CN216309983U - An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle - Google Patents
An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle Download PDFInfo
- Publication number
- CN216309983U CN216309983U CN202120824891.8U CN202120824891U CN216309983U CN 216309983 U CN216309983 U CN 216309983U CN 202120824891 U CN202120824891 U CN 202120824891U CN 216309983 U CN216309983 U CN 216309983U
- Authority
- CN
- China
- Prior art keywords
- sample
- cavity
- dry
- shrinkage
- ring container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002689 soil Substances 0.000 title claims abstract description 62
- 238000012360 testing method Methods 0.000 title claims abstract description 61
- 238000007596 consolidation process Methods 0.000 title claims abstract description 31
- 238000006073 displacement reaction Methods 0.000 claims abstract description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000007246 mechanism Effects 0.000 claims abstract description 4
- 230000008961 swelling Effects 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims description 82
- 238000005259 measurement Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 230000035699 permeability Effects 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 14
- 238000010998 test method Methods 0.000 abstract description 3
- 230000008602 contraction Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000009736 wetting Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及岩土力学与工程领域,具体涉及一种细粒土固结胀缩及干湿循环一体试验装置及其试验方法,适用但不限于研究各种类型土的固结、胀缩及干湿循环特性。The utility model relates to the fields of geotechnical mechanics and engineering, in particular to an integrated test device for fine-grained soil consolidation, expansion and contraction and dry-wet cycle and a test method thereof, which is suitable for but not limited to studying the consolidation, expansion and contraction of various types of soils and a test method thereof. Wet and dry cycle characteristics.
背景技术Background technique
细粒土由于含水率增加面发生体积增大的性能,称膨胀性;由于土中失去水分而体积缩小的性能,称收缩性。细粒土中含水率的增加与减小主要是由外部因素引起的,如降水、地表水与地下水的变化、气温及湿度的变化等。细粒土的胀缩性对工程建筑物的影响很大,土体的膨胀和收缩不仅降低了土体的强度,面且引起土体变形,导致建筑物的毁坏。由细粒土所组成的斜坡,常因土体的膨胀发生滑坡,给工程带来危害。因此,研究细粒土的胀缩性在工程实践中有重要意义。在工程施工中,建造在含水量保持不变的膨胀土上的构造物不会遭受由胀缩而引起的破坏。当土的含水量发生变化,立即就会产生垂直和水平两个方向的体积膨胀。含水量的轻微变化,仅1%~2%的量值,就足以引起有害的膨胀。深入了解细粒土的胀缩特性是解决细粒土胀缩导致的工程问题的关键。细粒土的胀缩性受其固结程度和干湿循环变化情况的影响很大,研究不同干湿循环条件下细粒土的固结和胀缩是了解细粒土胀缩性的关键。The capacity of fine-grained soil to increase in volume due to the increase in moisture content is called expansion; the capacity to shrink in volume due to loss of water in the soil is called shrinkage. The increase and decrease of moisture content in fine-grained soil are mainly caused by external factors, such as precipitation, changes in surface water and groundwater, and changes in temperature and humidity. The expansion and contraction of fine-grained soil has a great influence on engineering buildings. The expansion and contraction of soil not only reduces the strength of soil, but also causes soil deformation and damage to buildings. Slopes composed of fine-grained soil often cause landslides due to soil expansion, which brings harm to the project. Therefore, it is of great significance to study the expansion and shrinkage of fine-grained soil in engineering practice. In engineering construction, structures built on expansive soil with constant water content will not suffer damage caused by expansion and contraction. When the water content of soil changes, volume expansion in both vertical and horizontal directions occurs immediately. A slight change in moisture content, in amounts of only 1% to 2%, is sufficient to cause detrimental swelling. An in-depth understanding of the expansion and contraction characteristics of fine-grained soil is the key to solving the engineering problems caused by the expansion and contraction of fine-grained soil. The expansion and shrinkage of fine-grained soil is greatly affected by its degree of consolidation and the variation of dry-wetting cycles. The key to understanding the expansion and contraction of fine-grained soil is to study the consolidation and expansion and contraction of fine-grained soil under different dry-wetting cycles.
目前相关的试验装置,都存在以下缺点:The current related test devices all have the following shortcomings:
(1)本实用新型的细粒土固结胀缩及干湿循环一体试验装置,前细粒土的固结试验、膨胀试验、收缩试验及干湿循环试验均是在不同的试验设备中单独完成,试验与试验之间并不连续,且需要反复的取样装样,多次扰动土体,试验结果误差较大;(1) The fine-grained soil consolidation expansion-shrinkage and dry-wet cycle integrated test device of the present utility model, the consolidation test, expansion test, shrinkage test and dry-wet cycle test of the former fine-grained soil are all performed separately in different test equipment. Completed, the test is not continuous, and repeated sampling and loading is required, and the soil is disturbed many times, and the error of the test results is large;
(2)目前细粒土的膨胀试验只测量膨胀过程中试样垂直方向的变化,并不测量水平方向的变化;(2) At present, the expansion test of fine-grained soil only measures the change in the vertical direction of the sample during the expansion process, and does not measure the change in the horizontal direction;
(3)目前细粒土的收缩试验,大多只测量土体垂直方向上的收缩,不能测量土体收缩过程中的实时体积变化;(3) At present, most of the shrinkage tests of fine-grained soil only measure the vertical shrinkage of the soil body, and cannot measure the real-time volume change during the soil body shrinkage process;
(4)目前细粒土的胀缩试验装置大多不能调节侧向压力的大小,不能模拟不同工程条件下土体的不同应力状态。因此,有必要设计一种高效的细粒土固结胀缩及干湿循环一体试验装置,系统的完成细粒土的固结胀缩及干湿循环试验,测得不同干湿循环条件下土体的固结性及胀缩性,从而为细粒土的胀缩性研究提供进一步的支持。(4) At present, most of the expansion and contraction test devices of fine-grained soil cannot adjust the lateral pressure and cannot simulate different stress states of soil under different engineering conditions. Therefore, it is necessary to design a high-efficiency fine-grained soil consolidation expansion and shrinkage and dry-wet cycle integrated test device to systematically complete the consolidation expansion and dry-wet cycle test of fine-grained soil, and measure the soil under different dry-wet cycle conditions. Consolidation and expansion and shrinkage properties of the soil, thus providing further support for the research on the expansion and contraction properties of fine-grained soils.
实用新型内容Utility model content
为解决现有技术的不足或缺点,本实用新型提供一种高效的细粒土固结胀缩及干湿循环一体试验装置。其将固结试验、膨胀试验、收缩试验及干湿循环试验在同一装置中完成,较全面的反应不同干湿循环条件下土体的固结性和胀缩性变化,避免重复试验,节约试验时间,减少试验过程中对土体的扰动,且能控制土体的侧向压力,实时测量土体垂直和水平方向的体积变化。In order to solve the deficiencies or shortcomings of the prior art, the utility model provides an efficient integrated test device for fine-grained soil consolidation, expansion, shrinkage and dry-wet cycle. It completes the consolidation test, expansion test, shrinkage test and dry-wet cycle test in the same device, which comprehensively reflects the changes of soil consolidation and expansion-shrinkage under different dry-wet cycle conditions, avoids repeated tests, and saves tests. Time, reduce the disturbance to the soil during the test, and can control the lateral pressure of the soil, and measure the volume change of the soil in the vertical and horizontal directions in real time.
为了实现上述目的,本实用新型涉及:一种细粒土固结胀缩及干湿循环一体试验装置,包括用于模拟温湿度风速状况的外圈容器;外圈容器为空腔结构且设有带一号阀门的进风管和带二号阀门的出风管,进风管与温湿度风速控制器相连,所述外圈容器内部底面上设有用于施加侧向压力的环状内圈容器,内圈容器内部形成的开敞区域设置有下透水板;下透水板上方设置有试样,试样顶面从下到上依次设置有上透水板、压盖板、加压基座及顶盖,顶盖的下端面设置有多个无荷状态位移传感器(包括一号位移传感器、二号位移传感器、三号位移传感器、四号位移传感器),加压基座上端面与外部加压机构相连,加压基座上设置有压力传感器和有荷状态位移传感计,外圈容器内壁设置有温湿度风速传感器,试样周围设置有含水率传感器,传感器、位移计、摄像头与多通道数据采集仪连接,多通道数据采集仪信号通过数据线连接计算机处理系统;In order to achieve the above purpose, the utility model relates to: an integrated test device for fine-grained soil consolidation, expansion, shrinkage and dry-wet cycle, comprising an outer-circle container for simulating temperature, humidity, and wind speed conditions; the outer-circle container is a cavity structure and is provided with The air inlet pipe with the No. 1 valve and the air outlet pipe with the No. 2 valve are connected with the temperature, humidity and wind speed controller, and the inner bottom surface of the outer ring container is provided with an annular inner ring container for applying lateral pressure. , the open area formed inside the inner ring container is provided with a lower permeable plate; a sample is arranged above the lower permeable plate, and the top surface of the sample is sequentially provided with an upper permeable plate, a gland plate, a pressurized base and a top. Cover, the lower end face of the top cover is provided with a plurality of unloaded state displacement sensors (including No. 1 displacement sensor, No. 2 displacement sensor, No. 3 displacement sensor, No. 4 displacement sensor), the upper end face of the pressure base and the external pressure mechanism A pressure sensor and a loaded state displacement sensor are arranged on the pressurized base, a temperature, humidity, and wind speed sensor is arranged on the inner wall of the outer ring container, and a water content sensor is arranged around the sample. The sensor, displacement meter, camera and multi-channel data The acquisition instrument is connected, and the multi-channel data acquisition instrument signal is connected to the computer processing system through the data line;
内圈容器包括刚性的多腔结构,多腔结构包括从上到下依次布置的上腔,中腔和下腔,所述上腔,中腔和下腔靠近试样的一端均为开敞结构并各自包覆独立并密封连接的橡皮膜(包括上腔橡皮膜、中腔橡皮膜、下腔橡皮膜)),多腔结构与试样之间还设置有与试样直接接触的外层橡皮膜;中腔与一号加压管道连接,上腔、下腔与二号加压管道连接,多腔结构内部可充水,为试样施加侧向压力;外层橡皮膜与试样直接接触,橡皮膜随试样一同胀缩;The inner ring container includes a rigid multi-chamber structure, and the multi-chamber structure includes an upper chamber, a middle chamber and a lower chamber arranged in sequence from top to bottom, and the ends of the upper chamber, the middle chamber and the lower chamber close to the sample are all open structures They are covered with independent and sealed rubber films (including the upper cavity rubber film, the middle cavity rubber film, and the lower cavity rubber film)), and an outer layer of rubber that is in direct contact with the sample is also arranged between the multi-cavity structure and the sample. Membrane; the middle cavity is connected to the No. 1 pressurized pipe, the upper and lower chambers are connected to the No. 2 pressurized pipe, and the interior of the multi-cavity structure can be filled with water to apply lateral pressure to the sample; the outer rubber film is in direct contact with the sample , the rubber film expands and contracts with the sample;
进一步的,所述温湿度风速控制器包括用于调节空气温度的加热机、用于调节空气湿度的加湿器和用于调节空气流速的风机。Further, the temperature, humidity and wind speed controller includes a heater for adjusting air temperature, a humidifier for adjusting air humidity, and a fan for adjusting air flow rate.
进一步的,所述上腔和下腔为保护腔,中腔为测量腔,中腔高度不大于试样收缩极限的高度。Further, the upper cavity and the lower cavity are protective cavities, the middle cavity is a measurement cavity, and the height of the middle cavity is not greater than the height of the shrinkage limit of the sample.
进一步的,所述上透水板和下透水板采用氧化铝或不受腐蚀的金属材料制成,其渗透系数不应大于试样的渗透系数,上透水板直径应小于试样直径0.2~0.5mm。Further, the upper permeable plate and the lower permeable plate are made of alumina or non-corroded metal materials, the permeability coefficient of which should not be greater than that of the sample, and the diameter of the upper permeable plate should be smaller than the diameter of the sample by 0.2-0.5mm. .
进一步的,所述含水率传感器包括三个探头,三个探头等间距分布于试样周围,位于试样与橡皮膜之间,在内圈容器施加的围压作用下,一侧与试样紧密接触,测量试样的容积含水率,测量范围0-100%。Further, the water content sensor includes three probes, and the three probes are equally spaced around the sample and located between the sample and the rubber film. Under the action of the confining pressure exerted by the inner ring container, one side is close to the sample. Contact, measure the volumetric moisture content of the sample, the measurement range is 0-100%.
总体而言,通过本实用新型所构思的以上技术方案与现有技术相比,能够取得下列有益效果:In general, compared with the prior art, the following beneficial effects can be achieved through the above technical solutions conceived by the present utility model:
(1)使细粒土的固结试验、膨胀试验、收缩试验及干湿循环试验可在同一的试验设备中完成,试验与试验之间连续性更好;不需要反复的取样装样,试验过程中基本不扰动土体,试验结果更加精确;(1) The consolidation test, expansion test, shrinkage test and dry-wet cycle test of fine-grained soil can be completed in the same test equipment, and the continuity between tests is better; The soil is basically not disturbed during the process, and the test results are more accurate;
(2)可以更加全面的评价细粒土在不同干湿循环条件下,土体固结性胀缩性的变化,具有广泛的应用前景;(2) It can more comprehensively evaluate the change of soil consolidation expansion and contraction properties of fine-grained soil under different dry-wetting cycle conditions, and has a wide range of application prospects;
(3)可根据试验需要设置不同干湿循环条件、固结压力及侧向压力,操作简便易行,提高试验效率、灵活度、适用性及精确度。(3) Different dry and wet cycle conditions, consolidation pressure and lateral pressure can be set according to the test needs, the operation is simple and easy, and the test efficiency, flexibility, applicability and accuracy are improved.
附图说明Description of drawings
图1为本实用新型较佳实施例的结构示意图;Fig. 1 is the structural representation of the preferred embodiment of the present utility model;
图2为本实用新型较佳实施例多腔结构处的局部结构示意图(试样5 仅显示部分);FIG. 2 is a schematic diagram of the partial structure of the multi-chamber structure of the preferred embodiment of the present invention (
图3为本实用新型较佳实施例的橡皮膜处的局部结构示意图;Fig. 3 is the partial structure schematic diagram of the rubber film place of the preferred embodiment of the present utility model;
图4为本实用新型较佳实施例试样处的局部俯视图;Fig. 4 is the partial top view of the sample place of the preferred embodiment of the present utility model;
图中:1-顶盖;2-加压基座;3-加压盖板;4-上透水板;5-试样;6- 下透水板;7-外圈容器;8-内圈容器;9-一号加压管道;10-抽气泵;11a- 一号阀门、11b-二号阀门、11c-三号阀门、11d-四号阀门;12-加热机;13- 加湿器;14-风机;15-温湿度风速控制器;16-多通道数据采集仪;17-计算机处理系统;18-压力传感器;19-有荷状态位移传感计;20-无荷状态位移传感器;20a-一号位移传感器、20b-二号位移传感器、20c-三号位移传感器、20d-四号位移传感器;21-温湿度风速传感器;22a-一号含水率传感器探头、22b-二号含水率传感器探头、22c-三号含水率传感器探头;23a- 一号流量传感器;23b-二号流量传感器;24-摄像头;25-多腔结构;26a- 上腔橡皮膜、26b-中腔橡皮膜、26c-下腔橡皮膜;26d-外层橡皮膜;27-上腔;28-中腔;29-下腔;30-二号加压管道。In the figure: 1-top cover; 2-pressurized base; 3-pressurized cover plate; 4-upper permeable plate; 5-sample; 6-lower permeable plate; 7-outer ring container; 8-inner ring container ; 9- No. 1 pressurized pipeline; 10- Air pump; 11- No. 1 valve, 11b- No. 2 valve, 11c- No. 3 valve, 11d- No. 4 valve; 12- Heating machine; 13- Humidifier; 14- Fan; 15- temperature, humidity and wind speed controller; 16- multi-channel data acquisition instrument; 17- computer processing system; 18- pressure sensor; 19- load state displacement sensor; 20- unload state displacement sensor; 20a- a No. displacement sensor, 20b-No.2 displacement sensor, 20c-No.3 displacement sensor, 20d-No.4 displacement sensor; 21-Temperature, humidity and wind speed sensor; 22a-No.1 moisture content sensor probe, 22b-No.2 moisture content sensor probe, 22c-No.3 moisture content sensor probe; 23a-No.1 flow sensor; 23b-No.2 flow sensor; 24-Camera; 25-Multi-cavity structure; Cavity rubber membrane; 26d-outer rubber membrane; 27-upper cavity; 28-middle cavity; 29-lower cavity; 30-No. 2 pressure pipeline.
具体实施方式Detailed ways
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本实用新型,并不用于限定本实用新型。此外,下面所描述的本实用新型各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the purpose, technical solutions and advantages of the present utility model more clearly understood, the present utility model will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not used to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as there is no conflict with each other.
实施例1:Example 1:
如图1~2所示,一种细粒土固结胀缩及干湿循环一体试验装置,包括用于模拟温湿度风速状况的外圈容器7;外圈容器7为空腔结构且设有带一号阀门11a的进风管71和带二号阀门11b的出风管72,进风管71与温湿度风速控制器15相连,所述外圈容器7内部底面上设有用于施加侧向压力的环状内圈容器8,内圈容器8内部形成的开敞区域设置有下透水板6;下透水板6上方设置有试样5,试样5顶面从下到上依次设置有上透水板4、加压基座2及顶盖1,顶盖1的下端面设置有多个无荷状态位移传感器20,加压基座2上端面与外部加压机构相连,加压基座2上设置有压力传感器18和有荷状态位移传感计19,外圈容器7内壁设置有温湿度风速传感器21,试样5周围设置有含水率传感器22,各类传感器、位移计、摄像头24与多通道数据采集仪16连接,多通道数据采集仪16信号通过数据线连接计算机处理系统17。As shown in Figures 1 to 2, an integrated test device for fine-grained soil consolidation, expansion, shrinkage and dry-wet cycle includes an
优选的,上透水板4和下透水板6,采用氧化铝或不受腐蚀的金属材料制成,其渗透系数不应大于试样的渗透系数,上透水板直径应小于试样直径0.2~0.5mm;Preferably, the upper permeable plate 4 and the lower
优选的,有荷状态位移传感计19、一号位移传感器20a、二号位移传感器20b、三号位移传感器20c、四号位移传感器20d,准确度为全量程的0.2%。Preferably, the loaded
请参考图2、图3,内圈容器8包括刚性的多腔结构25,多腔结构包括从上到下依次布置的上腔27,中腔28和下腔29,所述上腔27,中腔28和下腔29靠近试样5的一端均为开敞结构并各自包覆独立并密封连接的橡皮膜,多腔结构与试样5之间还设置有与试样5直接接触的外层橡皮膜26d 外层橡皮膜26d随试样5一同胀缩);中腔28与一号加压管道9内置或外置加压泵)连接,上腔27、下腔29与二号加压管道30连接,多腔结构内部可充水,为试样施加侧向压力。各个腔与一号加压管道9(内置或外置加压泵)连接,内部可充水,为试样施加侧向压力。上腔27和下腔29为保护腔,中腔28为测量腔,中腔高度不大于试样收缩极限的高度。2 and 3, the
优选的,温湿度风速控制器15包括用于调节空气温度加热机12、用于调节空气湿度加湿器13和用于调节空气流速的风机14。Preferably, the temperature, humidity and
请参考图4,含水率传感器22,包括三个探头一号含水率传感器探头 22a,二号含水率传感器探头22b,三号含水率传感器探头22c,等间距分布于试样5周围,位于试样5与橡皮膜26之间,在内圈容器8施加的围压作用下,一侧与试样5紧密接触,测量试样的容积含水率,测量范围0-100% (如天诺环能TDR-6A土壤温湿度传感器)。Please refer to FIG. 4, the
优选的,多通道数据采集仪16,采样多路并行,可同时对应多个压力传感器18,有荷状态位移传感计19、无荷状态位移传感器20、含水率传感器22、温湿度风速传感器21、一号流量传感器23a、二号流量传感器23b 及摄像头24进行数据采集和通讯传输(市售多通道数据采集器,不少于32 通道,如AT4516多通道数据采集仪)。Preferably, the multi-channel
将试样5放于装置内圈容器8里部圆形位置处,试样顶底部放置透水石和滤纸,放置顺序为下透水板6,滤纸,试样5,滤纸,上透水板4。上透水板4上依次放置加压盖板3和加压基座2,盖上顶盖1,顶盖1与外部加压装置相连接。外圈容器7一侧管道与温湿度风速控制器15相连,作为进气口,另一侧管道与抽气泵10相连,作为出气口。内圈容器8两侧管道连接一号加压管道9。摄像头24安装于顶盖1上。含水率传感器22放置于橡皮膜26与试样5,与试样5紧密接触。Place the
实施例2:Example 2:
待测试样呈黄褐色,硬塑状态,含黑色铁锰结核,为原状土切削而成的直径61.8mm,高度20mm的环刀样,含水率为17.0%,干密度为1.77g/cm3。The sample to be tested is yellowish-brown, in a hard plastic state, and contains black iron-manganese nodules. It is a ring knife sample with a diameter of 61.8mm and a height of 20mm cut from undisturbed soil. The moisture content is 17.0% and the dry density is 1.77g/ cm3 . .
步骤一:将装置放置于操作平台上,连接各传感器与多通道数据采集仪 16。多通道数据采集仪16与计算机处理系统17连接。Step 1: Place the device on the operating platform, and connect each sensor to the multi-channel
步骤二:在容器内放置下透水板6,将试样5放于下透水板6上,试样 5和下透水板6之间放置薄型滤纸,试样5上依次放上薄型滤纸、上透水板4;Step 2: Place the lower
步骤三:打开三号阀门11c、四号阀门11d,向内圈容器中注满水,根据试验条件,保持内圈容器内水体体积不变。Step 3: Open the No. 3
步骤四:在上透水板4上安放加压盖板3和加压基座2,使加压盖板3 与加压基座2中心对准。Step 4: Place the
步骤五:将装置与加压装置连接,确定需要施加的各级固结压力,开始固结。通过有荷状态位移传感计19记录试样的高度变化,压力传感器18 记录施加的压力,施加每级压力后,每小时变形达0.01mm时,测定试样高度变化作为稳定标准,按照此步骤逐级加压至试验结束。Step 5: Connect the device to the pressurizing device, determine the consolidation pressure at all levels to be applied, and start consolidation. The height change of the sample is recorded by the loaded
进行以上步骤可完成固结试验。Carry out the above steps to complete the consolidation test.
实施例3:Example 3:
步骤一:同实施例2步骤一。Step 1: Same as
步骤二:同实施例2步骤二。Step 2: Same as
步骤三:同实施例2步骤三。Step 3: Same as
步骤四:盖上顶盖1,使一号位移传感器20a、二号位移传感器20b、三号位移传感器20c与上透水板4接触。Step 4: Cover the
步骤五:打开一号阀门11a,关闭二号阀门11b,自下而上向容器内注入纯水,并保持水面高出试样5mm,2小时内位移计读数差值不超过0.01mm,膨胀稳定。Step 5: Open the No. 1
进行以上步骤可完成无荷膨胀试验。Carry out the above steps to complete the unloaded expansion test.
实施例4:Example 4:
步骤一:同实施例2中步骤一。Step 1: Same as
步骤二:同实施例2中步骤二。Step 2: Same as
步骤三:打开阀门11c、11d,向内圈容器中注满水,根据试验条件,设置一定水压,给试样施加侧向压力,上下两个保护腔的水压略大于中腔的水压。Step 3: Open the
步骤四:同实施例3中步骤四。Step 4: Same as step 4 in Example 3.
步骤五:打开一号阀门11a和二号阀门11b。根据试验条件,设置空气的温湿度和风速,与温湿度风速控制器15相连的一侧管道为进气口,另一侧与抽气泵10相连的管道为出气口,保持装置内部空气流通。Step 5: Open the No. 1
试验过程中,温湿度风速传感器21记录装置内实际通过的空气的温湿度和风速,含水率传感器22记录试样含水率变化,无荷状态位移传感器20 记录试样垂直方向高度变化,摄像头24记录试样表面裂隙发展情况,设置于一号加压管道9内的一号流量传感器23a和设置于二号加压管道30内的二号流量传感器23b记录试样径向体积变化,计算得出试样任意时刻的半径值。During the test, the temperature, humidity and
试验中涉及的计算公式:The calculation formula involved in the test:
试验过程中,任意时刻试样的半径值rt:During the test, the radius value r t of the sample at any time:
rt——t时刻,试样的半径,cm;r t ——the radius of the sample at time t, cm;
r0——试样的初始半径,cm;r 0 ——the initial radius of the sample, cm;
ΔV——t时间内,中腔测量腔的体积变化量,cm3;ΔV——The volume change of the measuring cavity in the middle cavity during t time, cm 3 ;
hm——中腔测量腔的高度,cm。h m ——The height of the measuring cavity of the middle cavity, cm.
实施例5:Example 5:
进行实施例2后,移除加压基座2和加压盖板3,进行实施例3中步骤四、步骤五,然后打开一号阀门11a和二号阀门11b,排出装置内的水分,再进行实施例4中的步骤五。After carrying out Example 2, remove the
实施以上步骤可完成试样的固结胀缩一体试验。Carry out the above steps to complete the consolidation expansion and contraction integration test of the sample.
实施例6:Example 6:
进行实施例4的同时,改变进气口空气的温湿度风速,可进行不同条件和次数下的试样干湿循环试验。While carrying out Example 4, the temperature, humidity and wind speed of the air at the air inlet can be changed, and the dry-wet cycle test of the sample under different conditions and times can be carried out.
膨胀试验过程中可实时测量膨胀过程中土体垂直方向和水平方向的变化;收缩试验过程中可实时测量土体收缩过程中垂直方向和围度的变化,得到土体在收缩过程中的体积变化;细粒土的胀缩试验过程中可调节侧向压力的大小,模拟不同深度处的地应力水平。During the expansion test, the changes in the vertical and horizontal directions of the soil body during the expansion process can be measured in real time; during the shrinkage test process, the changes in the vertical direction and girth of the soil body during the shrinkage process can be measured in real time, and the volume change of the soil body during the shrinkage process can be obtained. ; During the expansion and contraction test of fine-grained soil, the lateral pressure can be adjusted to simulate the in-situ stress level at different depths.
采用上述的一种高效的细粒土固结胀缩及干湿循环一体试验装置,其能较全面的反应干湿循环过程中,土体的结构变化,避免重复试验,减少试验时间。该装置设计结构简单,操作简便,稳定性好,各组构件经久耐用,不易耗损,实用性强,精度高,可根据试验需要设置一个或多个不同测试路径,操作简便易行,显著提高试验效率、灵活度、适用性及精确度,可以更加全面的评价不同干湿循环条件下,土体含水率变化,胀缩变化,固结特性和表面裂隙发展,具有广泛的应用前景。Using the above-mentioned high-efficiency fine-grained soil consolidation expansion and shrinkage and dry-wet cycle integrated test device, it can more comprehensively reflect the soil structure changes during the dry-wet cycle process, avoid repeated tests, and reduce test time. The device is simple in design and structure, easy to operate, and has good stability. Each group of components is durable, not easy to wear, and has strong practicability and high precision. One or more different test paths can be set according to the needs of the test. Efficiency, flexibility, applicability and accuracy can more comprehensively evaluate changes in soil moisture content, expansion and contraction, consolidation characteristics and surface crack development under different dry-wetting cycle conditions, and have broad application prospects.
本领域的技术人员容易理解,以上所述仅为本实用新型的较佳实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and replacements made within the spirit and principles of the present invention Improvements, etc., should be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120824891.8U CN216309983U (en) | 2021-04-21 | 2021-04-21 | An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120824891.8U CN216309983U (en) | 2021-04-21 | 2021-04-21 | An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN216309983U true CN216309983U (en) | 2022-04-15 |
Family
ID=81080713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202120824891.8U Active CN216309983U (en) | 2021-04-21 | 2021-04-21 | An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN216309983U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113514628A (en) * | 2021-04-21 | 2021-10-19 | 中国科学院武汉岩土力学研究所 | Fine grained soil consolidation swelling and shrinkage and dry-wet cycle integrated test device and test method thereof |
-
2021
- 2021-04-21 CN CN202120824891.8U patent/CN216309983U/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113514628A (en) * | 2021-04-21 | 2021-10-19 | 中国科学院武汉岩土力学研究所 | Fine grained soil consolidation swelling and shrinkage and dry-wet cycle integrated test device and test method thereof |
CN113514628B (en) * | 2021-04-21 | 2025-02-07 | 中国科学院武汉岩土力学研究所 | A fine-grained soil consolidation expansion and contraction and dry-wet cycle integrated test device and test method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108593883B (en) | Strain type lateral expansion force testing device and measuring method | |
CN111650082B (en) | Unsaturated soil water characteristic curve measuring device | |
CN101509865B (en) | Nonsaturated soil hydraulic parameter measuring device | |
CN101539563A (en) | High-pressure permeability consolidometer | |
CN110196255B (en) | Pressure plate instrument for rapid measurement of soil-water characteristic curve and its measurement method | |
CN108827853B (en) | Nuclear magnetic resonance-based tight reservoir rock electric measurement device and measurement method | |
CN103913557A (en) | Device for measuring the free swelling rate and the water content of rock and using method thereof | |
CN108414364A (en) | A kind of grain heap test device and the method using device measurement grain heap compressive deformation and grain heap interfacial pressure | |
CN216309983U (en) | An integrated test device for consolidation expansion and shrinkage of fine-grained soil and dry-wet cycle | |
CN102221387B (en) | Pressure plate instrument capable of directly measuring volume change of soil sample | |
CN203772853U (en) | Rock free swelling ratio and moisture content determining device | |
CN107036899B (en) | Large-scale K0 Consolidation Instrument for Measuring K0 Value of Coarse Grained Soil | |
CN205607820U (en) | Flexible wall infiltration appearance that measurable body becomes | |
CN201628668U (en) | A test device for measuring moisture characteristics of unsaturated soil | |
CN110987641A (en) | Device and method for measuring large triaxial test embedded quantity of coarse particles | |
CN204649237U (en) | Swelled ground infiltration, expansion, loading, consolidation testing device | |
CN208155804U (en) | Compact reservoir rock electrical measurement based on nuclear magnetic resonance | |
CN208224038U (en) | A kind of experimental provision for surveying permeability during the rock failure mechanism of rock in real time with constant flow | |
CN116519409A (en) | Coarse-grained soil sample preparation device and method for simulating seepage-erosion and measuring soil-water characteristics | |
CN113514628B (en) | A fine-grained soil consolidation expansion and contraction and dry-wet cycle integrated test device and test method | |
CN111855527A (en) | Device and method for detecting gas permeability of damaged concrete | |
CN203772852U (en) | Rock free swelling ratio and water absorption determining device for laboratories | |
CN107367440B (en) | Method for acetylene adsorption measurement | |
CN205333459U (en) | Characteristic curve of soil moisture survey device of level pressure power | |
CN210180875U (en) | A device for measuring the directional hydration expansion rate of clay minerals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |