的相鄰兩側邊212、214。In the embodiment, the first magnetoresistive units 110, the second magnetoresistive units 120, the magnetization direction setting elements 130 and the magnetic sensing elements 210 are disposed on the surface S of the substrate 150, wherein the first magnetoresistive unit 110 The magnetic field sensing axis is parallel to the first direction D1, and can induce a magnetic field component in the first direction D1. The magnetic field sensing axis of the second magnetoresistive unit 120 is parallel to the second direction D2, and can be induced in the second direction D2. Magnetic field component. The first magnetoresistive unit 110 and the second magnetoresistive unit 120 are respectively disposed beside the magnetic sensing component 210. As illustrated in FIG. 1A, the first magnetoresistive unit 110 and the second magnetoresistive unit 120 are respectively disposed on the magnetic sensing component. Adjacent two sides 212, 214 of 210.
磁化方向設定元件130分別配置在第一磁電阻單元110與第二磁電阻單元120旁邊,以分別設定第一磁電阻單元110與第二磁電阻單元120的磁化方向。磁化方向設定元件130可以選擇配置在第一磁電阻單元110或第二磁電阻單元120旁邊、上方、下方或是上述位置的組合,本發明對此不加以限制。The magnetization direction setting elements 130 are disposed beside the first magnetoresistive unit 110 and the second magnetoresistive unit 120, respectively, to set the magnetization directions of the first magnetoresistive unit 110 and the second magnetoresistive unit 120, respectively. The magnetization direction setting component 130 may be selectively disposed adjacent to, above, below, or at a position of the first magnetoresistive unit 110 or the second magnetoresistive unit 120, which is not limited in the present invention.
在其他實施例中,磁化方向設定元件130也可以選擇不配置在基板150的表面S上,而在是基板150中,本領域具有通常知識者可依據實際需求與設計作適當變化,本發明對此並不加以限制。基板150例如為半導體基板(如矽基板)、玻璃基板或電路基板,其中電路基板例如為設有導電線路且表面覆蓋有絕緣層的矽基板,本發明對此並不限制,本領域具有通常知識者可依據習知技術作適當選擇。In other embodiments, the magnetization direction setting component 130 may also be selected not to be disposed on the surface S of the substrate 150. In the substrate 150, those skilled in the art may appropriately change according to actual needs and designs. This is not limited. The substrate 150 is, for example, a semiconductor substrate (such as a germanium substrate), a glass substrate or a circuit substrate, wherein the circuit substrate is, for example, a germanium substrate provided with a conductive line and having a surface covered with an insulating layer, which is not limited in the present invention, and has general knowledge in the art. The person can make appropriate choices according to the prior art.
磁感測元件210是用以量測第三方向D3的磁場分量,第三方向D3則例如是垂直表面S的方向。在本實施例中,第一方向D1與第二方向D2是平行於表面S的方向,且第一方向D1、第二方向D2與第三方向D3彼此互相垂直,如圖1A與圖1B所示的直角座標系。The magnetic sensing element 210 is a magnetic field component for measuring the third direction D3, and the third direction D3 is, for example, the direction of the vertical surface S. In this embodiment, the first direction D1 and the second direction D2 are parallel to the direction of the surface S, and the first direction D1, the second direction D2 and the third direction D3 are perpendicular to each other, as shown in FIG. 1A and FIG. 1B. Right angle coordinate system.
在本實施例中,磁感測元件210例如是由異向性磁電阻(anisotropic Magneto-Resistive resistor, AMR resistor)、巨磁阻(giant magnetoresistance, GMR)多層膜結構(或穿隧磁阻(tunneling magnetoresistance, TMR)多層膜結構)或是霍爾元件(Hall element)等具有類似功能的磁感測元件或是上述組合所構成,本發明對此並不限制。此外,圖式中磁感測元件210的形狀跟尺寸僅作為示例,本發明對此並不加以限制。In the present embodiment, the magnetic sensing element 210 is, for example, an anisotropic magneto-resistive resistor (AMR resistor), a giant magnetoresistance (GMR) multilayer film structure (or tunneling magnetoresistance (tunneling). The magnetoresistance (TMR) multilayer film structure) or a magnetic sensing element having a similar function such as a Hall element or the above combination is not limited in the present invention. In addition, the shape and size of the magnetic sensing element 210 in the drawings are only examples, and the present invention is not limited thereto.
此外,在本實施例中,第一磁電阻單元110與第二磁電阻單元120分別包括至少一異向性磁電阻。圖2A與圖2B是用以說明圖1A中的異向性磁電阻的運作原理。請先參照圖2A,異向性磁電阻300具有理髮店招牌(barber pole)狀結構,亦即其表面設有相對於異向性磁電阻300的延伸方向D傾斜45度延伸的多個短路棒(electrical shorting bar)310,這些短路棒310彼此相間隔且平行地設置於鐵磁膜(ferromagnetic film)320上,而鐵磁膜320為異向性磁電阻300的主體,其延伸方向即為異向性磁電阻300的延伸方向D。此外,鐵磁膜320的相對兩端可製作成尖端狀。In addition, in the embodiment, the first magnetoresistive unit 110 and the second magnetoresistive unit 120 respectively include at least one anisotropic magnetoresistance. 2A and 2B are diagrams for explaining the operation of the anisotropic magnetoresistance of Fig. 1A. Referring first to FIG. 2A, the anisotropic magnetoresistor 300 has a barber pole-like structure, that is, a plurality of shorting bars extending on the surface thereof with an inclination of 45 degrees with respect to the extending direction D of the anisotropic magnetoresistive resistor 300. (electrical shorting bar) 310, these shorting bars 310 are disposed on the ferromagnetic film 320 spaced apart from each other and in parallel, and the ferromagnetic film 320 is the main body of the anisotropic magnetoresistance 300, and the extending direction thereof is different. The extending direction D of the directional magnetoresistor 300. Further, the opposite ends of the ferromagnetic film 320 may be formed in a tip shape.
異向性磁電阻300在開始量測外在磁場H之前,可先藉由磁化方向設定元件130來設定其磁化方向,其中磁化方向設定元件130例如是可以藉由通電產生磁場的線圈、導線、金屬片或導體。在圖2A中,磁化方向設定元件130可藉由通電產生沿著延伸方向D的磁場,以使異向性磁電阻300具有磁化方向M。The anisotropic magnetoresistance 300 can first set its magnetization direction by the magnetization direction setting component 130 before starting to measure the external magnetic field H. The magnetization direction setting component 130 is, for example, a coil or a wire that can generate a magnetic field by energization. Metal sheet or conductor. In FIG. 2A, the magnetization direction setting member 130 can generate a magnetic field along the extending direction D by energization so that the anisotropic magnetoresistor 300 has the magnetization direction M.
接著,磁化方向設定元件130不通電,以使異向性磁電阻300開始量測外在磁場H。當沒有外在磁場H時,異向性磁電阻300的磁化方向M維持在延伸方向D上,此時施加一電流I,使電流I從異向性磁電阻300的左端流往右端,則短路棒310附近的電流I的流向會與短路棒310的延伸方向垂直,而使得短路棒310附近的電流I流向與磁化方向M夾45度,此時異向性磁電阻300的電阻值為RNext, the magnetization direction setting element 130 is not energized, so that the anisotropic magnetoresistor 300 starts measuring the external magnetic field H. When there is no external magnetic field H, the magnetization direction M of the anisotropic magnetoresistor 300 is maintained in the extending direction D, at which time a current I is applied to cause the current I to flow from the left end of the anisotropic magnetoresistor 300 to the right end, and short circuit The current I in the vicinity of the rod 310 is perpendicular to the extending direction of the shorting bar 310, so that the current I in the vicinity of the shorting bar 310 is brought to the magnetization direction M by 45 degrees, and the resistance value of the anisotropic magnetoresistor 300 is R.
當有一外在磁場H朝向垂直於延伸方向D的方向時,異向性磁電阻300的磁化方向M會往外在磁場H的方向偏轉,而使得磁化方向與短路棒附近的電流I流向的夾角大於45度,此時異向性磁電阻300的電阻值有-ΔR的變化,即成為R-ΔR,也就是電阻值變小,其中ΔR大於0。When there is an external magnetic field H directed in a direction perpendicular to the extending direction D, the magnetization direction M of the anisotropic magnetoresistance 300 is deflected outward in the direction of the magnetic field H, so that the angle between the magnetization direction and the current I flowing near the shorting bar is larger than At 45 degrees, the resistance value of the anisotropic magnetoresistor 300 has a change of -ΔR, that is, becomes R-ΔR, that is, the resistance value becomes small, wherein ΔR is greater than zero.
然而,若如圖2B所示,當圖2B的短路棒310的延伸方向設於與圖2A的短路棒310的延伸方向夾90度的方向時(此時圖2B的短路棒310的延伸方向仍與異向性磁電阻300的延伸方向D夾45度),且當有一外在磁場H時,此外在磁場H仍會使磁化方向M往外在磁場H的方向偏轉,此時磁化方向M與短路棒310附近的電流I流向的夾角會小於45度,如此異向性磁電阻300的電阻值會變成R+ΔR,亦即異向性磁電阻300的電阻值變大。However, as shown in FIG. 2B, when the extending direction of the shorting bar 310 of FIG. 2B is set at a direction 90 degrees from the extending direction of the shorting bar 310 of FIG. 2A (the extending direction of the shorting bar 310 of FIG. 2B is still And the extension direction D of the anisotropic magnetoresistor 300 is 45 degrees), and when there is an external magnetic field H, in addition, the magnetic field H still deflects the magnetization direction M outward in the direction of the magnetic field H, and the magnetization direction M and the short circuit The angle of the current I flowing in the vicinity of the rod 310 may be less than 45 degrees, and the resistance value of the anisotropic magnetoresistor 300 may become R + ΔR, that is, the resistance value of the anisotropic magnetoresistor 300 becomes large.
此外,藉由磁化方向設定元件130將異向性磁電阻300的磁化方向M設定為圖2A所示的反向時,之後在外在磁場H下的圖2A的異向性磁電阻300的電阻值會變成R+ΔR。再者,藉由磁化方向設定元件130將異向性磁電阻300的磁化方向M設定為圖2B所示的反向時,之後在外在磁場H下的圖2B的異向性磁電阻300的電阻值會變成R-ΔR。Further, when the magnetization direction M of the anisotropic magnetoresistance 300 is set to the reverse direction shown in FIG. 2A by the magnetization direction setting member 130, the resistance value of the anisotropic magnetoresistor 300 of FIG. 2A after the external magnetic field H is thereafter Will become R+ΔR. Further, when the magnetization direction M of the anisotropic magnetoresistance 300 is set to the reverse direction shown in FIG. 2B by the magnetization direction setting element 130, the resistance of the anisotropic magnetoresistor 300 of FIG. 2B after the external magnetic field H is thereafter The value will become R-ΔR.
綜合上述可知,當短路棒310的設置方向改變時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之,且當磁化方向設定元件130所設定的磁化方向M改變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。當外在磁場H的方向變為反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化會從+ΔR變為-ΔR或反之。然而,當通過異向性磁電阻300的電流I變成反向時,異向性磁電阻300的電阻值R對應於外在磁場H的變化則維持與原來相同正負號,即原本若為+ΔR,改變電流方向後仍為+ΔR,若原本為-ΔR,改變電流方向後仍為-ΔR。In summary, when the setting direction of the shorting bar 310 is changed, the resistance value R of the anisotropic magnetoresistor 300 corresponds to the change of the external magnetic field H from +ΔR to -ΔR or vice versa, and when the magnetization direction setting member 130 When the set magnetization direction M is changed to the reverse direction, the resistance value R of the anisotropic magnetoresistive resistor 300 corresponds to a change in the external magnetic field H from +ΔR to -ΔR or vice versa. When the direction of the external magnetic field H becomes reversed, the resistance value R of the anisotropic magnetoresistor 300 corresponding to the change of the external magnetic field H may change from +ΔR to -ΔR or vice versa. However, when the current I passing through the anisotropic magnetoresistor 300 becomes reversed, the resistance value R of the anisotropic magnetoresistive resistor 300 maintains the same sign as the external magnetic field H, that is, if it is +ΔR After changing the current direction, it is still +ΔR. If it is originally -ΔR, it is still -ΔR after changing the current direction.
依照上述的原則,便可藉由設計短路棒310的延伸方向D或磁化方向設定元件130所設定的磁化方向M來決定當異向性磁電阻300受到外在磁場H的某一分量時,異向性磁電阻300的電阻值R的變化方向,即電阻值R變大或變小,例如變化量是+ΔR或-ΔR。According to the above principle, it is possible to determine when the anisotropic magnetoresistor 300 receives a certain component of the external magnetic field H by designing the extending direction D of the shorting bar 310 or the magnetization direction M set by the magnetization direction setting member 130. The direction of change of the resistance value R of the directional magnetoresistor 300, that is, the resistance value R becomes larger or smaller, for example, the amount of change is +ΔR or -ΔR.
請參照圖3A至圖4B,圖3A與圖4A分別繪示本發明一實施例在不同時間的磁場感測裝置的示意圖。在本實施例中的磁場感測裝置100’中,這些磁電阻單元(包括第一磁電阻單元110與第二磁電阻單元120)在二個不同時間電性連接成至少一種惠斯登全橋(在本實施例中例如是圖3A至圖3C的第一種惠斯登全橋及圖4A至圖4C的第二種惠斯登全橋),以分別量測二個不同方向(即第四方向D4及第五方向D5)的磁場分量,並使此至少一種惠斯登全橋(例如是前述二種惠斯登全橋)輸出分別對應於二個不同方向(如第四方向D4及第五方向D5)的磁場分量的二個訊號。Please refer to FIG. 3A to FIG. 4B . FIG. 3A and FIG. 4A are respectively schematic diagrams of magnetic field sensing devices at different times according to an embodiment of the present invention. In the magnetic field sensing device 100' in this embodiment, the magnetoresistive units (including the first magnetoresistive unit 110 and the second magnetoresistive unit 120) are electrically connected to at least one Wheatstone bridge at two different times. (In this embodiment, for example, the first Wheatstone full bridge of FIGS. 3A to 3C and the second Wheatstone full bridge of FIGS. 4A to 4C) to measure two different directions respectively (ie, The magnetic field components of the four directions D4 and the fifth direction D5), and the output of the at least one Wheatstone full bridge (for example, the aforementioned two types of Wheatstone full bridges) respectively correspond to two different directions (such as the fourth direction D4 and Two signals of the magnetic field component of the fifth direction D5).
在本實施例中,第一方向D1、第二方向D2、第三方向D3、第四方向D4及第五方向D5彼此不同,第一方向D1、第二方向D2及第三方向D3彼此互相垂直,第四方向D4為第一方向D1與第二方向D2的和向量方向,第五方向D5為第一方向D1與第二方向D2的差向量方向。具體來說,第一方向D1與第二方向D2平行於表面S,第三方向D3垂直表面S,第四方向D4與第五方向D5也平行於表面S,並且第四方向D4垂直於第五方向D5,第四方向D4與第一方向D1及第二方向D2均夾45度角,第五方向D5與第二方向D2夾45度角,並且與第一方向D1的反向方向夾45度角。在其他實施例中,上述三個不同方向D1、D2、D3並不一定要彼此互相垂直,也可以有至少兩個方向彼此不垂直。In this embodiment, the first direction D1, the second direction D2, the third direction D3, the fourth direction D4, and the fifth direction D5 are different from each other, and the first direction D1, the second direction D2, and the third direction D3 are perpendicular to each other The fourth direction D4 is a sum vector direction of the first direction D1 and the second direction D2, and the fifth direction D5 is a difference vector direction of the first direction D1 and the second direction D2. Specifically, the first direction D1 and the second direction D2 are parallel to the surface S, the third direction D3 is perpendicular to the surface S, the fourth direction D4 and the fifth direction D5 are also parallel to the surface S, and the fourth direction D4 is perpendicular to the fifth The direction D5, the fourth direction D4 is at an angle of 45 degrees with the first direction D1 and the second direction D2, the fifth direction D5 is at an angle of 45 degrees with the second direction D2, and is 45 degrees with the reverse direction of the first direction D1. angle. In other embodiments, the three different directions D1, D2, and D3 do not have to be perpendicular to each other, and at least two directions may not be perpendicular to each other.
具體來說,在本實施例中,這些第一磁電阻單元110與這些第二磁電阻單元120中的每一個包括至少一異向性磁電阻。第一磁感測單元110中包括多個具有電阻值R的第一磁電阻112、114、116、118。第二磁感測單元120中包括多個具有電阻值R的第二磁電阻122、124、126、128。上述的這些第一磁電阻112、114、116、118與這些第二磁電阻122、124、126、128例如是圖2A與圖2B所示的具有延伸方向D的異向性磁電阻300或是多個異向性磁電阻300的組合,這些異向性磁電阻300的表面各自具有相對於延伸方向D傾斜延伸的多個短路棒310。Specifically, in the present embodiment, each of the first magnetoresistive unit 110 and the second magnetoresistive units 120 includes at least one anisotropic magnetoresistance. The first magnetic sensing unit 110 includes a plurality of first magnetic resistors 112, 114, 116, 118 having a resistance value R. The second magnetic sensing unit 120 includes a plurality of second magnetoresistors 122, 124, 126, 128 having a resistance value R. The first magnetoresistances 112, 114, 116, 118 and the second magnetoresistive resistors 122, 124, 126, 128 are, for example, the anisotropic magnetoresistance 300 having an extending direction D as shown in FIGS. 2A and 2B or A combination of a plurality of anisotropic magnetoresistances 300 each having a plurality of shorting bars 310 extending obliquely with respect to the extending direction D.
屬於第一磁電阻單元110的異向性磁電阻300的延伸方向D可以平行於第二方向D2,或是平行於磁感測元件210的側面212,且平行於表面S。屬於第二磁電阻單元120中的異向性磁電阻300的延伸方向D可以平行於第一方向D1,或是平行於磁感測元件210的側面214,且也平行於表面S。The extending direction D of the anisotropic magnetoresistor 300 belonging to the first magnetoresistive unit 110 may be parallel to the second direction D2 or parallel to the side 212 of the magnetic sensing element 210 and parallel to the surface S. The extending direction D of the anisotropic magnetoresistance 300 belonging to the second magnetoresistive unit 120 may be parallel to the first direction D1 or parallel to the side surface 214 of the magnetic sensing element 210 and also parallel to the surface S.
上述這些第一磁電阻112、114、116、118與第二磁電阻122、124、126、128之間可以利用導線連接異向性磁電阻300的尖端以產生電性連接。Between the first magnetoresistors 112, 114, 116, 118 and the second magnetoresistive resistors 122, 124, 126, 128, the tips of the anisotropic magnetoresistance 300 may be connected by wires to create an electrical connection.
磁化方向設定元件132覆蓋第一磁電阻112、114,磁化方向設定元件134覆蓋第一磁電阻116、118,以分別設定第一磁電阻112、114與第一磁電阻116、118的磁化方向,磁化方向設定元件136覆蓋第二磁電阻122、124以設定第二磁電阻122、124的磁化方向,磁化方向設定元件138覆蓋第二磁電阻126、128以設定第二磁電阻126、128的磁化方向。其中,這些第一磁電阻112、114、116、118與這些第二磁電阻122、124、126、128中被磁化方向設定元件130設定成相同磁化方向的部分磁電阻表面上的這些短路棒310的傾斜方向彼此相反。The magnetization direction setting element 132 covers the first magnetoresistances 112, 114, and the magnetization direction setting element 134 covers the first magnetoresistances 116, 118 to respectively set the magnetization directions of the first magnetoresistances 112, 114 and the first magnetoresistances 116, 118, The magnetization direction setting element 136 covers the second magnetoresistances 122, 124 to set the magnetization directions of the second magnetoresistances 122, 124, and the magnetization direction setting element 138 covers the second magnetoresistances 126, 128 to set the magnetization of the second magnetoresistors 126, 128. direction. The first magnetoresistances 112, 114, 116, 118 and the shorting bars 310 on the surface of the partial magnetoresistance of the second magnetoresistive resistors 122, 124, 126, 128 which are set to the same magnetization direction by the magnetization direction setting member 130. The tilt directions are opposite to each other.
需注意的是,這些第一磁電阻單元110、這些第二磁電阻單元120與這些磁化方向設定元件130覆蓋在表面S的面積與磁感測元件210覆蓋在表面S的面積相互分開。也就是說磁感測元件210在表面S的所覆蓋的面積與第一磁電阻單元110、第二磁電阻單元120及磁化方向設定元件130在表面S的所覆蓋的面積均不重疊。It should be noted that the areas of the first magnetoresistive unit 110, the second magnetoresistive units 120 and the magnetization direction setting elements 130 covering the surface S are separated from the area of the magnetic sensing element 210 covered by the surface S. That is to say, the area covered by the magnetic sensing element 210 on the surface S does not overlap with the area covered by the first magnetoresistive unit 110, the second magnetoresistive unit 120, and the magnetization direction setting element 130 on the surface S.
本實施例中,上述的至少一種惠斯登全橋在二個不同時間其中一個時(例如第一個時間或第二個時間)為一個固定不變的惠斯登全橋的連接方式,這些磁化方向設定元件130在上述二個不同時間分別將這些第一磁電阻單元110與這些第二磁電阻單元120的磁化方向設定成二種不同的組合(例如是圖3A至圖3C的第一種惠斯登全橋及圖4A至圖4C的第二種惠斯登全橋),以使這種惠斯登全橋在二個不同時間分別量測第四方向D4及第五方向D5的磁場分量,並分別輸出對應於第四方向D4及第五方向D5的磁場分量的二個訊號。詳細的實施方式說明如下。In this embodiment, at least one of the above-mentioned Wheatstone bridges is a fixed connection mode of the Wheatstone bridge at one of two different times (for example, the first time or the second time). The magnetization direction setting element 130 sets the magnetization directions of the first magnetoresistive unit 110 and the second magnetoresistive unit 120 into two different combinations at the above two different times (for example, the first type of FIG. 3A to FIG. 3C). Wheatstone full bridge and the second Wheatstone bridge in Figures 4A to 4C, so that the Wheatstone bridge measures the magnetic fields in the fourth direction D4 and the fifth direction D5 at two different times. And outputting two signals corresponding to the magnetic field components of the fourth direction D4 and the fifth direction D5, respectively. A detailed description of the embodiments is as follows.
在上述的二個不同時間中的第一個時間時,請參照圖3A,圖3A繪示本發明一實施例在第一個時間時的一種惠斯登全橋所適用的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。第一磁電阻112、114被磁化方向設定元件132設定為磁化方向指向第二方向D2的正向方向,第一磁電阻116、118被磁化方向設定元件134設定為磁化方向指向第二方向D2的反向方向,也就是說這些第一磁電阻中的一部分(第一磁電阻112、114)與另一部分(第一磁電阻116、118)的磁化方向被設定為相互背向對方。第二磁電阻122、124被磁化方向設定元件136設定為磁化方向指向第一方向D1的正向方向,第二磁電阻126、128被磁化方向設定元件138設定為磁化方向指向第一方向D1的反向方向,也就是說這些第二磁電阻中的一部分(第二磁電阻122、124)與另一部分(第二磁電阻126、128)的磁化方向被設定為相互指向對方。Referring to FIG. 3A at the first time of the above two different times, FIG. 3A illustrates a shorting bar of a magnetoresistance applied to a Wheatstone full bridge at a first time according to an embodiment of the present invention. A schematic diagram of setting the direction of the direction and the direction of magnetization. The first magnetoresistances 112, 114 are set by the magnetization direction setting member 132 so that the magnetization direction is directed in the forward direction of the second direction D2, and the first magnetoresistances 116, 118 are set by the magnetization direction setting member 134 so that the magnetization direction is directed to the second direction D2. The reverse direction, that is, the magnetization directions of a part of the first magnetoresistors (the first magnetoresistances 112, 114) and the other portion (the first magnetoresistances 116, 118) are set to face each other. The second magnetoresistances 122, 124 are set by the magnetization direction setting member 136 so that the magnetization direction is directed in the forward direction of the first direction D1, and the second magnetoresistances 126, 128 are set by the magnetization direction setting member 138 so that the magnetization direction is directed to the first direction D1. The reverse direction, that is, the magnetization directions of a part of the second magnetoresistors (the second magnetoresistances 122, 124) and the other portion (the second magnetoresistances 126, 128) are set to point to each other.
具有相同磁化方向(同樣被磁化方向設定元件132所覆蓋)但屬於不同的第一磁電阻單元110的第一磁電阻112與第一磁電阻114表面上的短路棒310的傾斜方向彼此相反,具有相同磁化方向(同樣被磁化方向設定元件134所覆蓋)但分屬於不同的第一磁電阻單元110的第一磁電阻116與第一磁電阻118表面上的短路棒310的傾斜方向也彼此相反。具有相同磁化方向(同樣被磁化方向設定元件136所覆蓋)但分屬於不同的第二磁電阻單元120的第二磁電阻122與第二磁電阻124表面上的短路棒310的傾斜方向彼此相反,具有相同磁化方向(同樣被磁化方向設定元件138所覆蓋)但分屬於不同的第二磁電阻單元120的第二磁電阻126與第二磁電阻128表面上的短路棒310的傾斜方向也彼此相反。The first magnetoresistance 112 having the same magnetization direction (also covered by the magnetization direction setting member 132) but belonging to the different first magnetoresistive unit 110 and the tilting direction of the shorting bar 310 on the surface of the first magnetoresistive resistor 114 are opposite to each other, The same magnetization direction (also covered by the magnetization direction setting member 134) but the first magnetoresistance unit 110 belonging to the different first magnetoresistive unit 110 and the oblique direction of the shorting bar 310 on the surface of the first magnetoresistive resistor 118 are also opposite to each other. The tilt directions of the second magnetoresistive resistor 122 having the same magnetization direction (also covered by the magnetization direction setting member 136) but belonging to different second magnetoresistive units 120 and the shorting bars 310 on the surface of the second magnetoresistive resistor 124 are opposite to each other, The second magnetoresistance 126 having the same magnetization direction (also covered by the magnetization direction setting member 138) but belonging to the different second magnetoresistive unit 120 and the tilting direction of the shorting bar 310 on the surface of the second magnetoresistive resistor 128 are also opposite to each other .
特別說明的是,屬於同一個第一磁電阻單元110的第一磁電阻112、116其磁化方向不同,而且表面上的短路棒310的傾斜方向也不相同,屬於同一個第一磁電阻單元110的第一磁電阻114、118其磁化方向不同,而且表面上的短路棒310的傾斜方向也不相同。類似的,屬於同一個第二磁電阻單元120的第二磁電阻122、126其磁化方向不同,而且表面上的短路棒310的傾斜方向也不相同,屬於同一個第二磁電阻單元120的第二磁電阻124、128其磁化方向不同,而且表面上的短路棒310的傾斜方向也不相同。但這些第一磁電阻112、114、116與118中一部分與另一部分具有相反的磁化方向,這些第二磁電阻122、124、126與128中一部分與另一部分也具有相反的磁化方向。Specifically, the first magnetoresistances 112 and 116 belonging to the same first magnetoresistive unit 110 have different magnetization directions, and the tilting directions of the shorting bars 310 on the surface are also different, belonging to the same first magnetoresistive unit 110. The first magnetoresistances 114, 118 have different magnetization directions, and the direction of inclination of the shorting bars 310 on the surface is also different. Similarly, the second magnetoresistances 122 and 126 belonging to the same second magnetoresistive unit 120 have different magnetization directions, and the tilting directions of the shorting bars 310 on the surface are also different, belonging to the same second magnetoresistive unit 120. The two magnetoresistances 124, 128 have different magnetization directions, and the tilt directions of the shorting bars 310 on the surface are also different. However, some of the first magnetoresistors 112, 114, 116 and 118 have opposite magnetization directions, and some of the second magnetoresistors 122, 124, 126 and 128 have opposite magnetization directions.
當外在施加磁場是在第四方向D4上,第一磁電阻112、116感應到在第一方向D1上的磁場分量而分別產生+ΔR的電阻值變化,第一磁電阻114、118感應到在第一方向D1上的磁場分量而分別產生-ΔR的電阻值變化,另一方面,第二磁電阻124、128感應到在第二方向D2上的磁場分量而分別產生+ΔR的電阻值變化,而第二磁電阻122、126感應到在第二方向D2上的磁場分量而分別產生-ΔR的電阻值變化。When the externally applied magnetic field is in the fourth direction D4, the first magnetoresistances 112, 116 induce a magnetic field component in the first direction D1 to respectively generate a resistance value change of +ΔR, and the first magnetoresistances 114, 118 sense The magnetic field component in the first direction D1 respectively produces a change in resistance value of -ΔR, and on the other hand, the second magnetoresistance 124, 128 induces a magnetic field component in the second direction D2 to generate a resistance value change of +ΔR, respectively. And the second magnetoresistive resistors 122, 126 sense the magnetic field component in the second direction D2 to respectively produce a resistance value change of -ΔR.
請參照圖3B,圖3B為圖3A的實施例的磁場感測裝置在量測第四方向的磁場分量時的等效電路圖。由於如圖3A相關段落所描述的設置方式(包括短路棒310的設置方向、第一磁電阻單元110及第二磁電阻單元120的初始磁化方向的設定方向),接點P1與接點P3、P4之間分別具有+2ΔR及-2ΔR的電阻值變化,接點P2與接點P3、P4之間分別具有-2ΔR及+2ΔR的電阻值變化,上述的接點P1、P2、P3、P4例如是電極。如此一來,對接點P1與P2施加一電壓差時,例如接點P1接收參考電壓VDD,接點P2耦接至地(ground)(或是接點P1與接點P2相反),接點P3的電壓值V1與接點P4的電壓值V2之間的電壓差可以為輸出訊號,此輸出訊號為一差分訊號,其大小會對應於在第四方向D4上的磁場分量的大小。因此,藉由得知輸出訊號的大小,便能夠推知在第四方向D4上磁場分量的大小。Please refer to FIG. 3B. FIG. 3B is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 3A when measuring the magnetic field component in the fourth direction. Due to the arrangement as described in the relevant paragraph of FIG. 3A (including the direction in which the shorting bar 310 is disposed, the direction in which the initial magnetization directions of the first magnetoresistive unit 110 and the second magnetoresistive unit 120 are set), the contact P1 and the contact P3, There is a resistance value change between +4ΔR and -2ΔR between P4, and a resistance value of -2ΔR and +2ΔR between the contact P2 and the contacts P3 and P4, respectively, and the above-mentioned contacts P1, P2, P3, P4 are, for example, It is an electrode. In this way, when a voltage difference is applied to the contacts P1 and P2, for example, the contact P1 receives the reference voltage VDD, and the contact P2 is coupled to the ground (or the contact P1 is opposite to the contact P2), and the contact P3 The voltage difference between the voltage value V1 and the voltage value V2 of the contact P4 may be an output signal, and the output signal is a differential signal whose magnitude corresponds to the magnitude of the magnetic field component in the fourth direction D4. Therefore, by knowing the magnitude of the output signal, the magnitude of the magnetic field component in the fourth direction D4 can be inferred.
在另一實施例中,也可以是接點P3接收參考電壓VDD,接點P4耦接至地(ground)(或是相反),而依據接點P1的電壓值與接點P2的電壓值之間的電壓差輸出訊號。In another embodiment, the contact P3 may receive the reference voltage VDD, and the contact P4 is coupled to the ground (or vice versa), and according to the voltage value of the contact P1 and the voltage value of the contact P2. The voltage difference between the output signals.
請參照圖3C,圖3C為圖3A的實施例的磁場感測裝置在量測第五方向的磁場分量時的等效電路圖。依照圖3A所述的磁場感測裝置100’的設置方式,當外在施加磁場是在第五方向D5上,第一磁電阻112、116感應到在第一方向D1的相反方向上的磁場分量而分別產生-ΔR的電阻值變化,第一磁電阻114、118感應到在第一方向D1的相反方向上的磁場分量而分別產生+ΔR的電阻值變化,另一方面,第二磁電阻124、128感應到在第二方向D2上的磁場分量而分別產生+ΔR的電阻值變化,而第二磁電阻122、126感應到在第二方向D2上的磁場分量而分別產生-ΔR的電阻值變化。也就是說接點P1與接點P3、P4之間分別具有-2ΔR及+2ΔR的電阻值變化,接點P2與接點P3、P4之間的電阻值變化則不變,依舊分別具有-2ΔR及+2ΔR的電阻值變化,因此接點P3與P4之間輸出對應於第五方向D5的磁場分量的差分訊號為0。Please refer to FIG. 3C. FIG. 3C is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 3A when measuring the magnetic field component in the fifth direction. According to the arrangement of the magnetic field sensing device 100' described in FIG. 3A, when the externally applied magnetic field is in the fifth direction D5, the first magnetoresistances 112, 116 sense the magnetic field component in the opposite direction of the first direction D1. While the resistance values of -ΔR are respectively changed, the first magnetoresistances 114, 118 sense the magnetic field components in the opposite directions of the first direction D1 to respectively produce a resistance value change of +ΔR, and on the other hand, the second magnetoresistance 124 , 128 senses a magnetic field component in the second direction D2 to respectively generate a resistance value change of +ΔR, and the second magnetoresistive resistors 122, 126 induce a magnetic field component in the second direction D2 to respectively generate a resistance value of -ΔR. Variety. That is to say, the resistance value of -2ΔR and +2ΔR changes between the contact P1 and the contacts P3 and P4 respectively, and the resistance value change between the contact P2 and the contacts P3 and P4 does not change, and still has -2ΔR respectively. And the resistance value of +2ΔR changes, so the differential signal outputting the magnetic field component corresponding to the fifth direction D5 between the contacts P3 and P4 is zero.
在二個不同時間中的第二個時間時,請參照圖4A,圖4A繪示本發明一實施例在第二個時間時的一種惠斯登全橋所適用的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。可參照圖3A的相關段落說明,磁場感測裝置100’的短路棒設置方向保持不變,但改變磁化方向的設置方向。第一磁電阻112、114被磁化方向設定元件132設定為磁化方向指向第二方向D2的反向方向,第一磁電阻116、118被磁化方向設定元件134設定為磁化方向指向第二方向D2,也就是說這些第一磁電阻中的一部分(第一磁電阻112、114)與另一部分(第一磁電阻116、118)的磁化方向被設定為相互指向對方。第二磁電阻122、124被磁化方向設定元件136設定為磁化方向指向第一方向D1的正向方向,第二磁電阻126、128被磁化方向設定元件138設定為磁化方向指向第一方向D1的反向方向,也就是說這些第二磁電阻中的一部分(第二磁電阻122、124)與另一部分(第二磁電阻126、128)的磁化方向被設定為相互指向對方。這些第一磁電阻112、114、116、118與這些第二磁電阻122、124、126、128中磁化方向相同的部分磁電阻表面上的這些短路棒310的傾斜方向依舊彼此相反。Referring to FIG. 4A at a second time in two different times, FIG. 4A illustrates a shorting bar setting direction of a magnetoresistance applied to a Wheatstone full bridge at a second time according to an embodiment of the present invention. Schematic diagram of the direction in which the magnetization direction is set. Referring to the relevant paragraphs of Fig. 3A, the shorting bar setting direction of the magnetic field sensing device 100' remains unchanged, but the direction in which the magnetization direction is set is changed. The first magnetoresistances 112, 114 are set by the magnetization direction setting element 132 so that the magnetization direction is directed in the opposite direction to the second direction D2, and the first magnetoresistances 116, 118 are set by the magnetization direction setting element 134 so that the magnetization direction is directed to the second direction D2, That is, the magnetization directions of some of the first magnetoresistors (the first magnetoresistance 112, 114) and the other portion (the first magnetoresistive resistors 116, 118) are set to point to each other. The second magnetoresistances 122, 124 are set by the magnetization direction setting member 136 so that the magnetization direction is directed in the forward direction of the first direction D1, and the second magnetoresistances 126, 128 are set by the magnetization direction setting member 138 so that the magnetization direction is directed to the first direction D1. The reverse direction, that is, the magnetization directions of a part of the second magnetoresistors (the second magnetoresistances 122, 124) and the other portion (the second magnetoresistances 126, 128) are set to point to each other. The inclination directions of the shorting bars 310 on the surface of the partial magnetoresistance of the first magnetoresistances 112, 114, 116, 118 and the second magnetoresistances 122, 124, 126, 128 are still opposite to each other.
請參照圖4B,圖4B為圖4A的實施例的磁場感測裝置在量測第四方向的磁場分量時的等效電路圖。由於如圖4A相關段落所描述的設置方式(包括短路棒310的設置方向、第一磁電阻單元110及第二磁電阻單元120的初始磁化方向的設定方向),接點P1與接點P3、P4之間分別具有-2ΔR及+2ΔR的電阻值變化,接點P2與接點P3、P4之間分別具有-2ΔR及+2ΔR的電阻值變化,如此一來,對接點P1與P2施加一電壓差時,例如接點P1接收參考電壓VDD,接點P2耦接至地(ground),接點P3的電壓值V1與接點P4的電壓值V2之間的輸出差分訊號為0。Please refer to FIG. 4B. FIG. 4B is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 4A when measuring the magnetic field component in the fourth direction. Due to the arrangement as described in the relevant paragraph of FIG. 4A (including the direction in which the shorting bar 310 is disposed, the direction in which the initial magnetization directions of the first magnetoresistive unit 110 and the second magnetoresistive unit 120 are set), the contact P1 and the contact P3, There is a resistance value change between -2ΔR and +2ΔR between P4, and a resistance value of -2ΔR and +2ΔR between the contact P2 and the contacts P3 and P4 respectively, so that a voltage is applied to the contacts P1 and P2. When the difference is small, for example, the contact P1 receives the reference voltage VDD, the contact P2 is coupled to the ground, and the output differential signal between the voltage value V1 of the contact P3 and the voltage value V2 of the contact P4 is zero.
請參照圖4C,圖4C為圖4A的實施例的磁場感測裝置在量測第五方向的磁場分量時的等效電路圖。由圖3A至圖4B相關段落所描述的實施方式(包括短路棒310的設置方向、第一磁電阻單元110及第二磁電阻單元120的初始磁化方向的設定方向與相關的電阻值變化),接點P1與接點P3、P4之間分別具有+2ΔR及-2ΔR的電阻值變化,接點P2與接點P3、P4之間分別具有-2ΔR及+2ΔR的電阻值變化,如此一來,對接點P1與P2施加一電壓差時,接點P3的電壓值V1與接點P4的電壓值V2之間的輸出訊號的大小會對應於在第五方向D5上的磁場分量的大小。Referring to FIG. 4C, FIG. 4C is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 4A when measuring the magnetic field component in the fifth direction. The embodiment described in the relevant paragraphs of FIGS. 3A to 4B (including the setting direction of the shorting bar 310, the setting direction of the initial magnetization direction of the first magnetoresistive unit 110 and the second magnetoresistive unit 120, and the associated resistance value change), The contact value between the contact P1 and the contacts P3 and P4 has a resistance value of +2ΔR and -2ΔR, respectively, and the resistance value between the contact P2 and the contacts P3 and P4 has -2ΔR and +2ΔR, respectively, so that When a voltage difference is applied to the contacts P1 and P2, the magnitude of the output signal between the voltage value V1 of the contact P3 and the voltage value V2 of the contact P4 corresponds to the magnitude of the magnetic field component in the fifth direction D5.
本實施例中的磁場感測裝置100’在上述的二個不同時間的任一個時(第一個時間與第二個時間),此至少一種惠斯登全橋(例如是圖3A至圖3C的第一種惠斯登全橋或圖4A至圖4C的第二種惠斯登全橋)所輸出的訊號為對應於第四方向D4及第五方向D5的其中一個方向的磁場分量的差分訊號,此時此至少一種惠斯登全橋所產生的對應於第四方向D4及第五方向D5中的另一個方向的磁場分量的差分訊號為零。The magnetic field sensing device 100' in this embodiment is at least one of the two different times (the first time and the second time), the at least one Wheatstone full bridge (for example, FIG. 3A to FIG. 3C). The signal output by the first type of Wheatstone full bridge or the second Wheatstone full bridge of FIGS. 4A to 4C is the difference of the magnetic field components corresponding to one of the fourth direction D4 and the fifth direction D5. The signal, at this time, the difference signal of the magnetic field component corresponding to the other of the fourth direction D4 and the fifth direction D5 generated by the at least one Wheatstone bridge is zero.
本實施例中的磁場感測裝置100’,在二個不同時間分別藉由改變這些第一磁電阻單元110與這些第二磁電阻單元120的磁化方向,將之電性連接成至少一種惠斯登全橋,以分別量測第四方向D4與第五方向D5的磁場分量,並使這種惠斯登全橋輸出分別對應於第四方向D4及第五方向D5的磁場分量的二個訊號,而磁感測元件210則用以量測第三方向的磁場分量。因此,本實施例的磁場感測裝置100’便能夠同時能實現三維的磁場量測且具有簡化的結構,進而可以具有較小的體積,達到增加應用上的彈性以及降低製作成本的優點。The magnetic field sensing device 100' in this embodiment electrically connects the magnetization directions of the first magnetoresistive unit 110 and the second magnetoresistive unit 120 at two different times to electrically connect at least one type of Wheatstone. The full bridge is bridged to measure the magnetic field components of the fourth direction D4 and the fifth direction D5, respectively, and the two signals of the Wheatstone full bridge output corresponding to the magnetic field components of the fourth direction D4 and the fifth direction D5, respectively The magnetic sensing element 210 is used to measure the magnetic field component in the third direction. Therefore, the magnetic field sensing device 100' of the present embodiment can simultaneously realize three-dimensional magnetic field measurement and has a simplified structure, and thus can have a small volume, thereby achieving an advantage of increasing flexibility in application and reducing manufacturing cost.
請參照圖5A,圖5A繪示本發明另一實施例的磁場感測裝置的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。在圖5A的實施例中,還包括一切換電路160(請參照圖1B),切換電路160例如設置在基板150中,並且電性連接這些第一磁電阻單元110與這些第二磁電阻單元120。這些第一磁電阻單元110與這些第二磁電阻單元120各自形成一個惠斯登半橋結構。藉由切換接點P5、P6、P7及P8的連接關係,在二個不同時間分別將這些第一磁電阻單元110與這些第二磁電阻單元120電性連接成為二種惠斯登全橋,該二種惠斯登全橋分別量測第四方向D4及第五方向D5的磁場分量,並分別輸出對應於第四方向D4及第五方向D5的磁場分量的二個訊號,如圖5B至圖5E所示。上述的接點P5、P6、P7及P8例如是電極。Referring to FIG. 5A, FIG. 5A is a schematic diagram showing a direction in which a shorting bar is disposed and a direction in which a magnetization direction is set in a magnetic resistance of a magnetic field sensing device according to another embodiment of the present invention. In the embodiment of FIG. 5A, a switching circuit 160 (refer to FIG. 1B) is further included. The switching circuit 160 is disposed in the substrate 150, for example, and electrically connects the first magnetoresistive unit 110 and the second magnetoresistive unit 120. . These first magnetoresistive units 110 and these second magnetoresistive units 120 each form a Wheatstone half bridge structure. By switching the connection relationship of the contacts P5, P6, P7 and P8, the first magnetoresistive unit 110 and the second magnetoresistive unit 120 are electrically connected to the two types of Wheatstone bridges at two different times. The two kinds of Wheatstone full bridges respectively measure the magnetic field components of the fourth direction D4 and the fifth direction D5, and respectively output two signals corresponding to the magnetic field components of the fourth direction D4 and the fifth direction D5, as shown in FIG. 5B. Figure 5E shows. The above-mentioned contacts P5, P6, P7 and P8 are, for example, electrodes.
在二個不同時間中的第一個時間,切換電路160將接點P5連接接點P6,將接點P7連接接點P8,此時的磁場測量裝置500的相關實施方式(包括短路棒310的設置方向、第一磁電阻單元110及第二磁電阻單元120的初始磁化方向的設定方向)與電性連接方式與圖4A的實施例相似,請參照圖5B,圖5B為圖5A的實施例的磁場感測裝置在第一個時間時量測第四方向的磁場分量時的等效電路圖。此時對應於第四方向D4的所輸出的差分訊號為0。At the first of two different times, the switching circuit 160 connects the contact P5 to the contact P6 and the contact P7 to the contact P8. At this time, the related embodiment of the magnetic field measuring device 500 (including the shorting bar 310) The setting direction, the setting direction of the initial magnetization direction of the first magnetoresistive unit 110 and the second magnetoresistive unit 120, and the electrical connection manner are similar to those of the embodiment of FIG. 4A. Please refer to FIG. 5B, which is the embodiment of FIG. 5A. The equivalent circuit diagram of the magnetic field sensing device when measuring the magnetic field component in the fourth direction at the first time. At this time, the output differential signal corresponding to the fourth direction D4 is zero.
請參照圖5C,圖5C為圖5A的實施例的磁場感測裝置在第一個時間時量測第五方向的磁場分量時的等效電路圖。感應於第五方向D5的磁場分量,圖5C的等效電路輸出對應於電壓值V1與電壓值V2之間的差分訊號,藉此量測第五方向D5的磁場分量的大小。具體的實施方式在前述的圖4A至圖4C的實施例已獲致足夠的教示、建議與實施說明,因此不再贅述。Referring to FIG. 5C, FIG. 5C is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 5A when the magnetic field component of the fifth direction is measured at the first time. Inductive to the magnetic field component in the fifth direction D5, the equivalent circuit output of FIG. 5C corresponds to a differential signal between the voltage value V1 and the voltage value V2, thereby measuring the magnitude of the magnetic field component in the fifth direction D5. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the foregoing embodiments of FIGS. 4A to 4C, sufficient teachings, suggestions, and implementation descriptions have been obtained, and thus will not be described again.
在二個不同時間中的第二個時間,切換電路160將接點P5連接接點P8,將接點P7連接接點P6,由於短路棒310的設置方向、第一磁電阻單元110及第二磁電阻單元120的初始磁化方向的設定方向沒有改變,但是電性連接的關係改變,此時的磁場測量裝置500的等效電路請參照圖5D與圖5E。圖5D為本發明另一實施例的磁場感測裝置在第二個時間時量測第四方向的磁場分量的等效電路圖,感應第四方向D4的磁場分量而輸出對應於電壓值V1與電壓值V2之間的差分訊號,藉由此差分訊號的大小量測第四方向D4的磁場分量的大小。圖5E為本發明另一實施例的磁場感測裝置在第二個時間時量測第五方向的磁場分量的等效電路圖,此時的惠斯登全橋電路感應於第五方向D5的磁場分量所輸出的差分訊號是0。具體的實施方式在前述的圖1A至圖5B的實施例已獲致足夠的教示、建議與實施說明,因此不再贅述。In the second time of two different times, the switching circuit 160 connects the contact P5 to the contact P8, and the contact P7 to the contact P6, due to the direction in which the shorting bar 310 is disposed, the first magnetoresistive unit 110 and the second The setting direction of the initial magnetization direction of the magnetoresistive unit 120 is not changed, but the relationship of the electrical connection is changed. For the equivalent circuit of the magnetic field measuring device 500 at this time, please refer to FIG. 5D and FIG. 5E. 5D is an equivalent circuit diagram of measuring a magnetic field component in a fourth direction at a second time according to another embodiment of the present invention, inducing a magnetic field component in a fourth direction D4 and outputting a voltage value corresponding to a voltage value V1 and a voltage. The differential signal between the values V2 measures the magnitude of the magnetic field component in the fourth direction D4 by the magnitude of the differential signal. 5E is an equivalent circuit diagram of measuring a magnetic field component in a fifth direction at a second time by a magnetic field sensing device according to another embodiment of the present invention, wherein the Wheatstone full bridge circuit inducts a magnetic field in a fifth direction D5. The differential signal output by the component is 0. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the foregoing embodiments of FIGS. 1A to 5B, sufficient teachings, suggestions, and implementation descriptions have been obtained, and thus will not be described again.
此外,在上述的實施例中,在上述二個不同時間的任一個中,由這些第一磁電阻單元110與第二磁電阻單元120電性連接成的惠斯登全橋的數量為一個。Further, in the above-described embodiment, in any one of the above two different times, the number of Wheatstone full bridges electrically connected by the first magnetoresistive unit 110 and the second magnetoresistive unit 120 is one.
因此在此實施例中,磁場感測裝置500,藉由切換電路160在二個不同時間分別將這些第一磁電阻單元110與這些第二磁電阻單元120電性連接成至少一種惠斯登全橋,以分別量測第四方向D4與第五方向D5的磁場分量,並使這種惠斯登全橋輸出分別對應於第四方向D4及第五方向D5的磁場分量的二個訊號,而磁感測元件210則用以量測第三方向的磁場分量。因此,磁場感測裝置500便能夠同時能實現三維的磁場量測且具有簡化的結構,進而可以具有較小的體積,達到增加應用上的彈性以及降低製作成本的優點。Therefore, in this embodiment, the magnetic field sensing device 500 electrically connects the first magnetoresistive unit 110 and the second magnetoresistive unit 120 to the at least one Wheatstone module at two different times by the switching circuit 160. a bridge for respectively measuring magnetic field components of the fourth direction D4 and the fifth direction D5, and causing such Wheatstone full bridge outputs two signals corresponding to the magnetic field components of the fourth direction D4 and the fifth direction D5, respectively The magnetic sensing component 210 is configured to measure a magnetic field component in a third direction. Therefore, the magnetic field sensing device 500 can simultaneously realize three-dimensional magnetic field measurement and has a simplified structure, and thus can have a small volume, and has the advantages of increasing flexibility in application and reducing manufacturing cost.
綜上所述,本發明實施例的磁場感測裝置,採用磁場感測軸平行於第一方向的多個第一磁電阻單元、磁場感測軸平行於第二方向的多個第二磁電阻單元以及磁感測元件。磁感測元件用以量測第三方向的磁場分量,而這些第一與第二磁電阻單元配置於磁感測元件旁,並且在二個不同時間電性連接成至少一種惠斯登全橋,以分別量測第四方向與第五方向的磁場分量,並使這種惠斯登全橋輸出分別對應於第四方向及第五方向的磁場分量的二個訊號,其中第一方向、第二方向、第三方向、第四方向及第五方向彼此不同,第四方向為第一方向與第二方向的和向量方向,第五方向為第一方向與第二方向的差向量方向。因此,本發明的實施例的磁場感測裝置便能夠具有簡化的結構且同時能實現三維的磁場量測,進而可以具有較小的體積,達到增加應用上的彈性以及降低製作成本的優點In summary, the magnetic field sensing device of the embodiment of the present invention uses a plurality of first magnetoresistance units whose magnetic field sensing axis is parallel to the first direction and a plurality of second magnetoresistances whose magnetic field sensing axis is parallel to the second direction. Unit and magnetic sensing element. The magnetic sensing component is configured to measure a magnetic field component in a third direction, and the first and second magnetoresistive elements are disposed adjacent to the magnetic sensing component and electrically connected to at least one Wheatstone full bridge at two different times , respectively, measuring the magnetic field components of the fourth direction and the fifth direction, and causing the Wheatstone full bridge output two signals corresponding to the magnetic field components of the fourth direction and the fifth direction, respectively, wherein the first direction, the first The two directions, the third direction, the fourth direction, and the fifth direction are different from each other, the fourth direction is a sum vector direction of the first direction and the second direction, and the fifth direction is a difference vector direction of the first direction and the second direction. Therefore, the magnetic field sensing device of the embodiment of the present invention can have a simplified structure and at the same time can realize three-dimensional magnetic field measurement, and thus can have a small volume, thereby achieving an advantage of increasing flexibility in application and reducing manufacturing cost.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100、100’、500‧‧‧磁場感測裝置100, 100', 500‧‧‧ magnetic field sensing device
110‧‧‧第一磁電阻單元110‧‧‧First magnetoresistive unit
112、114、116、118‧‧‧第一磁電阻112, 114, 116, 118‧‧‧ first magnetoresistance
120‧‧‧第二磁電阻單元120‧‧‧second magnetoresistive unit
122、124、126、128‧‧‧第二磁電阻122, 124, 126, 128‧‧‧ second magnetoresistance
130、132、134、136、138‧‧‧磁化方向設定元件130, 132, 134, 136, 138‧‧‧ Magnetization direction setting components
150‧‧‧基板150‧‧‧Substrate
160‧‧‧切換電路160‧‧‧Switching circuit
210‧‧‧磁感測元件210‧‧‧ Magnetic sensing components
212、214‧‧‧側面212, 214‧‧‧ side
300‧‧‧異向性磁電阻300‧‧‧ anisotropic magnetoresistance
310‧‧‧短路棒310‧‧‧ Shorting bar
320‧‧‧鐵磁膜320‧‧‧ Ferromagnetic film
A-A‧‧‧線A-A‧‧‧ line
D1‧‧‧第一方向D1‧‧‧ first direction
D2‧‧‧第二方向D2‧‧‧ second direction
D3‧‧‧第三方向D3‧‧‧ third direction
D4‧‧‧第四方向D4‧‧‧ fourth direction
D5‧‧‧第五方向D5‧‧‧ fifth direction
D‧‧‧延伸方向D‧‧‧ Extension direction
M‧‧‧磁化方向M‧‧‧Magnetization direction
I‧‧‧電流I‧‧‧current
H‧‧‧外在磁場H‧‧‧External magnetic field
S‧‧‧表面S‧‧‧ surface
R‧‧‧電阻值R‧‧‧ resistance value
ΔR‧‧‧電阻值變化ΔR‧‧‧Change in resistance value
圖1A為本發明的一實施例的磁場感測裝置的上視示意圖。 圖1B為圖1A之磁場感測裝置沿著A-A線的剖面示意圖。 圖2A與圖2B是用以說明圖1A中的異向性磁電阻的運作原理。 圖3A繪示本發明一實施例在第一個時間時的一種惠斯登全橋所適用的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。 圖3B為圖3A的實施例的磁場感測裝置在量測第四方向的磁場分量時的等效電路圖。 圖3C為圖3A的實施例的磁場感測裝置在量測第五方向的磁場分量時的等效電路圖。 圖4A繪示本發明一實施例在第二個時間時的一種惠斯登全橋所適用的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。 圖4B為圖4A的實施例的磁場感測裝置在量測第四方向的磁場分量時的等效電路圖。 圖4C為圖4A的實施例的磁場感測裝置在量測第五方向的磁場分量時的等效電路圖。 圖5A繪示本發明另一實施例的磁場感測裝置的磁電阻的短路棒設置方向與磁化方向的設置方向的示意圖。 圖5B與圖5C分別為圖5A的實施例的磁場感測裝置在第一個時間時量測第四方向與第五方向的磁場分量時的等效電路圖。 圖5D與圖5E分別為圖5A的實施例的磁場感測裝置在第二個時間時量測第四方向與第五方向的磁場分量的等效電路圖。1A is a top plan view of a magnetic field sensing device according to an embodiment of the present invention. 1B is a schematic cross-sectional view of the magnetic field sensing device of FIG. 1A taken along line A-A. 2A and 2B are diagrams for explaining the operation of the anisotropic magnetoresistance of Fig. 1A. FIG. 3A is a schematic view showing a direction in which a shorting bar is disposed and a direction in which a magnetization direction is applied to a magnetic resistance of a Wheatstone full bridge according to an embodiment of the present invention. FIG. 3B is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 3A when measuring the magnetic field component in the fourth direction. 3C is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 3A when measuring the magnetic field component in the fifth direction. 4A is a schematic view showing a direction in which a shorting bar is disposed and a direction in which a magnetization direction is applied to a magnetic resistance of a Wheatstone full bridge in a second time according to an embodiment of the present invention. 4B is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 4A when measuring the magnetic field component in the fourth direction. 4C is an equivalent circuit diagram of the magnetic field sensing device of the embodiment of FIG. 4A when measuring the magnetic field component in the fifth direction. FIG. 5A is a schematic view showing a direction in which a shorting bar is disposed and a direction in which a magnetization direction is set in a magnetic resistance of a magnetic field sensing device according to another embodiment of the present invention. 5B and 5C are respectively equivalent circuit diagrams when the magnetic field sensing device of the embodiment of FIG. 5A measures the magnetic field components of the fourth direction and the fifth direction at the first time. 5D and 5E are respectively equivalent circuit diagrams for measuring the magnetic field components of the fourth direction and the fifth direction at the second time by the magnetic field sensing device of the embodiment of FIG. 5A.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710990842.XA CN108072850B (en) | 2016-11-09 | 2017-10-23 | Magnetic field sensing device |
US15/791,422 US10302712B2 (en) | 2016-11-09 | 2017-10-24 | Magnetic field sensing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662419957P | 2016-11-09 | 2016-11-09 | |
US62/419,957 | 2016-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201818050A TW201818050A (en) | 2018-05-16 |
TWI638140B true TWI638140B (en) | 2018-10-11 |
Family
ID=62949407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106126810A TWI638140B (en) | 2016-11-09 | 2017-08-09 | Magnetic field sensing apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI638140B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110007255B (en) | 2017-12-21 | 2021-06-29 | 爱盛科技股份有限公司 | Magnetic field sensing device |
TWI714107B (en) * | 2018-08-22 | 2020-12-21 | 愛盛科技股份有限公司 | Electric current sensor |
CN110857952B (en) | 2018-08-22 | 2022-03-08 | 爱盛科技股份有限公司 | Current sensor |
TWI703338B (en) * | 2018-08-23 | 2020-09-01 | 愛盛科技股份有限公司 | Electric current sensor |
CN110857951B (en) | 2018-08-23 | 2022-05-31 | 爱盛科技股份有限公司 | Current sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101669A (en) * | 1988-07-14 | 1992-04-07 | University Of Hawaii | Multidimensional force sensor |
US6100686A (en) * | 1997-06-13 | 2000-08-08 | U.S. Philips Corporation | Magnetic field sensor with double wheatstone bridge having magneto-resistive elements |
US20130082697A1 (en) * | 2011-09-29 | 2013-04-04 | Voltafield Technology Corporation | Magnetoresistance sensing device and magnetoresistance sensor including same |
TW201337303A (en) * | 2012-02-10 | 2013-09-16 | Memsic Inc | Planar three-axis magnetometer |
TWI497097B (en) * | 2009-09-25 | 2015-08-21 | Everspin Technologies Inc | Three axis magnetic field sensor |
-
2017
- 2017-08-09 TW TW106126810A patent/TWI638140B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5101669A (en) * | 1988-07-14 | 1992-04-07 | University Of Hawaii | Multidimensional force sensor |
US6100686A (en) * | 1997-06-13 | 2000-08-08 | U.S. Philips Corporation | Magnetic field sensor with double wheatstone bridge having magneto-resistive elements |
TWI497097B (en) * | 2009-09-25 | 2015-08-21 | Everspin Technologies Inc | Three axis magnetic field sensor |
US20130082697A1 (en) * | 2011-09-29 | 2013-04-04 | Voltafield Technology Corporation | Magnetoresistance sensing device and magnetoresistance sensor including same |
TW201337303A (en) * | 2012-02-10 | 2013-09-16 | Memsic Inc | Planar three-axis magnetometer |
Also Published As
Publication number | Publication date |
---|---|
TW201818050A (en) | 2018-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108072850B (en) | Magnetic field sensing device | |
TWI638140B (en) | Magnetic field sensing apparatus | |
US8552720B2 (en) | Mobile information terminal apparatus and magnetic sensor, including magnetoresistive detecting device | |
US10877107B2 (en) | Magnetic field sensing device and magnetic field sensing apparatus | |
US9970997B2 (en) | Magnetic field sensing apparatus and magnetic field sensing module | |
JP5297442B2 (en) | Magnetic sensor | |
US10401441B2 (en) | Magnetic sensor | |
US11237229B2 (en) | Magnetic field sensing apparatus | |
US20190101602A1 (en) | Magnetic field sensing apparatus | |
US11009562B2 (en) | Magnetic field sensing apparatus | |
TWI595249B (en) | Magnetic field sensing apparatus | |
WO2009151023A1 (en) | Magnetic sensor and magnetic sensor module | |
TWI695965B (en) | Magnetic field sensing device | |
JP4023476B2 (en) | A compass with a spin-valve giant magnetoresistive element | |
TWI685667B (en) | Magnetic field sensing apparatus | |
WO2011074488A1 (en) | Magnetic sensor | |
JP2016145745A (en) | Magnetic sensor | |
TWI731620B (en) | Magnetic field sensing device | |
JP2009281784A (en) | Magnetometric sensor | |
JP6699638B2 (en) | Magnetic sensor | |
JP4984962B2 (en) | Magnetic angle sensor | |
JP2023046263A (en) | sensor | |
KR20230089608A (en) | 3-axis magnetoresistance sensor | |
TW202008002A (en) | Magnetic field sensing apparatus | |
JP2014142297A (en) | Proximity sensor, and game machine |