[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1818555A - Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling - Google Patents

Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling Download PDF

Info

Publication number
CN1818555A
CN1818555A CNA2006100115763A CN200610011576A CN1818555A CN 1818555 A CN1818555 A CN 1818555A CN A2006100115763 A CNA2006100115763 A CN A2006100115763A CN 200610011576 A CN200610011576 A CN 200610011576A CN 1818555 A CN1818555 A CN 1818555A
Authority
CN
China
Prior art keywords
mimu
gyroscope
axis
angle
accelerometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100115763A
Other languages
Chinese (zh)
Other versions
CN1330935C (en
Inventor
房建成
李建利
盛蔚
刘百奇
张霄
孙宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2006100115763A priority Critical patent/CN1330935C/en
Publication of CN1818555A publication Critical patent/CN1818555A/en
Application granted granted Critical
Publication of CN1330935C publication Critical patent/CN1330935C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

安装误差角与标度因数解耦的微惯性测量单元精确标定方法,用于精确标定MIMU中所有误差系数,首先建立MIMU整体误差模型,分离加速度计及陀螺仪安装误差角与标度因数之间的耦合。进行10位置静态标定试验,采用位置误差相消法计算加速度计和陀螺仪的常值偏置,分离出加速度计的标度因数、安装误差角。通过3方位正负速率试验,采用最小二乘法、迭代法计算陀螺仪安装误差角、低动态情况下标度因数以及陀螺仪输出与比力有关误差项,最后利用插值法分段计算陀螺仪高动态情况下标度因数。该方法简单、快速、精度高,实验设备不需指北,实现了MIMU中陀螺仪、加速度计标度因数与安装误差角的解耦,标定出的安装误差角可为MIMU进一步安装调整提供指导。

Figure 200610011576

The precise calibration method of the micro-inertial measurement unit decoupling the installation error angle and the scale factor is used to accurately calibrate all the error coefficients in the MIMU. Firstly, the overall error model of the MIMU is established to separate the installation error angle and the scale factor of the accelerometer and gyroscope. coupling. The 10-position static calibration test is carried out, and the constant value offset of the accelerometer and gyroscope is calculated by the position error cancellation method, and the scale factor and installation error angle of the accelerometer are separated. Through the 3-direction positive and negative rate tests, the least square method and iterative method are used to calculate the gyroscope installation error angle, the scale factor under low dynamic conditions, and the error items related to the gyroscope output and specific force. Finally, the interpolation method is used to calculate the gyroscope height in sections Dynamic scale factor. This method is simple, fast, and high-precision. The experimental equipment does not need to point north. It realizes the decoupling of the gyroscope and accelerometer scale factors and the installation error angle in the MIMU. The calibrated installation error angle can provide guidance for further installation and adjustment of the MIMU. .

Figure 200610011576

Description

安装误差角与标度因数解耦的微惯性测量单元精确标定方法Accurate Calibration Method of Micro-IMU Decoupled from Mounting Error Angle and Scale Factor

技术领域technical field

本发明涉及一种安装误差角与标度因数解耦的MIMU精确标定方法,用于计算MIMU整体误差模型中各项误差系数,特别适用于具有较大安装误差角的MIMU标定,该方法同样适用于挠性陀螺仪惯性测量单元(IMU)和液浮陀螺仪IMU。The invention relates to a MIMU accurate calibration method decoupling the installation error angle and the scale factor, which is used for calculating various error coefficients in the MIMU overall error model, and is especially suitable for MIMU calibration with a large installation error angle, and the method is also applicable It is used in flexible gyroscope inertial measurement unit (IMU) and liquid floating gyroscope IMU.

背景技术Background technique

由三个正交设置的微机电陀螺仪和加速度计组成的MIMU是微惯性导航系统的核心部件,它的精度决定了微惯性导航系统的导航精度,MIMU误差源中确定性的系统误差约占总误差的90%左右,因此对确定性的系统误差进行分离、标定、补偿对提高MIMU精度具有决定性作用。The MIMU composed of three orthogonally arranged micro-electromechanical gyroscopes and accelerometers is the core component of the micro-inertial navigation system. Its accuracy determines the navigation accuracy of the micro-inertial navigation system. The deterministic system error in the MIMU error source accounts for about About 90% of the total error, so the separation, calibration and compensation of deterministic system errors are decisive for improving the accuracy of MIMU.

目前MIMU的标定基本采用传统的标定方法,主要包括多位置静态标定、动态速率标定以及动静混合标定等几种方法。其中静态标定是利用地球重力加速度和地球自转角速率在各轴分量来求解MIMU误差系数,该方法包括12位置、24位置等多种标定方法,可以精确标定MIMU中加速度计误差系数,但陀螺仪的标定精度很低;动态速率标定方法提高了MIMU中陀螺仪的误差标定精度,但是只能标定出部分误差系数;动静混合标定方法克服了静、动两种标定方法的不足,不仅能标定出所有误差系数,同时提高了标定精度,成为目前MIMU标定主流方向。At present, the calibration of MIMU basically adopts traditional calibration methods, mainly including multi-position static calibration, dynamic rate calibration, and dynamic and static hybrid calibration. Among them, the static calibration is to use the acceleration of gravity of the earth and the angular rate of the earth's rotation to solve the MIMU error coefficient on each axis. This method includes various calibration methods such as 12 positions and 24 positions, which can accurately calibrate the error coefficient of the accelerometer in the MIMU, but the gyroscope The calibration accuracy is very low; the dynamic rate calibration method improves the error calibration accuracy of the gyroscope in the MIMU, but only part of the error coefficient can be calibrated; the dynamic and static hybrid calibration method overcomes the shortcomings of the static and dynamic calibration methods, and can not only calibrate out All error coefficients, while improving the calibration accuracy, has become the mainstream direction of MIMU calibration.

现有的动静混合标定方法已广泛应用于MIMU的标定,都是基于现有的误差模型设计,现有MIMU误差模型中角速度通道误差模型为:The existing dynamic and static hybrid calibration methods have been widely used in the calibration of MIMU, and they are all based on the existing error model design. The angular velocity channel error model in the existing MIMU error model is:

ωω ‾‾ xx == KK xx 11 ωω xx ++ KK xx 22 ωω xx 22 ++ Mm xyxy ωω ythe y ++ Mm xzxz ωω zz ++ DD. xx ++ DD. xxxx ff xx ++ DD. xyxy ff ythe y ++ DD. xzxz ff zz

ωω ‾‾ ythe y == KK ythe y 11 ωω ythe y ++ KK ythe y 22 ωω ythe y 22 ++ Mm yxyx ωω xx ++ Mm yzyz ωω zz ++ DD. ythe y ++ DD. yxyx ff xx ++ DD. yyyy ff ythe y ++ DD. yzyz ff zz

ωω ‾‾ zz == KK zz 11 ωω zz ++ KK zz 22 ωω zz 22 ++ Mm zxzx ωω xx ++ Mm zyzy ωω ythe y ++ DD. zz ++ DD. zxzx ff xx ++ DD. zyzy ff ythe y ++ DD. zzzz ff zz ))

其中 ωx、 ωy和 ωz分别代表MIMU中x、y、z轴陀螺仪输出的模拟电压值;ωx、ωy和ωz分别代表x、y、z轴输入的实际角速度;Kt1、Kt2分别为陀螺仪标度因数一次项和二次项;Myx、Mxz、Mzx为安装误差项;Dx、Dy、Dz代表x、y、z轴陀螺仪常值偏置;Dij代表i轴陀螺仪输出与j轴比力有关误差项;fx、fy和fz分别代表x、y、z轴输入的实际比力。现有MIMU误差模型中加速度通道误差模型为:Among them, ω x , ω y and ω z represent the analog voltage values output by the x, y and z axis gyroscopes in the MIMU respectively; ω x , ω y and ω z represent the actual angular velocity input by the x, y and z axes respectively; K t1 , K t2 are the primary and secondary items of the gyroscope scale factor respectively; M yx , M xz , M zx are the installation error items; D x , D y , D z represent the x, y, z axis gyroscope constant deviation D ij represents the error item related to the i-axis gyroscope output and the j-axis specific force; f x , f y and f z represent the actual specific force of the x-, y-, and z-axis input, respectively. The acceleration channel error model in the existing MIMU error model is:

fx=kax(fx+Bx+Ixyfy+Ixyfz)f x =k ax (f x +B x +I xy f y +I xy f z )

fy=kay(fy+By+Iyxfx+Iyzfz)f y =k ay (f y +B y +I yx f x +I yz f z )

fz=kaz(fz+Bz+Izyfy+Izxfx)f z =k az (f z +B z +I zy f y +I zx f x )

其中 fx、 fy和 fz分别代表MIMU中x、y、z轴加速度计输出的模拟电压值;kax、kay、kaz代表x、y、z轴加速度计标度因数;Iij代表i轴加速度计与j轴的安装误差项;Bx、By、Bz代表x、y、z轴加速度计常值偏置。上述角速度和加速度通道误差模型中的陀螺仪和加速度计安装误差项实际上是标度因数与安装误差角耦合系数,所以现有的动静混合标定方法不能精确计算安装误差角,因而无法为进一步修正安装误差角提供指导信息,同时该方法没有计算负转速下的陀螺仪标度因数,因而导致了陀螺仪标度因数不对称度误差;另外,该方法采用的标定试验设备要求寻北,因而增加了试验难度和工作量。Where f x , f y and f z represent the analog voltage values output by the x, y and z axis accelerometers in the MIMU respectively; k ax , k ay , k az represent the scale factors of the x, y and z axis accelerometers; I ij Represents the installation error term between the i-axis accelerometer and the j-axis; B x , By y , and B z represent the constant value offsets of the x, y, and z-axis accelerometers. The gyroscope and accelerometer installation error items in the above-mentioned angular velocity and acceleration channel error models are actually the coupling coefficients of the scaling factor and the installation error angle, so the existing dynamic and static hybrid calibration methods cannot accurately calculate the installation error angle, and thus cannot be used for further correction. The installation error angle provides guidance information. At the same time, this method does not calculate the gyroscope scale factor under negative rotation speed, which leads to the asymmetry error of the gyroscope scale factor. In addition, the calibration test equipment used in this method requires north-seeking, thus increasing Test difficulty and workload.

发明内容Contents of the invention

本发明的技术解决问题是:克服现有MIMU标定方法的不足,提出一种安装误差角与标度因数解耦的微惯性测量单元精确标定方法,该方法简单、快速、精度高,实验设备不需指北,实现了MIMU中陀螺仪、加速度计标度因数与安装误差角的解耦。The technical solution problem of the present invention is: overcome the deficiency of existing MIMU calibration method, propose a kind of micro inertial measurement unit accurate calibration method of installation error angle and scale factor decoupling, this method is simple, quick, high precision, and experimental equipment does not need It needs to be pointed out that the decoupling of the scale factor of the gyroscope and accelerometer in the MIMU and the installation error angle has been realized.

本发明的技术解决方案为:安装误差角与标度因数解耦的微惯性测量单元精确标定方法,其特点在于通过下列步骤实现:The technical solution of the present invention is: the precise calibration method of the micro-inertial measurement unit decoupled from the installation error angle and the scale factor, which is characterized in that it is realized through the following steps:

(1)基于MIMU误差特性,考虑了标度因数与安装误差角耦合问题,建立MIMU整体误差模型;(1) Based on the MIMU error characteristics, the coupling problem between the scale factor and the installation error angle is considered, and the overall error model of the MIMU is established;

(2)利用双轴位置台或转台(无需指北)进行10位置静态标定试验;(2) Use a biaxial position table or a turntable (without pointing to the north) to conduct a 10-position static calibration test;

(3)根据静态标定试验数据,采用对称位置误差相消法计算加速度计、陀螺仪常值偏置,利用加速度通道解耦法计算加速度计标度因数与安装误差角;(3) According to the static calibration test data, the constant value offset of the accelerometer and gyroscope is calculated by the symmetrical position error cancellation method, and the accelerometer scale factor and installation error angle are calculated by the acceleration channel decoupling method;

(4)利用单轴速率转台(无需指北)及三面工装进行3方位正负速率试验;(4) Use a single-axis rate turntable (no need to point north) and three-sided tooling to conduct positive and negative rate tests in 3 directions;

(5)根据3方位正负速率实验数据,采用最小二乘法及循环迭代法逐次分离MIMU中陀螺仪标度因数与安装误差角耦合,计算陀螺仪低动态情况下标度因数、陀螺仪安装误差角,结合静态标定试验数据求解陀螺仪输出与比力有关误差项,并采用插值法分段精确计算陀螺仪高动态情况下标度因数。(5) According to the experimental data of the positive and negative rates in 3 directions, the least square method and the cyclic iteration method are used to separate the gyroscope scale factor and the installation error angle coupling in the MIMU successively, and calculate the scale factor and gyroscope installation error in the low dynamic condition of the gyroscope Angle, combined with the static calibration test data to solve the error terms related to the gyroscope output and specific force, and use the interpolation method to accurately calculate the scale factor of the gyroscope under high dynamic conditions.

所述步骤(2)中的10位置静态标定试验方法为:设置MIMU的x、y、z轴分别与地理坐标系天向重合以及绕天向轴水平转动180°6个位置;设置MIMU的x、y、z任意一轴与地理坐标系地向重合以及绕地向轴水平转动180°2位置;设置MIMU的z轴在地理水平面内,x、y轴分别与地理坐标系天向成45°夹角以及MIMU的y轴在地理水平面内,x、z轴分别与地理坐标系天向成45°夹角2位置,实现共10个静态位置。The 10-position static calibration test method in the described step (2) is: set the x, y, z axes of MIMU to coincide with the celestial direction of the geographical coordinate system respectively and horizontally rotate 180 ° 6 positions around the celestial axis; set the x of the MIMU Any axis of , y, and z coincides with the geographic coordinate system and horizontally rotates 180°2 around the geographic axis; set the z-axis of the MIMU to be in the geographic horizontal plane, and the x, y axes are respectively 45° to the geographic coordinate system. The included angle and the y-axis of the MIMU are in the geographic horizontal plane, and the x and z-axes form 45° included angles with the geographic coordinate system and 2 positions respectively, achieving a total of 10 static positions.

所述步骤(3)中的加速度通道解耦法是利用MIMU的z轴在地理水平面内,x、y轴分别与地理坐标系天向成45°夹角以及MIMU的y轴在地理水平面内,x、z轴分别与地理坐标系天向成45°夹角2位置,根据加速度通道误差模型列出各轴加速度计输入输出状态方程,结合其它8位置下各轴加速度计输入输出状态方程,通过相除法及反三角函数法先计算加速度计安装误差角,然后计算加速度计标度因数,最终实现加速度通道解耦。The acceleration channel decoupling method in the described step (3) is to utilize the z axis of MIMU in the geographic horizontal plane, and the x and y axes respectively form a 45 ° angle with the geographical coordinate system sky direction and the y axis of MIMU in the geographic horizontal plane, The x and z axes form an included angle of 45° with the geographical coordinate system at 2 positions respectively. According to the acceleration channel error model, the input and output state equations of the accelerometers of each axis are listed, combined with the input and output state equations of the accelerometers of each axis at the other 8 positions, through The phase division method and the inverse trigonometric function method first calculate the accelerometer installation error angle, then calculate the accelerometer scale factor, and finally realize the decoupling of the acceleration channel.

所述步骤(5)的插值法分段计算陀螺仪高动态情况下标度因数方法:利用求得的安装误差角,计算高动态情况下各插值转速点的标度因数,采用线性插值法分段计算陀螺仪高动态情况下标度因数。The interpolation method of the step (5) calculates the scale factor method under the high dynamic situation of the gyroscope in sections: utilize the installation error angle obtained to calculate the scale factor of each interpolation speed point under the high dynamic situation, and adopt the linear interpolation method to divide The section calculates the scale factor for high dynamic conditions of the gyroscope.

本发明的原理是:根据加速度计标度因数、安装误差角影响加速度计输出的误差机理,建立MIMU加速度通道误差模型。根据陀螺仪标度因数、安装误差角及陀螺仪输出与比力有关误差项影响陀螺仪输出的误差机理,建立了角速度通道误差模型。利用对称位置上MIMU的误差部分相同,部分相反的原理,通过简单的加或减实现误差的分离,计算出加速度计和陀螺仪常值偏置。利用改变一个安装误差角,其它误差项不变原理,通过相除法,消除其它误差项干扰,分离加速度计标度因数与安装误差角耦合。利用动态标定试验在转动整周过程中MIMU水平面内陀螺仪敏感地球自转角速率积分为零原理,消除地球自转角速率引起的标定误差。利用动态标定试验中输入的角速率远大于陀螺仪各项误差的原理,精确标定出的陀螺仪标度因数和安装误差角耦合系数。利用循环迭代法的逐次逼近原理,分离陀螺仪标度因数和安装误差角的耦合。The principle of the invention is: according to the error mechanism that the accelerometer scale factor and the installation error angle affect the output of the accelerometer, the MIMU acceleration channel error model is established. According to the error mechanism of the gyroscope scale factor, the installation error angle, and the error items related to the gyroscope output and specific force affecting the gyroscope output, an angular velocity channel error model is established. Using the principle that the errors of the MIMU at the symmetrical position are partly the same and partly opposite, the separation of errors is realized by simple addition or subtraction, and the constant value bias of the accelerometer and gyroscope is calculated. Using the principle of changing one installation error angle and keeping other error items unchanged, the interference of other error items is eliminated by phase division, and the coupling between the accelerometer scale factor and the installation error angle is separated. In the dynamic calibration test, the gyroscope sensitive to the earth's rotation angular rate in the MIMU horizontal plane integrates to zero during the whole rotation process to eliminate the calibration error caused by the earth's rotation angular rate. Using the principle that the angular rate input in the dynamic calibration test is much larger than the errors of the gyroscope, the scale factor of the gyroscope and the coupling coefficient of the installation error angle are accurately calibrated. Using the successive approximation principle of the cyclic iteration method, the coupling between the scale factor of the gyroscope and the installation error angle is separated.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)本发明基于MIMU完备的误差模型设计,解决了安装误差角与标度因数耦合问题,标定出MIMU中加速度计和陀螺仪安装误差角,可以为进一步修正安装误差角提供指导。克服现有标定方法采用的误差模型无法分离出标度因数及安装误差角耦合的缺点。(1) The present invention is based on the complete error model design of the MIMU, solves the coupling problem between the installation error angle and the scale factor, and calibrates the installation error angle of the accelerometer and gyroscope in the MIMU, which can provide guidance for further correction of the installation error angle. It overcomes the disadvantage that the error model adopted by the existing calibration method cannot separate the scale factor and the coupling of the installation error angle.

(2)本发明采用的所有标定试验设备不需要寻北,减小了试验要求与难度,提高标定效率。(2) All the calibration test equipment adopted in the present invention do not need to seek north, which reduces the test requirements and difficulty, and improves the calibration efficiency.

(3)较现有的标定方法,本发明涉及的标定方法简单,物理意义明确,工作量小、时间短,陀螺仪漂移对标定结果污染程度小。(3) Compared with the existing calibration method, the calibration method involved in the present invention is simple, has clear physical meaning, small workload, short time, and less pollution to the calibration result by gyroscope drift.

(4)分别采用最小二乘法、循环迭代法计算陀螺仪低动态情况下标度因数,减小了低动态情况下工作时的计算量,采用插值法分段计算陀螺仪高动态情况下标度因数,减小了高动态情况下标度因数非线性误差。并且该方法利用正负速率实验数据,较现有的动静混合标定方法,减小了标度因数不对称度误差。(4) The least square method and the loop iteration method are used to calculate the scale factor of the gyroscope under low dynamic conditions, which reduces the calculation amount when working under low dynamic conditions, and the interpolation method is used to calculate the scale of the gyroscope under high dynamic conditions factor, which reduces the non-linear error of the scaling factor under high dynamic conditions. Moreover, the method uses positive and negative velocity experimental data, and reduces the asymmetry error of the scaling factor compared with the existing dynamic and static mixed calibration method.

附图说明Description of drawings

图1为本发明安装误差角与标度因数解耦的MIMU精确标定方法流程图;Fig. 1 is the flow chart of the MIMU accurate calibration method decoupling the installation error angle and the scale factor of the present invention;

图2为本发明涉及的双轴位置台坐标系以及该坐标系与地理坐标系东北天之间的关系示意图;Fig. 2 is a schematic diagram of the relationship between the biaxial position platform coordinate system and the geographic coordinate system northeast sky involved in the present invention;

图3为本发明涉及的速率转台坐标系以及该坐标系与地理坐标系东北天之间的关系示意图;Fig. 3 is the speed turntable coordinate system that the present invention relates to and the relation schematic diagram between this coordinate system and geographical coordinate system northeast sky;

图4为本发明涉及的MIMU坐标系示意图;4 is a schematic diagram of the MIMU coordinate system involved in the present invention;

图5为本发明中10位置静态标定试验步骤示意图。Fig. 5 is a schematic diagram of the 10-position static calibration test steps in the present invention.

具体实施方式Detailed ways

本发明技术解决方案的具体实施步骤如图1所示,首先定义具体实施过程中利用到的各坐标系,图2为双轴位置台坐标系OXYZ以及该坐标系与地理坐标系东北天之间的关系;图3为速率转台坐标系OTXTYTZT以及该坐标系与地理坐标系东北天之间的关系;图4为MIMU坐标系oxyz,具体实施步骤如下:The specific implementation steps of the technical solution of the present invention are as shown in Figure 1. First, each coordinate system used in the specific implementation process is defined. Figure 3 is the relationship between the rate turntable coordinate system O T X T Y T Z T and the coordinate system and the geographic coordinate system northeast sky; Figure 4 is the MIMU coordinate system oxyz, the specific implementation steps are as follows:

1、基于MIMU安装误差角大、分辨率差、漂移大、标度因数非线性及不对称度误差大等特性,建立MIMU的完备误差模型,采用安装误差角取代现有误差模型中的安装误差系数,分离了标度因数与安装误差角耦合。MIMU的角速度通道误差模型为:1. Based on the characteristics of MIMU installation error angle, poor resolution, large drift, non-linear scale factor and large asymmetry error, a complete error model of MIMU is established, and the installation error angle is used to replace the installation error in the existing error model coefficient, which separates the coupling of the scale factor from the installation error angle. The angular velocity channel error model of MIMU is:

Figure A20061001157600081
Figure A20061001157600081

Figure A20061001157600082
Figure A20061001157600082

Figure A20061001157600083
Figure A20061001157600083

式(1)~(3)中的 ωx、 ωy和 ωz分别代表MIMU中x、y、z轴陀螺仪输出的模拟电压值;ωx、ωy和ωz分别代表x、y、z轴输入的实际角速度;Kx、Ky、Kz分别代表x、y、z轴陀螺仪标度因数;ij代表i轴陀螺仪偏向j轴的安装误差角;Dx、Dy、Dz分别代表x、y、z轴陀螺仪常值偏置;Dij代表i轴陀螺仪输出与j轴比力有关误差项;fx、fy和fz分别代表x、y、z轴输入的实际比力。MIMU加速度通道误差模型为:ω x , ω y and ω z in formulas (1) to (3) respectively represent the analog voltage values output by the x-, y- and z-axis gyroscopes in the MIMU; ω x , ω y and ω z represent x, y, The actual angular velocity input by the z-axis; K x , K y , K z represent the scale factors of the x-, y-, and z-axis gyroscopes respectively;  ij represents the installation error angle of the i-axis gyroscope towards the j-axis; D x , D y , D z represents the constant value bias of the x, y, z axis gyroscope respectively; D ij represents the error item related to the i-axis gyroscope output and the j-axis ratio force; f x , f y and f z represent the x, y, z axis respectively Enter the actual specific force. The MIMU acceleration channel error model is:

fx=kax[cos(θxy)cos(θxz)fx+sin(θxz)fy+sin(θxz)fz]+Bx    (4)f x =k ax [cos(θ xy )cos(θ xz )f x +sin(θ xz )f y +sin(θ xz )f z ]+B x (4)

fy=kay[cos(θyx)cos(θyz)fy+sin(θyx)fx+sin(θyz)fz]+By    (5)f y =k ay [cos(θ yx )cos(θ yz )f y +sin(θ yx )f x +sin(θ yz )f z ]+B y (5)

fz=kaz[cos(θzy)cos(θzx)fz+sin(θzy)fy+sin(θzx)fx]+Bz    (6)f z =k az [cos(θ zy )cos(θ zx )f z +sin(θ zy )f y +sin(θ zx )f x ]+B z (6)

式(4)~(6)中 fx、 fy和 fz分别代表MIMU中x、y、z轴加速度计输出的模拟电压值;kax、kay、kaz代表x、y、z轴加速度计标度因数;θij代表i轴加速度计偏向j轴的安装误差角;Bx、By、Bz代表x、y、z轴加速度计常值偏置。In formulas (4) to (6), f x , f y and f z respectively represent the analog voltage values output by the accelerometers in the x, y and z axes of the MIMU; k ax , k ay and k az represent the x, y and z axes Accelerometer scale factor; θ ij represents the installation error angle of the i-axis accelerometer to the j-axis; B x , B y , B z represent the constant value bias of the x, y, z-axis accelerometer.

2、利用双轴位置台(无需寻北)进行10位置静态标定试验,如图6所示,具体步骤如下:2. Use a dual-axis position table (without seeking north) to perform a 10-position static calibration test, as shown in Figure 6. The specific steps are as follows:

(1)将MIMU水平安装在双轴位置台上,旋转位置台外框使位置台坐标系Z轴与地理坐标系天向重合,旋转内框保证MIMU坐标系oxyz与位置台坐标系OXYZ重合,该位置为第1位置,待位置台完全稳定下来后启动MIMU对其预热20~30分钟,然后在该位置记录1~5分钟MIMU输出数据;(1) Install the MIMU horizontally on the dual-axis position platform, rotate the outer frame of the position platform so that the Z axis of the position platform coordinate system coincides with the celestial direction of the geographic coordinate system, and rotate the inner frame to ensure that the MIMU coordinate system oxyz coincides with the position platform coordinate system OXYZ, This position is the first position. After the position station is completely stabilized, start the MIMU to preheat it for 20 to 30 minutes, and then record the output data of the MIMU at this position for 1 to 5 minutes;

(2)顺时针旋转位置台内框180°(俯视位置台),使MIMU的x、y、z轴分别与位置台坐标系-X、-Y、Z轴重合,该位置为第2位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(2) Rotate the inner frame of the positioning table 180° clockwise (looking down on the positioning table), so that the x, y, and z axes of the MIMU coincide with the -X, -Y, and Z axes of the positioning table coordinate system, and this position is the second position. After the position station is completely stabilized, record the MIMU output data at the position for 1 to 5 minutes;

(3)逆时针旋转位置台外框90°(从-X轴向视位置台),使MIMU的x、y、z轴分别与位置台坐标系-X、Z、Y轴重合,该位置为第3位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(3) Rotate the outer frame of the position table 90° counterclockwise (viewing the position table from the -X axis), so that the x, y, and z axes of the MIMU coincide with the -X, Z, and Y axes of the position table coordinate system, and the position is In the third position, after the position station is completely stabilized, record the MIMU output data for 1 to 5 minutes at this position;

(4)逆时针旋转位置台内框180°,使MIMU的x、y、z轴分别与位置台坐标系X、Z、-Y轴重合,该位置为第4位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(4) Rotate the inner frame of the positioning table 180° counterclockwise, so that the x, y, and z axes of the MIMU coincide with the X, Z, and -Y axes of the positioning table coordinate system respectively. This position is the fourth position, and the positioning table is completely stabilized. After that, record the MIMU output data for 1 to 5 minutes at this position;

(5)逆时针旋转位置台内框90°,然后顺时针旋转位置台外框90°,使MIMU的x、y、z轴分别与位置台坐标系Z、-Y、X轴重合,该位置为第5位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(5) Rotate the inner frame of the positioning table 90° counterclockwise, and then rotate the outer frame of the positioning table 90° clockwise, so that the x, y, and z axes of the MIMU coincide with the Z, -Y, and X axes of the positioning table coordinate system respectively. It is the 5th position. After the position station is completely stabilized, record the MIMU output data at this position for 1 to 5 minutes;

(6)顺时针旋转位置台内框架180°,使MIMU的x、y、z轴分别与位置台坐标系Z、Y、-X轴重合,该位置为第6位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(6) Rotate the inner frame of the positioning table 180° clockwise, so that the x, y, and z axes of the MIMU coincide with the Z, Y, and -X axes of the positioning table coordinate system respectively. This position is the sixth position, and the positioning table is completely stabilized. After that, record the MIMU output data for 1 to 5 minutes at this position;

(7)顺时针旋转位置台外框180°,使MIMU的x、y、z轴分别与位置台坐标系-Z、-Y、-X轴重合,该位置为第7位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(7) Rotate the outer frame of the positioning table 180° clockwise, so that the x, y, and z axes of the MIMU coincide with the -Z, -Y, and -X axes of the positioning table coordinate system respectively. This position is the seventh position. When the positioning table is completely After stabilization, record MIMU output data at this position for 1 to 5 minutes;

(8)逆时针旋转内框180°,使MIMU的x、y、z轴分别与位置台坐标系-Z、Y、X轴重合,该位置为第8位置,待位置台完全稳定下来后,在该位置记录1~5分钟MIMU输出数据;(8) Rotate the inner frame 180° counterclockwise so that the x, y, and z axes of the MIMU coincide with the -Z, Y, and X axes of the position table coordinate system respectively. This position is the 8th position. After the position table is completely stabilized, Record MIMU output data for 1 to 5 minutes at this position;

(9)顺时针旋转内框180°,然后逆时针旋转位置台外框135°,使MIMU的z轴与位置台坐标系的-X重合,y轴处于位置台坐标系Z偏Y轴45°,x轴处于位置台坐标系Z偏-Y轴45°,该位置为第9位置,待位置台完全稳定下来后,在该位置记录1~5分钟数据;(9) Rotate the inner frame 180° clockwise, and then rotate the outer frame of the position stage 135° counterclockwise, so that the z-axis of the MIMU coincides with -X of the position stage coordinate system, and the y-axis is 45° from the Z axis of the position stage coordinate system. , the x-axis is at 45° from the Z-axis of the coordinate system of the position table, which is the 9th position. After the position table is completely stabilized, record data for 1 to 5 minutes at this position;

(10)逆时针旋转位置台外框45°,然后逆时针旋转位置台内框90°,再次逆时针旋转外框45°,使MIMU的y轴与位置台坐标系-X重合,x轴位于位置台坐标系Z偏Y轴45°,z轴位于位置台坐标系Z偏-Y轴45°,该位置为第10位置,待位置台完全稳定下来后,在该位置记录1~5分钟数据,至此,10位置静态试验全部完成。(10) Rotate the outer frame of the position stage 45° counterclockwise, then rotate the inner frame of the position stage 90° counterclockwise, and rotate the outer frame 45° counterclockwise again, so that the y-axis of the MIMU coincides with the coordinate system -X of the position stage, and the x-axis is at The coordinate system of the position stage is 45° from the Z axis to the Y axis, and the z axis is located at 45° from the Z axis to the Y axis of the stage coordinate system. , So far, the 10-position static test has been completed.

3、利用10位置静态标定试验数据,计算陀螺仪常值偏置及加速度计所有误差系数。3. Using the 10-position static calibration test data, calculate the constant value bias of the gyroscope and all error coefficients of the accelerometer.

(1)根据静态10位置标定试验中第1~8位置,采用对称位置误差相消法、计算MIMU中加速度计和陀螺仪常值偏置。(1) According to the 1st to 8th positions in the static 10-position calibration test, the symmetrical position error cancellation method is used to calculate the constant value offset of the accelerometer and gyroscope in the MIMU.

第5位置,即MIMU坐标系中x、y、z轴分别与位置台坐标系Z、-Y、X轴重合,假设位置台坐标系Y轴偏离地理坐标系北向的角度为ψ,该位置下MIMU加速度通道输出为:The fifth position, that is, the x, y, and z axes in the MIMU coordinate system coincide with the Z, -Y, and X axes of the position station coordinate system respectively. Assume that the angle between the Y axis of the position station coordinate system and the north direction of the geographic coordinate system is ψ. The MIMU acceleration channel output is:

fx5=kaxcos(θxy)cos(θxz)·g+Bx                           (7)f x5 =k ax cos(θ xy )cos(θ xz )·g+B x (7)

fy5=kaysin(θyx)g+By                                      (8)f y5 =k ay sin(θ yx )g+B y (8)

fy5=kazsin(θzx)g+Bz                                      (9)f y5 =k az sin(θ zx )g+B z (9)

式中 fij代表MIMU在第j位置时i轴加速度计模拟电压输出,g代表重力加速度。MIMU角速度通道输出为:In the formula, f ij represents the analog voltage output of the i-axis accelerometer when the MIMU is in the jth position, and g represents the acceleration of gravity. The MIMU angular velocity channel output is:

(10)(10)

(11)(11)

Figure A20061001157600113
Figure A20061001157600113

(12)(12)

式中 ωij代表MIMU在第j位置时i轴陀螺仪模拟电压输出,φ代表当地位置的纬度。In the formula, ω ij represents the analog voltage output of the i-axis gyroscope when the MIMU is in the jth position, and φ represents the latitude of the local position.

第6位置,即MIMU坐标系中x、y、z轴分别与MIMU坐标系Z、Y、-X轴重合,该位置MIMU加速度计通道输出为:The sixth position, that is, the x, y, and z axes in the MIMU coordinate system coincide with the Z, Y, and -X axes of the MIMU coordinate system respectively. The output of the MIMU accelerometer channel at this position is:

fx6=kaxcos(θxy)cos(θxz)·g+Bx                               (13)f x6 =k ax cos(θ xy )cos(θ xz )·g+B x (13)

fy6=kaysin(θyx)g+By                                          (14)f y6 = k ay sin(θ yx )g+B y (14)

fz6=kazsin(θzx)g+Bz                                          (15)f z6 =k az sin(θ zx )g+B z (15)

由第5位置变化到第6位置后,水平方向初始偏离角由Ψ变为Ψ+180°,由于sin(ψ+180°)=-sin(ψ)、cos(ψ+180°)=-cos(ψ),第6位置角速度通道输出为:After changing from the 5th position to the 6th position, the initial deviation angle in the horizontal direction changes from Ψ to Ψ+180°, because sin(ψ+180°)=-sin(ψ), cos(ψ+180°)=-cos (ψ), the output of the 6th position angular velocity channel is:

(16)(16)

(17)(17)

Figure A20061001157600122
Figure A20061001157600122

(18)(18)

联立方程(7)~(18),列出MIMU中加速度通道在5、6位置输出的平均值为:Simultaneous equations (7) to (18), list the average output of the acceleration channel in the MIMU at positions 5 and 6 as:

fx6/5=( fx6+ fx5)/2=kaxcos(θxy)cos(θxz)·g+Bx            (19)f x6/5 =( f x6 + f x5 )/2=k ax cos(θ xy )cos(θ xz )·g+B x (19)

fy6/5=( fy6+ fy5)/2=kaysin(θyx)g+By                       (20)f y6/5 =( f y6 + f y5 )/2= kay sin(θ yx )g+B y (20)

fz6/5=( fz6+ fz5)/2=kazsin(θzx)g+Bz                       (21)f z6/5 =( f z6 + f z5 )/2=k az sin(θ zx )g+B z (21)

式中 fij/k代表MIMU在第j、k两位置i轴加速度计模拟电压输出平均值,利用对称位置相消法消除地球自转角速率ωie对水平面轴向陀螺仪的影响,列出MIMU中角速度通道在5、6位置输出的平均值为:In the formula, f ij/k represents the average value of the analog voltage output of the i-axis accelerometer at the j and k positions of the MIMU, and the symmetrical position cancellation method is used to eliminate the influence of the earth's rotation angular rate ω ie on the axial gyroscope in the horizontal plane, and the MIMU The average output of the middle angular velocity channel at positions 5 and 6 is:

ωx6/5=( ωx6+ ωx5)/2=Kxcos(xy)cos(xz)sin(φ)ωie+Dx+Dxxg    (22)ω x6/5 =( ω x6 + ω x5 )/2=K x cos( xy )cos( xz )sin(φ)ω ie +D x +D xx g (22)

ωy6/5=( ωy6+ ωy5)/2=Kysin(yx)sin(φ)ωie+Dy+Dyxg            (23)ω y6/5 =( ω y6 + ω y5 )/2=K y sin( yx )sin(φ)ω ie +D y +D yx g (23)

ωz6/5=( ωz6+ ωz5)/2=Kzsin(zx)sin(φ)ωie+Dz+Dzxg            (24)ω z6/5 =( ω z6 + ω z5 )/2=K z sin( zx )sin(φ)ω ie +D z +D zx g (24)

式中 ωij/k代表MIMU在第j、k两位置i轴陀螺仪模拟电压输出平均值,同理,可求得1~4、7~8位置下MIMU中加速度通道输出的平均值为:In the formula, ω ij/k represents the average value of the analog voltage output of the i-axis gyroscope at the j and k positions of the MIMU. Similarly, the average value of the acceleration channel output in the MIMU at positions 1 to 4 and 7 to 8 can be obtained as:

fx2/1=( fx2+ f1)/2=kaxsin(θxz)·g+Bx                           (25)f x2/1 =( f x2 + f 1 )/2=k ax sin(θ xz )·g+B x (25)

fy2/1=( fy2+ fy1)/2=kaysin(θyz)g+By                            (26)f y2/1 =( f y2 + f y1 )/2= kay sin(θ yz )g+B y (26)

fz2/1=( fz2+ fz1)/2=kazcos(θzy)cos(θzx)g+Bz                   (27)f z2/1 =( f z2 + f z1 )/2=k az cos(θ zy )cos(θ zx )g+B z (27)

fx4/3=( fx4+ f3)/2=kaxsin(θxy)·g+Bx                           (28)f x4/3 =( f x4 + f 3 )/2=k ax sin(θ xy )·g+B x (28)

fy4/3=( fy4+ fy3)/2=kaycos(θyz)cos(θyx)g+By                   (29)f y4/3 =( f y4 + f y3 )/2= kay cos(θ yz )cos(θ yx )g+B y (29)

fz4/3=( fz4+ fz3)/2=kazsin(θzy)g+Bz                            (30)f z4/3 =( f z4 + f z3 )/2=k az sin(θ zy )g+B z (30)

fx8/7=( fx8+ fx7)/2=kaxcos(θxy)cos(θxz)·(-g)+Bx              (31)f x8/7 =( f x8 + f x7 )/2=k ax cos(θ xy )cos(θ xz )·(-g)+B x (31)

fy8/7=( fy8+ fy7)/2=kaysin(θyx)(-g)+By                         (32)f y8/7 =( f y8 + f y7 )/2= kay sin(θ yx )(-g)+B y (32)

fz8/7=( fz8+ fz7)/2=kazsin(θzx)(-g)+Bz                               (33)f z8/7 =( f z8 + f z7 )/2=k az sin(θ zx )(-g)+B z (33)

1~4、7~8位置下MIMU中角速度通道输出的平均值为:The average value of the angular velocity channel output in the MIMU at positions 1~4, 7~8 is:

ωx2/1=( ωx2+ ωx1)/2=Kxsin(xz)sin(φ)ωie+Dx+Dxzg                 (34)ω x2/1 =( ω x2 + ω x1 )/2=K x sin( xz )sin(φ)ω ie +D x +D xz g (34)

ωy2/1=( ωy2+ ωy1)/2=Kysin(yz)sin(φ)ωie+Dy+Dyzg                 (35)ω y2/1 =( ω y2 + ω y1 )/2=K y sin( yz )sin(φ)ω ie +D y +D yz g (35)

ωz2/1=( ωz2+ ωz1)/2=Kzcos(zy)cos(zx)sin(φ)ωie+Dz+Dzzg        (36)ω z2/1 =( ω z2 + ω z1 )/2=K z cos( zy )cos( zx )sin(φ)ω ie +D z +D zz g (36)

ωx4/3=( ωx4+ ωx3)/2=Kxsin(xy)sin(φ)ωie+Dx+Dxyg                 (37)ω x4/3 =( ω x4 + ω x3 )/2=K x sin( xy )sin(φ)ω ie +D x +D xy g (37)

ωy4/3=( ωy4+ ωy3)/2=Kycos(yx)cos(yz)sin(φ)ωie+Dy+Dyyg        (38)ω y4/3 =( ω y4 + ω y3 )/2=K y cos( yx )cos( yz )sin(φ)ω ie +D y +D yy g (38)

ωz4/3=( ωz4+ ωz3)/2=Kzsin(zy)sin(φ)ωie+Dz+Dzyg                 (39)ω z4/3 =( ω z4 + ω z3 )/2=K z sin( zy )sin(φ)ω ie +D z +D zy g (39)

ωx8/7=( ωx8+ ωx7)/2=Kxcos(xy)cos(xz)sin(φ)(-ωie)+Dx+Dxx(-g)  (40)ω x8/7 =( ω x8 + ω x7 )/2=K x cos( xy )cos( xz )sin(φ)(-ω ie )+D x +D xx (-g) (40)

ωy8/7=( ωy8+ ωy7)/2=Kysin(yx)sin(φ)(-ωie)+Dy+Dyx(-g)           (41)ω y8/7 =( ω y8 + ω y7 )/2=K y sin( yx )sin(φ)(-ω ie )+D y +D yx (-g) (41)

ωz8/7=( ωz8+ ωz7)/2=Kzsin(zx)sin(φ)(-ωie)+Dz+Dzx(-g)           (42)ω z8/7 =( ω z8 + ω z7 )/2=K z sin( zx )sin(φ)(-ω ie )+D z +D zx (-g) (42)

联立方程(19)与(31)、(20)与(32)、(21)与(33),分别求得MIMU中x、y、z方向加速度计常值偏置分别为:Simultaneous equations (19) and (31), (20) and (32), (21) and (33), the constant biases of the accelerometers in the x, y, and z directions of the MIMU are obtained respectively:

Bx=( fx6/5+ fx8/7)/2                                                   (43)B x =( f x6/5 + f x8/7 )/2 (43)

By=( fy6/5+ fy8/7)/2                                                   (44)B y =( f y6/5 + f y8/7 )/2 (44)

Bz=( fz6/5+ fz8/7)/2                                                   (45)B z =( f z6/5 + f z8/7 )/2 (45)

联立方程(22)与(40)、(23)与(41)、(24)与(42),分别求得MIMU中x、y、z轴陀螺仪常值偏置分别为:Simultaneous equations (22) and (40), (23) and (41), (24) and (42), the constant value offsets of the x-, y-, and z-axis gyroscopes in the MIMU are respectively obtained as follows:

Dx=( ωx6/5+ ωx8/7)/2                                                 (46)D x =( ω x6/5 + ω x8/7 )/2 (46)

Dy=( ωy6/5+ ωy8/7)/2                                                 (47)D y =( ω y6/5 + ω y8/7 )/2 (47)

Dz=( ωz6/5+ ωz8/7)/2                                                 (48)D z =( ω z6/5 + ω z8/7 )/2 (48)

(2)根据10位置静态标定试验中记录的加速度通道数据,利用加速度通道解耦法计算MIMU中加速度计安装误差角、标度因数。(2) According to the acceleration channel data recorded in the 10-position static calibration test, the acceleration channel decoupling method is used to calculate the installation error angle and scale factor of the accelerometer in the MIMU.

在第9位置,即MIMU坐标系中z轴分别与位置台坐标系-X轴重合,x轴位于Z轴偏-Y轴45°,y轴位于Z轴偏Y轴45°,该位置下MIMU的x、y两轴向加速度计输出为:At the ninth position, that is, the z-axis in the MIMU coordinate system coincides with the -X-axis of the position table coordinate system, the x-axis is located at 45° from the Z-axis to the -Y-axis, and the y-axis is located at 45° from the Z-axis from the Y-axis. In this position, the MIMU The output of the x, y two-axis accelerometer is:

fx9=kaxcos(45°-θxz)cos(θxz)+Bx                                (49)f x9 =k ax cos(45°-θ xz )cos(θ xz )+B x (49)

fy9=kaycos(45°-θyx)cos(θyz)g+By                               (50)f y9 =k ay cos(45°-θ yx )cos(θ yz )g+B y (50)

在第10位置,即MIMU坐标系中y轴分别与位置台坐标系-X轴重合,z轴位于Z轴偏-Y轴45°,x轴位于Z轴偏Y轴45°,该位置下MIMU的z轴向加速度计输出为:At the 10th position, that is, the y-axis in the MIMU coordinate system coincides with the -X axis of the position table coordinate system, the z-axis is located at 45° from the Z-axis to the -Y-axis, and the x-axis is located at 45° from the Z-axis to the Y-axis. In this position, the MIMU The z-axis accelerometer output is:

fz10=kazcos(θzy)cos(45°-θzx)g+Bz                              (51)f z10 =k az cos(θ zy )cos(45°-θ zx )g+B z (51)

联立式(25)、(19)和(49),解算方程组求得x轴加速度计安装误差角及标度因数为:Simultaneous formulas (25), (19) and (49), solving the equations to obtain the installation error angle and scale factor of the x-axis accelerometer are:

Figure A20061001157600141
Figure A20061001157600141

Figure A20061001157600142
Figure A20061001157600142

kax=( fx6/5-Bx)/cos(θxy)cos(θxz)                                (54)k ax =( f x6/5 -B x )/cos(θ xy )cos(θ xz ) (54)

联立式(26)、(29)和(50),解算方程组求得y轴加速度计安装误差角及标度因数为:Simultaneous formulas (26), (29) and (50), solving the equations to obtain the installation error angle and scale factor of the y-axis accelerometer are:

Figure A20061001157600143
Figure A20061001157600143

kay=( fy4/3-By)/cos(θyx)cos(θyz)                                (57)k ay =( f y4/3 -B y )/cos(θ yx )cos(θ yz ) (57)

联立式(27)、(30)和(51),解算方程组求得z轴加速度计安装误差角及标度因数为:Simultaneous formulas (27), (30) and (51), solving the equations to obtain the installation error angle and scale factor of the z-axis accelerometer are:

Figure A20061001157600145
Figure A20061001157600145

Figure A20061001157600146
Figure A20061001157600146

kaz=( fz2/1-Bz)/cos(θzx)cos(θzy)                                (60)k az =( f z2/1 -B z )/cos(θ zx )cos(θ zy ) (60)

4、利用单轴速率转台(无需指北)及三面工装进行3方位正负速率试验4. Use a single-axis rate turntable (no need to point north) and three-sided tooling to conduct positive and negative rate tests in 3 directions

进行动态速率标定试验,俯视转台,设定转台以逆时针方向旋转时为正转,以顺时针方向旋转为反转。将MIMU通过三面正交工装夹具水平固定在单轴速率转台中心处,使MIMU的z轴与转台ZT轴重合。给MIMU供电预热20~30分钟后采集1~5分钟MIMU输出数据,之后旋转速率转台180°采集1~5分钟MIMU输出数据。然后设定转台正转,记录陀螺仪输出,停转;转台反转,记录陀螺仪输出,停转。转台输入角速率按从小到大的顺序改变,分别给速率转台输入n°/10/s、-n°/10/s、2n°/10/s、-2n°/10/s、3n°/10/s、-3n°/10/s、......、n°/s、-n°/s共20个角速率,n°/s表示MIMU测量范围的最大正转角速率,在保证采集转动整周数据的前提下,对每一个角速率都记录1~5分钟左右的MIMU输出的数据。最后在静止状态下采集1~5分钟MIMU输出数据,旋转速率转台180°再采集1~5分钟MIMU输出数据。Carry out the dynamic rate calibration test, look down on the turntable, set the turntable to rotate counterclockwise as forward rotation, and rotate clockwise as reverse rotation. Fix the MIMU horizontally at the center of the single-axis rate turntable through the three-sided orthogonal tooling fixture, so that the z-axis of the MIMU coincides with the Z T axis of the turntable. After preheating the MIMU with power supply for 20-30 minutes, collect MIMU output data for 1-5 minutes, and then rotate the turntable at 180° to collect MIMU output data for 1-5 minutes. Then set the turntable to rotate forward, record the gyroscope output, and stop; turn the turntable to reverse, record the gyroscope output, and stop. The input angular rate of the turntable changes in order from small to large, input n°/10/s, -n°/10/s, 2n°/10/s, -2n°/10/s, 3n°/ 10/s, -3n°/10/s, ..., n°/s, -n°/s, a total of 20 angular rates, n°/s represents the maximum positive angular rate of the MIMU measurement range, in Under the premise of ensuring the collection of data for the entire rotation cycle, the data output by the MIMU for about 1 to 5 minutes are recorded for each angular rate. Finally, collect MIMU output data for 1 to 5 minutes in a static state, and then collect MIMU output data for 1 to 5 minutes while rotating the turntable at 180°.

同理,翻转三面正交工装夹具,使MIMU的x轴、y轴分别与转台的ZT轴重合,重复以上的工作,完成3方位正负速率试验。In the same way, flip the three-sided orthogonal fixture so that the x-axis and y-axis of the MIMU coincide with the Z and T axes of the turntable respectively, repeat the above work, and complete the positive and negative rate tests in 3 directions.

5、利用动态标定试验数据,采用最小二乘法及逐次迭代法计算陀螺仪安装误差角以及陀螺仪低、高动态情况下标度因数。5. Using the dynamic calibration test data, the least square method and successive iteration method are used to calculate the installation error angle of the gyroscope and the scaling factor of the gyroscope under low and high dynamic conditions.

(1)计算MIMU中陀螺仪的安装误差角及低动态情况下标度因数。(1) Calculate the installation error angle of the gyroscope in the MIMU and the scaling factor under low dynamic conditions.

当MIMU的z轴与转台ZT轴重合,转台以角速度Ωj旋转时,MIMU三个轴输入的角速度为:When the z axis of the MIMU coincides with the Z T axis of the turntable and the turntable rotates at an angular velocity Ω j , the angular velocity input by the three axes of the MIMU is:

ωzz=Ωjiesin(φ)                               (61)ω zz = Ω j + ω ie sin(φ) (61)

ωzy=ωiecos(φ)cos(Ωjt+ψT)                      (62)ω zy =ω ie cos(φ)cos(Ω j t+ψ T ) (62)

ωzx=ωiecos(φ)sin(Ωjt+ψT)                      (63)ω zx =ω ie cos(φ)sin(Ω j t+ψ T ) (63)

其中ωzx、ωzy和ωzz分别为MIMU的z轴与转台ZT轴重合时,其x、y和z轴输入的角速度;Ωj代表转台输入角速度;t代表转动时间;ωie为地球自转角速度;φ为当地纬度;ψT为转动初始时刻MIMU的y轴与北向的夹角。当转台旋转数周后,所有包含cos(Ωjt+ψ)和cos(Ωjt+ψ)的各项积分为零。设ωzxj、 ωzyj、 ωzzj为为MIMU的z轴与转台ZT轴重合时,转台输入的第j个角速率Ωj时x、y、z轴向陀螺仪输出的平均值为:Among them, ω zx , ω zy and ω zz are the angular velocities input by the x, y and z axes when the z axis of the MIMU coincides with the Z T axis of the turntable, respectively; Ω j represents the input angular velocity of the turntable; t represents the rotation time; ω ie is the earth Rotation angular velocity; φ is the local latitude; ψ T is the angle between the y-axis of MIMU and the north direction at the initial moment of rotation. When the turntable rotates for several cycles, all integrals including cos(Ω j t+ψ) and cos(Ω j t+ψ) are zero. Let ω zxj , ω zyj , ω zzj be when the z-axis of the MIMU coincides with the Z T -axis of the turntable, the average value of the output of the gyroscope in the x, y, and z axes at the jth angular rate Ω j input by the turntable is:

Figure A20061001157600163
Figure A20061001157600163

设开始测试位置1时各陀螺仪输出平均值为 ωaxs1、 ωzys1、 ωzzs1位置2时各陀螺仪输出平均值为 ωzxs2、 ωzys2、 ωzzs2,结束时测试位置1时各陀螺仪输出平均值为 ωzxe1、 ωzye1、 ωzze1,位置2时各陀螺仪输出平均值为 ωzxe2、 ωzye2、 ωzze2,可得测试开始时,MIMU中x、y、z轴陀螺仪输出平均值 ωzxs、 ωzys、 ωzzs和结束时各陀螺仪输出平均值 ωzxe、 ωzye、 ωzze为:Let the average output of each gyroscope at position 1 be ω axs1 , ω zys1 , ω zzs1 at the beginning of the test position 1, the average output of each gyroscope at position 2 be ω zxs2 , ω zys2 , ω zzs2 , and the output of each gyroscope at position 1 at the end of the test The average values are ω zxe1 , ω zye1 , ω zze1 , and the average values of the output of each gyroscope at position 2 are ω zxe2 , ω zye2 , ω zze2 , and the average values of the x, y, and z-axis gyroscope outputs in the MIMU at the beginning of the test can be obtained ω zxs , ω zys , ω zzs and the average value of each gyroscope output at the end ω zxe , ω zye , ω zze are:

ωzxs=( ωzxs1+ ωzxs2)/2=Kxsin(xziesin(φ)+Dx+Dxzg               (67)ω zxs =( ω zxs1 + ω zxs2 )/2=K x sin( xzie sin(φ)+D x +D xz g (67)

ωzys=( ωzys1+ ωzys2)/2=Kysin(yziesin(φ)+Dy+Dyzg               (68)ω zys =( ω zys1 + ω zys2 )/2=K y sin( yzie sin(φ)+D y +D yz g (68)

ωzzs=( ωzzs1+ ωzzs2)/2=Kzcos(zx)cos(zyiesin(φ)+Dz+Dzzg      (69)ω zzs =( ω zzs1 + ω zzs2 )/2=K z cos( zx )cos( zyie sin(φ)+D z +D zz g (69)

ωzxe=( ωzxe1+ ωzxe2)/2=Kxsin(xziesin(φ)+Dx+Dxzg               (70)ω zxe =( ω zxe1 + ω zxe2 )/2=K x sin( xzie sin(φ)+D x +D xz g (70)

ωzye=( ωzye1+ ωzye2)/2=Kysin(yziesin(φ)+Dy+Dyzg               (71)ω zye =( ω zye1 + ω zye2 )/2=K y sin( yzie sin(φ)+D y +D yz g (71)

ωzze=( ωzze1+ ωzze2)/2=Kzcos(zx)cos(zyiesin(φ)+Dz+Dzzg      (72)ω zze =( ω zze1 + ω zze2 )/2=K z cos( zx )cos( zyie sin(φ)+D z +D zz g (72)

消除地球自转角速率对陀螺仪的影响,MIMU各陀螺仪静止时输出的平均值 ωzxr、 ωzyr、 ωzzr为:To eliminate the influence of the earth's rotation angular rate on the gyroscope, the average values of ω zxr , ω zyr , and ω zzr output by each gyroscope of the MIMU when they are stationary are:

ωzxr=( ωzxs+ ωzxe)/2                                                 (73)ω zxr = (ω zxs + ω zxe )/2 (73)

ωzyr=( ωzys+ ωzye)/2                                                 (74)ω zyr = (ω zys + ω zye )/2 (74)

ωzzr=( ωzzs+ ωzze)/2                                                 (75) ωzzr = ( ωzzs + ωzze )/2 (75)

在第j个输入角速率Ωj时,消除了地球自转角速率、陀螺仪常值偏置、陀螺仪输出与比力有关误差项干扰,求得MIMU中x、y、z陀螺仪输出值为:When the jth input angular rate Ω j is eliminated, the interference of the earth's rotation angular rate, gyroscope constant bias, gyroscope output and specific force-related error items is eliminated, and the x, y, z gyroscope output values in the MIMU are obtained as :

ωzzj= ωzzj- ωzzr=Kzcos(zx)cos(zyj                            (76)ω zzj = ω zzj - ω zzr = K z cos( zx )cos( zyj (76)

ωzxj= ωzxj- ωzxr=Kxsin(xzj                                     (77)ω zxj = ω zxj - ω zxr =K x sin( xzj (77)

ωzyj= ωzyj- ωzyr=Kysin(yzj                          (78)ω zyj = ω zyj - ω zyr = K y sin( yzj (78)

同理,可求得当MIMU的x、y轴分别与转台z轴重合时,消除了地球自转角速率、陀螺仪常值偏置、陀螺仪输出与比力有关误差项干扰后,求得z轴陀螺仪输出值为:In the same way, when the x and y axes of the MIMU coincide with the z-axis of the turntable, the z-axis can be obtained after eliminating the interference of the earth's rotation angular rate, the constant bias of the gyroscope, and the error terms related to the output of the gyroscope and the specific force. The gyroscope output values are:

ωxzj= ωxzj- ωxzr=Kzsin(zxj                          (79)ω xzj = ω xzj - ω xzr =K z sin( zxj (79)

ωyzj= ωyzj- ωyzr=Kzsin(zyj                          (80)ω yzj = ω yzj - ω yzr = K z sin( zyj (80)

根据式(76)、(79)和(80),用最小二乘法求MIMU中z轴陀螺仪标度因数与安装误差角耦合系数为:According to formulas (76), (79) and (80), the coupling coefficient between the scale factor of the z-axis gyroscope in the MIMU and the installation error angle is obtained by the least square method:

Figure A20061001157600171
Figure A20061001157600171

Figure A20061001157600172
Figure A20061001157600172

Figure A20061001157600173
Figure A20061001157600173

采用迭代法分离陀螺仪安装误差角与标度因数耦合,具体步骤如下:The iterative method is used to separate the coupling between the installation error angle and the scaling factor of the gyroscope. The specific steps are as follows:

a.首先取Kzcos(zx)cos(zy)做为陀螺仪低动态情况下标度因数的初始值Kz 0,设置标度因数迭代精度域值ε;a. First, take K z cos( zx )cos( zy ) as the initial value K z 0 of the scaling factor in the case of low dynamics of the gyroscope, and set the scaling factor iteration accuracy threshold ε;

b.将标度因数Kz i分别代入方程(82)、(83),求得安装误差角zx i和zy ib. Substitute the scaling factor K z i into equations (82) and (83) respectively to obtain the installation error angles  zx i and  zy i ;

c.将安装误差角zx i、zy i代入方程(81),求得标度因数Kz ic. Substitute the installation error angles  zx i and  zy i into equation (81) to obtain the scaling factor K z i ;

d.检验前后两次迭代计算出的标度因数值,当 | | K z i - K z i - 1 | | ≤ ϵ 时,结束迭代,把Kz i、zx i、zy i分别作为最终求解的陀螺仪低动态情况下标度因数、安装误差值,否则计算返回至步骤(b)继续迭代;d. The scale factor value calculated by two iterations before and after the test, when | | K z i - K z i - 1 | | ≤ ϵ When , the iteration ends, and K z i ,  zxi ,  zy i are respectively used as the scaling factor and the installation error value of the final solved gyroscope under low dynamic conditions, otherwise the calculation returns to step (b) to continue iteration ;

e.将求得的Kz i、zx i、zy i、Dz代入方程(34)、(39)、(24)中,可分别求得z轴陀螺仪输出与z轴比力有关误差项Dzz、与y轴比力有关误差项Dzy、与x轴比力有关误差项Dzxe. Substituting the obtained K z i ,  zxi ,zy i , and D z into equations (34), (39), and (24), it can be obtained that the z-axis gyroscope output is related to the z-axis specific force The error term D zz , the error term D zy related to the y-axis specific force, and the error term D zx related to the x-axis specific force.

根据以上的方法,同理可以求得MIMU中x、y轴陀螺仪低动态情况下标度因数Kx、Ky,安装误差角xy、xz、yx、yz及角速度输出与轴向比力有关项Dxx、Dxy、Dxz、Dyy、Dyx、Dyz。至此,计算出MIMU所有标定系数。According to the above method, the scale factors K x , K y , the installation error angles  xy ,  xz ,  yx ,  yz , and the angular velocity output and axis can be obtained in the same way when the x-axis and y-axis gyroscopes in the MIMU are under low dynamic conditions. Comparing relevant items D xx , D xy , D xz , D yy , D yx , D yz . So far, all calibration coefficients of MIMU are calculated.

(2)计算MIMU中陀螺仪的高动态情况下标度因数。(2) Calculating the scale factor of the gyroscope in the MIMU under high dynamic conditions.

由于在高动态情况下,MIMU标度因数的非线性误差较大,采用插值法分段计算陀螺仪高动态情况下标度因数,提高MIMU精度。Due to the large nonlinear error of the MIMU scale factor under high dynamic conditions, the interpolation method is used to calculate the scale factor of the gyroscope under high dynamic conditions in sections to improve the precision of MIMU.

首先,根据MIMU角速度通道动态范围、标度因数非线性特性、实际工作环境及精度要求等设置高低动态临界转速点,一般将‖Ωj‖=3n°/10/s作为高低动态临界转速点,将大于3n°/10/s各速率作为高动态分段插值的插值转速点,将已求得的安装误差代入方程(76)中,分别计算各插值转速点的标度因数,然后采用线性插值法分段计算陀螺仪高动态情况下标度因数Kzt为:First, the high and low dynamic critical speed points are set according to the dynamic range of the MIMU angular velocity channel, the nonlinear characteristics of the scale factor, the actual working environment, and the accuracy requirements. Generally, ‖Ω j ‖=3n°/10/s is used as the high and low dynamic critical speed point. Take each rate greater than 3n°/10/s as the interpolation speed point of high dynamic segmental interpolation, substitute the obtained installation error into equation (76), calculate the scaling factor of each interpolation speed point respectively, and then use linear interpolation Calculating the scaling factor K zt of the gyroscope in the case of high dynamics in sections by using the method is as follows:

Kz,t=Kz,i+(Kz,i+1-Kz,i)(Ωti)/(Ωi+1i)              (84)K z,t =K z,i +(K z,i+1 -K z,i )(Ω ti )/(Ω i+1i ) (84)

式(84)中Kz,t代表z轴陀螺仪高动态情况下标度因数,Kz,i代表z轴第i转速插值点陀螺仪标度因数,Ωi代表第i转速插值点转速,Ωt代表计算的初始转速(Ωi≤Ωt≤Ωi+1)。In Equation (84), K z, t represents the scale factor of the z-axis gyroscope under high dynamic conditions, K z, i represents the scale factor of the gyroscope at the i-th speed interpolation point of the z-axis, Ω i represents the speed of the i-th speed interpolation point, Ω t represents the calculated initial rotational speed (Ω i ≤Ω t ≤Ω i+1 ).

同理可求得x、y轴陀螺仪高动态情况下标度因数,该方法不但减小了高动态情况下MIMU中陀螺仪标度因数非线性误差,而且减小了低动态情况下计算量。In the same way, the scale factor of the x-axis and y-axis gyroscope under high dynamic conditions can be obtained. This method not only reduces the nonlinear error of the gyroscope scale factor in the MIMU under high dynamic conditions, but also reduces the calculation amount under low dynamic conditions. .

本发明虽然是基于MIMU误差特性而设计的标定方法,但不仅适用于MIMU,同样适用于挠性陀螺仪IMU和液浮陀螺仪IMU。Although the present invention is a calibration method designed based on MIMU error characteristics, it is not only applicable to MIMU, but also applicable to flexible gyroscope IMU and liquid floating gyroscope IMU.

本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的The content that is not described in detail in the description of the present invention belongs to those skilled in the art

现有技术。current technology.

Claims (4)

1, the micro inertial measurement unit method for precisely marking of alignment error angle and constant multiplier decoupling zero, its characteristics are to realize through the following steps:
(1) sets up MIMU global error model;
(2) utilize two-axis position platform or turntable to carry out 10 position static demarcating tests;
(3) according to the static demarcating test figure, adopt symmetric position error phase elimination calculating accelerometer, gyroscope often to be worth biasing, utilize acceleration passage decoupling method to calculate accelerometer constant multiplier and alignment error angle;
(4) utilize single shaft rate table and three frocks to carry out the positive and negative speed trial in 3 orientation;
(5) according to the positive and negative speed experimental data in 3 orientation, adopt least square method and cyclic iterative to separate gyroscope constant multiplier and the coupling of alignment error angle among the MIMU one by one, constant multiplier, gyroscope alignment error angle under the low current intelligence of computing gyroscope, find the solution the relevant error term of gyroscope output in conjunction with the static demarcating test figure, and adopt constant multiplier under the high current intelligence of method of interpolation segmentation accurate Calculation gyroscope with specific force.
2, the micro inertial measurement unit method for precisely marking of alignment error angle according to claim 1 and constant multiplier decoupling zero is characterized in that: 10 position static demarcating test methods in the described step (2) are: x, y, the z axle that MIMU is set respectively with the geographic coordinate system sky to overlapping and rotating 180 ° of 6 positions to axle horizontal around the sky; Be provided with x, y, the z of MIMU any one with geographic coordinate system ground to overlaps and around ground to 180 ° of 2 position of axle horizontal rotation; The z axle that MIMU is set in geographical surface level, x, y axle respectively with the geographic coordinate system sky to the y of angle at 45 and MIMU axle in geographical surface level, x, z axle respectively with the geographic coordinate system sky to angle at 45 2 positions, realize totally 10 static position.
3, the micro inertial measurement unit method for precisely marking of alignment error according to claim 1 angle and constant multiplier decoupling zero, it is characterized in that: acceleration passage decoupling method is to utilize the z axle of MIMU in geographical surface level in the described step (3), x, the y axle respectively with the geographic coordinate system sky to the y of angle at 45 and MIMU axle in geographical surface level, x, the z axle respectively with the geographic coordinate system sky to angle at 45 2 positions, list each axis accelerometer input/output state equation according to acceleration channel error model, in conjunction with each axis accelerometer input/output state equation under above-mentioned other 8 position, calculate accelerometer alignment error angle earlier by phase division and inverse trigonometric function method, calculate the accelerometer constant multiplier then, finally realize the decoupling zero of acceleration passage.
4, the micro inertial measurement unit method for precisely marking of alignment error angle according to claim 1 and constant multiplier decoupling zero, it is characterized in that: constant multiplier method under the high current intelligence of method of interpolation segmentation computing gyroscope of described step (5): utilize the alignment error angle of trying to achieve, calculate the constant multiplier of each interpolation rotating speed point under the high current intelligence, adopt constant multiplier under the high current intelligence of linear interpolation method segmentation computing gyroscope.
CNB2006100115763A 2006-03-29 2006-03-29 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling Expired - Fee Related CN1330935C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100115763A CN1330935C (en) 2006-03-29 2006-03-29 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100115763A CN1330935C (en) 2006-03-29 2006-03-29 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling

Publications (2)

Publication Number Publication Date
CN1818555A true CN1818555A (en) 2006-08-16
CN1330935C CN1330935C (en) 2007-08-08

Family

ID=36918666

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100115763A Expired - Fee Related CN1330935C (en) 2006-03-29 2006-03-29 Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling

Country Status (1)

Country Link
CN (1) CN1330935C (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236083B (en) * 2008-03-06 2010-11-03 浙江大学 Fast switching optical fibre gyroscope active and static data output method
CN101419080B (en) * 2008-06-13 2011-04-20 哈尔滨工程大学 Mini quick-connecting inertia measurement system zero speed correcting method
CN102207380A (en) * 2011-06-09 2011-10-05 中国人民解放军第二炮兵工程学院 High-precision horizontal axis tilt error compensation method
CN102288133A (en) * 2011-04-29 2011-12-21 北京星网宇达科技开发有限公司 Installation deflection angle calibration method of gyro indirect stable system
CN102135434B (en) * 2010-01-25 2012-06-27 北京三驰科技发展有限公司 Method for error compensation of inertial measurement unit (IMU)
CN102564461A (en) * 2012-02-29 2012-07-11 北京航空航天大学 Method for calibrating optical strapdown inertial navigation system based on two-axis turntable
CN102620735A (en) * 2012-04-17 2012-08-01 华中科技大学 Transposition method of double-shaft rotating type strapdown inertial navigation system for ship
CN102889076A (en) * 2012-09-14 2013-01-23 西安思坦仪器股份有限公司 Method for calibrating gyro inclinometer
CN103983274A (en) * 2014-04-11 2014-08-13 湖北航天技术研究院总体设计所 Inertial measurement unit calibration method suitable for low-precision no-azimuth reference biaxial transfer equipment
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
CN105157723A (en) * 2015-07-14 2015-12-16 北京理工大学 Fiber gyro-based strapdown inertial navigation system calibration method
CN105675018A (en) * 2016-01-12 2016-06-15 中海石油(中国)有限公司 Attitude detection system calibration method
CN106017470A (en) * 2016-05-12 2016-10-12 湖南格纳微信息科技有限公司 Micro inertial measurement unit screening method and combined type micro inertial measurement device
CN106052682A (en) * 2016-05-13 2016-10-26 北京航空航天大学 Mixed inertial navigation system and navigation method
CN107421537A (en) * 2017-09-14 2017-12-01 桂林电子科技大学 Object motion attitude cognitive method and system based on inertial sensor rigid body grid
CN108168575A (en) * 2017-11-30 2018-06-15 上海航天控制技术研究所 A kind of five axis redundant configuration, ten mass color fibre is used to the scaling method and system of group
CN108168574A (en) * 2017-11-23 2018-06-15 东南大学 A kind of 8 position Strapdown Inertial Navigation System grade scaling methods based on speed observation
CN108398576A (en) * 2018-03-06 2018-08-14 中国人民解放军火箭军工程大学 A kind of static error calibration system and method
CN108981746A (en) * 2018-04-18 2018-12-11 北京航空航天大学 Turntable Calibration Method and device
CN108982918A (en) * 2018-07-27 2018-12-11 北京航天控制仪器研究所 The separation of accelerometer combined error coefficient and scaling method under benchmark uncertain condition
CN109342767A (en) * 2018-10-25 2019-02-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method, device and system for measuring scale factor of accelerometer
CN109406826A (en) * 2018-08-30 2019-03-01 南京理工大学 Accelerometer installation method based on rotary motion body
CN109443388A (en) * 2018-11-28 2019-03-08 中国航空工业集团公司西安飞行自动控制研究所 Integrated inertia astronomy system installation error self-calibrating method
CN109459061A (en) * 2018-12-04 2019-03-12 广州辰创科技发展有限公司 Micro inertial measurement unit scaling method, equipment and computer readable storage medium
CN110501520A (en) * 2019-08-29 2019-11-26 北京云庐科技有限公司 A kind of the axle acceleration acquisition methods and device of 3-axis acceleration sensor
CN111273058A (en) * 2020-04-07 2020-06-12 广东电网有限责任公司 Accelerometer calibration method
CN111624531A (en) * 2020-05-26 2020-09-04 中国人民解放军国防科技大学 Component calculation method for TMR three-axis integrated magnetic sensor
CN111780751A (en) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 Information redundancy method for improving inertial guidance precision
CN112013880A (en) * 2020-09-28 2020-12-01 北京理工大学 MEMS gyroscope calibration method oriented to high-dynamic application environment
CN112091255A (en) * 2020-07-21 2020-12-18 梅标 Calculation method for distribution interval of hole-making positioning deviation sources and installation parameters of measuring camera
CN112378419A (en) * 2020-10-30 2021-02-19 哈尔滨理工大学 Magnetoelectric encoder-based dual-axis gyroscope calibration and decoupling method
CN112697168A (en) * 2020-11-27 2021-04-23 浙江大学 Measuring device and method for simultaneously measuring scale factor and misalignment angle of fiber-optic gyroscope
CN113220023A (en) * 2021-04-28 2021-08-06 中国科学院重庆绿色智能技术研究院 High-precision real-time path planning method for unmanned aerial vehicle
CN113267202A (en) * 2021-04-28 2021-08-17 广东国天时空科技有限公司 Optical fiber gyroscope scale factor nonlinear error compensation method
CN113433600A (en) * 2021-06-23 2021-09-24 中国船舶重工集团公司第七0七研究所 Method for calibrating installation error angle of gravimeter
CN113624252A (en) * 2021-06-30 2021-11-09 北京自动化控制设备研究所 Inertial navigation prism azimuth installation deviation calibration method and inertial navigation system
CN117433561A (en) * 2023-10-24 2024-01-23 中国船舶集团有限公司第七一九研究所 Turntable-free MIMU error calibration method based on genetic algorithm

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205868A1 (en) * 1992-02-26 1993-09-02 Teldix Gmbh METHOD AND DEVICE FOR CALIBRATING A MEASURING DEVICE
US6778924B2 (en) * 2001-11-06 2004-08-17 Honeywell International Inc. Self-calibrating inertial measurement system method and apparatus

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236083B (en) * 2008-03-06 2010-11-03 浙江大学 Fast switching optical fibre gyroscope active and static data output method
CN101419080B (en) * 2008-06-13 2011-04-20 哈尔滨工程大学 Mini quick-connecting inertia measurement system zero speed correcting method
CN102135434B (en) * 2010-01-25 2012-06-27 北京三驰科技发展有限公司 Method for error compensation of inertial measurement unit (IMU)
CN102288133B (en) * 2011-04-29 2013-04-17 北京星网宇达科技股份有限公司 Installation deflection angle calibration method of gyro indirect stable system
CN102288133A (en) * 2011-04-29 2011-12-21 北京星网宇达科技开发有限公司 Installation deflection angle calibration method of gyro indirect stable system
CN102207380A (en) * 2011-06-09 2011-10-05 中国人民解放军第二炮兵工程学院 High-precision horizontal axis tilt error compensation method
CN102207380B (en) * 2011-06-09 2013-12-04 中国人民解放军第二炮兵工程学院 High-precision horizontal axis tilt error compensation method
CN102564461A (en) * 2012-02-29 2012-07-11 北京航空航天大学 Method for calibrating optical strapdown inertial navigation system based on two-axis turntable
CN102620735B (en) * 2012-04-17 2013-12-25 华中科技大学 Transposition method of double-shaft rotating type strapdown inertial navigation system for ship
CN102620735A (en) * 2012-04-17 2012-08-01 华中科技大学 Transposition method of double-shaft rotating type strapdown inertial navigation system for ship
CN102889076A (en) * 2012-09-14 2013-01-23 西安思坦仪器股份有限公司 Method for calibrating gyro inclinometer
CN103983274A (en) * 2014-04-11 2014-08-13 湖北航天技术研究院总体设计所 Inertial measurement unit calibration method suitable for low-precision no-azimuth reference biaxial transfer equipment
CN104655132A (en) * 2015-02-11 2015-05-27 北京航空航天大学 Method for estimating body elastic deformation angle on basis of accelerometer
CN104655132B (en) * 2015-02-11 2017-08-25 北京航空航天大学 A kind of body elastic deformation angular estimation method based on accelerometer
CN105157723A (en) * 2015-07-14 2015-12-16 北京理工大学 Fiber gyro-based strapdown inertial navigation system calibration method
CN105675018A (en) * 2016-01-12 2016-06-15 中海石油(中国)有限公司 Attitude detection system calibration method
CN105675018B (en) * 2016-01-12 2018-07-13 中海石油(中国)有限公司 A kind of attitude detection system scaling method
CN106017470A (en) * 2016-05-12 2016-10-12 湖南格纳微信息科技有限公司 Micro inertial measurement unit screening method and combined type micro inertial measurement device
CN106017470B (en) * 2016-05-12 2019-05-24 湖南格纳微信息科技有限公司 Micro inertial measurement unit screening technique and combined type micro-inertia measuring device
CN106052682A (en) * 2016-05-13 2016-10-26 北京航空航天大学 Mixed inertial navigation system and navigation method
CN106052682B (en) * 2016-05-13 2018-12-11 北京航空航天大学 A kind of hybrid inertial navigation system and air navigation aid
CN107421537A (en) * 2017-09-14 2017-12-01 桂林电子科技大学 Object motion attitude cognitive method and system based on inertial sensor rigid body grid
CN107421537B (en) * 2017-09-14 2020-07-17 桂林电子科技大学 Object motion attitude sensing method and system based on rigid body grid of inertial sensor
CN108168574A (en) * 2017-11-23 2018-06-15 东南大学 A kind of 8 position Strapdown Inertial Navigation System grade scaling methods based on speed observation
CN108168574B (en) * 2017-11-23 2022-02-11 东南大学 An 8-Position Strapdown Inertial Navigation System-Level Calibration Method Based on Velocity Observation
CN108168575A (en) * 2017-11-30 2018-06-15 上海航天控制技术研究所 A kind of five axis redundant configuration, ten mass color fibre is used to the scaling method and system of group
CN108398576A (en) * 2018-03-06 2018-08-14 中国人民解放军火箭军工程大学 A kind of static error calibration system and method
CN108398576B (en) * 2018-03-06 2020-02-07 中国人民解放军火箭军工程大学 Static error calibration system and method
CN108981746A (en) * 2018-04-18 2018-12-11 北京航空航天大学 Turntable Calibration Method and device
CN108981746B (en) * 2018-04-18 2021-07-06 北京航空航天大学 Turntable calibration method and device
CN108982918A (en) * 2018-07-27 2018-12-11 北京航天控制仪器研究所 The separation of accelerometer combined error coefficient and scaling method under benchmark uncertain condition
CN109406826A (en) * 2018-08-30 2019-03-01 南京理工大学 Accelerometer installation method based on rotary motion body
CN109342767A (en) * 2018-10-25 2019-02-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method, device and system for measuring scale factor of accelerometer
CN109342767B (en) * 2018-10-25 2021-10-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method, device and system for measuring scale factor of accelerometer
CN109443388A (en) * 2018-11-28 2019-03-08 中国航空工业集团公司西安飞行自动控制研究所 Integrated inertia astronomy system installation error self-calibrating method
CN109459061A (en) * 2018-12-04 2019-03-12 广州辰创科技发展有限公司 Micro inertial measurement unit scaling method, equipment and computer readable storage medium
CN110501520B (en) * 2019-08-29 2021-06-29 北京云庐科技有限公司 Method and device for acquiring axial acceleration of triaxial acceleration sensor
CN110501520A (en) * 2019-08-29 2019-11-26 北京云庐科技有限公司 A kind of the axle acceleration acquisition methods and device of 3-axis acceleration sensor
CN111273058A (en) * 2020-04-07 2020-06-12 广东电网有限责任公司 Accelerometer calibration method
CN111624531A (en) * 2020-05-26 2020-09-04 中国人民解放军国防科技大学 Component calculation method for TMR three-axis integrated magnetic sensor
CN111624531B (en) * 2020-05-26 2022-05-24 中国人民解放军国防科技大学 A Component Solution Method for TMR Three-axis Integrated Magnetic Sensor
CN111780751B (en) * 2020-06-10 2021-12-07 北京航天控制仪器研究所 Information redundancy method for improving inertial guidance precision
CN111780751A (en) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 Information redundancy method for improving inertial guidance precision
CN112091255A (en) * 2020-07-21 2020-12-18 梅标 Calculation method for distribution interval of hole-making positioning deviation sources and installation parameters of measuring camera
CN112013880A (en) * 2020-09-28 2020-12-01 北京理工大学 MEMS gyroscope calibration method oriented to high-dynamic application environment
CN112013880B (en) * 2020-09-28 2023-05-30 北京理工大学 A MEMS gyroscope calibration method for high dynamic application environment
CN112378419A (en) * 2020-10-30 2021-02-19 哈尔滨理工大学 Magnetoelectric encoder-based dual-axis gyroscope calibration and decoupling method
CN112697168A (en) * 2020-11-27 2021-04-23 浙江大学 Measuring device and method for simultaneously measuring scale factor and misalignment angle of fiber-optic gyroscope
CN113267202A (en) * 2021-04-28 2021-08-17 广东国天时空科技有限公司 Optical fiber gyroscope scale factor nonlinear error compensation method
CN113220023B (en) * 2021-04-28 2022-10-14 中国科学院重庆绿色智能技术研究院 A high-precision real-time path planning method for unmanned aerial vehicles
CN113220023A (en) * 2021-04-28 2021-08-06 中国科学院重庆绿色智能技术研究院 High-precision real-time path planning method for unmanned aerial vehicle
CN113267202B (en) * 2021-04-28 2024-03-08 广东国天时空科技有限公司 Nonlinear error compensation method for scale factors of fiber-optic gyroscope
CN113433600A (en) * 2021-06-23 2021-09-24 中国船舶重工集团公司第七0七研究所 Method for calibrating installation error angle of gravimeter
CN113624252A (en) * 2021-06-30 2021-11-09 北京自动化控制设备研究所 Inertial navigation prism azimuth installation deviation calibration method and inertial navigation system
CN113624252B (en) * 2021-06-30 2023-09-12 北京自动化控制设备研究所 Inertial prism azimuth installation deviation calibration method and inertial navigation system
CN117433561A (en) * 2023-10-24 2024-01-23 中国船舶集团有限公司第七一九研究所 Turntable-free MIMU error calibration method based on genetic algorithm

Also Published As

Publication number Publication date
CN1330935C (en) 2007-08-08

Similar Documents

Publication Publication Date Title
CN1818555A (en) Microinertia measuring unit precisive calibration for installation fault angle and rating factor decoupling
CN1908584A (en) Method for determining initial status of strapdown inertial navigation system
CN1229956C (en) Electronic equipment
CN1851406A (en) Gasture estimation and interfusion method based on strapdown inertial nevigation system
CN1314946C (en) Mixed calibration method for inertial measurement unit capable of eliminating gyro constant drift
CN1752838A (en) Stage driving apparatus and anti-shake apparatus
CN101566483B (en) Vibration error compensation method of fiber optic gyro strap-down inertia measurement system
CN1680780A (en) Method and apparatus for determining a geomagnetic field by using a compass and method and apparatus for determining an azimuth angle of a moving object using the same
CN1930596A (en) Mobile terminal having map display function, map display system, information distribution server, and program
CN101067628A (en) Vector Correction Method for Installation Error of Accelerometer Array Without Gyro
CN1823523A (en) Projector apparatus, inclination angle obtaining method, and projection image correction method
CN1845025A (en) Method of Improving Contour Machining Accuracy Using Zero Phase Error Tracking Control and Disturbance Observation
CN1749772A (en) Positioning system, information providing device and terminal device
CN1928567A (en) Velocity detection, position detection and navigation system
CN1871496A (en) Magnetic sensor control method, magnetic sensor controller and portable terminal device
CN1604015A (en) Data conversion method and apparatus, and orientation measurement apparatus
CN1763622A (en) Actuator, and lens unit and camera with the same
CN1917953A (en) Polar-modified bonded phase materials for chromatographic separations
CN1932238A (en) Full optical fiber digital inclinometer
CN1776515A (en) Parallel movement apparatus, and actuator, lens unit and camera having the same
CN1815254A (en) Positioning system, terminal device, control method of terminal device
CN102155957A (en) Mobile strapdown attitude and heading reference based method for calibrating marine optical fiber gyroscope assembly on line
CN101059386A (en) Precession vector based holographic on-spot dynamic balance method
CN110006454B (en) A method for IMU to calibrate verticality and initial attitude of three-axis turntable
CN106918352A (en) A kind of correction of course method of hand-held MEMS magnetometers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070808