CN202120623U - Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 - Google Patents
Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 Download PDFInfo
- Publication number
- CN202120623U CN202120623U CN2011202488331U CN201120248833U CN202120623U CN 202120623 U CN202120623 U CN 202120623U CN 2011202488331 U CN2011202488331 U CN 2011202488331U CN 201120248833 U CN201120248833 U CN 201120248833U CN 202120623 U CN202120623 U CN 202120623U
- Authority
- CN
- China
- Prior art keywords
- test
- module
- data
- output
- sram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 263
- 230000003068 static effect Effects 0.000 title abstract 2
- 230000004044 response Effects 0.000 claims abstract description 30
- 230000015654 memory Effects 0.000 claims description 22
- 101000685982 Homo sapiens NAD(+) hydrolase SARM1 Proteins 0.000 claims description 2
- 102100023356 NAD(+) hydrolase SARM1 Human genes 0.000 claims description 2
- 239000000849 selective androgen receptor modulator Substances 0.000 claims description 2
- 208000035126 Facies Diseases 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 claims 1
- 230000010354 integration Effects 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000004806 packaging method and process Methods 0.000 abstract 3
- 230000006870 function Effects 0.000 description 10
- 230000007246 mechanism Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Landscapes
- Tests Of Electronic Circuits (AREA)
Abstract
Description
技术领域 technical field
本实用新型涉及SoC芯片中嵌入式SRAM的测试结构。 The utility model relates to a test structure of an embedded SRAM in a SoC chip.
背景技术 Background technique
目前公知的嵌入式SRAM的测试大多采用内建自测试方法,这种方法可以实现存储器故障的检测,但是现有的方法并不能有效的解决嵌入式SRAM的测试复用问题。由于没有一个规范统一的测试结构,不同的SoC设计者对SRAM内建自测试的具体结构各有不同,系统的设计效率受到很大的影响。 Most of the currently known embedded SRAM tests adopt the built-in self-test method, which can realize the detection of memory faults, but the existing methods cannot effectively solve the test multiplexing problem of the embedded SRAM. Because there is no standardized and unified test structure, different SoC designers have different specific structures for SRAM built-in self-test, and the design efficiency of the system is greatly affected.
发明内容 Contents of the invention
本实用新型针对现有技术的不足,在充分研究IEEE 1500标准与内建自测试(BIST)的基础上,提出一种可进行测试复用的SoC中SRAM型存储器的测试结构。 The utility model aims at the deficiencies of the prior art, on the basis of fully studying the IEEE 1500 standard and the built-in self-test (BIST), proposes a test structure of the SRAM type memory in the SoC that can be used for test multiplexing.
基于IEEE 1500标准的嵌入式SRAM测试的基本结构包括:访问、控制以及隔离(如图1所示)。测试访问机制是指从嵌入式SRAM的输入端施加测试激励信号,并从嵌入式SRAM的输出端得到测试响应。嵌入式SRAM测试中的控制指的是启动和停止测试功能的模块。隔离指的是电气上将嵌入式SRAM的输入与输出端口与连接这些端口的芯片电路或者其他的核进行分离,从而避免测试对其他核或者用户自定义逻辑产生副作用,同时也保护了该核在邻近电路测试时不受影响。各主要部件简要说明如下: The basic structure of the embedded SRAM test based on the IEEE 1500 standard includes: access, control and isolation (as shown in Figure 1). The test access mechanism refers to applying a test excitation signal from the input end of the embedded SRAM, and getting a test response from the output end of the embedded SRAM. Control in embedded SRAM testing refers to the module that starts and stops the test function. Isolation refers to the electrical separation of the input and output ports of the embedded SRAM from the chip circuit or other cores connected to these ports, so as to avoid the side effects of the test on other cores or user-defined logic, and also protect the core. Adjacent circuits are not affected when tested. The main components are briefly described as follows:
A. 测试源和测试收集, 测试源的功能是为测试核提供测试时所需要的激励,而测试收集的功能是获取测试核的测试响应。将测试源数据与测试收集数据进行比较即可判断检测结果。 A. Test source and test collection, the function of the test source is to provide the test core with the stimulus needed for testing, and the function of the test collection is to obtain the test response of the test core. The detection results are judged by comparing the test source data with the test collection data.
B. 测试访问机制,测试访问机制的功能是传输测试的数据,包括将测试激励从测试源传送至测试核,同时将测试核的测试响应从测试壳中传送至测试收集; B. Test access mechanism, the function of the test access mechanism is to transmit test data, including transmitting the test stimulus from the test source to the test core, and at the same time transmitting the test response of the test core from the test shell to the test collection;
C. 测试壳,测试壳是测试核与核周边电路的一个接口,主要起到被测核与测试访问机制和其他电路的切换作用,通过测试壳,测试的访问机制以及其他部分才能访问嵌入式SRAM测试核的内部。 C. The test shell, the test shell is an interface between the test core and the peripheral circuits of the core. It mainly plays the role of switching between the tested core and the test access mechanism and other circuits. Only through the test shell, the test access mechanism and other parts can access the embedded The internals of the SRAM test core.
基于上述基本原理结构,本实用新型提供一种基于IEEE 1500的SoC中嵌入式SRAM存储器的测试结构,包括BIST测试控制器和嵌入式SRAM封装的基于IEEE 1500标准的测试壳。测试壳接收BIST测试控制器送来的控制信号、指令信号、测试地址数据、测试激励数据,并将测试响应数据输出到BIST测试控制器;测试壳Wrapper围绕着被测嵌入式SRAM,测试壳中的各组成单元符合IEEE 1500标准功能描述。 Based on the above-mentioned basic principle structure, the utility model provides a test structure based on the IEEE 1500 SoC embedded SRAM memory, including a BIST test controller and a test shell based on the IEEE 1500 standard packaged by the embedded SRAM. The test shell receives the control signal, instruction signal, test address data, and test stimulus data sent by the BIST test controller, and outputs the test response data to the BIST test controller; the test shell Wrapper surrounds the embedded SRAM under test, and the test shell Wrapper Each constituent unit conforms to the IEEE 1500 standard functional description.
所述测试壳Wrapper围绕着被测嵌入式SRAM,解决了嵌入式SoC的测试访问、测试控制和观察机制等测试问题。测试壳主要包括有5个部分:边界寄存器WBR、旁路寄存器WBY、指令寄存器WIR、串行访问接口WSI和WSO、控制接口WIP。其中: The test shell Wrapper surrounds the embedded SRAM to be tested, and solves testing problems such as test access, test control and observation mechanism of the embedded SoC. The test shell mainly includes 5 parts: boundary register WBR, bypass register WBY, instruction register WIR, serial access interface WSI and WSO, control interface WIP. in:
WBR提供测试数据从Wrapper接口端进入嵌入式SRAM内部I/O端口的访问路径,WBR用来响应WIR的相关指令。WBR的操作包括移位、捕获以及更新等功能,可以实现嵌入式SRAM的隔离,测试核输入的可控性与输出的可观性。根据WBR要完成的操作,WBR由下述数据端口组成:功能输入端口FI,功能输出端口FO,测试输入端口TI,测试输出端口TO。 WBR provides the access path for test data to enter the I/O port inside the embedded SRAM from the Wrapper interface, and WBR is used to respond to the relevant instructions of WIR. The operation of WBR includes functions such as shift, capture and update, which can realize the isolation of embedded SRAM, and test the controllability of core input and the observability of output. According to the operation to be completed by WBR, WBR is composed of the following data ports: function input port FI, function output port FO, test input port TI, test output port TO.
所述BIST测试控制器主要含有完成控制逻辑、测试数据生成、测试响应分析功能模块。控制逻辑用来启动和停止测试,并对Wrapper的接口WIP进行控制和管理,测试数据生成包括地址、读写以及测试激励数据并输入到测试壳Wrapper,测试响应分析对测试的响应进行收集,对结果进行分析并判断SRAM是否存在故障;测试控制器包括算法状态机模块、指令数据模块、读写信号模块、地址数据模块、输入缓存模块、输出缓存模块、控制信号模块、结果比较模块;算法状态机模块与指令数据模块、读写信号模块、地址数据模块、控制信号模块、结果比较模块相连,并控制其工作状态,读写信号模块与输出缓存模块相连,控制输出缓存模块的读写状态,指令数据模块与输出缓存模块相连,通过输出缓存模块向测试壳输出测试指令,地址数据模块与输出缓存模块相连,地址数据模块产生的测试地址数据通过输出缓存模块输出到测试壳,数据背景模块与输出缓存模块相连,数据背景模块产生的测试激励数据和指令信号通过输出缓存模块输出到测试壳,输出缓存模块的数据输出端WSO与测试壳的数据输入端WSI相连,控制信号模块与测试壳相连,输出控制信号,输入缓存模块的数据输入端WSI与测试壳的数据输出端WSO相连,接收测试响应信号,输入缓存模块与结果比较模块相连,将接收到的测试响应数据输出到结果比较器,数据背景模块与结果比较模块相连,将生成的测试激励数据输出到结果比较模块,结果比较模块将测试激励数据与测试响应数据进行比较,并输出比较结果。 The BIST test controller mainly includes functional modules for completing control logic, test data generation, and test response analysis. The control logic is used to start and stop the test, and to control and manage the interface WIP of the Wrapper. The test data generation includes address, read and write, and test stimulus data and input them to the test shell Wrapper. The test response analysis collects the test response. Analyze the results and judge whether there is a fault in the SRAM; the test controller includes an algorithm state machine module, an instruction data module, a read and write signal module, an address data module, an input cache module, an output cache module, a control signal module, and a result comparison module; the algorithm state The computer module is connected with the command data module, read-write signal module, address data module, control signal module, and result comparison module, and controls its working status. The read-write signal module is connected with the output cache module, and controls the read-write status of the output cache module. The instruction data module is connected with the output cache module, and the test command is output to the test shell through the output cache module, and the address data module is connected with the output cache module, and the test address data generated by the address data module is output to the test shell through the output cache module, and the data background module and The output buffer module is connected, and the test stimulus data and instruction signals generated by the data background module are output to the test case through the output buffer module. The data output terminal WSO of the output buffer module is connected to the data input terminal WSI of the test case, and the control signal module is connected to the test case. , the output control signal, the data input terminal WSI of the input buffer module is connected with the data output terminal WSO of the test shell, receives the test response signal, the input buffer module is connected with the result comparison module, and outputs the received test response data to the result comparator, The data background module is connected with the result comparison module, and outputs the generated test stimulus data to the result comparison module. The result comparison module compares the test stimulus data with the test response data, and outputs the comparison result.
本实用新型的基于IEEE 1500的SoC中嵌入式SRAM存储器测试结构的工作过程是: The work process of embedded SRAM memory test structure in the SoC based on IEEE 1500 of the present utility model is:
A.进行工作模式选择,根据状态模式选择信号选择工作模式,其值为00,则嵌入式SRAM工作于正常模式;其值为01,则嵌入式SRAM工作于旁路模式;其值为11,则嵌入式SRAM工作于测试模式; A. Select the working mode, select the working mode according to the state mode selection signal, if the value is 00, the embedded SRAM works in the normal mode; if the value is 01, the embedded SRAM works in the bypass mode; if the value is 11, the embedded SRAM Type SRAM works in test mode;
B.开始信号为1时,开始进行SRAM的故障检测; B. When the start signal is 1, the SRAM fault detection is started;
C.BIST测试控制器根据测试算法,生成测试激励数据,并将测试激励数据通过测试壳Wrapper送入SRAM中。 C. The BIST test controller generates test stimulus data according to the test algorithm, and sends the test stimulus data to the SRAM through the test shell Wrapper.
D.测试控制器通过测试壳Wrapper取得从SRAM返回的测试响应数据; D. The test controller obtains the test response data returned from the SRAM through the test shell Wrapper;
E.测试控制器将测试激励数据和测试响应数据进行比较,得出比较结果; E. The test controller compares the test stimulus data with the test response data to obtain a comparison result;
F.比较结果如果是测试激励数据与测试响应数据不相同,则报错,并结束测试;如果相等,则根据测试算法重复C、D、E步骤,直到测试完成。 F. If the comparison result is that the test stimulus data is different from the test response data, an error will be reported and the test will end; if they are equal, steps C, D, and E will be repeated according to the test algorithm until the test is completed.
设计嵌入式SRAM测试结构所用到的机器设备包括计算机、示波器、逻辑分析仪、FPGA开发板等,为现有技术。 The machines and equipment used to design the embedded SRAM test structure include computers, oscilloscopes, logic analyzers, FPGA development boards, etc., which are prior art.
以嵌入式SRAM为测试对象,对测试结构进行功能验证,验证结果如表1所示。验证结果表明,基于IEEE 1500的嵌入式SRAM测试结构能够准确的检测出存储器存在的故障,采用SRAM规范化的测试结构可以实现存储器的测试复用,提高SoC集成与测试的效率。 Taking embedded SRAM as the test object, the function verification of the test structure is carried out, and the verification results are shown in Table 1. The verification results show that the embedded SRAM test structure based on IEEE 1500 can accurately detect the faults in the memory, and the standardized test structure of SRAM can realize the test multiplexing of the memory and improve the efficiency of SoC integration and testing.
表1:基于IEEE 1500的嵌入式SRAM存储器验证内容及结果 Table 1: Contents and results of IEEE 1500-based embedded SRAM memory verification
本实用新型的优点一是根据IEEE 1500标准中功能描述设计了Wrapper中各组成单元,解决了嵌入式SRAM的测试访问、测试隔离和测试的控制问题。由于Wrapper具有规范性,就使得不同类型的嵌入式SRAM从测试集成的角度来看是同构的,这样所有的SRAM测试都能用相同的方法测试,就实现了测试结构的复用。二是设计了相应的BIST测试控制器,该控制器根据测试算法生成测试激励数据、控制封装壳Wrapper、进行响应分析、输出测试结果。应用该测试结构及测试方法,能够检测出嵌入式SRAM存储器存在故障,有利于嵌入式SRAM存储器的测试复用,可以有效的提高SoC的集成效率。 Advantage one of the utility model is that each component unit in the Wrapper is designed according to the functional description in the IEEE 1500 standard, which solves the test access, test isolation and test control problems of the embedded SRAM. Due to the standardization of Wrapper, different types of embedded SRAMs are isomorphic from the perspective of test integration, so that all SRAM tests can be tested with the same method, and the reuse of test structures is realized. The second is to design the corresponding BIST test controller, which generates test stimulus data according to the test algorithm, controls the package Wrapper, performs response analysis, and outputs test results. By applying the test structure and the test method, it is possible to detect faults in the embedded SRAM memory, which is beneficial to the test multiplexing of the embedded SRAM memory, and can effectively improve the integration efficiency of the SoC.
由上可知,SoC中不同类型的嵌入式SRAM存储器都可以按照本实用新型中SRAM测试壳的封装实例进行封装。这样,SoC存储器的使用者在进行测试时将更加方便,测试集成和测试复用将更有效。在进行不同类型嵌入式SRAM存储器测试时,只要进行测试算法的改动,而不必对Wrapper和控制器的接口功能进行改动。通过嵌入式SRAM封装的Wrapper与SRAM测试控制器就能很方便的完成不同类型SRAM的故障测试,有利于存储器测试结构的规范化以及存储器核的测试复用。 It can be known from the above that different types of embedded SRAM memories in the SoC can be packaged according to the package example of the SRAM test case in the present invention. In this way, users of SoC memory will be more convenient when testing, and test integration and test reuse will be more effective. When testing different types of embedded SRAM memories, it is only necessary to change the test algorithm without changing the interface functions of the Wrapper and the controller. The Wrapper and SRAM test controller packaged by the embedded SRAM can easily complete the fault test of different types of SRAM, which is conducive to the standardization of the memory test structure and the test reuse of the memory core.
附图说明 Description of drawings
图1为本实用新型嵌入式SRAM测试基本原理示意图; Fig. 1 is a schematic diagram of the basic principle of the utility model embedded SRAM test;
图2为本实用新型基于IEEE 1500 的嵌入式SRAM存储器测试结构连接示意图; Fig. 2 is the connection schematic diagram of the embedded SRAM memory test structure of the utility model based on IEEE 1500;
图3为本实用新型SRAM封装测试壳Wrapper结构示意图; Fig. 3 is a schematic structural diagram of the utility model SRAM package test shell Wrapper;
图4为本实用新型BIST测试控制器结构示意图。 Fig. 4 is a structural schematic diagram of the BIST test controller of the present invention.
具体实施方式 Detailed ways
下面结合附图和实施例,对本实用新型的具体实施方式进行详细描述。 The specific implementation of the present utility model will be described in detail below in conjunction with the accompanying drawings and examples.
如图2所示,一种基于IEEE 1500的嵌入式SRAM存储器测试结构,包括BIST测试控制器和嵌入式SRAM封装的基于IEEE 1500标准的测试壳,测试壳接收BIST测试控制器送来的控制信号、指令信号、测试地址数据、测试激励数据,并将测试 响应 数据输出到BIST测试控制器,测试壳Wrapper围绕着被测嵌入式SRAM,测试壳中的各组成单元符合IEEE 1500标准功能描述;BIST测试控制器有时钟信号,状态模式控制信号端口,测试控制器的对测试壳Wrapper的控制信号输出端口连接至与测试壳的相应端口;测试壳的数据输出端口WSO与测试壳的数据接收端口连接;测试壳的数据输入端口WSI与测试壳的数据输出端口连接。 As shown in Figure 2, an IEEE 1500-based embedded SRAM memory test structure, including a BIST test controller and an embedded SRAM package based on IEEE 1500 standard test shell, the test shell receives the control signal sent by the BIST test controller , command signal, test address data, test stimulus data, and output the test response data to the BIST test controller, the test shell Wrapper surrounds the tested embedded SRAM, and each component unit in the test shell conforms to the IEEE 1500 standard function description; BIST The test controller has a clock signal, a state mode control signal port, and the test controller’s control signal output port to the test shell Wrapper is connected to the corresponding port of the test shell; the data output port WSO of the test shell is connected to the data receiving port of the test shell ; The data input port WSI of the test shell is connected to the data output port of the test shell.
如图3所示,所述测试壳Wrapper包括:边界寄存器WBR、旁路寄存器WBY、指令寄存器WIR、控制接口WIP、数据输入端口WSI、数据输出端口WSO等;边界寄存器WBR上的各分为两组,一组WBR_in的并行输出端分别与SRAM的数据输入端、地址数据输入端、读写使能信号输入端相连,另一组WBR_out的并行输入端与与SARM的数据输出端相连,边界寄存器WBR控制信号端与指令寄存器WIR相连,控制接口WIP的控制信号输出端与指令寄存器WIR相连。旁路寄存器WBY被连接在WSI和WSO之间,提供一个旁路的路径以使测试数据快速通过测试壳,可以有效的缩短扫描的路径。 As shown in Figure 3, described test shell Wrapper comprises: boundary register WBR, bypass register WBY, instruction register WIR, control interface WIP, data input port WSI, data output port WSO etc.; Group, the parallel output terminals of a group of WBR_in are respectively connected to the data input terminal of SRAM, the address data input terminal, and the input terminal of the read and write enable signal, and the parallel input terminals of another group of WBR_out are connected to the data output terminal of SARM, and the boundary register The WBR control signal terminal is connected to the command register WIR, and the control signal output terminal of the control interface WIP is connected to the command register WIR. The bypass register WBY is connected between the WSI and the WSO, providing a bypass path so that the test data can quickly pass through the test shell, which can effectively shorten the scanning path.
如图4所示,所述BIST测试控制器包括:算法状态机模块、指令数据模块、读写信号模块、地址数据模块、输入缓存模块、输出缓存模块、控制信号模块、结果比较模块;算法状态机模块与指令数据模块、读写信号模块、地址数据模块、控制信号模块、结果比较模块相连,并控制其工作状态,读写信号模块与输出缓存模块相连,控制输出缓存模块的读写状态,指令数据模块与输出缓存模块相连,通过输出缓存模块向测试壳输出测试指令,地址数据模块与输出缓存模块相连,地址数据模块产生的测试地址数据通过输出缓存模块输出到测试壳,数据背景模块与输出缓存模块相连,数据背景模块产生的测试激励数据和指令信号通过输出缓存模块输出到测试壳,输出缓存模块的数据输出端WSO与测试壳的数据输入端WSI相连,控制信号模块与测试壳相连,输出控制信号,输入缓存模块的数据输入端WSI与测试壳的数据输出端WSO相连,接收测试响应信号,输入缓存模块与结果比较模块相连,将接收到的测试响应数据输出到结果比较器,数据背景模块与结果比较模块相连,将生成的测试激励数据输出到结果比较模块,结果比较模块将测试激励数据与测试响应数据进行比较,并输出比较结果。 As shown in Figure 4, described BIST test controller comprises: algorithm state machine module, instruction data module, read and write signal module, address data module, input buffer module, output buffer module, control signal module, result comparison module; Algorithm state The computer module is connected with the command data module, read-write signal module, address data module, control signal module, and result comparison module, and controls its working status. The read-write signal module is connected with the output cache module, and controls the read-write status of the output cache module. The instruction data module is connected with the output cache module, and the test command is output to the test shell through the output cache module, and the address data module is connected with the output cache module, and the test address data generated by the address data module is output to the test shell through the output cache module, and the data background module and The output buffer module is connected, and the test stimulus data and instruction signals generated by the data background module are output to the test case through the output buffer module. The data output terminal WSO of the output buffer module is connected to the data input terminal WSI of the test case, and the control signal module is connected to the test case. , the output control signal, the data input terminal WSI of the input buffer module is connected with the data output terminal WSO of the test shell, receives the test response signal, the input buffer module is connected with the result comparison module, and outputs the received test response data to the result comparator, The data background module is connected with the result comparison module, and outputs the generated test stimulus data to the result comparison module. The result comparison module compares the test stimulus data with the test response data, and outputs the comparison result.
根据图2、图3和图4,一种基于IEEE 1500标准的嵌入式SRAM存储器测试方法,在算法状态机模块的控制下,其工作过程如下: According to Fig. 2, Fig. 3 and Fig. 4, a kind of embedded SRAM memory test method based on IEEE 1500 standard, under the control of the algorithm state machine module, its working process is as follows:
A.进行工作模式选择,根据状态模式选择信号选择工作模式,其值为00,则嵌入式SRAM工作于正常模式;其值为01,则嵌入式SRAM工作于旁路模式;其值为11,则嵌入式SRAM工作于测试模式; A. Select the working mode, select the working mode according to the state mode selection signal, if the value is 00, the embedded SRAM works in the normal mode; if the value is 01, the embedded SRAM works in the bypass mode; if the value is 11, the embedded SRAM Type SRAM works in test mode;
B.开始信号为1时,开始进行SRAM的故障检测; B. When the start signal is 1, the SRAM fault detection is started;
C.BIST测试控制器根据测试算法,生成测试激励数据,并将测试激励数据通过测试壳Wrapper送入SRAM中。 C. The BIST test controller generates test stimulus data according to the test algorithm, and sends the test stimulus data to the SRAM through the test shell Wrapper.
D.测试控制器通过测试壳Wrapper取得从SRAM返回的测试响应数据; D. The test controller obtains the test response data returned from the SRAM through the test shell Wrapper;
E.测试控制器将测试激励数据和测试响应数据进行比较,得出比较结果; E. The test controller compares the test stimulus data with the test response data to obtain a comparison result;
F.比较结果如果是测试激励数据与测试响应数据不相同,则报错,并结束测试;如果相等,则根据测试算法重复C、D、E步骤,直到测试完成。 F. If the comparison result is that the test stimulus data is different from the test response data, an error will be reported and the test will end; if they are equal, steps C, D, and E will be repeated according to the test algorithm until the test is completed.
优选的,指令信号生成、传输、和指令译码的步骤:由算法状态机模块控制指令数据模块生成指令数据,指令数据送入输出缓存模块,输出缓存模块将指令数据送入指令寄存器,指令寄存器对指令数据进行指令译码,生成指令信号;由指令信号控制测试壳接收测试控制器送来的测试激励数据、地址数据、SRAM读写信号,并控制测试壳将SRAM生成的测试响应数据传送到测试控制器。 Preferably, the steps of instruction signal generation, transmission, and instruction decoding: the instruction data module is controlled by the algorithm state machine module to generate instruction data, the instruction data is sent to the output buffer module, and the output buffer module sends the instruction data to the instruction register, and the instruction register Instruction decoding is performed on the instruction data to generate an instruction signal; the instruction signal controls the test shell to receive the test stimulus data, address data, and SRAM read and write signals sent by the test controller, and controls the test shell to transmit the test response data generated by the SRAM to the Test the controller.
优选的,地址数据生成、传输的步骤:由地址数据生成模块生成地址数据,地址数据送入输出缓存模块,输出缓存模块通过缓冲器将地址数据串行送入边界寄存器,边界寄存器将地址数据送入SRAM。 Preferably, the steps of address data generation and transmission: the address data generation module generates address data, the address data is sent to the output buffer module, the output buffer module sends the address data serially into the boundary register through the buffer, and the boundary register sends the address data to into SRAM.
优选的,测试激励数据生成、传输的步骤:由数据背景模块生成生成测试激励数据,测试激励数据送入输出缓存模块,输出缓存模块通过缓冲器将测试激励数据串行送入边界寄存器,边界寄存器将测试激励数据送入SRAM。 Preferably, the steps of test stimulus data generation and transmission: the test stimulus data is generated by the data background module, the test stimulus data is sent to the output buffer module, and the output cache module sends the test stimulus data serially to the boundary register through the buffer, and the boundary register Send test stimulus data into SRAM.
优选的,包括测试响应数据取得和传输的步骤:将SRAM中生成的测试响应数据通过缓冲器传输到输入缓存模块,结果比较模块从输入缓存器取得测试响应数。 Preferably, the step of obtaining and transmitting the test response data is included: the test response data generated in the SRAM is transmitted to the input buffer module through the buffer, and the result comparison module obtains the test response number from the input buffer.
优选的,包括旁路寄存器工作的步骤:在不需要对当前嵌入式SRAM进行测试时,BIST测试控制器Mode0、Mode1的值为01,嵌入式SRAM处于旁路工作模式,BIST控制器生成的测试数据不再通过WBR,测试数据选择WBY作为通过的路径。 Preferably, the step of bypass register work is included: when the current embedded SRAM does not need to be tested, the values of BIST test controller Mode0 and Mode1 are 01, the embedded SRAM is in bypass mode, and the test generated by the BIST controller The data no longer passes through WBR, and the test data chooses WBY as the passing path.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202488331U CN202120623U (en) | 2011-07-15 | 2011-07-15 | Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011202488331U CN202120623U (en) | 2011-07-15 | 2011-07-15 | Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN202120623U true CN202120623U (en) | 2012-01-18 |
Family
ID=45461671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011202488331U Expired - Fee Related CN202120623U (en) | 2011-07-15 | 2011-07-15 | Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN202120623U (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332306A (en) * | 2011-07-15 | 2012-01-25 | 桂林电子科技大学 | Test structure and test method of embedded SRAM memory based on IEEE 1500 |
CN105117314A (en) * | 2015-07-07 | 2015-12-02 | 福州瑞芯微电子股份有限公司 | Memory module verifying method and system |
CN105760268A (en) * | 2016-02-23 | 2016-07-13 | 大唐微电子技术有限公司 | On-chip random access memory built-in self-testing method and device |
CN109192239A (en) * | 2018-07-25 | 2019-01-11 | 上海交通大学 | The on-chip test circuit and test method of SRAM memory |
CN111292797A (en) * | 2020-03-11 | 2020-06-16 | 中国科学院微电子研究所 | Memory chip and test circuit and test method thereof |
-
2011
- 2011-07-15 CN CN2011202488331U patent/CN202120623U/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102332306A (en) * | 2011-07-15 | 2012-01-25 | 桂林电子科技大学 | Test structure and test method of embedded SRAM memory based on IEEE 1500 |
CN105117314A (en) * | 2015-07-07 | 2015-12-02 | 福州瑞芯微电子股份有限公司 | Memory module verifying method and system |
CN105117314B (en) * | 2015-07-07 | 2017-07-11 | 福州瑞芯微电子股份有限公司 | The verification method and system of a kind of Memory modules |
CN105760268A (en) * | 2016-02-23 | 2016-07-13 | 大唐微电子技术有限公司 | On-chip random access memory built-in self-testing method and device |
CN105760268B (en) * | 2016-02-23 | 2018-10-09 | 大唐微电子技术有限公司 | A kind of on piece random access memory build-in self-test method and device |
CN109192239A (en) * | 2018-07-25 | 2019-01-11 | 上海交通大学 | The on-chip test circuit and test method of SRAM memory |
CN111292797A (en) * | 2020-03-11 | 2020-06-16 | 中国科学院微电子研究所 | Memory chip and test circuit and test method thereof |
CN111292797B (en) * | 2020-03-11 | 2022-04-19 | 中国科学院微电子研究所 | Memory chip and test circuit and test method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103310852B (en) | MBIST Controller Structure System Compatible with SRAM/ROM Based on IEEE 1500 Standard | |
US7340658B2 (en) | Technique for combining scan test and memory built-in self test | |
CN102332306A (en) | Test structure and test method of embedded SRAM memory based on IEEE 1500 | |
CN104569794B (en) | A kind of FPGA In-circiut testers and method of testing based on boundary-scan architecture | |
CN102831272B (en) | Design-for-Test Methodology for Dual-Edge Triggers | |
CN113157501B (en) | ATE (automatic test equipment) tester-based AC (alternating current) parameter testing method for microsystem module | |
CN202120623U (en) | Embedded static random access memory (SRAM) testing structure based on institute of electrical and electronic engineers (IEEE) 1500 | |
CN102305907A (en) | Test method and system for multichip encapsulating structure | |
CN112595966A (en) | IEEE standard based Chiplet circuit testing method | |
CN103617810A (en) | Test structure and test method for embedded memory | |
US20090228751A1 (en) | method for performing logic built-in-self-test cycles on a semiconductor chip and a corresponding semiconductor chip with a test engine | |
WO2007113940A1 (en) | Semiconductor test device | |
US11662383B2 (en) | High-speed functional protocol based test and debug | |
CN103345944B (en) | Storage device and method for testing storage device through test machine | |
CN102183727B (en) | Boundary scanning test method with error detection function | |
US8103927B2 (en) | Field mounting-type test apparatus and method for testing memory component or module in actual PC environment | |
Querbach et al. | A reusable BIST with software assisted repair technology for improved memory and IO debug, validation and test time | |
US7231565B2 (en) | Method for performing built-in and at-speed test in system-on-chip | |
US9222982B2 (en) | Test apparatus and operating method thereof | |
Im et al. | Advanced safety test solution for automotive SoC based on In-System-Test architecture | |
Ungar et al. | IEEE-1149. X standards: achievements vs. expectations | |
CN203573309U (en) | Testing structure for embedded system memory | |
CN102645609B (en) | Joint test action group (JTAG) link circuit test device and test method of JTAG chain circuit test device | |
Neishaburi et al. | Hierarchical trigger generation for post-silicon debugging | |
Marinissen et al. | IEEE Std P3405: New Standard-under-Development for Chiplet Interconnect Test and Repair |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120118 Termination date: 20150715 |
|
EXPY | Termination of patent right or utility model |