CN204636623U - 3D metal embedded bone trabecula intervertebral fusion device - Google Patents
3D metal embedded bone trabecula intervertebral fusion device Download PDFInfo
- Publication number
- CN204636623U CN204636623U CN201520009146.2U CN201520009146U CN204636623U CN 204636623 U CN204636623 U CN 204636623U CN 201520009146 U CN201520009146 U CN 201520009146U CN 204636623 U CN204636623 U CN 204636623U
- Authority
- CN
- China
- Prior art keywords
- fusion device
- intervertebral fusion
- bone
- metal
- intervertebral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 57
- 239000002184 metal Substances 0.000 title claims abstract description 57
- 230000004927 fusion Effects 0.000 title claims abstract description 55
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 39
- 210000002449 bone cell Anatomy 0.000 abstract description 4
- 230000002980 postoperative effect Effects 0.000 abstract description 2
- 238000003672 processing method Methods 0.000 description 9
- 238000010894 electron beam technology Methods 0.000 description 8
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 7
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000399 orthopedic effect Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910000531 Co alloy Inorganic materials 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000000735 allogeneic effect Effects 0.000 description 3
- 238000013499 data model Methods 0.000 description 3
- 208000021600 intervertebral disc degenerative disease Diseases 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- -1 tantalum metals Chemical class 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 206010061246 Intervertebral disc degeneration Diseases 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000002639 bone cement Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 208000018180 degenerative disc disease Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Prostheses (AREA)
Abstract
本实用新型提供了一种椎间融合器,其外形轮廓为肾形实体设计,其主体与椎体融合面为便于骨细胞长入的3D金属骨小梁结构,术中选用适当大小的椎间融合器装入已被取出的受损宿主椎间盘部位,用后路钉棒系统连接固定上下两相邻宿主健康椎体,本实用新型3D金属骨小梁椎间融合器既具有良好的术后即刻稳定性并兼顾良好的骨融合、能有效抗沉陷,手术简便可靠。
The utility model provides an intervertebral fusion device, the outline of which is designed as a kidney-shaped entity, and the fusion surface of the main body and the vertebral body is a 3D metal bone trabecular structure that facilitates the growth of bone cells. The fusion device is put into the damaged intervertebral disc of the host that has been taken out, and the upper and lower adjacent healthy vertebral bodies of the host are connected and fixed by the posterior screw rod system. The utility model 3D metal trabecular intervertebral fusion device has good immediate postoperative Stability and good bone fusion, effective anti-subsidence, simple and reliable operation.
Description
技术领域 technical field
本实用新型涉及骨科手术植入体,特别是一种用于椎间融合术的椎间融合器。 The utility model relates to an orthopedic surgical implant, in particular to an intervertebral fusion device used for intervertebral fusion.
背景技术 Background technique
椎间盘退行性病变是一种常见的骨科疾病,现代医学实施椎间融合手术治疗椎间盘退行性病变已经相当成熟,但在一些病例中,由于植入的常规椎间融合器只作为支撑椎体间隙的植入物,需要配合植骨才能实现椎体间的融合,而当前医学界常规使用的方法是椎间植入自体骨或异体骨,内置金属支撑器或椎间融合器等等。但由于自体骨来源有限,异体骨价格昂贵且有生物学方面的风险,因此并不是每一位需要进行骨缺损填充的患者都能够得到满意的治疗;而内置金属支撑器由于受椎体粗细的约束,植入的支撑器或椎间融合器其直径有限,无法提供大面积的支撑,容易出现术后椎板的沉陷而造成椎间隙的二次狭窄。 Intervertebral disc degenerative disease is a common orthopedic disease. Modern medicine has implemented intervertebral fusion surgery to treat intervertebral disc degenerative disease. Implants need to cooperate with bone grafts to achieve intervertebral fusion, while the current conventional method in the medical field is intervertebral implantation of autologous bone or allogeneic bone, built-in metal supporter or intervertebral fusion device, etc. However, due to the limited source of autologous bone, allograft bone is expensive and has biological risks, so not every patient who needs bone defect filling can receive satisfactory treatment; Constraints, the implanted support or intervertebral fusion device has a limited diameter and cannot provide large-area support, and it is prone to subsidence of the lamina after surgery, resulting in secondary narrowing of the intervertebral space.
发明内容 Contents of the invention
本实用新型的目的是提供一种可用于椎间盘退行性病变融合手术的填充支撑融合的3D金属骨小梁椎间融合器,该3D金属骨小梁椎间融合器具有类似肾形的外形轮廓设计,其内部具有类似人体松质骨的3D金属骨小梁结构,手术时可根据锥间隙需要来选择合适尺寸的3D金属骨小梁椎间融合器来填充椎体间隙,并提供支撑力,由于其与椎体融合面采用的3D金属骨小梁结构所具有的类似松质骨结构的粗糙面与上下椎体嵌入式结合,给植入后的椎间融合器提供了初始稳定功能以形成对上下椎体的支撑,患者康复过程中骨细胞与微细血管沿着3D金属骨小梁结构的微孔爬行长入,最终形成具有活性的融合嵌入式椎间融合器。 The purpose of this utility model is to provide a 3D metal trabecular intervertebral fusion device that can be used for filling and supporting fusion in the fusion operation of intervertebral disc degeneration. The 3D metal trabecular intervertebral fusion device has a kidney-shaped outline design , which has a 3D metal trabecular bone structure similar to human cancellous bone. During surgery, you can choose a suitable size 3D metal trabecular bone fusion cage to fill the vertebral space and provide support according to the needs of the cone gap. The 3D metal trabecular bone structure used in the fusion surface of the vertebral body has a rough surface similar to the cancellous bone structure and is embedded in the upper and lower vertebral bodies, providing an initial stabilizing function for the implanted intervertebral fusion cage to form a pair With the support of the upper and lower vertebral bodies, bone cells and tiny blood vessels crawl and grow in along the micropores of the 3D metal trabecular structure during the patient's rehabilitation process, and finally form an active fusion embedded intervertebral fusion cage.
为实现上述目的,本实用新型采取以下设计方案: In order to achieve the above object, the utility model takes the following design scheme:
3D金属骨小梁椎间融合器,其特征在于,该3D金属骨小梁椎间融合器外部轮廓为肾形,内部具有类似人体松质骨的3D金属骨小梁结构,其上下面均为平面设计,使用时将3D金属骨小梁椎间融合器上下椎体间隙部位。 The 3D metal trabecular intervertebral fusion device is characterized in that the outer contour of the 3D metal trabecular intervertebral fusion device is kidney-shaped, and the inside has a 3D metal trabecular structure similar to human cancellous bone. Flat design, when in use, place the 3D metal trabecular intervertebral fusion cage at the upper and lower vertebral body spaces.
所述3D金属骨小梁椎间融合器其特征在于,该3D金属骨小梁椎间融合器具有类似人体松质骨结构,其直径0.10~2mm,当3D金属骨小梁椎间融合 器被植入椎体间隙部位后,其与椎体融合面采用的3D金属骨小梁结构的粗糙面与上下椎体嵌入式结合以形成初始定位。 The 3D metal trabecular intervertebral fusion device is characterized in that the 3D metal trabecular intervertebral fusion device has a structure similar to human cancellous bone, and its diameter is 0.10 to 2 mm. When the 3D metal trabecular intervertebral fusion device is After implanting in the intervertebral space, the rough surface of the 3D metal trabecular structure used in the fusion surface of the vertebral body is embedded with the upper and lower vertebral bodies to form an initial positioning.
所述3D金属骨小梁椎间融合器其特征在于它采用医用金属制成,所述医用金属包括但不局限于钛及钛合金、钴合金、不锈钢以及钽金属、镁合金。 The 3D metal trabecular intervertebral fusion device is characterized in that it is made of medical metals, including but not limited to titanium and titanium alloys, cobalt alloys, stainless steel, tantalum metals, and magnesium alloys.
所述3D金属骨小梁椎间融合器表面全部或局部具有羟基磷灰石涂层,该羟基磷灰石涂层有诱导骨细胞生长的功能。 The surface of the 3D metal trabecular intervertebral fusion device is entirely or partially coated with hydroxyapatite, and the hydroxyapatite coating has the function of inducing bone cell growth.
所述3D金属骨小梁椎间融合器的加工方法是:使用高能电子束熔融成型技术;羟基磷灰石涂层则通过高温喷涂或电化学沉积得到。 The processing method of the 3D metal trabecular intervertebral fusion device is as follows: high-energy electron beam fusion molding technology is used; the hydroxyapatite coating is obtained by high-temperature spraying or electrochemical deposition.
本实用新型的优点是: The utility model has the advantages of:
1.本实用新型3D金属骨小梁椎间融合器,其外部轮廓为肾形,具有类似人体松质骨的3D金属骨小梁结构,其外部轮廓尺寸长度为26~28mm、高度为7~12mm,以提供各种椎间隙大小填充尺寸的多种选择。 1. The 3D metal trabecular intervertebral fusion device of this utility model has a kidney-shaped outer contour and a 3D metal trabecular bone structure similar to human cancellous bone. 12mm to provide a variety of filling sizes for various intervertebral space sizes.
2.本实用新型3D金属骨小梁椎间融合器,在使用时由医生根据需要选择适当长度和高度的3D金属骨小梁椎间融合器装填于椎体间隙处以获得椎体的初始稳定,术后恢复期时周围的骨质与3D金属骨小梁椎间融合器融合生长成一体后即可形成一相对稳定并具有生物活性的支撑结构,同时这种支撑结构还可造成对周围血运的刺激以促进受损软骨的修复。由于使用3D金属骨小梁椎间融合器部分替代自体骨和异体骨,可大大降低患者的经济负担并一定程度上克服了获取自体骨和异体骨的数量上的困难与不足;同时3D金属骨小梁椎间融合器的棘突结构会嵌插入缺损空腔周围的骨组织内而形成初始定位,而这种初始定位所产生对软骨的支撑力要远远大于传统的骨块、骨颗粒填充方法的支撑力;患者自体碎骨颗粒及骨泥可以在手术中通过必要的截骨、钻骨等操作过程得到。 2. The 3D metal trabecular intervertebral fusion device of this utility model, when in use, the doctor selects a 3D metal trabecular intervertebral fusion device of appropriate length and height according to the needs and fills it in the space between the vertebral bodies to obtain the initial stability of the vertebral body. During the postoperative recovery period, the surrounding bone and the 3D metal trabecular intervertebral fusion cage can be fused and grown together to form a relatively stable and bioactive support structure. At the same time, this support structure can also cause damage to the surrounding blood supply. Stimulation to promote the repair of damaged cartilage. Since the use of 3D metal trabecular bone intervertebral fusion partially replaces autologous bone and allogeneic bone, it can greatly reduce the economic burden of patients and overcome the difficulties and shortages in the quantity of autologous bone and allogeneic bone to a certain extent; at the same time, 3D metal bone The spinous process structure of the trabecular intervertebral fusion cage will be inserted into the bone tissue around the defect cavity to form an initial positioning, and the supporting force for the cartilage generated by this initial positioning is much greater than that of traditional bone block and bone particle filling The supporting force of the method; the patient's own bone crushed particles and bone cement can be obtained through necessary osteotomy, bone drilling and other operations during the operation.
3.本实用新型3D金属骨小梁椎间融合器,其颗粒体表面全部或局部具有羟基磷灰石涂层,该羟基磷灰石涂层具有诱导骨细胞生长的功能。 3. The 3D metal trabecular intervertebral fusion device of the present invention has a hydroxyapatite coating on all or part of the surface of its granules, and the hydroxyapatite coating has the function of inducing bone cell growth.
4.本实用新型3D金属骨小梁椎间融合器,采用医用金属制成,所述医用金属包括但不局限于钛及钛合金、钴合金、不锈钢以及钽金属、镁合金,此类金属材料的生物相容性已经得到国内外多年骨科植入应用的实践证实。 4. The 3D metal trabecular intervertebral fusion device of this utility model is made of medical metals, including but not limited to titanium and titanium alloys, cobalt alloys, stainless steel, tantalum metals, and magnesium alloys. Such metal materials The biocompatibility of the biocompatibility has been confirmed by the practice of orthopedic implant applications at home and abroad for many years.
5.所述3D金属骨小梁椎间融合器的加工方法是:使用激光或高能电子束快速成型技术、高温烧结、化学腐蚀、电化学沉积等等技术,其他的加工方法还包括精密铸造、焊接、机械切削、放电加工成型等;羟基磷灰石涂层则通过高温喷涂或电化学沉积得到。 5. The processing method of the 3D metal trabecular intervertebral fusion device is: using laser or high-energy electron beam rapid prototyping technology, high temperature sintering, chemical corrosion, electrochemical deposition and other technologies, other processing methods also include precision casting, Welding, mechanical cutting, electrical discharge machining, etc.; hydroxyapatite coating is obtained by high temperature spraying or electrochemical deposition.
所述利用高能电子束快速成型技术,其加工方法如下: The high-energy electron beam rapid prototyping technology is used, and its processing method is as follows:
1)在计算机中设计建造3D金属骨小梁椎间融合器的三维数据模型; 1) Design and build a three-dimensional data model of the 3D metal trabecular intervertebral fusion device in the computer;
2)使用专业软件对三维数据模型进行分层,以获得一系列单层切片的轮廓数据; 2) Use professional software to layer the 3D data model to obtain the contour data of a series of single-layer slices;
3)向高能电子束快速成型设备输入上述系列层片数据; 3) Input the above-mentioned series of ply data to the high-energy electron beam rapid prototyping equipment;
4)在高能电子束快速成型设备加工舱内铺设与前述三维数据模型分层时层高相应厚度的金属粉末; 4) In the processing cabin of the high-energy electron beam rapid prototyping equipment, metal powder with a thickness corresponding to the layer height when the aforementioned three-dimensional data model is layered is laid;
5)由计算机控制高能电子束对金属粉末进行扫描并有选择的熔化; 5) The computer controls the high-energy electron beam to scan and selectively melt the metal powder;
6)重复前述铺设粉末、扫描熔化步骤以使各层被选择熔化的材料相互熔结成整体; 6) repeating the steps of laying the powder and scanning the melting so that the materials selected for melting of each layer are mutually sintered into a whole;
7)完成全部层面的熔融过程后去除未熔融的粉末即可得到所需要形状结构的3D金属骨小梁椎间融合器。 7) After the melting process of all layers is completed, the unfused powder is removed to obtain a 3D metal trabecular intervertebral fusion cage with the required shape and structure.
目前典型的金属快速成型加工设备有:瑞典ARCAM公司的EBM A1及A2电子束熔融系统。 At present, the typical metal rapid prototyping processing equipment includes: EBM A1 and A2 electron beam melting system of Swedish ARCAM company.
前述其他各种加工方法均已为金属加工行业公知的成熟技术,故本说明书中不做更多阐述。 The above-mentioned other various processing methods are all well-known and mature technologies in the metal processing industry, so no further elaboration will be made in this specification.
附图说明 Description of drawings
图1为本实用新型实施例结构示意图 Fig. 1 is the structural representation of the utility model embodiment
图2为本实用新型实施例填充于椎体间隙中的示意图 Fig. 2 is a schematic diagram of filling in the intervertebral space according to the embodiment of the present invention
具体实施方式 Detailed ways
以下结合附图对本实用新型的具体实施做进一步详细说明。 Below in conjunction with accompanying drawing, the specific implementation of the present utility model is described in further detail.
如图1、图2所示,本实用新型3D金属骨小梁椎间融合器(1),其外部轮廓为肾形,具有类似人体松质骨的3D金属骨小梁结构(2),该3D金属骨小梁椎间融合器(1)外部轮廓尺寸长度为26~28mm、高度为7~12mm,其3D金属骨小梁结构(2)的微孔直径0.10~2mm,由于3D金属骨小梁结构(2)为便于骨长入的松质骨结构,因此其横截面可以是任意形状, As shown in Fig. 1 and Fig. 2, the 3D metal trabecular intervertebral fusion device (1) of the present invention has a kidney-shaped outer contour and has a 3D metal trabecular bone structure (2) similar to human cancellous bone. The 3D metal trabecular bone intervertebral fusion cage (1) has an external profile length of 26-28mm and a height of 7-12mm, and the micropore diameter of the 3D metal trabecular bone structure (2) is 0.10-2mm. The beam structure (2) is a cancellous bone structure that facilitates bone ingrowth, so its cross-section can be of any shape,
手术时首先清除椎体间隙中的椎间盘(3),再将3D金属骨小梁椎间融合器(1)放置于摘除椎间盘的椎体间隙中,提供初期的支撑稳定以及后期的骨长入融合的作用,同时使用椎弓根的钉棒系统(4)进行辅 助固定和支撑。 During the operation, the intervertebral disc (3) in the intervertebral space is removed first, and then the 3D metal trabecular intervertebral fusion cage (1) is placed in the intervertebral space where the intervertebral disc is removed to provide initial support stability and later bone ingrowth and fusion At the same time, the screw-rod system (4) of the pedicle is used for auxiliary fixation and support.
本实用新型3D金属骨小梁椎间融合器(1)的加工方法是:使用高能电子束快速成型技术,其他的加工方法还包括精密铸造、焊接、机械切削、放电加工成型等,羟基磷灰石涂层则通过高温喷涂或电化学沉积得到,上述加工方法均为相当成熟的加工方法,应用上不存在技术困难。 The processing method of the utility model 3D metal trabecular intervertebral fusion device (1) is: using high-energy electron beam rapid prototyping technology, other processing methods also include precision casting, welding, mechanical cutting, electrical discharge machining, etc., hydroxyapatite The stone coating is obtained by high-temperature spraying or electrochemical deposition. The above-mentioned processing methods are quite mature processing methods, and there is no technical difficulty in application.
本实用新型3D金属骨小梁椎间融合器,采用医用金属制成,所述医用金属包括但不局限于钛及钛合金、钴合金、不锈钢以及钽金属、镁合金,此类金属材料在ISO-583系列国际标准中均有规定,其生物相容性已经得到国内外多年骨科植入应用的实践证实。 The utility model 3D metal trabecular intervertebral fusion device is made of medical metals, which include but not limited to titanium and titanium alloys, cobalt alloys, stainless steel, tantalum metals, and magnesium alloys. Such metal materials are listed in ISO The -583 series of international standards have provisions, and its biocompatibility has been confirmed by many years of practice in orthopedic implant applications at home and abroad.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520009146.2U CN204636623U (en) | 2015-01-07 | 2015-01-07 | 3D metal embedded bone trabecula intervertebral fusion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201520009146.2U CN204636623U (en) | 2015-01-07 | 2015-01-07 | 3D metal embedded bone trabecula intervertebral fusion device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204636623U true CN204636623U (en) | 2015-09-16 |
Family
ID=54089410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201520009146.2U Expired - Lifetime CN204636623U (en) | 2015-01-07 | 2015-01-07 | 3D metal embedded bone trabecula intervertebral fusion device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204636623U (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105055057A (en) * | 2015-09-02 | 2015-11-18 | 北京爱康宜诚医疗器材股份有限公司 | Artificial vertebral lamina |
CN105581860A (en) * | 2016-01-11 | 2016-05-18 | 李鹏 | 3D print type artificial bone trabecula structure cervical fusion device and preparing method and application thereof |
CN105662660A (en) * | 2016-01-13 | 2016-06-15 | 李鹏 | 3D printing bionic bone trabecular structure lumbar vertebra fusion device, manufacturing method and application |
CN106264805A (en) * | 2016-08-26 | 2017-01-04 | 张衣北 | Scalable intervertebral fixes fusion device |
CN107468382A (en) * | 2017-08-23 | 2017-12-15 | 北京爱康宜诚医疗器材有限公司 | Ankle joint fusion cage |
CN108836576A (en) * | 2018-07-18 | 2018-11-20 | 北京爱康宜诚医疗器材有限公司 | replacement prosthesis |
CN109077831A (en) * | 2018-10-23 | 2018-12-25 | 北京爱康宜诚医疗器材有限公司 | Breastbone prosthetic appliance |
-
2015
- 2015-01-07 CN CN201520009146.2U patent/CN204636623U/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105055057A (en) * | 2015-09-02 | 2015-11-18 | 北京爱康宜诚医疗器材股份有限公司 | Artificial vertebral lamina |
CN105581860A (en) * | 2016-01-11 | 2016-05-18 | 李鹏 | 3D print type artificial bone trabecula structure cervical fusion device and preparing method and application thereof |
CN105662660A (en) * | 2016-01-13 | 2016-06-15 | 李鹏 | 3D printing bionic bone trabecular structure lumbar vertebra fusion device, manufacturing method and application |
CN106264805A (en) * | 2016-08-26 | 2017-01-04 | 张衣北 | Scalable intervertebral fixes fusion device |
CN107468382A (en) * | 2017-08-23 | 2017-12-15 | 北京爱康宜诚医疗器材有限公司 | Ankle joint fusion cage |
CN108836576A (en) * | 2018-07-18 | 2018-11-20 | 北京爱康宜诚医疗器材有限公司 | replacement prosthesis |
CN109077831A (en) * | 2018-10-23 | 2018-12-25 | 北京爱康宜诚医疗器材有限公司 | Breastbone prosthetic appliance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204636623U (en) | 3D metal embedded bone trabecula intervertebral fusion device | |
Gao et al. | Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics | |
Cronskär et al. | Production of customized hip stem prostheses–a comparison between conventional machining and electron beam melting (EBM) | |
Moiduddin et al. | Structural and mechanical characterization of custom design cranial implant created using additive manufacturing | |
CN102579163B (en) | Artificial sacrum prosthesis | |
Brunello et al. | Powder-based 3D printing for bone tissue engineering | |
Taniguchi et al. | Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment | |
CN100588379C (en) | Preparation method of artificial joint prosthesis with locally controllable porous structure | |
San Cheong et al. | Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants | |
US20160256279A1 (en) | Patient-Specific Implant for Bone Defects and Methods for Designing and Fabricating Such Implants | |
Cohen et al. | Performance of laser sintered Ti–6Al–4V implants with bone-inspired porosity and micro/nanoscale surface roughness in the rabbit femur | |
EP2727559A1 (en) | Spinous metal particle | |
EP2772230A1 (en) | Fusion prosthesis | |
CN107411855A (en) | Atlas and axis fusion of intervertebral joints device | |
CN102846408B (en) | Metallic granular body for bone-grafting filling | |
CN106923936A (en) | The design preparation method of the personalized customization 3D printing porous titanium alloy segmental prosthese rebuild for large segmental bone defect | |
CN107049566A (en) | A kind of human body sacral prosthesis fusion device and preparation method thereof | |
CN102429747A (en) | Atlas fusion prosthesis | |
Jiankang et al. | Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques | |
RU174437U1 (en) | BONE TISSUE AUGMENT FOR REPLACEMENT OF THE SPAN BONE AND THE JOINT SURFACE | |
DeVasConCellos et al. | Patient specific implants for amputation prostheses: Design, manufacture and analysis | |
CN205359715U (en) | Artifical hip joint handle that contains porous structure | |
CN202724045U (en) | Atlas fusion prosthesis | |
Uklejewski et al. | Prototype of a Biomimetic Multi-Spiked Connecting Scaffold for a New Generation of Resurfacing Endoprostheses | |
Eldesouky et al. | Femoral hip stem with additively manufactured cellular structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 102200 Beijing Changping District science and Technology Park No. 10, two floor, Xingye building, Bai Fu Quan road. Patentee after: BEIJING AK MEDICAL Co.,Ltd. Address before: 102200 Beijing Changping District science and Technology Park No. 10, two floor, Xingye building, Bai Fu Quan road. Patentee before: Beijing AKEC Medical Co.,Ltd. |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20150916 |