[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN1783242A - 全息图记录介质和全息图记录-再现设备 - Google Patents

全息图记录介质和全息图记录-再现设备 Download PDF

Info

Publication number
CN1783242A
CN1783242A CN200510080508.8A CN200510080508A CN1783242A CN 1783242 A CN1783242 A CN 1783242A CN 200510080508 A CN200510080508 A CN 200510080508A CN 1783242 A CN1783242 A CN 1783242A
Authority
CN
China
Prior art keywords
record
light
data
hologram
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510080508.8A
Other languages
English (en)
Other versions
CN100353429C (zh
Inventor
宇野和史
手塚耕一
吉川浩宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of CN1783242A publication Critical patent/CN1783242A/zh
Application granted granted Critical
Publication of CN100353429C publication Critical patent/CN100353429C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/128Modulators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00772Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track on record carriers storing information in the form of optical interference patterns, e.g. holograms
    • G11B7/00781Auxiliary information, e.g. index marks, address marks, pre-pits, gray codes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)
  • Optical Head (AREA)

Abstract

本发明提供了一种盘类型的全息图记录介质和利用这种记录介质的全息图记录和再现设备。全息图记录和再现设备包括空间光调制器,所述空间光调制器具有排列成栅格状形式的多个光学元件。这些光学元件被划分为多组,每一组与1比特数据相关联,以执行所需要的光调制。从而,可以在记录介质中记录呈现出更好的1比特S/N容限的特殊模式。在数据记录或数据再现期间,从记录介质中读取特殊模式,并且基于所获取的特殊模式,进行通过伺服控制的微调,用以调整记录介质的倾斜或聚焦,并调整从光源发射的光的波长。

Description

全息图记录介质和全息图记录-再现设备
技术领域
本发明涉及全息图记录介质和使用全息术原理的全息图记录-再现设备。
背景技术
在已知的全息图记录和再现装置中,激光束被分为两束,对其中一束利用空间光调制器以要记录的信息进行调制,并使得该信息光束落在具有全息物质的记录层(下文中称为全息图记录层)的光记录介质(下文中称为全息图记录介质)上,而使得另一束作为参考光束以相对于信息光束的规定入射角落在全息图记录介质的全息图记录层上的信息光束照射位置(干涉模式),并且在全息图记录层上记录由信息光束和参考光束生成的全息图。
利用该全息图记录方法,可以通过改变参考光束的入射角,在全息图记录介质的相同记录位置记录多个全息图(角度复用记录)。因此,利用现有技术中表述的全息图记录和再现,可以记录并再现比CD(光盘)或DVD(数字多用途光盘)高出好几十倍的容量。
另外,在上述全息图记录和再现设备中,通过使得参考光束以与全息图记录介质上的记录期间相同的入射角度和相图落下,从全息图介质中生成了衍射光束(信息光束),用拾取元件接收该衍射光束,并且通过对接收的光信号进行规定的信号处理,再现出期望的信息。
全息图记录系统使得能够通过角向复用记录来进行大容量记录,但是当通过使参考光束落在记录在全息图记录介质中的全息图上来生成衍射光束(信息光束)时,衍射光束的强度(衍射效率)遵循sinc函数的二次功率分布,如图19所示,这一过程的特定特征是在记录和再现期间参考光束的入射角θ的偏移允许范围(容限)和光源波长λ的偏移允许范围(容限)都非常窄(角度选择性和波长选择性极高)。
在图19中,衍射光束强度(相对于最大值“1.0”归一化的值)标在纵坐标上,参考光束入射角的偏移量Δθ或光源波长的偏移量Δλ标在横坐标上。横坐标上的位置“0”是参考光束入射角或光源波长与记录期间匹配且偏移为0的位置。此时,衍射光束强度达到最大值。当横坐标是参考光束入射角的偏移量Δθ时,图19示出了衍射光束强度和参考光束入射角的偏移量Δθ之间的关系,而当横坐标是光源波长的偏移量Δλ时,图19示出了衍射光束强度和光源波长的偏移量Δλ之间的关系。
例如,当在全息图记录介质上进行记录,并且介质上全息物质的厚度为200μm,激光束光源波长为405nm,参考光束入射角为30°时,则在衍射光束强度为“0”的点(a)和点(b)处,光源波长的偏移量Δλ约为±6.1nm,而参考光束入射角的偏移量Δθ约为±7min。因此,如果将记录在全息图记录介质上的信息进行再现期间的衍射光束下降容限取为“0.5”(下降3dB),则衍射光束强度变为“0.5”时光源波长的偏移量Δλ3dB(下降3dB的偏移量Δλ)约为±3nm,并且该值就是光源波长的偏移容限。此外,衍射光束强度变为“0.5”时参考光束入射角的Δθ3dB约为±3.5min,并且该值就是参考光束入射角的偏移容限。
因而,利用该全息图记录方法,光源波长的偏移容限和参考光束入射角的偏移容限都是极窄的(与角度选择性或波长选择性有关的条件严格)。因此,由于这样一些条件,从而难以实现使用诸如CD或DVD等光盘的可替换和便携式的全息图记录介质。
因此,迄今为止已提出了通过改进在全息图记录介质上记录信息的方法,来提高记录和再现的稳定性和可靠性的技术。
例如,日本专利申请早期公开No.H11-16374描述了一种全息图记录方法,该方法通过在全息图记录介质上记录要记录的信息以及在前述信息的记录期间与参考光束入射角(下文中称为“记录角”)有关的信息,在再现期间读取与记录角有关的信息,并且基于该信息校正参考光束的入射角(在再现期间相对于全息图记录介质的入射角),来尽可能地减少信息光束衍射效率的下降,并提高再现的可靠性。
另外,日本专利申请早期公开No.2002-216359描述了一种技术,该技术利用了这样的事实,即投影在拾取元件的拾取表面上的参考光束位置是根据发生偏移时激光束波长的偏移量而偏移的,其中在拾取元件中,以栅格形式排列了多个光接收元件,该技术包括以下步骤:采用可变波长相干光源作为光源;在再现期间使用位于拾取元件四角的光接收元件的光接收信号;检测在拾取元件的拾取表面上的参考光束保护位置的偏移量;并基于该偏移量校正从可变波长相干光源输出的激光束的波长。
前述日本专利申请早期公开No.H11-16374和No.2002-216359描述了通过使用聚焦和循迹诸如CD和DVD等光盘的伺服技术,利用光盘结构来实现便携式和可替换全息图记录介质的情形。然而,在如上所述的全息图记录系统的情形中,光源波长的偏移容限和参考光束入射角的偏移容限都极窄,并且对于聚焦和循迹诸如CD和DVD等光盘的伺服技术中的容限来说是不够的。
由于这个原因,在聚焦和循迹诸如CD和DVD等光盘的伺服技术中,难以对光盘类型的全息图记录介质的聚焦和循迹进行可靠的伺服控制,并且很难高稳定性地记录和再现数据。
另外,当在记录介质上记录诸如图像数据或文本数据的数字数据时,通常将记录介质划分为多个扇区,并且将图像数据分割并记录在各个扇区(单位记录区域)中。另一方面,管理数据也被记录下来,例如由FAT(文件分配表)来表示,其中管理数据与在记录介质上记录了哪个图像数据以及哪一个扇区被用于记录图像数据等问题有关。
当读取记录在盘上的文件时,首先有必要高可靠性地读取文件管理信息,如果不高可靠性地读取文件管理信息,即便增大了盘容量,所获得的效果也会减半。因此,用于记录数据的管理数据的读写的可靠性比记录数据自身的读写可靠性更为重要。另外,即使实现了记录和再现期间全息图记录介质的聚焦和循迹伺服控制,如果在后续的管理数据的记录或再现处理中没有可靠地读取管理数据,则设备实际上也不能充当全息图记录和再现设备。
在全息图记录系统的情形中,光源波长的偏移容限和参考光束入射角的偏移容限极窄,并且衍射光束基本上很难从记录在全息图记录介质上的全息图中高稳定并且高可靠地再现出来。因此,期望在文件管理信息的记录和再现期间的光源波长的偏移容限和参考光束入射角的偏移容限相比于文件的光源波长的偏移容限和参考光束入射角的偏移容限更为宽松。
在前述日本专利申请早期公开No.H11-16374和No.2002-216359中描述的全息图记录和再现设备通过使用用在诸如CD和DVD等光盘中的聚焦和循迹伺服控制技术,而对光盘类型的全息图记录介质的聚焦和循迹实施伺服控制。因此,数据记录和再现的稳定性和可靠性很难满足。
此外,在日本专利申请早期公开No.H11-16374中描述的技术通过校正再现期间参考光束的入射角,使得参考光束的入射角最小,并且记录和再现期间的光源波长的偏移容限或参考光束入射角的偏移容限在文件和文件的管理数据之间没有变化。此外,在日本专利申请早期公开No.2002-216359中描述的技术通过改变再现期间光源的发生频率,使得光源的波长偏移最小。这种情况下,记录和再现期间的光源波长的偏移容限或参考光束入射角的偏移容限在文件和文件的管理数据之间也没有变化。因此,这两种方法都有可能出现以下情况,即由于未读取文件管理信息,因而无法打开文件。
具体地说,如果系统用在通过旋转盘来进行全息图记录的情形中,则由于盘的微弱倾斜而引起的偏心或面内摆动,使得参考光束入射角的偏移容限变得更为严格,并且难以读取文件管理信息。由于这个原因,需要很长时间来读取文件管理信息,有时甚至根本无法读取该信息。因此,很难高速并可靠地进行记录和再现处理。另外,如果增大全息图介质的厚度以转变为通过角度复用的超高记录容量,则由于图19中所示的容限反比于全息图介质的厚度,因此该容限进一步变窄。结果,想要通过增大全息图介质的厚度来转变为超高容量,对此不可避免地设置了某种限制。
发明内容
考虑到前述内容,本发明的目的是提供一种全息图记录介质,该全息图记录介质即便实现在例如光盘类型上时,也适于对聚焦或循迹进行极精确的伺服控制,并且提供一种全息图记录和再现设备,其能够以不低于数据自身的稳定性和可靠性来记录和再现被记录在全息图记录介质上的数据管理信息。
根据本发明的第一方面,提供了一种可分离地安装在全息图记录和再现设备上的全息图记录介质,在所述全息图记录和再现设备中,从光源发射的相干光被至少分为第一光束和第二光束,所述第一光束基于所要记录的数据被调制为信息光,所述调制由包括排列成栅格状形式的多个光学元件在内的空间光调制器来执行,所述第二光束作为参考光,以相对于信息光的规定角度入射,以记录信息光和参考光的全息图。本发明的全息图记录介质记录规定模式,所述规定模式预设用于包括倾斜和聚焦在内的伺服控制的微调。通过以下列方式执行光调制来产生特殊模式,所述方式使得多个光学元件被划分为多组,每一组包括相互邻近的光学元件,并且每一组与所要记录数据的1比特相关联。
利用以上配置,记录介质存储特殊模式,用以执行伺服控制的微调。从而,通过在数据记录或数据再现期间读取所存储的特殊模式,可以基于该特殊模式,正确地执行例如倾斜控制或聚焦控制的微调。
通过将多个相互邻近的光学元件分配给1比特,来形成特殊的规定模式。因此,与将一个光学元件分配给1比特而形成的模式相比,每1比特的光量增大,并且在具有该模式的信息光束的再现期间,每1比特的S/N容限扩展。从而,利用该模式对诸如倾斜或聚焦的伺服控制进行微调,增大了伺服控制的稳定性。
根据本发明的第二方面,提供了一种全息图记录和再现设备,包括:用于发射相干光的光源;用于将相干光至少分为第一光束和第二光束的分束器;用于基于所要记录的数据,将第一光束调制为信息光的空间光调制器;用于使第二光束作为参考光,以相对于信息光的规定角度入射,从而在记录介质中记录全息图的光学系统;以及微调器,用于在数据记录和再现期间,通过从记录介质再现包括规定的伺服控制模式在内的信息光,并使用基于信息光的再现信号,从而通过伺服控制对记录介质的倾斜、记录介质的聚焦和光源的波长中的至少一种进行微调。
利用以上配置,在数据记录或再现期间,通过从全息图记录介质再现包括规定的伺服控制模式在内的信息光,并且使用基于信息光的再现信号,从而对由伺服控制所控制的全息图记录介质的倾斜、聚焦和光源波长中的至少一种进行微调。
优选地,空间光调制器可包括在第一光束的入射面上排列成栅格状形式的多个光学元件,并且通过改变对应于所要记录数据的每个比特的光学元件的状态,来产生信息光。
本发明的全息图记录和再现设备还可包括拾取/再现单元、光调制控制器和信号处理控制器。
具体地说,拾取/再现单元可包括:在信息光的入射面上排列成栅格状形式的多个光电转换器;和用于基于从每个光电转换器输出的光信号,再现对应于记录数据的比特信号的信号处理器。光调制控制器可被安排为在数据记录期间,根据数据的类型改变对应于1比特的空间光调制器的光学元件数目。信号处理控制器可被安排为在数据再现期间进行控制,从而以与每个数据比特相关联的一个或多个光电转换器为单位来执行信号处理。
利用以上配置,通过根据所要记录的数据类型改变空间光调制器中对应于1比特的光学元件数目,来进行所述数据的光调制。因此例如,如果对于用于管理数据的管理数据,对应于1比特的空间光调制器的光学元件数目增大,则相对于一个光学元件与1比特相关联的情形来说,每1比特S/N的容限也有所扩展,从而增大了管理数据记录和再现的可靠性。
优选地,当用于控制数据记录和数据再现的管理数据被记录在记录介质中时,光调制控制器可增大对应于1比特的空间光调制器的光学元件数目。
利用以上配置,对于管理数据,空间光调制器中对应于1比特的光学元件被增加为多个相互邻近的光学元件。因此,相对于一个光学元件与1比特相关联的情形来说,每1比特S/N的容限也有所扩展,从而增大了管理数据记录和再现的可靠性,因此可以增大普通数据记录和再现的可靠性。
优选地,记录介质可包括具有相对薄的全息图记录层的第一记录区域和具有相对厚的全息图记录层的第二记录区域,并且管理数据被记录在第一记录区域中。
利用以上配置,管理数据被记录在具有较小厚度的全息图记录层的记录区域中。从而,进一步扩展了每1比特S/N的容限,并且进一步增大了管理数据记录和再现的可靠性。
附图说明
图1图示了根据本发明的全息图记录和再现设备的整体配置;
图2示出了拾取器的光学系统;
图3示出了本实施例的全息图记录和再现设备中采用的全息图记录介质的构造;
图4示出了在空间光调制器的反射面的构造和用于照射的激光束的光学图像之间的关系;
图5A和5B解释了利用空间光调制器进行的光调制;
图6示出了用于增大由空间光调制器生成的光学图像的每1比特像素数的方法示例;
图7A和7B解释了在全息图记录介质沿分配给1比特的两个像素的排列方向倾斜的情况下,与衍射效率的降低有关的倾斜控制的容限;
图8图示了用于聚焦或倾斜的伺服模式的微调的特殊模式示例;
图9的流程图图示了在第一实施例的全息图记录和再现设备中,再现期间的伺服控制的回拉(pull-back)控制;
图10A和10B解释了用于在全息图记录介质沿拾取器的扫描方向倾斜的情况下,细微地调整倾斜的方法;
图11A-11C示出为了控制全息图记录介质在垂直于扫描方向的方向上的倾斜,将被记录在全息图记录介质上的特殊模式的示例;
图12示出为了控制全息图记录介质在垂直于扫描方向的方向上的倾斜,将被记录在全息图记录介质上的特殊模式的另一个示例;
图13示出了第二实施例的全息图记录和再现设备中采用的全息图记录介质的结构;
图14的流程图图示了在第二实施例的全息图记录和再现设备中对记录和再现的控制;
图15示出了在第三实施例的全息图记录和再现设备中所记录和再现的管理数据的记录模式的示例;
图16示出了在焦点附近,在等效NA和傅立叶变换图像的尺寸之间的关系;
图17示出了在再现光的检测信号受到拟合(fitting)处理的情况下信号波形的示例;
图18的流程图图示了在第三实施例的全息图记录和再现设备中对记录和再现的控制;以及
图19示出了全息图记录和再现系统中衍射效率的特性。
具体实施方式
下面将利用附图解释根据本发明的全息图记录和再现设备的第一实施例。
第一实施例的全息图记录和再现设备使用光盘类型的可替换全息图记录介质。在该设备中,在记录期间由空间光调制器基于记录数据生成的具有不同于光图像的规定特殊模式(下文中称为记录模式)的数据被记录在全息图记录介质的规定地址位置处。在记录或再现期间,通过利用这些数据的模式(该模式被称为“特殊模式”,以区别于记录数据的普通记录模式),来对全息图记录介质的聚焦或倾斜的伺服控制进行微调。
在本实施例中,具有特殊模式的数据被记录在不同于普通记录数据的地址位置处。然而,也可以将特殊模式的一部分编入普通记录数据的模式,从而在记录数据的记录和再现期间,实时地进行聚焦或倾斜的伺服控制。
图1示出了本实施例的全息图记录和再现设备的整体构造。图2示出了本实施例的全息图记录和再现设备的拾取器的光学系统。图3示出了本实施例的全息图记录和再现设备中采用的全息图记录介质的构造。
全息图记录和再现设备1包括用于可分离地安装盘型的全息图记录介质2的主轴3、用于旋转主轴3,例如由无刷式DC马达组成的主轴马达4和用于控制主轴马达4的旋转的主轴马达控制电路5。
此外,还提供了拾取器6、致动器、聚焦控制电路8、循迹控制电路9和搜索控制电路10,其中,所述拾取器6用于以记录光束(通过将激光束分光,并以要记录的数据进行空间光调制而获得的光束)和参考光束(通过将激光束分光而获得的另一分光束)照射全息图记录介质2,记录记录光束和参考光束的全息图(干涉模式),通过以参考光束照射全息图记录介质2而生成带有全息图的衍射光束(再现光束),以拾取元件接收该再现光束并再现所记录的数据;所述致动器用于沿全息图记录介质2的径向方向移动拾取器6;所述聚焦控制电路8用于控制从拾取器6照射到全息图记录介质2上的光点的聚焦;所述循迹控制电路9用于控制照射位置,使得当全息图记录介质2旋转时,从拾取器6照射到全息图记录介质2上的光点能沿着全息图记录介质2的轨迹移动;所述搜索控制电路10用于使光点移动到全息图记录介质2的指定轨迹位置,并且控制光点在全息图记录介质2的径向方向上的移动,以记录或再现数据。
此外,全息图记录和再现设备1还包括检测电路11、记录和再现信号处理电路12、系统控制器13和I/F14,其中,所述检测电路11用于基于通过接收用于伺服控制的光而获得的接收光信号,生成聚焦错误信号(FE)和循迹错误信号(TE),其中用于伺服控制的光是由位于拾取器6内部的光接收元件(下文中描述)再现的,检测电路11还用于基于通过接收从拾取元件(下文中描述)输出的再现光束而获得的接收光信号,生成再现信号(RF);所述记录和再现信号处理电路12用于通过对从检测电路输出的再现信号(RF)进行规定的信号处理,来进行记录数据的再现,或者通过对从控制器13输入的记录数据进行规定的信号处理,从而利用位于拾取器内部的空间光调制器生成调制数据;所述系统控制器13用于控制从主轴马达控制电路5到记录和再现信号处理电路12的电路的操作;所述I/F14用于将主机PC连接到全息图记录和再现设备1。
如图3所示,全息图记录介质2是类似于诸如CD或DVD等光盘存储器的盘型记录介质。通过将反射膜202、用于使用全息术来记录信息的全息图记录层203和保护层204以描述的顺序堆叠在盘状的衬底201(由聚碳酸酯等制成)的一面上,而获得全息图记录介质2。保护层204的折射率值接近于全息图记录层的折射率值。全息图记录介质2具有两个沿径向方向延伸的地址信息记录部分2A(图3中放置在半径上)和多个沿径向方向线性延伸的伺服信息记录部分2B,这多个记录部分2B在地址信息记录部分所夹的区域中,沿圆周方向以规定的角度相间隔。另外,邻近的伺服信息记录部分2B之间的区域2C用作以全息术记录信息的信息记录部分。
在地址信息记录部分2A中,以凸凹坑来记录每个轨迹的地址信息(轨迹号)。此外,在伺服信息记录部分2B中,以凸凹坑来记录用于循迹伺服控制的规定信息。
返回图1,主轴马达4以规定速度沿规定方向旋转全息图记录介质2。基于来自主轴马达控制电路5的控制信号来控制主轴马达4的驱动。此外,由系统控制器13对主轴马达的驱动进行控制。系统控制器13将主轴马达4旋转开始和旋转停止的定时信号输出到主轴马达控制电路5,并且主轴马达控制电路5基于这些定时信号来控制主轴马达4的驱动/停止。
拾取器6包括图2中所示的光学系统。如图所示,该光学系统包括能够改变波长的激光束光源601、准直透镜602、扩束器603、第一分束器604、空间光调制器605、第一分光棱镜606、第二分光棱镜607、第二分束器608、第一λ/4波片609、第一物镜610、反射镜611、第二λ/4波片612、棱镜613、第二物镜614、第三分束器615、拾取元件616、凸透镜617、柱面透镜618和光接收元件619。
准直透镜602、扩束器603、第一分束器604和空间光调制器605以描述顺序放置在激光束光源601的光轴上,并且反射镜611在与激光束光源601的光轴垂直的方向上对着第一分束器604被放置在规定位置。反射镜611的放置方式使得其反射光的光轴与激光束光源601的光轴平行。
准直透镜602将从激光束光源601输出的激光束转换为平行光束。扩束器603对从准直透镜602输出的平行光扩束。第一分束器604将从扩束器603输出的平行光分光为两束。其中一束向前传播,并被引导至空间光调制器605,另一束被直角反射,并被引导至反射镜611。
接收来自激光束光源601的激光束的空间光调制器605的光接收表面相对于光轴倾斜规定角度。第一分光棱镜606放置在空间光调制器605的反射光光轴上的规定位置处。第一分光棱镜606的放置方式使得其反射光的光轴与激光束光源601的光轴平行。第二分光棱镜607、第二分束器608、第一λ/4波片609和第一物镜610以描述顺序放置在第一分光棱镜606的反射光光轴上。
从激光束光源601到第一棱镜分束器604再到第一物镜610的组件构成了一个光学系统,该光学系统用于生成记录光束和用于诸如循迹之类的伺服控制的光束(下文中称为伺服控制光束),并且用于以记录光束和伺服控制光束照射全息图记录介质2。调整落在第一物镜610上的记录光束的焦点,使得由物镜610在全息图记录层203上形成图像。
空间光调制器605由DMD(数字镜设备)组成,在DMD中,多个微镜(根据本发明的光学元件)以栅格形式放置,使得其反射面可被改变。微镜与构成数字数据的每个比特相关联,并且通过根据比特的内容(“0”或“1”)改变反射镜,来生成要照射到全息图记录介质2上并被记录在其中的对应于数字数据的光学图像。
从而,如图4所示,在空间光调制器605中,多个微镜m在对着第一分束器604的表面上被放置为N×M的栅格(在图4中以正方形放置),并且该表面的放置方式使得落在每个镜m上的第一分束器604的光束在无调制情况下向第一分光棱镜606反射。更具体地说,图4中虚线所示的圆形激光束C从第一分束器604落在反射面上,并且处于无调制状态,圆形的光学图像向第一分光棱镜606反射。
被空间光调制器605的激光束照射的圆圈C的范围内的微镜m(由实线D所包围的区域内的微镜)用作由要记录的数字数据进行空间光调制的微镜,并且每个微镜m与构成数字数据的每个比特相关联。
例如,如果假定由某四个比特(a1、a2、a3、a4)组成的数字数据的每个比特被分配到位于区域中最上端部分的四个相邻微镜m1到m4,则当数字数据为(0、0、0、0)时,四个微镜m1到m4的反射面变化,并且如图5A所示,对应于微镜m1到m4的区域本应将光从其引导至第一分光棱镜606,但现在根本不发射光(图5A中不发射状态由阴影表示)。另一方面,当数字数据为(0、1、0、1)时,只有微镜m2、m4的反射面变化,并且如图5B所示,在本应将光引导至第一分光棱镜606的对应于微镜m1到m4的区域中,只有对应于微镜m2、m3的部分发射出光。相比于上述示例,也可以是当比特为“0”时发射光,而比特为“1”时不发射光。
从而,要基于规定格式记录的数字数据的每个比特被分配到记录区域D中的微镜m,并且通过根据数字数据的比特结构改变每个微镜的反射角,将要记录且从记录和再现信号处理电路12输入的数字数据调制为记录区域D内的二维光学图像(二进制光学图像)。此外,该光学图像作为记录光束经由从第一分光棱镜606到第一物镜610的组件照射全息图记录介质2。
利用该全息图记录方法,基于数据的比特构造将多个数字数据转换为二维光学图像,并且利用角度复用在全息图记录介质2的同一位置处记录该二维光学图像。因此,可以增大容量。
第一分光棱镜606和第二分光棱镜607将来自空间光调制器605的反射光束分为记录光束和伺服控制光束,并且将这两束光引导至从第二分束器608到第一物镜610的组件。因为在空间光调制器605的中心部分提供了反射镜605a,所以从空间光调制器605反射的光束中的中心部分的光束被第一分光棱镜606和第二分光棱镜607分为伺服控制光束。因此,由于在空间光调制器605的记录区域中的中心部分提供了用于分离伺服控制光束的反射镜605a,所以该部分的反射光束不用于数字数据的光调制。
第二分束器608将衍射光束(通过再现记录光束而获得的光束,下文中称为再现光束)引导至检测系统的第三分束器615,衍射光束是在再现期间从全息图记录介质2经由第一物镜610和第一λ/4波片609进入的。在第二分束器608中,来自第一分光棱镜606和第二分光棱镜607的记录光束和伺服控制光束向前传播,并且经由第一λ/4波片609和第一物镜610被引导至全息图记录介质2。
第一λ/4波片609将从第二分束器608输出的记录光束和伺服控制光束从线偏振光转换为圆偏振光。照射从第一λ/4波片609输出的圆偏振光的记录光束和伺服控制光束,使其会聚在全息图记录介质2的全息图记录层203上。第一物镜610、棱镜613和第二物镜614被集成为一个单元,并且该单元620可相对于全息图记录介质2向前、向后、向左和向右精细偏移。通过用致动器(未在图中示出)精细地移动单元620,来调整记录光束和伺服控制光束在全息图记录介质2上的聚焦位置或循迹。通过聚焦控制电路8的伺服控制来进行聚焦位置的调整,通过循迹控制电路9的伺服控制来进行循迹调整。
落在全息图记录介质2上的伺服控制光束用于读取由地址记录信息部分2A和伺服信息记录部分2B上的凸凹坑记录的伺服控制信息的地址信息。来自全息图记录介质2的伺服控制光束的反射光经由第一物镜610和第一λ/4波片609落在第二分束器608上。伺服控制光束的反射光被第一λ/4波片609从圆偏振光转换为线偏振光,但是因为偏振方向不同于从第二分光棱镜607输入的伺服控制光束的偏振方向,所以该光被第二分束器608引导至第三分束器615。
第二λ/4波片612、棱镜613和第二物镜614以描述顺序放置在反射镜611的反射光束的光轴上。从激光束光源601到第一分束器604和从反射镜611到第二物镜614的组件构成了一个光学系统,该光学系统用于生成参考光束,并使参考光束以相对于记录光束光轴的规定入射角照射全息图记录介质2。
此外,来自反射镜611的反射光束(参考光束)被第二λ/4波片612从线偏振光转换为圆偏振光,并且其光轴被棱镜613变为朝向记录光束的光轴。结果,参考光束以相对于记录光束光轴的规定入射角落在全息图记录介质2上。调整从第二物镜614输入的记录光束的焦点,使得图像经由物镜610形成在全息图记录层203上。落在全息图记录介质2上的参考光束和记录光束相互干涉,产生全息图,并且该全息图被记录在全息图记录介质2上。
此外,反射镜611被致动器611a夹持,从而可以精细地改变反射角。用致动器611a精细地改变反射镜611的反射角,就可以调整(倾斜的微调)因全息图记录介质2在旋转期间的面内摆动(沿盘圆周方向(拾取器6的照射光束的扫描方向)或径向方向的摆动)所引起的参考光束相对于全息图记录介质2入射角的细微改变。
在再现期间,从激光光源601输出的激光束经由参考光束的光学系统照射全息图记录介质2,但是因为要调整为此时不由空间光调制器605生成记录光束,所以只有伺服控制光束和参考光束照射全息图记录介质2。再现光束由参考光束和记录在全息图记录介质2的全息图记录层203上的全息图生成,并且如上所述,该再现光束经由第一物镜610和第一λ/4波片609被引导至第二分束器608。该再现光束还被第一λ/4波片609从圆偏振光转换为线偏振光,但是因为偏振方向不同于从第二分光棱镜607输入的伺服控制光束的偏振方向,所以该光束被第二分束器608引导至第三分束器615。
第三分束器615在与激光束光源601垂直的方向上正对于第二分束器608被放置在规定位置处,并且拾取元件616顺次放置在第三分束器之后。此外,凸透镜617、柱面透镜618和光接收元件619以描述顺序放置在第三分束器615的反射光的光轴上,该光轴与激光束光源601的光轴平行。
在再现期间,第三分束器615将从第二分束器608输出的再现光束引导至位于其后面的拾取元件616中,而在记录-再现期间,第三分束器分离从第二分束器608输出的伺服控制光束,并经由凸透镜617和柱面透镜618将其引导至光接收元件619。
拾取元件616由面积传感器组成,在面积传感器中,多个光电元件以栅格形式排列,其分辨率等于或高于空间光调制器605的分辨率(例如,CCD(电荷耦合器件)传感器)。拾取元件616并不限于CCD,也可以是MOS(金属氧化物半导体)固态拾取元件。拾取元件616的拾取表面中心被放置为与空间光调制器605所生成的光调制光学图像的中心相匹配。例如,当来自空间光调制器605的一个微镜m的光学图像被四个光电元件接收时,例如由空间光调制器605的第n行第m列的微镜产生的光学图像将由位于光电元件上第(2n-1)行和第(2m-1)列、第2n行和第(2m-1)列、第2n行和第(2m+1)列以及第2n行和第2m列的四个光电元件接收。因此,如果再现期间的光学条件与记录期间的光学条件相同,则由第三分束器615引导的再现光束将以与图4中所示相同的状态投影在拾取元件616的拾取表面上,并且光学图像的第n行和第m列的像素位置的光束将会落在拾取元件616中第(2n-1)行和第(2m-1)列、第2n行和第(2m-1)列、第2n行和第(2m+1)列以及第2n行和第2m列的四个像素上。
因此,通过检测对应于空间光调制器605的区域D的拾取元件616中区域的像素的接收光信号,来再现记录在全息图记录介质2上的数字数据(再现信号(RF)的再现)。由拾取元件616的像素接收的接收光信号被输入到检测电路11中,并且基于所接收的光信号,在检测电路11中生成再现信号(RF)。例如,在图5B所示示例中,如果对应于微镜ml到m4的拾取元件616中的像素组(例如,对应于微镜m的四个像素)以g1到g4来表示,则再现光束将会落在像素组g1、g3上,并且不会落在像素组g2、g4上。因此,通过进行信号处理使得在检测电路11中接收光的像素为“1”,而未接收光的像素组为“0”,就由像素组g1到g4的接收光信号再现出数字数据(1、0、1、0),即记录的数字数据。再现信号(RF)被输入到记录和再现信号处理电路12中。
光接收元件619由光电二极管组成,该光电二极管的光接收表面被划分为四部分。由第三分束器615分离的伺服控制光束被凸透镜617和柱面透镜618会聚在光接收元件619上。通过接收从光接收元件619输出的伺服控制光束而获得的接收光信号被输入到检测电路11中,并且检测电路11通过使用四个划分部分的每个区域的接收光信号,生成了聚焦错误信号(FE)和循迹错误信号(TE)。聚焦错误信号(FE)被输入到聚焦控制电路8中,而循迹错误信号(TE)被输入到循迹控制电路9中。
参考图1,致动器7在全息图记录介质2的径向方向上移动夹持拾取器6的支架。致动器7由步进马达(未在图中示出)驱动。通过在径向方向上移动支架而进行搜索操作。该搜索操作由搜索控制电路10来控制。搜索控制电路10基于从检测电路11输入的关于拾取器6的当前轨迹位置的信息和从系统控制器13输入的关于支架要移动到的轨迹位置的信息,生成搜索控制信号。所生成的搜索控制信号被输出到致动器7中。致动器7基于该搜索控制信号驱动步进马达,从而将拾取器6移动到目标轨迹位置。
在记录期间,记录和再现信号处理电路12从系统控制器13输入的数字数据(不仅包括诸如图像数据或测试数据之类的要记录的数据(下文中称为“记录数据”),还包括用于管理前述数据的数据(下文中称为“管理数据”),如FAT(文件分配表))中,用空间光调制器605生成调制数据,并将调制后数据输入到拾取器6中。此外,在再现期间,从由检测电路输入的再现信号(RF)中生成记录数据或管理数据,并且将生成的数据输入到系统控制器13中。
系统控制器13对全息图记录和再现设备1的操作进行总体控制,并且由微计算机组成。系统控制器13控制各种电路的操作,如主轴马达控制电路5、搜索控制电路10以及记录和再现信号处理电路12,并且根据经由I/F14从主机PC输入的命令,进行数据的记录或再现。在本实施例中,采用了这样的配置,其中,从主机PC输入记录或再现命令,但是可以提供控制单元来代替I/F14,用户经由控制单元输入各种指令,而且可以将数据记录或再现指令从该控制单元输入到系统控制器13中。
此外,如下文所述,系统控制器13在记录或再现期间读取被预先记录在全息图记录介质2的规定地址位置上的具有特殊模式的数据,对倾斜、聚焦和从激光束光源601输出的激光束波长进行微调,并且针对全息图记录介质2相对于拾取器6的位移或由旋转引起的面内摆动,实现其伺服控制的稳定化。与这一伺服控制的稳定化有关的配置是第一实施例的全息图记录和再现设备1的特定配置。
下面将解释第一实施例的全息图记录和再现设备的特定配置。
第一实施例的全息图记录和再现设备的配置特征在于,该配置对位于与记录数据相分离的规定地址位置处的具有特殊模式的数据、或者该记录数据的管理数据、或者目录数据进行记录,在对全息图记录介质2进行记录或从中再现期间读取这一特殊模式的数据(下文中称为“特殊数据”),并利用读出的信号进行聚焦和倾斜的伺服控制的微调或激光束光源波长的微调。
因而,如上所述,在普通记录数据中,构成记录数据的每1比特被分配到空间光调制器605的各个微镜m,并生成记录光的光学图像(记录模式)。然而,特殊数据被空间光调制器605的邻近反射面划分为多个微镜m的单元(例如,四个微镜m或九个微镜的组),构成特殊数据的每1比特被分配到划分单元的多个微镜m,并生成记录光的光学图像。
例如,在图4所示的示例中,记录区域D包括128个微镜m,并且在记录数据中,总数为128比特的数据被记录为1页数据,而在特殊数据中,四个微镜m被分配给1比特,且如图6所示,34比特被记录为1页数据。因此,与1页记录光的光学图像的分辨率相比,特殊数据的分辨率比记录数据低。另一方面,如果比较在数据再现期间来自于再现光束的每1比特光量,则特殊数据的光量比记录数据高。
因而,由于下面原因,减少了特殊数据的特殊模式的分辨率。如下所述,因为增大了每1比特S/N的允许范围(容限),所以利用特殊数据的特殊模式来实现伺服控制的稳定化,并且可以可靠地进行记录和再现。
利用图19所解释的全息图记录系统有下面的特征:参考光入射角的偏移允许范围Δθ3dB约为±3.5min,光源波长的偏移容限Δ3dB约为±3.5nm,角度选择性和波长选择性非常高,并且由于参考光入射角和光源波长的偏移非常小,所以衍射效率下降极大。
在谈到再现光束的光学图像时,上述容限Δλ3dB和Δθ3dB被应用到拾取元件619的每个像素g的接收光信号,并且从距离拾取元件619的最后一级信号处理电路中的每个像素的接收光信号角度考虑,由于参考光入射角θ的偏移和光源波长λ的偏移,极大地减小了接收光信号的电平。这意味着与这些偏移有关的每1比特S/N的容限及其窄。
图19示出了将衍射效率的峰值归一化为“1”而获得的特性。因此,在没有参考光入射角θ的偏移和光源波长λ的偏移情况下S/N的最大值在拾取元件619的各像素之间显然不变化,并且S/N的容限对于所有像素也几乎是相同的。然而,当相对于第一页,在增大激光束光源601的输出的情况下进行第二页的记录时,第二页的再现光束的绝对光量也比第一页高。因此,如果假定拾取元件619和其后级的电路中的N(噪声)电平不变化,则S/N比率随着S(信号)电平的增大而增大,因此,相对于参考光入射角θ的偏移和光源波长λ的偏移每1比特S/N的容限扩大。
在该方法中,明显减小了本实施例的空间光调制器605的分割数,并且生成了具有减少分辨率的记录模式(一种通过将多个邻近微镜m分配给1比特而生成记录模式的方法),利用该方法,通过固定激光束光源601的输出并集成由多个邻近像素接收的光量,增大了每1比特的光量和每1比特的S/N比率,并且扩大了与参考光入射角θ的偏移和光源波长λ的偏移有关的每1比特S/N的容限。
因而,如果在一个像素被分配给1比特情况下,被输入到拾取元件后级的信号处理电路中的与一个像素有关的信号电平(再现光束的分量)用Cin来表示,噪声电平(不同于再现光束的不必要光分量)用Nin来表示,并且拾取元件和拾取元件后级的信号处理电路的噪声电平用Nk来表示,则每1比特(S/N)a为 ( S / N ) a = Cin / ( Nin 2 + Nk 2 ) .
另一方面,如果例如在四个像素被分配给1比特情况下,被输入到距离拾取元件619最后一级的信号处理电路中的一个像素的信号电平用Cin′来表示,噪声电平用Nin′来表示,并且信号处理电路的噪声电平用Nk′来表示,则可以考虑如下的等式:Cin′≈4Cin,Nin′≈4Nin,Nk′≈4Nk。因此,每1比特(S/N)b变为 ( S / N ) b = 4 Cin / ( 16 Nin 2 + Nk 2 ) .
因此(S/N)b和(S/N)a之比 ( S / N ) b / ( S / N ) a = 4 Nin 2 + Nk 2 / ( 16 Nin 2 + Nk 2 ) , 并且在假定Nin=Nk时,该比率为 ( S / N ) b / ( S / N ) a = 4 ( 2 ) / ( 17 ) ≅ 1.37 .
因此,如果Nin≤Nk,则当增大了每1比特的像素数时,每1比特的S/N总是更大,并且也有利地增大了与参考光束入射角θ的偏移和光源波长λ的偏移有关的S/N的容限。在全息图记录和再现设备中采用的信号处理电路的最后一级噪声比例如使用PIN光电二极管的电路噪声高,其中PIN光电二极管用在640M MO(磁光盘)或DVD中,且可以假定Nin≤Nk。因此,可以这样说,明显增加了每1比特像素数的记录系统优选地用于全息图记录和再现设备中。
以上讨论与再现情形有关,但是明显增加了每1比特像素数的记录系统在记录情形中也是有效的。从而,在光盘聚焦或循迹的伺服控制中,通常存在余量,并且如果通过增加每1比特像素数尽可能地增大每1比特的S/N比,以消除记录期间产生的余量,则可以减少由于聚焦偏移或循迹偏移而发生的记录模式抖动的相关电平,并且可以提高记录期间聚焦或循迹伺服控制的可靠性。
每1比特像素数的明显增大和记录模式分辨率的明显减小可以扩展参考光束入射角θ的偏移或光源波长λ的偏移容限,并且将数据记录和再现的稳定性增大到扩展了每1比特S/N的容限的程度,但是增大每1比特像素数导致每1页记录数据的容量减小。因此,当记录数据分布在多页上时,页面数增大,这对于利用角度复用增大容量来说是不利的。
因此,在本实施例中,在记录数据时不采用增大每1比特像素数的方法,单独记录具有特殊模式的数据,利用该特殊数据的特殊模式进行倾斜或聚焦的微调或激光光源波长的微调,并且可以以更好的稳定性和可靠性进行伺服控制的回拉。另外,对于管理数据也可以采用增大每1比特像素数的方法,并且可以增大管理数据再现的可靠性。
除了将多个邻近像素分配给1比特以外,也可以将一种把多个离散像素分配给1比特的方法视作用于在记录模式中增大每1比特像素数的方法。然而,如下所解释的,考虑到每1比特S/N的容限,前一个方法要优于后一个方法。因此,优选地使用前一个方法。
相对于例如在光盘型全息图记录介质的旋转方向上进行倾斜伺服控制的情形,可以在考虑每1比特分配两个邻近像素以及每1比特分配由一个像素分离的两个像素的情况下,研究当全息图记录介质在其像素的排列方向上倾斜时的每1比特S/N的容限。获得了如下结果。
图7A-7B图示了在全息图记录介质沿分配给1比特的两个像素的排列方向倾斜的情况下,与衍射效率的降低有关的倾斜控制的容限;图7A是关于被一个像素分离的两个像素被分配给1比特的情形;图7B是关于两个邻近像素被分配给1比特的情形。
图7A-7B中的圆圈是再现光束、参考光束和记录在全息图记录介质上的全息图之间关系的频率向量表示。圆圈内由实线表示的坐标轴示出了全息图记录介质未倾斜的状态,而由虚线表示的坐标轴示出了全息图记录介质倾斜了微角Δθ的状态。此外,向量D1、D2表示再现光束的频率向量,向量P表示参考光束的频率向量,向量G1、G2表示当全息图记录介质未倾斜时获得的全息图的频率向量,而向量G1′、G2′表示当全息图记录介质倾斜时获得的全息图的频率向量。
当全息图记录介质未倾斜时,全息图频率向量G1、G2的顶端位于圆圈的圆周上(处于图19中所示特性“0”偏移的位置状态),再现光束的光量假定为最大值,并且可以可靠地再现记录数据。另一方面,如果全息图记录介质倾斜了微角Δθ,则全息图频率向量G1、G2因此沿坐标轴的旋转方向旋转经过微角Δθ,并且假定频率向量的位置分别为G1′、G2′。因此,频率向量G1′、G2′的顶端a′、b′偏离圆圈的圆周。该状态指示了偏移图19中所示特性“0”偏移位置的状态。从图19中所示的特性清楚可见,再现光束的电平急剧下降,并且S/N比率快速减小。
比较图7A和7B,向量G1′、G2′的顶端a′、b′到达圆圈圆周的角度范围在图7B所示的情形中更大。因此,在两个邻近像素被分配给1比特的情况下,倾斜控制中S/N的容限比起被一个像素分离的两个像素被分配给1比特的情形,要更为有利。结果,当增大了记录模式中每1比特的像素数时,优选地多个邻近像素被分配给1比特。
图8图示了伺服模式(例如聚焦或倾斜)的微调中采用的特殊模式的示例。
在图示的示例中,空间调制器605的反射面上记录区域D的分割数被减小到最小值,并且尽可能地扩展每1比特S/N的容限。这种情况下,记录区域D被划分为四个区域(顶部、底部、左部、右部),并且区域被分配给各个比特。因为记录区域D的普通分割数为“128”,所以很显然分割数减小的比率为1∶32。特殊模式的分割数的缩减比率并不限于前述值,而是可以适当地设定。
下面将利用图9中所示的流程图,描述第一实施例的全息图记录和再现设备中与再现期间伺服控制的回拉有关的控制。
首先,以规定的旋转速率旋转主轴马达4,激光束光源601被致使发光,用伺服控制光束照射全息图记录介质2,用光接收元件检测其反射光,并且基于检测电路11利用检测信号从全息图记录介质2的伺服信息记录部分2B读取的伺服信息,由聚焦控制电路8和循迹控制电路9开始聚焦和循迹的伺服控制(S1)。此时例如,所有“0”数据被输入到空间调制器605中,并且对其进行设置使得由空间调制器605生成的记录光束不落在全息图记录介质2上。
然后,基于检测电路11从全息图记录介质2的地址信息部分2A读取的地址信息,判断拾取器6在全息图记录介质2中的当前位置(S2)。
然后,搜索控制电路10基于关于具有特殊模式的数据被记录到的规定地址位置的信息和关于当前地址位置的信息,将拾取器6移动到规定地址位置,并且对记录在地址位置中具有特殊模式的数据进行读取(S3)。如果在拾取器6移动到规定地址位置之后,用参考光束照射全息图记录介质2的全息图记录层203,则生成再现光束,并且由拾取元件616拾取这一再现光束,从而对具有特殊模式的特殊数据进行读取。
从拾取元件616输出的每个像素的接收光信号被记录和再现信号处理电路12转换为数字数据,然后被输入到系统控制器13中。在记录和再现信号处理电路12中,已经预先存储了当再现具有特殊模式的特殊数据时分配给每个比特的多个像素位置的表,并且利用该表,对于每个比特将对应于前述比特的像素位置的光接收电平相加。例如,如果在图8所示的特殊模式的情形中,假定4比特数据(a1、a2、a3、a4)的每个比特a1、a2、a3、a4分配到位于顶部、底部、左部和右部的每个区域的像素g,则将左上区域的32个像素的光接收电平相加,并获得了比特a1的光接收电平V1。另外,将左下区域的32个像素的光接收电平相加,并获得了比特a2的光接收电平V2,将右上区域的32个像素的光接收电平相加,并获得了比特a3的光接收电平V3,将右下区域的32个像素的光接收电平相加,并获得了比特a4的光接收电平V4。
此外,记录和再现信号处理电路12基于光接收电平V1到V4,生成4比特数据的每个比特的数据。在图8所示的示例中,生成4比特数据(a1、a2、a3、a4)=(0、1、0、1)。4比特数据(a1、a2、a3、a4)的比特内容和每个比特的光接收电平V1到V4的信息被输入到系统控制器13中。
然后,通过利用4比特数据(a1、a2、a3、a4)中每个比特的光接收电平V1到V4,细微地移动反射镜的反射方向,从而对拾取器6相对于全息图记录介质2扫描方向(全息图记录介质2的旋转方向)的倾斜进行微调(S4)。从而,系统控制器13将比特a1、a2的光接收电平V1、V2相加(图8中特殊模式的左侧区域上的光接收电平的和),将比特a3、a4的光接收电平V3、V4相加(图8中特殊模式的右侧区域上的光接收电平的和),计算两者的差分数据,并从差分数据中计算出其倾斜方向和调整量。
图10A-10B解释了用于在全息图记录介质2沿拾取器6的扫描方向倾斜的情况下,微调倾斜的方法;图10A示出了无倾斜的状态,而图10B示出了倾斜状态。图10B示出了以全息图记录介质2作为标准,通过倾斜参考光束的反射方向而获得的全息图记录介质2的倾斜状态。此外,图10B中虚线所示的参考光束水平图示了全息图记录介质2未倾斜的情形,而实线所示的参考光束水平图示了全息图记录介质2倾斜的情形。
当全息图记录介质2在拾取器6的扫描方向上未倾斜时,如图10A所示,参考光束的光轴几乎与全息图记录介质2垂直。因此,在全息图记录介质2的扫描方向上排列的像素被参考光束以相对于光轴为中心几乎对称的方式照射。由于这个原因,当通过沿从左到右的横向方向扫描特殊模式来读取图8中所示的特殊模式时,左侧区域和右侧区域几乎被参考光束一致地照射(参见图10A中的阴影区),并且比特a1、a2的光接收电平V1、V2的和SUM1(特殊模式的左侧区域的光接收电平)几乎与比特a3、a4的光接收电平V3、V4的和SUM2(特殊模式的右侧区域的光接收电平)相等。
另一方面,如图10B所示,当全息图记录介质2相对于扫描方向向下倾斜了倾斜角Δα时,参考光束的光轴相对于全息图记录介质2在扫描方向上相应倾斜(参见图10B中实线所示的参考光束向量)。因此,照射图8中所示特殊模式的右侧区域和左侧区域的参考光束的光量的平衡被打破(参见图10B中的阴影区),并且左侧区域上的光量大于右侧区域上的光量。
因此,比特a3、a4的光接收电平V3、V4的和SUM2变得大于比特a1、a2的光接收电平V1、V2的和SUM1,并且因为它们之间的差正比于全息图记录介质2的倾斜程度,所以系统控制器13通过计算SUM1和SUM2的差分数据,生成用于校正该倾斜量的控制数据,并将该数据输入到拾取器6中,来判断倾斜方向和全息图记录介质2沿扫描方向的倾斜量。在拾取器6中,通过基于控制数据细微地改变反射镜616的倾斜角,来细微地改变参考光束在全息图记录介质2上的入射角,并进行倾斜的微调。
在本实施例中,只对与全息图记录介质2在拾取器6的扫描方向上的倾斜有关的倾斜进行微调,但是利用特殊模式,通过类似的方法,也可以对与在垂直于扫描方向的方向上的倾斜有关的倾斜进行微调。
在这种情况下,如图11A-11C所示,除了图8所示的特殊模式以外,第二特殊模式和第三特殊模式沿全息图记录介质2的拾取器6的扫描方向排列成行并被记录,其中第二特殊模式的中心点放置在相对于轨迹的扫描方向往左经过规定像素数(图11B中一个像素)的位置处,第三特殊模式的中心点放置在相对于轨迹的扫描方向往右经过规定像素数(图11C中一个像素)的位置处,或者如图12所示,模式在同一位置相互重叠并被记录,且其中心位置发生偏移,并且读取偏离轨迹放置的第二和第三特殊模式。
然后,通过将读取第二特殊模式的每个像素的接收光信号相加,将读取第三特殊模式的每个像素的接收光信号相加,并计算两个和SUMa、SUMb之间的差值,可以判断出全息图记录介质2相对于扫描方向在垂直方向的倾斜量和倾斜方向。因此,通过与上述方法相同的方法,即从这些和SUMa、SUMb的差分数据中生成控制数据,并将其输入到拾取器6中,可以进行倾斜的微调。
然后,进行聚焦的微调(S5)。在该微调中,系统控制器13监视通过将4比特数据(a1、a2、a3、a4)的光接收电平V1到V4相加而获得的和SUM3,同时在聚焦控制电路8中细微地改变第一和第二物镜610、614的单元620,其中光接收电平V1到V4是通过读取从记录和再现信号处理电路12输入的特殊模式而获得的。然后,将单元620的位置细微地调整到和SUM3达到最大值的位置。
然后,进行激光束光源601的波长微调(S6)。该微调过程类似于聚焦微调。从而,系统控制器13监视通过将4比特数据(a1、a2、a3、a4)的光接收电平V1到V4相加而获得的和SUM3,同时细微地改变激光光源601的波长,其中光接收电平V1到V4是通过读取从记录和再现信号处理电路12输入的特殊模式而获得的。然后,将激光光源601的波长细微地调整到和SUM3达到最大值的位置。
如果入射参考光束相对于全息图记录介质2的相对位移被步骤S4、S5中进行的倾斜和聚焦微调调整到允许范围内,并且光源波长的偏移被步骤S6中进行的激光束光源601的波长微调调整到允许范围内,则在该状态下可以充分的稳定性读取全息图记录介质2。因此,其后通过将拾取器6移动到指定的地址位置,来进行记录数据的读取操作(S7)。
上述解释与再现有关,但是在记录情形中也可以相同方式采用步骤S1到S6的处理。
如上所述,利用第一实施例的全息图记录和再现设备,通过增大每1比特像素数并生成记录光学图像,将具有特殊模式的规定数据记录在全息图记录介质2上,当记录并再现该全息图记录介质2时,读取具有特殊模式的数据,并且利用与数据的每个比特有关的接收光信号,来进行倾斜、聚焦和激光束光源波长的微调。因此,可以可靠地校正参考光束入射角的偏移或光源波长的偏移,并且即使当全息图记录介质2由盘型可替换记录介质组成时,也可以进行数据的稳定记录和再现。
下面将解释第二实施例的全息图记录和再现设备。
第二实施例的全息图记录和再现设备与第一实施例的全息图记录和再现设备之间的区别在于,使用了如图13所示的全息图记录介质2′。
在图13所示的全息图记录介质2′中,位于图3所示的全息图记录介质2中盘外围的全息图记录层203的厚度约为其内侧部分的一半。具有减小厚度的该区域15被认为是区域2D(下文中称为特殊区),区域2D用于记录在记录和再现记录数据时所必需的数据,如目录或管理数据。用于进行倾斜和聚焦的微调或数据光源波长的微调,具有上述特殊模式的特殊数据也被记录在该特殊区2D中。
在全息图记录中,已知图19中所示衍射光束强度的特性容限反比于全息图记录介质的厚度。在第二实施例的全息图记录介质2′中,通过将特殊区2D中全息图记录层203的厚度减小约为除了特殊区2D以外的其他区域中全息图记录层203厚度的一半,使得特殊区2D中参考光束入射角的偏移容限或光源波长的偏移容限与其他区域相比,增加了大约一倍。
如果在参考光束入射角的偏移容限或光源波长的偏移容限允许的情况下,尽可能多地增大除了特殊区2D以外的其他区域中全息图记录介质2′的全息图记录层203的厚度,则可能有这样的风险,即不能以好的稳定性和可靠性读取从记录数据角度来看较为重要的记录数据的目录数据或管理数据。然而,利用第二实施例的全息图记录和再现设备,通过将管理数据和目录的记录区域记录在全息图记录介质2′的特殊区中,以好的稳定性和可靠性记录了管理数据或目录的记录和再现。此外,由于为了进行倾斜和聚焦的微调以及数据光源波长的微调,具有特殊模式的数据被记录在特殊区2D中,所以进一步扩展了在读取该特殊模式期间每1比特S/N的容限,并且可以以更高的稳定性引入倾斜和聚焦的伺服控制。
下面利用图14所示的流程图解释第二实施例的全息图记录和再现设备中的记录和再现的控制。在控制的解释中,将描述主机经由接口连接到全息图记录和再现设备的系统。
在图14所示的流程图中,步骤S11到S16的处理基本与图9所示流程图的步骤S1到S6的处理相同。由于这个原因,因此省略这些步骤处理的解释,并且下面只解释步骤17和后续步骤。如上所述,第二实施例的不同点在于,具有特殊模式的数据被记录在特殊区2D中。因此,如果在步骤S12中判断拾取器6在全息图记录介质2的当前位置,则在步骤S13拾取器6由搜索控制电路10移动到特殊区2D,并且对记录在特殊区2D中具有特殊模式的数据进行读取。
如果通过步骤S11到S16的处理,落在全息图记录介质2上的参考光束相对于入射光束的相对位移被倾斜和聚焦微调调制到允许范围内,并且光源波长的偏移被激光束光源601波长的微调调整到允许范围内,则读取记录在特殊区2D中的最新目录或管理数据,并将该信息发送到主机(S17),并且假定等待来自于主机的命令状态(S18)。
如果随后从主机接收到记录或再现命令(S18:是),则拾取器6由搜索控制电路10移动到指定的地址位置(S19),并且进行指定的记录或再现处理(S20)。
当命令为“再现”时(S21:否),处理流程移动到步骤S18,而当命令为“记录”时(S21:是),拾取器6由搜索控制电路10移动到特殊区2D,进行用于更新记录在特殊区2D中的目录或管理数据的记录处理(S22),然后处理流程移动到步骤S18。也可以在完成步骤S22的处理之后,在进行了更新特殊区2D的目录或管理数据的数据或新记录的数据的核实处理后转换到步骤S18。
下面将解释第三实施例的全息图记录和再现设备。
第三实施例的全息图记录和再现设备采用了增大管理数据的每1比特像素数的方法,从而增大了再现管理数据的可靠性,其中管理数据比普通记录数据更为重要。
在下面解释的示例中,第三实施例的全息图记录和再现设备使用了图13所示的全息图记录介质2′,但是也可以使用图3所示的全息图记录介质2。
图15示出了在第三实施例的全息图记录和再现设备中记录和再现的管理数据的记录模式的示例。
通过在图6所示的每1比特分配四个像素的方法中只使用右侧区域,并用空间调制器605进行光调制,获得了在同一图中所示的管理数据的记录模式。因为只使用了转换调制器605的记录区域D的右半部分,并且以四个像素的单位记录1比特,所以每1页的记录容量至少变为普通记录数据容量的1/8。因此,可以通过角度复用方法划分为多个页,来记录管理数据。
因为管理数据将四个像素与1比特相关联,所以如上所述,每1比特S/N的容限相对于普通记录数据来说有所增大。此外,可以将只使用空间调制器605的反射侧上的记录区域D的右侧区域解释如下。
因而,在第三实施例的全息图记录和再现设备中,用于会聚记录光的第一物镜610的放置方式使得全息图记录介质2的全息图记录层203所位于的位置对应于记录光不被傅立叶变换的状态,如位于菲涅耳位置。在这样的布置下,如果减小记录光束的表面积,则会出现NA(数值孔径)等效减小的状态,如图16所示。因此,在图像平面上,反而扩大了表面积。在散焦位置(被认为是非傅立叶变换位置),表面积扩张反倒较小,并且当在全息图记录介质2上在拾取器6的扫描方向上记录数据时,记录光束表面积的减小允许更高的复用。由于这个原因,在图15所示的示例中,只有记录区域D的右半部分被用于从左到右的扫描,并且用空间调制器605进行光调制的记录模式的表面积相对于普通记录数据的记录模式的表面积有所减小。
此外,不考虑该记录光表面积的减小,每1比特S/N的容限相对于普通记录数据的情形仍然有所扩展,并且提高管理数据读取可靠性的效果没有丢失。
此外,在本实施例中,当检测到管理数据的再现光束时,4个邻近的像素被分配给1比特。因此,对应于1比特的检测信号可被认为是其中4个被分配像素的接收光信号彼此相连的信号。从而,如图17所示,指示1比特的信号的ON周期或OFF周期比普通记录数据的再现光束的ON周期或OFF周期要长。由于这个原因,当采用拟合方法时,在波形变化周期较短时,如果拟合分辨率相同,则余量更大,且拟合更难。因此,也从这个角度出发,通过将多个邻近像素关联到1比特的方法来进行光调制以记录管理数据是有利的。
此外,在图17中,上方检测信号S1的波形是在管理数据被普通光调制方法(即,与记录数据相同的方法)调制的情况下再现光束的检测信号波形,而下方检测信号的波形是管理数据被图15所示的记录模式调制的情况下再现光束的检测信号波形。如图所示,对应于下方检测信号S2的1比特的ON周期Ton或OFF周期Toff是上方检测信号相应量的四倍。此外,在图17中,周期t是拟合周期,并且虚线所示的波形是拟合处理所检测的信号波形。
下面将利用图18所示的流程图解释第三实施例的全息图记录和再现设备的记录和再现控制。在该控制的解释中,将对如下情形给出描述,即主机经由接口连接到全息图记录和再现设备,并且从主机发出记录命令到全息图记录和再现设备。另外,用于细微调整倾斜和聚焦伺服控制具有特殊模式的数据被认为记录在特殊区2D中。
在图18所示的流程图中,步骤S31到S36的处理基本与图16所示流程图的步骤S11到S16的处理相同。由于这个原因,因此省略这些步骤处理的解释,并且下面只解释步骤37和后续步骤。
如果通过步骤S31到S36的处理,入射参考光束相对于全息图记录介质2的相对位移被倾斜和聚焦微调调制到允许范围内,并且光源601波长的偏移被激光束光源601波长的微调调整到允许范围内,则读取记录在特殊区2D中的最新目录或管理数据,并将该信息发送到主机(S37),并且假定等待来自于主机的命令状态(S38)。
如果随后从主机接收到记录命令(S38:是),则拾取器6由搜索控制电路10移动到指定的地址位置(S39),并且从主机发送的记录数据被普通光调制方法(空间调制器605的一个微镜m被关联到1比特的光调制方法)记录在全息图记录介质2上(S40)。然后,拾取器6被搜索控制电路10移动到规定的地址位置(用于记录诸如FAT等管理信息的规定地址位置),进行记录处理以便更新记录在这一地址位置中的目录或管理数据(S41),随后处理流程返回到步骤S38。此外,通过用特殊的光调制方法来光调制管理数据(即,将多个像素分配给1比特并将其记录在全息图记录介质2上),来进行这种情况下的记录处理。
此外,也可以在完成步骤S41的处理之后,在进行了更新特殊区2D的目录或管理数据的数据或新记录的数据的核实处理后返回到S38。
在第三实施例中,在管理数据记录期间分配给1比特的多个像素的数目固定为预设值,但是该值也可由用户的外部操作或来自主机的命令改变。另外,在第三实施例中,只对于管理数据采用了将多个像素分配给1比特的光调制方法,但是该方法也可用于记录记录数据。
如上所述,利用第三实施例的全息图记录和再现设备,在光调制为扩展了每1比特S/N的容限的模式后,将管理数据记录在全息图记录介质上,其中管理数据对于记录和再现处理来说,比记录数据更为重要。因此,可以可靠地进行管理数据的记录和再现。
在上述第一到第三实施例中,解释了反射型DMD被用作空间调制器的拾取光学系统的示例,但是透射型液晶面板也可用于空间调制器。

Claims (5)

1.一种可分离地安装在全息图记录和再现设备上的全息图记录介质,在所述全息图记录和再现设备中,从光源发射的相干光被至少分为第一光束和第二光束,所述第一光束基于所要记录的数据被调制为信息光,所述调制由包括排列成栅格状形式的多个光学元件在内的空间光调制器来执行,所述第二光束作为参考光,以相对于所述信息光的规定角度入射,以记录所述信息光和所述参考光的全息图,
其中,所述全息图记录介质记录规定模式,所述规定模式预设用于包括倾斜和聚焦在内的伺服控制的微调,通过以下列方式执行所述光调制来产生所述模式,所述方式使得所述多个光学元件被划分为多组,每一组包括相互邻近的光学元件,并且每一组被分配给所要记录数据的1比特。
2.一种全息图记录和再现设备,包括:
用于发射相干光的光源;
用于将所述相干光至少分为第一光束和第二光束的分束器;
用于基于所要记录的数据,将所述第一光束调制为信息光的空间光调制器;
用于使所述第二光束作为参考光,以相对于所述信息光的规定角度入射,从而在记录介质中记录全息图的光学系统;以及
微调器,用于在数据记录或数据再现期间,通过从所述记录介质再现包括规定的伺服控制模式在内的信息光,并使用基于所述信息光的再现信号,从而通过伺服控制对所述记录介质的倾斜、所述记录介质的聚焦和所述光源的波长中的至少一种进行微调。
3.如权利要求2所述的全息图记录和再现设备,其中,所述空间光调制器包括在所述第一光束的入射面上排列成栅格状形式的多个光学元件,并且其中,通过改变与所要记录数据的每个比特相对应的光学元件的状态来产生所述信息光,
所述全息图记录和再现设备还包括拾取/再现单元、光调制控制器和信号处理控制器,
其中,所述拾取/再现单元包括:在所述信息光的入射面上排列成栅格状形式的多个光电转换器;和用于基于从每个光电转换器输出的光信号,再现对应于记录数据的比特信号的信号处理器,
其中,所述光调制控制器被安排为在数据记录期间,根据数据的类型改变所述空间光调制器中对应于1比特的光学元件的数目,并且
其中,所述信号处理控制器被安排为在数据再现期间进行控制,使得以与每比特数据相关联的一个或多个光电转换器为单位来执行信号处理。
4.如权利要求3所述的全息图记录和再现设备,其中,当用于控制数据记录和数据再现的管理数据被记录在所述记录介质中时,所述光调制控制器增大所述空间光调制器中对应于1比特的光学元件的数目。
5.如权利要求4所述的全息图记录和再现设备,其中,所述记录介质包括具有相对薄的全息图记录层的第一记录区域和具有相对厚的全息图记录层的第二记录区域,所述管理数据被记录在所述第一记录区域中。
CNB2005100805088A 2004-11-30 2005-06-30 全息图记录介质和全息图记录-再现设备 Expired - Fee Related CN100353429C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP347800/2004 2004-11-30
JP2004347800A JP2006155831A (ja) 2004-11-30 2004-11-30 ホログラム記録媒体及びホログラム記録再生装置

Publications (2)

Publication Number Publication Date
CN1783242A true CN1783242A (zh) 2006-06-07
CN100353429C CN100353429C (zh) 2007-12-05

Family

ID=36567264

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100805088A Expired - Fee Related CN100353429C (zh) 2004-11-30 2005-06-30 全息图记录介质和全息图记录-再现设备

Country Status (3)

Country Link
US (1) US7639586B2 (zh)
JP (1) JP2006155831A (zh)
CN (1) CN100353429C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887235A (zh) * 2009-05-14 2010-11-17 索尼公司 全息图判断装置
CN101796584B (zh) * 2007-09-28 2012-09-05 日立民用电子株式会社 光信息记录再现装置及其方法和光信息记录介质
CN101714363B (zh) * 2008-09-29 2013-02-13 株式会社日立制作所 信息记录装置、信息再现装置和记录介质

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006268960A (ja) * 2005-03-24 2006-10-05 Fujitsu Ltd ホログラム記録再生装置
TWI297816B (en) * 2005-12-21 2008-06-11 Ind Tech Res Inst System and method for recording and reproducing holographic storage which has tracking servo projection
TWI297817B (en) * 2005-12-30 2008-06-11 Ind Tech Res Inst System and mehtod for recording and reproducing holographic storage which has tracking servo projection
US7483189B2 (en) * 2006-03-20 2009-01-27 Sanyo Electric Co., Ltd. Holographic memory medium, holographic memory device and holographic recording device
WO2008001434A1 (fr) * 2006-06-28 2008-01-03 Fujitsu Limited Dispositif et procédé d'enregistrement d'hologramme
JP4835847B2 (ja) * 2006-08-11 2011-12-14 国立大学法人神戸大学 情報記録媒体および情報記録再生装置
EP1890285A1 (en) * 2006-08-17 2008-02-20 Deutsche Thomson-Brandt Gmbh Method for servo control in a holographic storage system
JP4784473B2 (ja) * 2006-10-13 2011-10-05 ソニー株式会社 光ディスク装置及びディスクチルト補正方法、並びに光ディスク
EP1918913A1 (en) * 2006-10-31 2008-05-07 Thomson Holding Germany GmbH & Co. OHG Method for producing a security mark on an optical data carrier
US7710845B2 (en) * 2007-02-09 2010-05-04 Sanyo Electric Co., Ltd. Holographic memory and holographic recording apparatus
JP2008216303A (ja) * 2007-02-28 2008-09-18 Fujifilm Corp 定着装置および定着方法ならびに光情報記録装置
US8180950B2 (en) * 2007-06-15 2012-05-15 International Business Machines Corporation Apparatus and method to manage information using an optical and holographic data storage medium
US7859971B2 (en) * 2007-06-29 2010-12-28 International Business Machines Corporation Directory hologram forming an anchor location of a pattern of stored holograms
JP2009080890A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 光情報記録再生装置及び光学的に情報を記録再生する方法
JP4539766B2 (ja) * 2008-08-13 2010-09-08 ソニー株式会社 ホログラム記録再生装置、ホログラム記録再生方法およびホログラム記録媒体
WO2010029608A1 (ja) * 2008-09-09 2010-03-18 パイオニア株式会社 ホログラム装置及び記録方法
WO2010029613A1 (ja) * 2008-09-09 2010-03-18 パイオニア株式会社 ホログラム装置及び記録方法
JP5274959B2 (ja) 2008-09-25 2013-08-28 株式会社東芝 光情報記録装置および方法
WO2010067428A1 (ja) * 2008-12-10 2010-06-17 パイオニア株式会社 ホログラム記録方法およびホログラム装置
WO2010067429A1 (ja) * 2008-12-10 2010-06-17 パイオニア株式会社 ホログラム再生方法およびホログラム装置
JP2010225243A (ja) * 2009-03-24 2010-10-07 Toshiba Corp 光情報記録方法および装置
US20100322058A1 (en) * 2009-06-18 2010-12-23 Marvin Hutt Holographic storage system using angle-multiplexing
US8520483B2 (en) * 2010-07-29 2013-08-27 General Electric Company Method and system for processing information from optical disk layers
JP2012243347A (ja) * 2011-05-19 2012-12-10 Sony Corp 記録装置、サーボ制御方法
RU2481611C1 (ru) * 2011-10-05 2013-05-10 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд.," Интегральное оптическое устройство записи и воспроизведения микроголограмм
WO2014167617A1 (ja) * 2013-04-08 2014-10-16 日立コンシューマエレクトロニクス株式会社 データ記録装置、データ再生装置、データ記録再生装置及びデータ記録再生方法
JP2015103265A (ja) * 2013-11-27 2015-06-04 株式会社日立エルジーデータストレージ 光情報記録再生装置および光情報記録再生方法
US10432547B2 (en) * 2016-03-18 2019-10-01 Hewlett-Packard Development Company, L.P. Verifying functionality restrictions of computing devices
WO2018070938A1 (en) * 2016-10-13 2018-04-19 Life Technologies Holdings Pte Limited Devices, systems, and methods for illuminating and imaging objects

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3566033B2 (ja) 1997-06-26 2004-09-15 株式会社東芝 ホログラムメモリ装置およびこのホログラムメモリ装置により記録対象情報を記録および再生する方法
JP3639202B2 (ja) * 2000-07-05 2005-04-20 株式会社オプトウエア 光情報記録装置および方法、光情報再生装置および方法、ならびに光情報記録再生装置および方法
JP3641199B2 (ja) * 2000-09-29 2005-04-20 株式会社東芝 三次元光記録媒体用情報記録装置
JP4080195B2 (ja) 2000-11-17 2008-04-23 松下電器産業株式会社 ホログラフィック光情報記録再生装置
US6958967B2 (en) 2000-11-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Holographic optical information recording/reproducing device
US7116626B1 (en) * 2001-11-27 2006-10-03 Inphase Technologies, Inc. Micro-positioning movement of holographic data storage system components
JP4232432B2 (ja) * 2002-10-18 2009-03-04 パナソニック株式会社 光メモリ装置
JP4162518B2 (ja) * 2003-03-17 2008-10-08 Tdk株式会社 ホログラム記録再生方法及びホログラム記録媒体
KR100488963B1 (ko) * 2003-03-31 2005-05-10 주식회사 대우일렉트로닉스 홀로그래픽 롬 시스템의 다중 중첩 기록을 위한 환형 분산프리즘
JP3924549B2 (ja) * 2003-04-23 2007-06-06 Tdk株式会社 ホログラム記録再生方法及び装置
JP4357317B2 (ja) * 2003-05-13 2009-11-04 富士通株式会社 ティルトミラーの制御装置及び制御方法
JP4267407B2 (ja) * 2003-08-28 2009-05-27 Tdk株式会社 ホログラフィック記録媒体、その製造方法、ホログラフィック記録再生システム
JP2005242304A (ja) * 2004-01-26 2005-09-08 Pioneer Electronic Corp ホログラム装置
US7327602B2 (en) * 2004-10-07 2008-02-05 Ovonyx, Inc. Methods of accelerated life testing of programmable resistance memory elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796584B (zh) * 2007-09-28 2012-09-05 日立民用电子株式会社 光信息记录再现装置及其方法和光信息记录介质
US8391119B2 (en) 2007-09-28 2013-03-05 Hitachi Consumer Electronics Co., Ltd. Apparatus and method for recording/reproducing optical information, and data fetching by reference to optical information recording medium
CN101714363B (zh) * 2008-09-29 2013-02-13 株式会社日立制作所 信息记录装置、信息再现装置和记录介质
CN103123791A (zh) * 2008-09-29 2013-05-29 株式会社日立制作所 信息记录装置、信息再现装置和记录介质
CN103123791B (zh) * 2008-09-29 2015-11-25 日立民用电子株式会社 信息记录装置、信息再现装置和记录介质
CN101887235A (zh) * 2009-05-14 2010-11-17 索尼公司 全息图判断装置
CN101887235B (zh) * 2009-05-14 2013-07-10 索尼公司 全息图判断装置

Also Published As

Publication number Publication date
JP2006155831A (ja) 2006-06-15
CN100353429C (zh) 2007-12-05
US7639586B2 (en) 2009-12-29
US20060114792A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
CN1783242A (zh) 全息图记录介质和全息图记录-再现设备
CN1280799C (zh) 光信息记录和/或再现装置和方法
CN1290103C (zh) 光学头器件和使用该光学头器件的光学信息装置
CN1627211A (zh) 全息记录介质以及记录和再现系统
JPH0345456B2 (zh)
CN1653394A (zh) 角度复用类型全息记录装置和方法及全息重放装置和方法
CN1725322A (zh) 光学头、用于装配透镜的设备和方法
CN1558406A (zh) 光头装置、使用该装置的光信息装置及光盘记录器
CN101042892A (zh) 全息存储器介质、全息存储器设备和全息记录设备
CN1158650C (zh) 光拾取设备,光盘设备和轨道识别信号检测方法
CN1469358A (zh) 兼容光拾取器
CN1164918A (zh) 透镜装置及使用该透镜装置的光学头设备
CN1653395A (zh) 多记录类型全息记录装置和方法,以及全息重放装置和方法
CN1154990C (zh) 特镜和光学头以及采用该光学头的光盘记录/再现装置
CN1165895C (zh) 光学读出装置中的慧差校正方法和装置
CN1885419A (zh) 光学拾取器和光盘装置
CN1194433A (zh) 物镜部件和记录/重现装置
CN1181473C (zh) 盘记录与/或再现方法和装置及倾斜探测方法
CN1905024A (zh) 物镜保持装置及其应用
CN1905027A (zh) 光头及信息记录/再现装置
CN1084912C (zh) 光拾取装置及光盘驱动装置
US7903526B2 (en) Recording/reproducing apparatus, method of reproducing data, and servo controlling method
CN1253869C (zh) 光学拾波装置
CN1538414A (zh) 衍射元件及相应的装置、设备、系统和光栅设计方法
CN1925035A (zh) 兼容的光学拾取器以及光学记录和/或再现设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071205

Termination date: 20210630