CN1332714A - Purification and production method of high-purity aromatic polycarboxylic acid and derivatives thereof - Google Patents
Purification and production method of high-purity aromatic polycarboxylic acid and derivatives thereof Download PDFInfo
- Publication number
- CN1332714A CN1332714A CN99813645A CN99813645A CN1332714A CN 1332714 A CN1332714 A CN 1332714A CN 99813645 A CN99813645 A CN 99813645A CN 99813645 A CN99813645 A CN 99813645A CN 1332714 A CN1332714 A CN 1332714A
- Authority
- CN
- China
- Prior art keywords
- salt
- acid
- base
- solvent
- crude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002253 acid Substances 0.000 title claims abstract description 157
- 125000003118 aryl group Chemical group 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000000746 purification Methods 0.000 title abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 214
- 239000002585 base Substances 0.000 claims abstract description 193
- 150000003839 salts Chemical class 0.000 claims abstract description 193
- 239000002904 solvent Substances 0.000 claims abstract description 183
- 150000001875 compounds Chemical class 0.000 claims abstract description 162
- 239000012535 impurity Substances 0.000 claims abstract description 107
- 238000000605 extraction Methods 0.000 claims abstract description 88
- 239000003513 alkali Substances 0.000 claims abstract description 60
- 150000007513 acids Chemical class 0.000 claims abstract description 31
- 238000000197 pyrolysis Methods 0.000 claims abstract description 26
- 238000006467 substitution reaction Methods 0.000 claims abstract description 25
- 238000001704 evaporation Methods 0.000 claims abstract description 20
- 230000008020 evaporation Effects 0.000 claims abstract description 20
- 238000002386 leaching Methods 0.000 claims abstract description 19
- 238000013019 agitation Methods 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 18
- 238000011084 recovery Methods 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 72
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 70
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 58
- 238000002425 crystallisation Methods 0.000 claims description 56
- -1 amide compound Chemical class 0.000 claims description 53
- 230000008025 crystallization Effects 0.000 claims description 51
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 31
- 150000007524 organic acids Chemical class 0.000 claims description 25
- 239000003054 catalyst Substances 0.000 claims description 24
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- 238000005406 washing Methods 0.000 claims description 24
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 21
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 12
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 12
- 238000001556 precipitation Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- 239000013557 residual solvent Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 6
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 claims description 5
- 150000001491 aromatic compounds Chemical class 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 claims description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims 6
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 claims 1
- 229920005646 polycarboxylate Polymers 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000009938 salting Methods 0.000 claims 1
- 238000009834 vaporization Methods 0.000 claims 1
- 230000008016 vaporization Effects 0.000 claims 1
- 239000000047 product Substances 0.000 abstract description 109
- 238000000638 solvent extraction Methods 0.000 abstract description 20
- 238000001035 drying Methods 0.000 abstract description 19
- 239000012467 final product Substances 0.000 abstract description 19
- 238000005516 engineering process Methods 0.000 abstract description 7
- 150000007514 bases Chemical class 0.000 abstract description 5
- 238000006116 polymerization reaction Methods 0.000 abstract description 5
- 150000004702 methyl esters Chemical class 0.000 abstract description 2
- 235000002639 sodium chloride Nutrition 0.000 description 174
- 239000000243 solution Substances 0.000 description 75
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 48
- 235000012970 cakes Nutrition 0.000 description 28
- 239000013078 crystal Substances 0.000 description 27
- 239000012065 filter cake Substances 0.000 description 26
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 239000012452 mother liquor Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 17
- 235000011054 acetic acid Nutrition 0.000 description 16
- 238000001914 filtration Methods 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 150000001298 alcohols Chemical class 0.000 description 14
- 230000008901 benefit Effects 0.000 description 14
- 229920000728 polyester Polymers 0.000 description 14
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 13
- 239000007787 solid Substances 0.000 description 13
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 12
- GOUHYARYYWKXHS-UHFFFAOYSA-N 4-formylbenzoic acid Chemical compound OC(=O)C1=CC=C(C=O)C=C1 GOUHYARYYWKXHS-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 150000002148 esters Chemical class 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 238000011027 product recovery Methods 0.000 description 10
- WJESWMJAPCYWNQ-UHFFFAOYSA-N benzoic acid;4-methylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1.CC1=CC=C(C(O)=O)C=C1 WJESWMJAPCYWNQ-UHFFFAOYSA-N 0.000 description 9
- 238000004821 distillation Methods 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 238000009835 boiling Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- 239000012264 purified product Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 239000011261 inert gas Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 150000002780 morpholines Chemical class 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- PAMIQIKDUOTOBW-UHFFFAOYSA-N N-methylcyclohexylamine Natural products CN1CCCCC1 PAMIQIKDUOTOBW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 235000021463 dry cake Nutrition 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- ZIXLDMFVRPABBX-UHFFFAOYSA-N 2-methylcyclopentan-1-one Chemical compound CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 description 2
- LSBDFXRDZJMBSC-UHFFFAOYSA-N 2-phenylacetamide Chemical compound NC(=O)CC1=CC=CC=C1 LSBDFXRDZJMBSC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- XTUVJUMINZSXGF-UHFFFAOYSA-N N-methylcyclohexylamine Chemical compound CNC1CCCCC1 XTUVJUMINZSXGF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- GGSUCNLOZRCGPQ-UHFFFAOYSA-N diethylaniline Chemical compound CCN(CC)C1=CC=CC=C1 GGSUCNLOZRCGPQ-UHFFFAOYSA-N 0.000 description 2
- GYUVMLBYMPKZAZ-UHFFFAOYSA-N dimethyl naphthalene-2,6-dicarboxylate Chemical compound C1=C(C(=O)OC)C=CC2=CC(C(=O)OC)=CC=C21 GYUVMLBYMPKZAZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- QEWYKACRFQMRMB-UHFFFAOYSA-N fluoroacetic acid Chemical compound OC(=O)CF QEWYKACRFQMRMB-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- AGVKXDPPPSLISR-UHFFFAOYSA-N n-ethylcyclohexanamine Chemical compound CCNC1CCCCC1 AGVKXDPPPSLISR-UHFFFAOYSA-N 0.000 description 2
- UYYCVBASZNFFRX-UHFFFAOYSA-N n-propan-2-ylcyclohexanamine Chemical compound CC(C)NC1CCCCC1 UYYCVBASZNFFRX-UHFFFAOYSA-N 0.000 description 2
- WPUMVKJOWWJPRK-UHFFFAOYSA-L naphthalene-2,7-dicarboxylate Chemical compound C1=CC(C([O-])=O)=CC2=CC(C(=O)[O-])=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-L 0.000 description 2
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 2
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- WDQFELCEOPFLCZ-UHFFFAOYSA-N 1-(2-hydroxyethyl)pyrrolidin-2-one Chemical compound OCCN1CCCC1=O WDQFELCEOPFLCZ-UHFFFAOYSA-N 0.000 description 1
- JBODMFWMIWWZSF-UHFFFAOYSA-N 1-(2-sulfanylethyl)pyrrolidin-2-one Chemical compound SCCN1CCCC1=O JBODMFWMIWWZSF-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- BPIUIOXAFBGMNB-UHFFFAOYSA-N 1-hexoxyhexane Chemical compound CCCCCCOCCCCCC BPIUIOXAFBGMNB-UHFFFAOYSA-N 0.000 description 1
- AVFZOVWCLRSYKC-UHFFFAOYSA-N 1-methylpyrrolidine Chemical compound CN1CCCC1 AVFZOVWCLRSYKC-UHFFFAOYSA-N 0.000 description 1
- OQILOJRSIWGQSM-UHFFFAOYSA-N 1-methylpyrrolidine-2-thione Chemical compound CN1CCCC1=S OQILOJRSIWGQSM-UHFFFAOYSA-N 0.000 description 1
- AOPDRZXCEAKHHW-UHFFFAOYSA-N 1-pentoxypentane Chemical compound CCCCCOCCCCC AOPDRZXCEAKHHW-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 1
- YBDQLHBVNXARAU-UHFFFAOYSA-N 2-methyloxane Chemical compound CC1CCCCO1 YBDQLHBVNXARAU-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- RJDZFUUSXRDFCZ-UHFFFAOYSA-N 2h-oxazocine Chemical class C1=CC=CONC=C1 RJDZFUUSXRDFCZ-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- WXVKGHVDWWXBJX-UHFFFAOYSA-N 3-morpholin-4-ylpropanenitrile Chemical compound N#CCCN1CCOCC1 WXVKGHVDWWXBJX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- XRASRVJYOMVDNP-UHFFFAOYSA-N 4-(7-azabicyclo[4.1.0]hepta-1,3,5-triene-7-carbonyl)benzamide Chemical compound C1=CC(C(=O)N)=CC=C1C(=O)N1C2=CC=CC=C21 XRASRVJYOMVDNP-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- FHQRDEDZJIFJAL-UHFFFAOYSA-N 4-phenylmorpholine Chemical compound C1COCCN1C1=CC=CC=C1 FHQRDEDZJIFJAL-UHFFFAOYSA-N 0.000 description 1
- XLZMWNWNBXSZKF-UHFFFAOYSA-N 4-propan-2-ylmorpholine Chemical compound CC(C)N1CCOCC1 XLZMWNWNBXSZKF-UHFFFAOYSA-N 0.000 description 1
- NMILGIZTAZXMTM-UHFFFAOYSA-N 4-propylmorpholine Chemical compound CCCN1CCOCC1 NMILGIZTAZXMTM-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- DRGFXOXUKPLYBD-UHFFFAOYSA-N C(C)N(C1CCCCC1)CC.C1(CCCCC1)N Chemical compound C(C)N(C1CCCCC1)CC.C1(CCCCC1)N DRGFXOXUKPLYBD-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XJUZRXYOEPSWMB-UHFFFAOYSA-N Chloromethyl methyl ether Chemical compound COCCl XJUZRXYOEPSWMB-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 241000777329 Drypta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 description 1
- CJKRXEBLWJVYJD-UHFFFAOYSA-N N,N'-diethylethylenediamine Chemical compound CCNCCNCC CJKRXEBLWJVYJD-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- AHVYPIQETPWLSZ-UHFFFAOYSA-N N-methyl-pyrrolidine Natural products CN1CC=CC1 AHVYPIQETPWLSZ-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- ZBICJTQZVYWJPB-UHFFFAOYSA-N [Mn].[Co].[Br] Chemical compound [Mn].[Co].[Br] ZBICJTQZVYWJPB-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001334 alicyclic compounds Chemical class 0.000 description 1
- 150000008431 aliphatic amides Chemical class 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- OKRDETBOOUZMBF-UHFFFAOYSA-N anthracene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C=C3C(C(=O)O)=CC=C(C(O)=O)C3=CC2=C1C(O)=O OKRDETBOOUZMBF-UHFFFAOYSA-N 0.000 description 1
- ZLNVRGOQMLTPRE-UHFFFAOYSA-N anthracene-1,7-dicarboxylic acid Chemical compound C1=CC=C(C(O)=O)C2=CC3=CC(C(=O)O)=CC=C3C=C21 ZLNVRGOQMLTPRE-UHFFFAOYSA-N 0.000 description 1
- RUANQJMORZSBEK-UHFFFAOYSA-N anthracene-1,9-dicarboxylic acid Chemical compound C1=CC=C2C(C(O)=O)=C3C(C(=O)O)=CC=CC3=CC2=C1 RUANQJMORZSBEK-UHFFFAOYSA-N 0.000 description 1
- MRSWDOKCESOYBI-UHFFFAOYSA-N anthracene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1 MRSWDOKCESOYBI-UHFFFAOYSA-N 0.000 description 1
- OIFQXZBVIMTLEF-UHFFFAOYSA-N anthracene-2,3,6-tricarboxylic acid Chemical compound C1=C(C(O)=O)C(C(O)=O)=CC2=CC3=CC(C(=O)O)=CC=C3C=C21 OIFQXZBVIMTLEF-UHFFFAOYSA-N 0.000 description 1
- XAAYMWLCUICVSL-UHFFFAOYSA-N anthracene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC3=CC(C(=O)O)=CC=C3C=C21 XAAYMWLCUICVSL-UHFFFAOYSA-N 0.000 description 1
- XTFWXUBHWPKQFA-UHFFFAOYSA-N anthracene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC3=CC(C(=O)O)=CC=C3C=C21 XTFWXUBHWPKQFA-UHFFFAOYSA-N 0.000 description 1
- UBBLAKHKJZYOKF-UHFFFAOYSA-N anthracene-2,9-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C3=CC(C(=O)O)=CC=C3C=C21 UBBLAKHKJZYOKF-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000008430 aromatic amides Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QEFTWMXFPHZTRA-UHFFFAOYSA-N benzene;ethane-1,2-diol Chemical compound OCCO.C1=CC=CC=C1 QEFTWMXFPHZTRA-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- KDPAWGWELVVRCH-UHFFFAOYSA-N bromoacetic acid Chemical compound OC(=O)CBr KDPAWGWELVVRCH-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- ZBYYWKJVSFHYJL-UHFFFAOYSA-L cobalt(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Co+2].CC([O-])=O.CC([O-])=O ZBYYWKJVSFHYJL-UHFFFAOYSA-L 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- RLMGYIOTPQVQJR-UHFFFAOYSA-N cyclohexane-1,3-diol Chemical compound OC1CCCC(O)C1 RLMGYIOTPQVQJR-UHFFFAOYSA-N 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- VCVOSERVUCJNPR-UHFFFAOYSA-N cyclopentane-1,2-diol Chemical compound OC1CCCC1O VCVOSERVUCJNPR-UHFFFAOYSA-N 0.000 description 1
- NUUPJBRGQCEZSI-UHFFFAOYSA-N cyclopentane-1,3-diol Chemical compound OC1CCC(O)C1 NUUPJBRGQCEZSI-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 150000002545 isoxazoles Chemical class 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 1
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000011707 mineral Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- DILRJUIACXKSQE-UHFFFAOYSA-N n',n'-dimethylethane-1,2-diamine Chemical compound CN(C)CCN DILRJUIACXKSQE-UHFFFAOYSA-N 0.000 description 1
- KFIGICHILYTCJF-UHFFFAOYSA-N n'-methylethane-1,2-diamine Chemical compound CNCCN KFIGICHILYTCJF-UHFFFAOYSA-N 0.000 description 1
- HVOYZOQVDYHUPF-UHFFFAOYSA-N n,n',n'-trimethylethane-1,2-diamine Chemical compound CNCCN(C)C HVOYZOQVDYHUPF-UHFFFAOYSA-N 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- JDEJGVSZUIJWBM-UHFFFAOYSA-N n,n,2-trimethylaniline Chemical compound CN(C)C1=CC=CC=C1C JDEJGVSZUIJWBM-UHFFFAOYSA-N 0.000 description 1
- OCZBPNBIXHLBFM-UHFFFAOYSA-N n,n-di(propan-2-yl)cyclohexanamine Chemical compound CC(C)N(C(C)C)C1CCCCC1 OCZBPNBIXHLBFM-UHFFFAOYSA-N 0.000 description 1
- FZPXKEPZZOEPGX-UHFFFAOYSA-N n,n-dibutylaniline Chemical compound CCCCN(CCCC)C1=CC=CC=C1 FZPXKEPZZOEPGX-UHFFFAOYSA-N 0.000 description 1
- YQYUUNRAPYPAPC-UHFFFAOYSA-N n,n-diethyl-2-methylaniline Chemical compound CCN(CC)C1=CC=CC=C1C YQYUUNRAPYPAPC-UHFFFAOYSA-N 0.000 description 1
- OLAPPGSPBNVTRF-UHFFFAOYSA-N naphthalene-1,4,5,8-tetracarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1C(O)=O OLAPPGSPBNVTRF-UHFFFAOYSA-N 0.000 description 1
- JSKSILUXAHIKNP-UHFFFAOYSA-N naphthalene-1,7-dicarboxylic acid Chemical compound C1=CC=C(C(O)=O)C2=CC(C(=O)O)=CC=C21 JSKSILUXAHIKNP-UHFFFAOYSA-N 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 1
- BTHGHFBUGBTINV-UHFFFAOYSA-N naphthalene-2,3,6-tricarboxylic acid Chemical compound C1=C(C(O)=O)C(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 BTHGHFBUGBTINV-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000000221 oxazepines Chemical class 0.000 description 1
- 150000004893 oxazines Chemical class 0.000 description 1
- TYCZWVSOBCRZOB-UHFFFAOYSA-N oxazirene Chemical class O1C=N1 TYCZWVSOBCRZOB-UHFFFAOYSA-N 0.000 description 1
- 150000002916 oxazoles Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000004040 pyrrolidinones Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000012144 step-by-step procedure Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
发明范围scope of invention
本项发明是有关高纯度芳香多羧酸及其衍生物,特别是有关于改良纯化及制造高纯度芳香多羧酸或其衍生物(例如酯)的方法。The present invention relates to high-purity aromatic polycarboxylic acids and derivatives thereof, and in particular to improved purification and methods for producing high-purity aromatic polycarboxylic acids or derivatives thereof (such as esters).
发明背景Background of the invention
芳香多羧酸是由氧化芳香化合物上对应的烷基而制得,此等酸的例子有:纯对苯二酸(Pure Terephthalic Acid,PTA)、间苯二酸(IsophthalicAcid,IPA)、偏苯三酸(Trimellitic Acid,TMA)、2,6-萘二羧酸(2,6-Naphthalene Dicarboxylic Acid,,2,6-NDA)、2,7-萘二羧酸(2,7-NDA)等。因PTA为最典型的方法,所以它将被用以解说本发明。然而,本发明的纯化及制造方法也可适用于所有的芳香多羧酸及其衍生物。Aromatic polycarboxylic acids are prepared by oxidizing the corresponding alkyl groups on aromatic compounds. Examples of such acids are: Pure Terephthalic Acid (PTA), Isophthalic Acid (IPA), Phenylbenzene Trimellitic Acid (TMA), 2,6-Naphthalene Dicarboxylic Acid (2,6-Naphthalene Dicarboxylic Acid,, 2,6-NDA), 2,7-Naphthalene Dicarboxylic Acid (2,7-NDA), etc. . Since PTA is the most typical method, it will be used to illustrate the present invention. However, the purification and production methods of the present invention are also applicable to all aromatic polycarboxylic acids and derivatives thereof.
PTA的主要生产方法是以下列步骤生产粗对苯二酸(CrudeTerephthalic Acid,CTA)。The main production method of PTA is to produce crude terephthalic acid (CrudeTerephthalic Acid, CTA) in the following steps.
1)氧化:对二甲苯(PX)与空气在150-230℃和150-425 psia的液相中,以钴-锰-溴为催化剂及醋酸为溶剂氧化反应而成对苯二酸。1) Oxidation: P-xylene (PX) is oxidized with air in a liquid phase at 150-230°C and 150-425 psia, using cobalt-manganese-bromine as a catalyst and acetic acid as a solvent to form terephthalic acid.
2)结晶:氧化反应器的流出物经由3到5个大结晶器于减压减温下结晶将对苯二酸从母液中沉淀出来。2) Crystallization: The effluent from the oxidation reactor is crystallized under reduced pressure and temperature through 3 to 5 large crystallizers to precipitate terephthalic acid from the mother liquor.
3)过滤:经由离心/过滤将粗酸从母液分离。处理或未处理之母液循环至氧化步骤。3) Filtration: The crude acid is separated from the mother liquor via centrifugation/filtration. Treated or untreated mother liquor is recycled to the oxidation step.
4)干燥:以惰性气体吹干粗酸,且该惰性气体所携带之醋酸则由涤气器回收。干燥后的粗对苯二酸由空气推动输送至储仓,因此需要大量的氮气,或空气分离设备。4) Drying: Dry the crude acid with inert gas, and the acetic acid carried by the inert gas is recovered by the scrubber. The dried crude terephthalic acid is transported by air to the storage silo, so a large amount of nitrogen, or air separation equipment is required.
5)溶剂及催化剂回收:溶剂及催化剂可经由许多不同的方法回收。5) Solvent and catalyst recovery: Solvents and catalysts can be recovered through many different methods.
含约0.5%杂质的CTA经由氢化反应以制成含有大约25PPM的4-对酸基苯甲醛(4-CBA)、150PPM的对甲苯酸及0-50PPM的苯甲酸的聚合等级的PTA。类似于上述的CTA工艺,经由氢化反应纯化后的PTA也必须再经过类似的结晶、过滤、干燥的程序步骤回收。因此,将反应器流出物约0.5%的杂质除去,纯化至约0.025%杂质的产物,目前工艺需要下列昂贵的步骤:CTA with about 0.5% impurity was hydrogenated to produce polymer grade PTA containing about 25PPM 4-p-acid benzaldehyde (4-CBA), 150PPM p-toluic acid and 0-50PPM benzoic acid. Similar to the above-mentioned CTA process, the PTA purified by the hydrogenation reaction must also be recovered through similar procedures of crystallization, filtration, and drying. Therefore, to remove about 0.5% of impurities from the reactor effluent and purify the product to about 0.025% impurities, the current process requires the following expensive steps:
1)二套结晶、离心/过滤、干燥及气体输送的工艺步骤。1) Two sets of process steps of crystallization, centrifugation/filtration, drying and gas delivery.
2)以昂贵的化学反应的方法来纯化。除了昂贵的氢化单元的设备成本,因操作于高压高温及使用贵金属的催化剂也需要高额的生产成本。2) Purification by means of expensive chemical reactions. In addition to the equipment cost of the expensive hydrogenation unit, high production costs are also required due to the operation at high pressure and high temperature and the use of noble metal catalysts.
3)相当长的结晶驻留时间。CTA约需3-5个,而PTA约需5个大结晶器以将产物自母液中回收。此外,由于高腐蚀性的溴及醋酸环境,某些结晶器必须使用昂贵的抗腐蚀材料,例如钛衬的设备。3) Relatively long crystallization residence time. CTA needs about 3-5, and PTA needs about 5 large crystallizers to recover the product from the mother liquor. In addition, due to the highly corrosive bromine and acetic acid environment, some crystallizers must use expensive corrosion-resistant materials, such as titanium-lined equipment.
4)干燥及气体输送的步骤程序以制造终产物。4) Step procedure of drying and gas delivery to make the final product.
5)产物虽然合乎聚合等级的规格,但仍含有约0.01%的杂质。5) The product, while meeting polymer grade specifications, still contained about 0.01% impurities.
制造聚酯纤维、薄膜、和模制树脂必须使用高纯度的PTA及其衍生物。对苯二酸之所以难以纯化,主要是因为其在多数溶剂中溶解度低、高沸点、以及产物与杂质具有相似的物性及化性。High-purity PTA and its derivatives must be used in the manufacture of polyester fibers, films, and molding resins. The reason why terephthalic acid is difficult to purify is mainly because of its low solubility in most solvents, high boiling point, and similar physical and chemical properties of products and impurities.
另一种纯化的方法是以溶剂萃取来除去杂质。溶剂萃取吸引之处是成本较低,此法可追溯至1953年(美国专利2,664,440),或可能更早。早期所建议的溶剂并不稳定、会与产物产生反应、有毒性、或无法将CTA纯化至所要求的程度。其后,Iwane(美国专利5,344,969)和Hirowatari(美国专利5,565,609)公开了使用更为稳定溶剂的方法。以下将概述这些方法。Another method of purification is solvent extraction to remove impurities. Solvent extraction, attractive for its lower cost, dates back to 1953 (US Patent 2,664,440), or possibly earlier. Solvents suggested earlier were unstable, reactive with the product, toxic, or did not purify the CTA to the required degree. Subsequently, Iwane (US Patent 5,344,969) and Hirowatari (US Patent 5,565,609) disclosed methods using more stable solvents. These methods are outlined below.
1)溶解粗酸:芳香多羧酸与许多碱化合物会形成盐,此盐可溶于许多溶解溶剂中,诸如升温的水或醇。1) Dissolving crude acid: Aromatic polycarboxylic acid and many basic compounds will form salts, and this salt can be dissolved in many dissolving solvents, such as warming water or alcohol.
2)除去杂质:某些杂质可轻易地经由溶液之前处理来分离,如以活性碳来吸附着色剂。但性质与酸接近的杂质则须冷却至少30℃,以结晶方式自母液分离出来。2) Removal of impurities: Some impurities can be easily separated by pretreatment of the solution, such as using activated carbon to adsorb colorants. However, impurities whose properties are close to those of acids must be cooled to at least 30°C and separated from the mother liquor in the form of crystallization.
3)产物回收:Hirowatari通过热处理将前处理溶液加热分解,或在乙二醇的存在下,将蒸气与该浓缩溶液接触而加热分解。Iwane则将盐沉淀并洗涤之,然后通过加热分解,或添加一种酸取代性溶剂以取代盐中的产物酸,而将其转变为纯化的产物。Iwane还通过将酸取代性溶剂直接加至溶液中以回收产物。3) Product recovery: Hirowatari thermally decomposes the pretreatment solution by heat treatment, or in the presence of ethylene glycol, heats and decomposes by contacting the steam with the concentrated solution. Iwane precipitated the salt, washed it, and converted it to a purified product by thermally decomposing it, or adding an acid-substituting solvent to replace the product acid in the salt. Iwane also recovered the product by adding an acid-substituting solvent directly into the solution.
Iwane和Hirowatari皆使用只含氮为杂原子的胺化合物,例如脂族、脂环族、芳香族、或杂环的胺。Iwane以醇为溶解溶剂来纯化源自氧化的粗NDA。Hirowatari则以水为溶解溶剂,将芳香二羧酸自水解的聚酯树脂回收。因所含杂质仅为添加剂和着色剂,其可容易地被活性碳回收分离,所以此法并未以结晶分离纯化的盐。因此,此法仅适用于纯化已高度纯化PTA(其只含容易分离之添加剂及着色剂),而不适用于纯化含有难以分离的氧化杂质的粗芳香二羧酸。Both Iwane and Hirowatari use amine compounds containing only nitrogen as a heteroatom, such as aliphatic, alicyclic, aromatic, or heterocyclic amines. Iwane used alcohol as a dissolving solvent to purify crude NDA from oxidation. Hirowatari uses water as a dissolving solvent to recover aromatic dicarboxylic acids from hydrolyzed polyester resins. Since the only impurities contained are additives and colorants, which can be easily recovered and separated by activated carbon, this method does not separate the purified salt by crystallization. Therefore, this method is only suitable for the purification of highly purified PTA (which only contains additives and colorants that are easily separated), and is not suitable for the purification of crude aromatic dicarboxylic acids containing oxidized impurities that are difficult to separate.
至于热解,Iwane将盐加于链烷烃、烷基苯、烷基萘、或烷基联苯中并加热,而未使用蒸气来加热。但所选的高沸点溶剂将残留于产物中而成为另一种污染物。Hirowatari则将前处理溶液加热及回流以分解胺盐,或以蒸馏法来浓缩该溶液后,再与蒸气接触以分解并除去该胺化合物。乙二醇主要是用以提升回流温度,但回流将增加产物中碱化合物的残留量,且蒸馏法还必须蒸发超过50%的水,因此需要大量能源。For pyrolysis, Iwane added salts to paraffins, alkylbenzenes, alkylnaphthalenes, or alkylbiphenyls and heated without using steam. But the selected high boiling point solvent will remain in the product as another pollutant. Hirowatari heated and refluxed the pretreatment solution to decompose the amine salt, or concentrated the solution by distillation, and then contacted with steam to decompose and remove the amine compound. Ethylene glycol is mainly used to increase the reflux temperature, but reflux will increase the residual amount of alkali compounds in the product, and the distillation method must evaporate more than 50% of the water, so a large amount of energy is required.
Iwane能将97.2%的2,6-NDA纯度改良至约99.8%的程度,而Hirowatari则能从水解的聚酯树脂中回收纯度约为99.9%的PTA。Iwane利用其方法仅能将来自反应器流出物的纯度低于CTA的粗NDA纯化至接近于CTA的程度。虽然以上两个方法均能改良产物的纯度,但仍无法达到聚合等级PTA的规格(>99.98%)。Iwane was able to improve the purity of 2,6-NDA from 97.2% to about 99.8%, while Hirowatari was able to recover PTA with a purity of about 99.9% from hydrolyzed polyester resin. Iwane was only able to purify crude NDA from the reactor effluent, which was less pure than CTA, to a degree close to CTA using his method. Although the above two methods can improve the purity of the product, they still cannot reach the specification (>99.98%) of polymer grade PTA.
另一个方法是Lee(美国专利第5767311号),其将CTA直接溶于140-190℃的N-甲基吡咯烷酮(NMP)中,而未使用溶解溶剂。该溶液冷却至5-50℃后使之结晶沉淀。过滤及洗涤该沉淀物以使PTA达聚合等级。然而使用该方法的实验显示,仍有相当多的盐污染产物。此污染的形成可能是由于其未能了解于此方法中,PTA与NMP会形成盐。Lee认为溶液的沉淀物是PTA,但事实上它还是盐。在洗涤期间,盐被洗涤溶剂,如甲醇或水,转化成产物。但仍有大量盐未被转化,因为仅有洗涤是无法将所有的盐转化为产物。此溶解及溶剂回收的方法是很昂贵的。若与胺化合物或吗啉比较,NMP价格贵约2-3倍,而且需要使用3-5倍的量来溶解粗酸。且溶剂沸点高,必需花费大量热能回收。另外,Lee错误地认为CTA可溶于不含水的吗啉溶液中。不管溶液温度如何,除非水存在,否则其溶解度是小至可以忽略的。即使吗啉能够溶解CTA,其终产物将不是PTA而是盐,因为甲醇无法将吗啉盐的沉淀物转化成PTA。以后将更详尽地讨论NMP与吗啉盐的区别,且本发明将发挥其优点。本发明将使用新的结晶方法和洗涤溶剂以改良此方法产物的品质。Another method is Lee (US Patent No. 5,767,311 ), which directly dissolves CTA in N-methylpyrrolidone (NMP) at 140-190° C. without using a dissolving solvent. The solution is cooled to 5-50°C to precipitate crystals. The precipitate was filtered and washed to bring the PTA to polymer grade. Experiments using this method have shown, however, that there is still considerable salt contamination of the product. The formation of this contamination may be due to its failure to understand that in this method, PTA and NMP will form salts. Lee thought the precipitate from the solution was PTA, but in fact it was still a salt. During the wash, the salt is converted to product by the wash solvent, such as methanol or water. However, a large amount of salt remains unconverted because washing alone cannot convert all the salt to product. This method of dissolution and solvent recovery is expensive. Compared with amine compounds or morpholine, NMP is about 2-3 times more expensive, and needs to use 3-5 times the amount to dissolve crude acid. Moreover, the boiling point of the solvent is high, and a large amount of heat energy must be spent for recovery. Additionally, Lee incorrectly believed that CTA was soluble in non-aqueous morpholine solutions. Regardless of the solution temperature, unless water is present, its solubility is negligibly small. Even if morpholine is able to dissolve CTA, the end product will not be PTA but a salt because methanol cannot convert the precipitate of morpholine salt into PTA. The distinction between NMP and morpholinium salts will be discussed in more detail later, and the present invention will take advantage of them. The present invention will use a new crystallization method and washing solvent to improve the quality of the product of this method.
即使有上述这么多的优点,但仍未发现有溶剂萃取纯化的商业利用。其中一个主要的问题是由于残留于终产物中的残余碱化合物却反变成一种污染物。所有提议使用的有机碱化合物皆含有氮,其将在制造聚酯时引起颜色及一些其它问题,目前并无现有技术揭露该项问题,以及如何自产物中除去该碱化合物。Even with all the advantages mentioned above, no commercial use of solvent extraction purification has been found. One of the main problems is that the residual alkali compound remaining in the final product turns out to be a pollutant. All of the proposed organic base compounds contain nitrogen which will cause color and some other problems in the manufacture of polyester, and there is no prior art disclosing this problem and how to remove the base compound from the product.
结晶体于结晶时通常包含残留溶液。使用一些已知结晶方法,其可能包含多于0.1%的残留碱液,其程度很接近CTA中的杂质含量。为了能适用于制造聚酯,残留碱化合物必须除至约为百万之几的程度,其已接近PTA杂质程度。因此,已知的溶剂萃取技术可除去粗酸里的杂质,但却使残留碱化合物污染于产物中,使其无法适用于制造聚酯。Crystals usually contain residual solution upon crystallization. With some known crystallization methods, it may contain more than 0.1% residual lye, which is close to the level of impurities in CTA. In order to be suitable for the production of polyester, the residual alkali compound must be removed to the level of about a few million, which is close to the level of PTA impurities. Thus, known solvent extraction techniques remove impurities from the crude acid, but contaminate the product with residual alkali compounds, making it unsuitable for the manufacture of polyesters.
所有已知的方法皆未尝试从终产物中除去残留碱。Iwane教示使用酸溶剂,Hirowatari教示使用水来洗涤过滤器终产物饼中的碱化合物,而Lee则教示使用NMP、对二甲苯、丙酮、甲基乙基酮、或甲醇来洗涤过滤饼。使用100∶1比率的水来洗涤及将该过滤饼沥滤10小时的实验,所产生的纯化产物仍含有大量的碱化合物。由此显示,一旦碱化合物被包含于产物结晶体中,就很难再被除去。由于已知文献并未讨论此项问题,或为熟悉该项技艺者所知但仍待以解决。All known methods do not attempt to remove residual base from the final product. Iwane teaches the use of acid solvents, Hirowatari teaches the use of water to wash the base compounds in the filter end product cake, and Lee teaches the use of NMP, p-xylene, acetone, methyl ethyl ketone, or methanol to wash the filter cake. Experiments using a 100:1 ratio of water to wash and leach the filter cake for 10 hours produced a purified product that still contained significant amounts of base compounds. This shows that once the alkali compound is contained in the product crystal, it is difficult to be removed. Because the known literature does not discuss this problem, or it is known but still to be solved by those who are familiar with the art.
已知的溶剂萃取纯化方法中,皆明示或暗示地教示以溶剂萃取置换氢化单元,且使用CTA为进料,只有Lee是例外。他误认为直接过滤反应器流出物即可回收高量的CTA,而不需要使用结晶器或其它方法。但直接过滤,大部份CTA仍存在于反应器流出物的母液中,其需要相当长的驻留时间以沉淀CTA。目前的工艺使用3-5个大结晶器来回收CTA是有其因的。本发明建议使用急骤蒸发与蒸发以减少驻留时间。In the known solvent extraction purification methods, all explicitly or implicitly teach replacing the hydrogenation unit with solvent extraction, and using CTA as the feed, only Lee is an exception. He mistakenly believed that high levels of CTA could be recovered by direct filtration of the reactor effluent without the use of crystallizers or other methods. But with direct filtration, most of the CTA is still present in the mother liquor in the reactor effluent, which requires a rather long residence time to precipitate the CTA. There is a reason why the current process uses 3-5 large crystallizers to recover CTA. The present invention proposes the use of flash and evaporation to reduce residence time.
溶剂萃取纯化方法本身也需要结晶、过滤、干燥及气体输送。所以,已知的溶剂萃取纯化技术也需要二套工艺步骤来生产PTA。因此,所有已知的纯化芳香多羧酸的溶剂萃取方法皆有下列缺点:The solvent extraction purification method itself also requires crystallization, filtration, drying and gas delivery. Therefore, the known solvent extraction purification technology also requires two sets of process steps to produce PTA. Therefore, all known solvent extraction methods for the purification of aromatic polycarboxylic acids have the following disadvantages:
1)含残留碱化合物于晶体中,而污染终产物。1) Containing residual alkali compound in the crystal, which contaminates the final product.
2)需要二套结晶、离心/过滤、干燥及气体输送的设备。2) Two sets of equipment for crystallization, centrifugation/filtration, drying and gas delivery are required.
3)终产物中仍含有明显的可检测出的杂质。3) The final product still contains obvious detectable impurities.
4)需要相当长的驻留时间来结晶,因此需要数个大结晶器。4) Requires considerable residence time to crystallize, thus requiring several large crystallizers.
5)需要干燥及气体输送来制造终产物。5) Drying and gas delivery are required to make the final product.
因此,本发明的几项目标为:Therefore, several objectives of the present invention are:
1)提供一套溶剂萃取纯化方法,以除去粗酸中的杂质,从而符合或超过芳香多羧酸聚合等级的规格。1) Provide a set of solvent extraction purification methods to remove impurities from crude acid to meet or exceed the specifications of aromatic polycarboxylic acid polymer grades.
2)除去终产物中的碱化合,以使其适用于制造聚酯纤维、薄膜、模制树脂,或其它方面的应用。2) Removal of alkali compounds in the final product to make it suitable for use in the manufacture of polyester fibers, films, molding resins, or other applications.
3)提供制造聚合等级的芳香多羧酸的方法,而仅需一套工艺步骤,从而实质上降低投资及生产成本。3) To provide a method for producing polymeric-grade aromatic polycarboxylic acids, which requires only one set of process steps, thereby substantially reducing investment and production costs.
4)减少结晶器的数目,或甚至完全不用。4) Reduce the number of crystallizers, or even eliminate them altogether.
5)生产可直接用于制造聚酯的芳香多羧酸,而不需使用干燥及气体输送的步骤程序。5) Production of aromatic polycarboxylic acids that can be directly used in the manufacture of polyester without the use of drying and gas delivery steps.
本项发明所公开的溶剂萃取方法很意外及惊讶地发现其可将杂质除去至目前标准HPLC所无法测出的程度,所以进一步的优点则将更为明显。The solvent extraction method disclosed in the present invention is unexpectedly and surprisingly found that it can remove impurities to a level that cannot be detected by current standard HPLC, so further advantages will be more obvious.
发明概述Summary of the invention
本发明提供芳香多羧酸或其衍生物的溶剂萃取纯化方法,其纯度能满足或超过聚合等级的规格。此方法包括将粗芳香多羧酸或其衍生物(如甲酯)溶解于一碱化合物中、除去杂质和过量的碱化合物、以及回收产物时亦除去残留碱化合物。此纯化方法不仅从粗酸或其衍生物中除去杂质,还同时自终产物中除去污染产物的残留碱化合物。过滤饼里的盐是以酸取代、热解、或电解方式转化为产物。此法使用碱萃取溶剂从盐中萃取碱化合物及杂质。而后,该回收产物中的残留碱化合物以沥滤、汽提、电磁波热搅动、或热解蒸发之方式除去。此纯化方法可免使用结晶器以及干燥及气体输送之设备。最后,将该纯化方法与目前已知技术的氧化和溶剂回收相结合,可将目前生产芳香多羧酸或衍生物的二套工艺步骤减为一套,从而显著降低生产成本。The present invention provides a method for solvent extraction and purification of aromatic polycarboxylic acid or its derivatives, the purity of which can meet or exceed the specification of polymer grade. The process involves dissolving crude aromatic polycarboxylic acid or derivatives thereof (such as methyl ester) in a base compound, removing impurities and excess base compound, and removing residual base compound when recovering the product. This purification process not only removes impurities from the crude acid or its derivatives, but also simultaneously removes residual base compounds that contaminate the product from the final product. Salts in the filter cake are converted to products by acid substitution, pyrolysis, or electrolysis. This method uses a base extraction solvent to extract base compounds and impurities from the salt. Then, the residual alkali compound in the recovered product is removed by leaching, steam stripping, electromagnetic wave thermal agitation, or pyrolysis evaporation. This purification method avoids the use of crystallizers and equipment for drying and gas delivery. Finally, combining the purification method with the oxidation and solvent recovery of the currently known technology can reduce the current two sets of process steps for the production of aromatic polycarboxylic acids or derivatives to one set, thereby significantly reducing production costs.
发明详述Detailed description of the invention
本发明提供一套芳香多羧酸或其衍生物的溶剂萃取纯化方法,其纯度能满足或超过聚合等级。此法适用于任何的多羧酸,例如PTA、IPA、TMA、2,6-NDA、2,7-NDA等。此方法也适用该酸的衍生物,包括酯,如对苯二酸二甲酯(DMT)、2,6-萘二甲酸二甲酯(2,6-NDC)、水解的聚酯等。此方法包括将粗芳香多羧酸或其衍生物溶解于碱化合物中;除去杂质及过量的碱化合物;以及在制造纯化产物时,除去残留碱化合物。优选的碱化合物为含有氧和氮杂原子的碱,如吗啉或NMP,及以下将更详细讨论的其它碱化合物。过滤饼里的盐可通过酸取代溶剂、热解、或电解的方法转化回产物。The invention provides a set of solvent extraction and purification methods for aromatic polycarboxylic acid or its derivatives, the purity of which can meet or exceed the polymerization level. This method is applicable to any polycarboxylic acid, such as PTA, IPA, TMA, 2,6-NDA, 2,7-NDA, etc. The method is also applicable to derivatives of the acid, including esters such as dimethyl terephthalate (DMT), dimethyl 2,6-naphthalene dicarboxylate (2,6-NDC), hydrolyzed polyesters, and the like. The process involves dissolving crude aromatic polycarboxylic acid or its derivatives in a base compound; removing impurities and excess base compound; and removing residual base compound when producing a purified product. Preferred base compounds are bases containing oxygen and nitrogen heteroatoms, such as morpholine or NMP, and others discussed in more detail below. Salts in the filter cake can be converted back to product by acid substitution of solvent, pyrolysis, or electrolysis.
除了从粗酸或其衍生物中除去杂质外,此法使用碱萃取溶剂从盐中萃取碱化合物及杂质并回收产物。回收产物里的残留碱化合物可进一步通过沥滤(leaching)、汽提(stripping)、电磁波热搅动(thermalagitating with electromagnetic waves)、或蒸发热解(evaporation withthermal decomposition)来除去。残留的碱化合物并非杂质,而是一种由纯化过程所引入的污染物。本纯化方法可避免使用结晶器及干燥或气体输送的设备,从而降低成本。最后,本纯化方法将结合传统的氧化及溶剂萃取的技术(其均使用二套纯化工艺步骤),而仅使用一套工艺步骤以生产芳香多羧酸。In addition to removing impurities from the crude acid or its derivatives, this method uses a base extraction solvent to extract base compounds and impurities from the salt and recover the product. Residual alkali compounds in the recovered product can be further removed by leaching, stripping, thermal agitating with electromagnetic waves, or evaporation with thermal decomposition. The residual base compound is not an impurity, but a contaminant introduced by the purification process. The purification method can avoid the use of crystallizers and drying or gas delivery equipment, thereby reducing costs. Finally, this purification method will combine traditional oxidation and solvent extraction techniques (both of which use two sets of purification process steps), and only use one set of process steps to produce aromatic polycarboxylic acids.
溶剂萃取所纯化的芳香多羧酸的结晶体,可经由吸附于晶体表面;截留于裂缝、裂隙、或成团聚集;及包含于液体袋中,而含有碱化合物及其它所使用的溶剂。晶体中的碱化合物不一定呈液态,而可能与结晶酸而形成固态的盐。洗涤或热解只可能除去一部份吸附或截留的溶剂,但无法除去那些包含于熔度为约300-425℃的产物晶体中的溶剂。要将这些残余碱化合物自产物结晶里除去是极为困难的。The crystals of the aromatic polycarboxylic acid purified by solvent extraction can be adsorbed on the surface of the crystal; trapped in cracks, crevices, or aggregated; and contained in a liquid bag containing the alkali compound and other solvents used. Alkaline compounds in crystals are not necessarily liquid, but may form solid salts with crystalline acids. Washing or pyrolysis only makes it possible to remove a part of the adsorbed or trapped solvent, but not those contained in the product crystals having a melting point of about 300-425°C. It is extremely difficult to remove these residual alkali compounds from the product crystals.
已知技术使用惰性气体以避免氧化碱化合物以引起产物变色变质,但这只能隐藏碱化合物存在所造成的问题。标准HPLC分析方法仅能测量杂质而无法测量非芳香族的碱化合物;产物颜色测量法亦无法检测碱化合物,除非故意将碱化合物氧化以显示其存在。一种简单的检测残余碱化合物的方法是使终产物长时间高温加热氧化为非白的颜色,以目前的颜色测量法量其色度,并与由氢化纯化的PTA比较。Known techniques use inert gases to avoid oxidation of the base compound causing discoloration and deterioration of the product, but this only hides the problems caused by the presence of the base compound. Standard HPLC analytical methods can only measure impurities and not non-aromatic bases; product color measurements cannot detect bases unless they are intentionally oxidized to reveal their presence. A simple method to detect residual alkali compounds is to oxidize the final product to a non-white color by heating at high temperature for a long time, measure its chroma with the current color measurement method, and compare it with PTA purified by hydrogenation.
纯化的盐中未与羧酸官能团结合的碱化合物是过量的碱化合物。仅从盐中除去过量的碱化合物并不能完全避免于回收产物时接触碱化合物,因为碱化合物仍是盐的一个成份。因此,需要用另外的方法来除去包含于回收产物结晶内的残留碱化合物,而这个方法是极困难和非显而易见的。The base compound not bound to the carboxylic acid function in the purified salt is the base compound in excess. Mere removal of excess base compound from the salt does not completely avoid contact with the base compound during product recovery, since the base compound is still a component of the salt. Therefore, an additional method is required, which is extremely difficult and non-obvious, to remove the residual alkali compound contained in the recovered product crystals.
本发明发现碱萃取溶剂能从盐及回收产物中萃取碱化合物及杂质。合适的碱萃取溶剂为任何不含氮的化合物,并且对目标结晶的溶解度低或能将盐转化成产物酸;对碱化合物和杂质溶解度高;并且易于同产物分离,或不需分离。此种溶剂可含羟基、羰基、醚、酮、酯或其它的官能团。The present invention has discovered that base extraction solvents are capable of extracting base compounds and impurities from salts and recovered products. A suitable base extraction solvent is any compound that does not contain nitrogen and has low solubility for target crystals or can convert salts into product acids; has high solubility for base compounds and impurities; and is easy to separate from the product, or does not need to be separated. Such solvents may contain hydroxyl, carbonyl, ether, ketone, ester or other functional groups.
除非另外明述,所述溶剂萃取方法是在预定压力下,在溶液凝固点至最高沸点的温度进行,且优选使用的温度为从冷却水温度至最高沸点。操作压力并不特别限制;可为0至100绝对大气压,且优选为0.001至5绝对大气压。Unless stated otherwise, the solvent extraction method is carried out under a predetermined pressure at a temperature ranging from the freezing point to the highest boiling point of the solution, and preferably the temperature used is from the cooling water temperature to the highest boiling point. The operating pressure is not particularly limited; it may be 0 to 100 absolute atmospheres, and preferably 0.001 to 5 absolute atmospheres.
除去杂质及残留碱化合物的纯化方法包含下列步骤。The purification method for removing impurities and residual alkali compounds comprises the following steps.
溶解粗酸或衍生物Soluble crude acid or derivatives
粗芳香多羧酸或其衍生物与碱化合物形成盐而溶解。若该盐能溶于溶解溶剂中,则该溶解剂可被用以增加溶解度从而降低溶解成本。反之则不使用溶解剂。此亦包括某些粗酸或衍生物能溶于碱化合物但不形成盐的罕例。The crude aromatic polycarboxylic acid or its derivative forms a salt with a base compound and dissolves. If the salt is soluble in the dissolving solvent, the dissolving agent can be used to increase the solubility and thereby reduce the cost of dissolution. Otherwise, no solvent is used. This also includes the rare case where certain crude acids or derivatives are soluble in base compounds but do not form salts.
粗芳香多羧酸或其衍生物可来自含有任何杂质的任何来源。它可来自氧化反应器,许多工艺的中间或最后产物流,例如制造DMT或2,6-萘二甲酸二甲酯(NDC)的中间产物、水解的聚酯等。碱化合物包括含氧及不含氧的碱化合物。含氧的碱化合物包括任何含有氧和氮作为杂原子的碱化合物,例如吗啉化合物、酰胺化合物、无机碱等。不含氧的碱化合物则包括胺化合物和氨。碱化合物包括脂族、脂环族、芳香族、和杂环的化合物。碱化合物的使用量为芳香多羧酸或其衍生物中每摩尔羧基或取代羧基官能团的0.5-100摩尔,而常用量为粗芳香多羧酸中每摩尔羧基官能团的1-2摩尔。溶解溶剂包括水、醇、醚、酮、和酯等。溶解溶剂的用量可为粗芳香多羧酸中每摩尔羧基官能团的0-100摩尔,较常用量为1-10摩尔。The crude aromatic polycarboxylic acid or derivatives thereof may be from any source containing any impurities. It can come from oxidation reactors, intermediate or final product streams of many processes, such as intermediates in the manufacture of DMT or dimethyl 2,6-naphthalene dicarboxylate (NDC), hydrolyzed polyesters, etc. Alkali compounds include oxygen-containing and oxygen-free alkali compounds. The oxygen-containing base compound includes any base compound containing oxygen and nitrogen as heteroatoms, such as morpholine compounds, amide compounds, inorganic bases and the like. Alkaline compounds not containing oxygen include amine compounds and ammonia. Base compounds include aliphatic, alicyclic, aromatic, and heterocyclic compounds. The amount of base compound used is 0.5-100 moles per mole of carboxyl or substituted carboxyl functional groups in the aromatic polycarboxylic acid or its derivatives, and the usual amount is 1-2 moles per mole of carboxyl functional groups in the crude aromatic polycarboxylic acid. Dissolving solvents include water, alcohols, ethers, ketones, and esters, among others. The amount of dissolving solvent can be 0-100 moles per mole of carboxyl functional groups in the crude aromatic polycarboxylic acid, and the usual amount is 1-10 moles.
已知技术皆使用传统加热法将能量经由溶剂分子传递到盐离子使其克服引力来溶解粗酸。本发明除了使用传统加热法外,也可使用电磁波的热搅动法来溶解粗酸或酯。离子在电磁波下的热搅动不同于传统加热或微波加热。电磁波同时对溶剂分子和盐离子提供热搅动。然而,盐离子较溶剂分子接收到更大的搅动能量,使离子来加热其它分子,而区别于传统的加热法。所以,电磁波的热搅动法具有明显的特性,诸如,溶解度、溶剂蒸发、和结晶现象。例如由于盐离子接收到较多的能量来溶解,但也可能更快地被热解回原来的酸或酯分子,而有不同的溶解度;由于较高的蒸气蒸发而有较好的结晶效率;因高能离子可能将一部分的盐热解回产物酸或酯,而有不同的沉淀机制。其主要的优点是有效节省溶解能源与时间。而较少的溶解时间则能减少溶剂降解或与杂质反应。The known techniques all use traditional heating method to transfer energy through solvent molecules to salt ions so that they can overcome the gravitational force to dissolve the crude acid. In addition to the traditional heating method, the present invention can also use electromagnetic wave heat stirring method to dissolve crude acid or ester. The thermal agitation of ions under electromagnetic waves is different from conventional heating or microwave heating. Electromagnetic waves provide thermal agitation to both solvent molecules and salt ions. However, salt ions receive greater stirring energy than solvent molecules, allowing ions to heat other molecules, unlike traditional heating methods. Therefore, the thermal agitation method of electromagnetic waves has remarkable characteristics, such as solubility, solvent evaporation, and crystallization phenomena. For example, because salt ions receive more energy to dissolve, but may also be pyrolyzed back to the original acid or ester molecules faster, and have different solubility; due to higher vapor evaporation, better crystallization efficiency; There are different precipitation mechanisms as energetic ions may pyrolyze a portion of the salt back to the product acid or ester. Its main advantage is to effectively save energy and time for dissolution. Less dissolution time reduces solvent degradation or reaction with impurities.
Iwane和Hirowatari使用不含氧的胺化合物,而Lee则使用吡咯烷酮、脂环族酰胺化合物,其具有羰基与胺官能团特性。其它优选的含氧碱化合物为具有醚和胺官能团特性的吗啉化合物。含氧与不含氧的有机碱化合物在碱度、介电常数、偶极矩,或与溶解溶剂的吸湿性方面均有明显不同的特性。本发明将利用这些特性与优点将碱化合物和杂质从终产物中除去。Iwane and Hirowatari used oxygen-free amine compounds, while Lee used pyrrolidones, cycloaliphatic amide compounds that have both carbonyl and amine functional groups. Other preferred oxygen-containing base compounds are morpholine compounds having the character of ether and amine functional groups. Oxygen-containing and oxygen-free organic base compounds have significantly different properties in terms of basicity, dielectric constant, dipole moment, or hygroscopicity with the solvent in which they are dissolved. The present invention will take advantage of these characteristics and advantages to remove base compounds and impurities from the final product.
含氧的盐称为碱盐,而不含氧的盐称为常规盐。大部份的常规盐能溶解于许多溶剂中,如水和醇。含醚的盐将被称为醚碱盐,大多能溶解于水,但许多不能溶解于其它溶剂,如醇。含羰基的盐将被称为羰基碱盐,多不溶解于溶解剂,包括水和醇。碱萃取溶剂为对盐溶解度低或能将盐还原成产物酸,并对碱化合物和杂质溶解度高的溶剂,从而用来纯化盐及产物。本发明发现羰基碱盐的键较弱。因此较易将所述盐还原成产物,及将碱化合物从产物中除去,但这种盐较难形成且溶解成本较贵,而醚碱盐则相反。因此,碱化合物是将杂质自粗酸中分离,而碱萃取溶剂则将碱化合物和杂质自纯化盐及终产物中分离。Oxygen-containing salts are called base salts while those without oxygen are called regular salts. Most common salts are soluble in many solvents such as water and alcohols. Salts containing ether will be called ether base salts and most are soluble in water but many are insoluble in other solvents such as alcohols. Salts containing carbonyl groups will be referred to as carbonyl base salts and are mostly insoluble in solvents including water and alcohols. Alkaline extraction solvent is a solvent with low solubility to salt or can reduce salt to product acid, and has high solubility to alkali compound and impurities, so as to purify salt and product. The inventors found that the carbonyl base salts have weaker bonds. It is thus easier to reduce the salt to the product, and remove the base compound from the product, but such salts are more difficult to form and more expensive to dissolve, whereas the opposite is true for ether base salts. Thus, the base compound separates the impurities from the crude acid, while the base extraction solvent separates the base compound and impurities from the purified salt and final product.
更具体地说,芳香多羧酸为含有一个或多个稠环那些,其中二个或多个羧酸基可在芳环或稠环的任何位置上,并且任何氢皆可被任何其它官能团所取代。含一个芳环的多羧酸例子包括但不限于对苯二酸、间苯二酸、邻苯二酸(orthophthalic acid)、偏苯三酸、苯连三甲酸(hemimellitic acid)、均苯三酸(trimesic acid)、均苯四酸(pyromellitic acid)、和苯六酸(mellitic acid)。含二个芳环多羧酸例子包括但不限于2,6-萘二羧酸、2,7-萘二羧酸、1,7-萘二羧酸、1,8-萘二羧酸、2,3,6-萘三羧酸、1,4,5,8-萘四羧酸、和2,3,6,7-萘四羧酸。含三个芳环的多羧酸例子包括但不限于2,6-蒽二羧酸、2,7-蒽二羧酸、2,8-蒽二羧酸、2,9-蒽二羧酸、1,9-蒽二羧酸、2,3,6-蒽三羧酸、1,4,5,8-蒽四羧酸、和2,3,6,7-蒽四羧酸。芳香多羧酸还包括以任何比例混合的芳香多羧酸,例如,2,6-萘二羧酸和2,7-萘二羧酸的混合物。More specifically, aromatic polycarboxylic acids are those containing one or more fused rings, wherein two or more carboxylic acid groups may be in any position on the aromatic or fused rings, and any hydrogen may be replaced by any other functional group. replace. Examples of polycarboxylic acids containing one aromatic ring include, but are not limited to, terephthalic acid, isophthalic acid, orthophthalic acid, trimellitic acid, hemimellitic acid, trimellitic acid (trimesic acid), pyromellitic acid, and mellitic acid. Examples of polycarboxylic acids containing two aromatic rings include, but are not limited to, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 1,7-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2 , 3,6-naphthalenetricarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, and 2,3,6,7-naphthalenetetracarboxylic acid. Examples of polycarboxylic acids containing three aromatic rings include, but are not limited to, 2,6-anthracene dicarboxylic acid, 2,7-anthracene dicarboxylic acid, 2,8-anthracene dicarboxylic acid, 2,9-anthracene dicarboxylic acid, 1,9-anthracenedicarboxylic acid, 2,3,6-anthracenetricarboxylic acid, 1,4,5,8-anthracenetetracarboxylic acid, and 2,3,6,7-anthracenetetracarboxylic acid. Aromatic polycarboxylic acids also include aromatic polycarboxylic acids mixed in any proportion, for example, a mixture of 2,6-naphthalene dicarboxylic acid and 2,7-naphthalene dicarboxylic acid.
至于碱化合物,碱化合物上的氮原子可具有三价或五价。该碱化合物包括所有在任何不同位置的杂原子和碳原子的结合,以及具有一个或多个氢原子的饱和或不饱和化合物,氢原子可以被烷基、芳基、或酰基所取代,或所有这些化合物衍生出来的铵盐。如果在常态下该碱化合物呈固态或气态,则可使用其水溶液。碱化合物亦包括任何比例的混合物。无机碱可为氢氧化钠、氢氧化钾等。As for the base compound, the nitrogen atom on the base compound may have trivalent or pentavalent. The base compound includes all combinations of heteroatoms and carbon atoms in any different positions, and saturated or unsaturated compounds with one or more hydrogen atoms, which may be substituted by alkyl, aryl, or acyl groups, or all Ammonium salts derived from these compounds. An aqueous solution of the alkali compound may be used if it is in a solid or gaseous state under normal conditions. Alkaline compounds also include mixtures in any proportion. The inorganic base can be sodium hydroxide, potassium hydroxide, etc.
吗啉类化合物包括吗啉、N-甲基吗啉,N-乙基吗啉、N-丙基吗啉、N-异丙基吗啉,N-甲基吗啉氧化物、N-苯基吗啉、4-吗啉丙腈、1-吗啉-1-环己烯等。其它含醚官能团的碱化合物还包括于环中含氮与氧原子的具有3到8个原子的单杂环化合物,其包括氧杂吖辛因类(oxazocines)、氧杂吖庚因类(oxazepines)、噁嗪类、噁唑类、异噁唑类、氧二氮杂环丁二烯(oxadiazetes)、氧氮杂环丙烯类(oxazirines)等。Morpholine compounds include morpholine, N-methylmorpholine, N-ethylmorpholine, N-propylmorpholine, N-isopropylmorpholine, N-methylmorpholine oxide, N-phenyl Morpholine, 4-morpholinepropionitrile, 1-morpholine-1-cyclohexene, etc. Other basic compounds containing ether functional groups also include monoheterocyclic compounds with 3 to 8 atoms containing nitrogen and oxygen atoms in the ring, which include oxazocines, oxazepines ), oxazines, oxazoles, isoxazoles, oxadiazetes, oxazirines, etc.
酰胺化合物包括脂族的酰胺,例如二甲基甲酰胺、二甲基乙酰胺、乙酰胺、乙酰胺等。脂环族酰胺包括吡咯烷酮、N-甲基吡咯烷酮、N-乙基-吡咯烷酮、N-烷基-2-吡咯烷酮、N-巯基烷基-2-吡咯烷酮、N-巯基乙基-2-吡咯烷酮、N-烷基-2-硫代吡咯烷酮、N-甲基-2-硫代吡咯烷酮、N-羟基烷基-2-吡咯烷酮、以及N-羟乙基-2-吡咯烷酮、内酰胺等。芳族酰胺包括苯基乙酰胺、亚苯基对苯二甲酰胺(phenylene terephthalamide)等。Amide compounds include aliphatic amides such as dimethylformamide, dimethylacetamide, acetamide, acetamide, and the like. Alicyclic amides include pyrrolidone, N-methylpyrrolidone, N-ethyl-pyrrolidone, N-alkyl-2-pyrrolidone, N-mercaptoalkyl-2-pyrrolidone, N-mercaptoethyl-2-pyrrolidone, N -Alkyl-2-thiopyrrolidone, N-methyl-2-thiopyrrolidone, N-hydroxyalkyl-2-pyrrolidone, N-hydroxyethyl-2-pyrrolidone, lactam, etc. Aromatic amides include phenylacetamide, phenylene terephthalamide and the like.
脂族胺包括甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、正丙胺、二正丙胺、三正丙胺、异丙胺、二异丙胺、三异丙胺、乙二胺、N-甲基乙二胺、N,N-二甲基乙二胺、N,N′-二乙基乙二胺、N,N′-二甲基乙二胺、N,N,N′-三甲基乙二胺、N,N,N′,N′-四甲基乙二胺、1,2-二氨基丙烷、1,3-二氨基丙烷、单乙醇胺、二乙醇胺、三乙醇胺、二甲基乙酰胺、二甲基甲酰胺等。脂环族胺包括甲基环己胺、N-甲基环己胺、N,N-二甲基环己胺、乙基环己胺、N-乙基环己胺、N,N-二乙基环己胺、异丙基环己胺、N-异丙基环己胺、N,N-二异丙基环己胺、亚乙基亚胺、亚丙基亚胺等。芳香族胺包括N,N-二甲基苯胺、N,N-二乙基苯胺、N,N-二丁基苯胺、N,N-二甲基甲苯胺、N,N-二乙基甲苯胺等。杂环胺包括吡啶、哌啶、N-甲基哌啶、N-甲基吡咯烷等。Aliphatic amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-propylamine, isopropylamine, diisopropylamine, triisopropylamine, ethylenediamine , N-methylethylenediamine, N,N-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethylethylenediamine, N,N,N' - Trimethylethylenediamine, N, N, N', N'-tetramethylethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, monoethanolamine, diethanolamine, triethanolamine, Dimethylacetamide, dimethylformamide, etc. Alicyclic amines include methylcyclohexylamine, N-methylcyclohexylamine, N,N-dimethylcyclohexylamine, ethylcyclohexylamine, N-ethylcyclohexylamine, N,N-diethylcyclohexylamine Cyclohexylamine, isopropylcyclohexylamine, N-isopropylcyclohexylamine, N,N-diisopropylcyclohexylamine, ethyleneimine, propyleneimine, etc. Aromatic amines include N,N-dimethylaniline, N,N-diethylaniline, N,N-dibutylaniline, N,N-dimethyltoluidine, N,N-diethyltoluidine wait. Heterocyclic amines include pyridine, piperidine, N-methylpiperidine, N-methylpyrrolidine, and the like.
较常用的碱化合物为吗啉、NMP、三甲胺、三乙胺(triethyalamine)或三乙醇胺。The more commonly used base compounds are morpholine, NMP, trimethylamine, triethylamine or triethanolamine.
醇类包括脂族一元醇,诸如甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、仲丁醇、叔丁醇、正戊醇、异戊醇、仲戊醇、叔戊醇、新戊醇、己醇、庚醇、辛醇、壬醇、和癸醇;脂环族一元醇如环戊醇和环己醇等;脂族直链二元醇如乙二醇、二甘醇、丙二醇、丁二醇、以及戊二醇;脂环族二元醇如1,2-环戊二醇、1,3-环戊二醇、1,2-环己二醇、1,3-环己二醇、1,4-环己二醇;和脂族多元醇如丙三醇和季戊四醇等。优选为具有3个碳原子或3个碳原子以下的脂族一元醇或4个碳原子或4个碳原子以下的脂族二元醇。醇可以是任何比例的上述各种醇的混合物。优选的醇为甲醇、乙醇、或亚烷基二醇。Alcohols include aliphatic monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-pentanol, isoamyl alcohol, sec-pentanol, t- Pentanol, neopentyl alcohol, hexanol, heptanol, octanol, nonanol, and decyl alcohol; alicyclic monoalcohols such as cyclopentanol and cyclohexanol; aliphatic linear diols such as ethylene glycol, diol Ethylene glycol, propylene glycol, butanediol, and pentanediol; alicyclic dihydric alcohols such as 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1, 3-cyclohexanediol, 1,4-cyclohexanediol; and aliphatic polyhydric alcohols such as glycerol, pentaerythritol, and the like. Preferred are aliphatic monohydric alcohols having 3 carbon atoms or less or aliphatic dihydric alcohols having 4 carbon atoms or less. The alcohol may be a mixture of the various alcohols mentioned above in any proportion. Preferred alcohols are methanol, ethanol, or alkylene glycols.
醚包括二甲醚、二戊醚、二乙醚、异丙醚、正丁醚、正己醚、氯代二甲醚、苯甲醚、二苯甲醚、环氧乙烷、二噁烷、三噁烷、呋喃、四氢呋喃、甲基-四氢呋喃、四氢吡喃、甲基-四氢吡喃等。酮包括丙酮、甲基乙基酮、甲基正丙基酮、甲基正丁基酮、甲基戊基酮、甲基丙酮、2-甲基环戊酮、环戊酮、环己酮等其它。酯包括乙二醇甲基醚、二乙二醇甲基醚、乙二醇乙基醚、二乙二醇乙基醚、乙二醇丙基醚、乙二醇丁基醚、乙二醇苯甲醚、二甘醇、三甘醇、甲酸烷基酯、乙酸烷基酯、丙酸烷基酯、草酸酯、乳酸烷基酯、碳酸酯、苯甲酸酯等。Ethers include dimethyl ether, dipentyl ether, diethyl ether, isopropyl ether, n-butyl ether, n-hexyl ether, chlorodimethyl ether, anisole, diphenyl ether, ethylene oxide, dioxane, trioxane alkanes, furan, tetrahydrofuran, methyl-tetrahydrofuran, tetrahydropyran, methyl-tetrahydropyran, etc. Ketones include acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl amyl ketone, methyl acetone, 2-methylcyclopentanone, cyclopentanone, cyclohexanone, etc. other. Esters include ethylene glycol methyl ether, diethylene glycol methyl ether, ethylene glycol ethyl ether, diethylene glycol ethyl ether, ethylene glycol propyl ether, ethylene glycol butyl ether, ethylene glycol benzene Methyl ether, diethylene glycol, triethylene glycol, alkyl formate, alkyl acetate, alkyl propionate, oxalate, alkyl lactate, carbonate, benzoate, etc.
除去杂质和过量碱化合物Removal of impurities and excess alkali compounds
此步骤通过前处理、沉淀、分离、和洗涤过滤饼来除去杂质。目前已知技术已教示,可通过溶液前处理及冷却结晶来除去杂质。此外,本发明将提供新方法以除去洗涤后过滤饼内的杂质及过量碱化合物。This step removes impurities through pretreatment, precipitation, separation, and washing of the filter cake. Currently known techniques have taught that impurities can be removed by solution pretreatment and cooling crystallization. In addition, the present invention will provide new methods to remove impurities and excess alkali compounds in the washed filter cake.
溶液前处理的目的是除去容易自溶液分离的杂质,例如以活性碳吸附着色剂或添加剂、过滤不能溶解的杂质、流出或刮掉漂流的杂质等。分离此等杂质的方法已广为人知,本发明将不局限于任一特定的方法。如果粗酸内无此类的杂质,则不需要溶液前处理。The purpose of solution pretreatment is to remove impurities that are easily separated from the solution, such as adsorbing colorants or additives with activated carbon, filtering insoluble impurities, flowing out or scraping off drifting impurities, etc. Methods for separating such impurities are well known, and the present invention is not intended to be limited to any particular method. If there are no such impurities in the crude acid, no solution pretreatment is required.
结晶的目的是除去难分离且物性及化性与产物均很接近的杂质。于一定的温度和溶液组成下,杂质盐的溶解度不是较产物盐低就是高。因此通过溶液温度和/或组成的变化,具有低溶解度的杂质将先沉淀而与其它物质分离。沉淀产物盐则能自母液中与那些高溶解度的杂质分离。The purpose of crystallization is to remove impurities that are difficult to separate and whose physical and chemical properties are very close to those of the product. Under a certain temperature and solution composition, the solubility of the impurity salt is either lower or higher than that of the product salt. Thus by changing the temperature and/or composition of the solution, impurities with low solubility will precipitate first and be separated from the other substances. Precipitated product salts can then be separated from those highly soluble impurities in the mother liquor.
目前已知技术使用冷却方式结晶以分离杂质,而盐类是以一般的方法来分离,如过滤或离心。因为需要很长的驻留时间使母液中的晶体生长,所以需要数个很大的结晶器。另外的方式是控制溶液组成并冷却,以减少所需的驻留时间。当粗酸完全溶解后且在结晶之前,通过一般的方法,如蒸发或蒸馏,来除去预定量的溶剂,以使得冷却后的浆液仍有足够量的母液以分离杂质。此法虽能减少但仍需相当长的结晶驻留时间。此两种方式皆尝试保持尽量多的杂质于母液中以同纯化盐分离。Currently known technology uses cooling to separate impurities by crystallization, while salts are separated by common methods, such as filtration or centrifugation. Several very large crystallizers are required because of the long residence time required for crystal growth in the mother liquor. Another approach is to control the solution composition and cool it down to reduce the required residence time. After the crude acid is completely dissolved and before crystallization, a predetermined amount of solvent is removed by common methods, such as evaporation or distillation, so that the cooled slurry still has a sufficient amount of mother liquor to separate impurities. This method can reduce but still require a relatively long crystallization residence time. Both of these approaches attempt to keep as many impurities as possible in the mother liquor to separate from the purified salt.
目前已知技术通常使用碱化合物来洗涤过滤盐,因为溶解剂会立刻将盐溶解掉。由于盐的粘度高,所以洗涤效率很低。除此之外,此法将使盐含有更多的碱化合物,因而增加终产物中碱化合物的含量。其它已知技术则教示使用脂族烃或芳族烃类做洗涤溶剂。此法只是简单地以洗涤溶剂来取代晶体内的溶剂,并无任何萃取的能力,且其残留物可能污染终产物。Current known techniques generally use alkaline compounds to wash filter salts, since the dissolving agent will immediately dissolve the salts. Due to the high viscosity of the salt, the washing efficiency is very low. In addition, this method will make the salt contain more base compounds, thereby increasing the content of base compounds in the final product. Other known techniques teach the use of aliphatic or aromatic hydrocarbons as scrubbing solvents. This method simply replaces the solvent in the crystal with the washing solvent, without any extraction ability, and its residue may contaminate the final product.
本发明使用碱萃取溶剂自盐中除去过量的碱化合物及杂质。此新的方法包括以碱萃取溶剂来洗涤和沥滤、于碱萃取溶剂存在下结晶盐、于碱萃取溶剂存在下沉淀产物酸、盐直接萃取,再盐化结晶,及碱盐取代。The present invention uses a base extraction solvent to remove excess base compounds and impurities from the salt. The new method includes washing and leaching with a base extraction solvent, crystallization of the salt in the presence of a base extraction solvent, precipitation of the product acid in the presence of a base extraction solvent, direct extraction of the salt, resalination crystallization, and base salt substitution.
大部份碱萃取溶剂不会将盐转化回酸,但若该溶剂用以洗涤羰基碱盐则会转换。但若将该转化盐的碱萃取溶剂与碱化合物混合,则能减少盐转化。例如,以50%甲醇与NMP混合溶剂来洗涤过滤盐,则能大大地减少盐的转化。本发明希望尽量保持洗涤饼于盐的形态。Most base extraction solvents will not convert the salt back to the acid, but will if the solvent is used to wash the carbonyl base salt. However, if the base extraction solvent for converting the salt is mixed with a base compound, the conversion of the salt can be reduced. For example, washing filter salt with 50% methanol and NMP mixed solvent can greatly reduce the conversion of salt. The present invention wishes to keep the washing cake in the form of salt as much as possible.
更具体地说,碱萃取溶剂可以是水、过氧化氢、醇、醚、酚、酮、酯等。先前已经定义醇、醚、酮、和酯。碱萃取溶剂可单独使用,或为二种或二种以上的溶剂以任何比例混合的混合物,且该溶剂能以液态或汽态形式使用。优选的碱萃取溶剂为水、甲醇、乙醇、亚烷基二醇、丙酮、四氢呋喃、或四氢吡喃。虽然此步骤的结晶为纯化的盐,因此排除溶解剂为碱萃取溶剂。但下一步骤的结晶是产物酸或其衍生物,则溶解剂可包括所用的碱萃取溶剂。More specifically, the base extraction solvent may be water, hydrogen peroxide, alcohols, ethers, phenols, ketones, esters, and the like. Alcohols, ethers, ketones, and esters have been defined previously. Alkaline extraction solvent can be used alone, or a mixture of two or more solvents mixed in any proportion, and the solvent can be used in liquid or vapor form. Preferred base extraction solvents are water, methanol, ethanol, alkylene glycol, acetone, tetrahydrofuran, or tetrahydropyran. Although the crystallization in this step is a purified salt, so the dissolving solvent is excluded as the base extraction solvent. But the crystallization of the next step is the product acid or its derivatives, then the dissolving agent may include the base extraction solvent used.
大多数杂质盐的颜色为非白色,而过量的碱化合物皆有氨的气味。以碱萃取溶剂洗涤或沥滤的过滤饼,其颜色和气味较之于通过其它洗涤溶剂,如碱化合物或碳氢化合物洗涤过的盐均有显著的改善。依定义,沥滤并不同于洗涤过滤饼(Perry′s的化工手册,第6版,19-48)。洗涤与沥滤的方法已广为人知,本发明并不局限于使用任一特定方法。Most impurity salts are non-white in color, and excess alkali compounds have an ammonia odor. Filter cakes washed or leached with alkaline extraction solvents have significantly improved color and odor compared to salts washed with other washing solvents such as alkaline compounds or hydrocarbons. By definition, leaching is not the same as washing the filter cake (Perry's Handbook of Chemical Engineering, 6th Edition, 19-48). Methods of washing and leaching are well known, and the present invention is not limited to the use of any particular method.
粗酸完全溶解后,还可加碱萃取溶剂至溶液中。结晶过程中,碱萃取溶剂的存在可减少包含于结晶内的碱化合物,同时也能从盐中萃取杂质及碱。另外,碱萃取溶剂存在于溶液中亦可能改变结晶的机制,诸如形状、大小、和速率。例如,加入甲醇、丙酮、或四氢呋喃会改变形状及增加NMP-PTA盐的结晶大小。After the crude acid is completely dissolved, an alkaline extraction solvent can also be added to the solution. During the crystallization process, the presence of the base extraction solvent can reduce the base compound contained in the crystal, and also extract impurities and bases from the salt. Additionally, the presence of a base extractive solvent in solution may also alter crystallization mechanisms such as shape, size, and rate. For example, the addition of methanol, acetone, or tetrahydrofuran changes the shape and increases the crystal size of the NMP-PTA salt.
在碱萃取溶剂存在的溶液中,加入酸取代溶剂可沉淀纯产物酸。而碱萃取溶剂的存在能从沉淀物中萃取杂质及碱化合物。本发明发现,对羰基碱盐而言,水可以是碱萃取溶剂但也可以是酸取代溶剂,因它能从饱和溶液里直接沉淀出产物酸,但其它碱萃取溶剂,如甲醇,在某些溶液组成范围内可沉淀盐。然而,4-CBA和NMP盐在水中溶解度比甲醇约低10倍。与以洗涤转化盐的现有技术相比较,在碱萃取溶剂存在的溶液中沉淀产物酸,通过控制温度、搅动、组成、和驻留时间可以较好控制沉淀产物的盐转化及结晶大小。已知技术将酸取代溶剂直接加入溶液以沉淀产物,而未使用碱萃取溶剂。因大部分杂质将随产物一起沉淀,而降低产物纯度。In the presence of a base extraction solvent, the pure product acid can be precipitated by adding an acid substitution solvent. The presence of the base extraction solvent can extract impurities and base compounds from the precipitate. The present invention finds that, for carbonyl base salts, water can be a base extraction solvent but also an acid substitution solvent, because it can directly precipitate the product acid from a saturated solution, but other base extraction solvents, such as methanol, are in some Salts can be precipitated within the range of solution composition. However, 4-CBA and NMP salts are about 10 times less soluble in water than methanol. Compared with the prior art of salt conversion by washing, the product acid is precipitated in a solution in the presence of an alkali extraction solvent, and the salt conversion and crystal size of the precipitated product can be better controlled by controlling temperature, agitation, composition, and residence time. Known techniques add an acid instead of a solvent directly into solution to precipitate the product without using a base to extract the solvent. Because most of the impurities will precipitate together with the product, reducing the product purity.
若将大部份或全部的溶剂通过蒸发或急骤蒸发自溶液中除去,则得到固态盐或淤浆。因杂质于正常操作条件下不会蒸发,其全将留于盐中。目前已知技术皆避免此种状况,而于溶液中结晶以将杂质留于分离的母液中。然而,本发明很意外及惊讶地发现碱萃取溶剂能从此种盐中直接萃取杂质和过量的碱化合物。如此则可免除结晶驻留时间的要求。其产物回收效率则取决于盐在碱萃取溶剂中的溶解度,以及溶解剂留于淤浆中的量。与现有技术的结晶不同,这种直接从盐萃取的结晶并不需要冷却溶液来结晶。加入碱萃取溶剂前,可将淤浆里的母液分离或不分离。萃取后的溶液是以一般分离的方法与盐分离。If most or all of the solvent is removed from the solution by evaporation or flash evaporation, a solid salt or slurry is obtained. Since the impurities do not evaporate under normal operating conditions, they will all remain in the salt. Currently known techniques all avoid this situation, and crystallize in solution to leave impurities in the separated mother liquor. However, the present inventors have surprisingly and surprisingly discovered that base extraction solvents are capable of directly extracting impurities and excess base compounds from such salts. This eliminates the crystallization residence time requirement. The product recovery efficiency depends on the solubility of the salt in the base extraction solvent and the amount of solvent left in the slurry. Unlike prior art crystallization, this direct extraction from salt does not require cooling of the solution to crystallize. Before adding the alkaline extraction solvent, the mother liquor in the slurry can be separated or not. The extracted solution is separated from the salt by the usual separation method.
若将沉淀物再溶解于溶解剂或碱化合物,并再结晶一次或多次,将可达到以目前标准HPLC所无法测出杂质的程度,或可将含更高杂质的粗酸纯化至合乎聚合等级的规格。因此,再盐化结晶包括从粗酸溶解液中结晶盐;分离,洗涤,和再溶解盐;从溶液中再结晶盐;以一般方法分离及洗涤盐。优选,在结晶前将盐完全溶解。若洗涤饼是在电磁波下结晶或以会转化盐为酸的碱萃取溶剂来洗涤,则可能含有产物酸。洗涤饼里的酸可从盐分离,或不分离,或以碱化合物再溶解。前面所提讨论的任一结晶方法皆可用于结晶及沉淀,但优选以盐直接萃取来结晶及再结晶的方法。若于碱萃取溶剂下沉淀产物,则优选用于最后的结晶步骤。再结晶的次数并无特殊的限制,优选1-2次。If the precipitate is redissolved in a solvent or alkali compound, and recrystallized one or more times, it will be possible to reach the level of impurities that cannot be detected by the current standard HPLC, or to purify the crude acid containing higher impurities to meet the requirements of polymerization. Grade Specifications. Thus, resalting crystallization includes crystallization of salt from crude acid solution; separation, washing, and redissolution of salt; recrystallization of salt from solution; separation and washing of salt in the usual way. Preferably, the salt is completely dissolved before crystallization. If the wash cake is crystallized under electromagnetic waves or washed with a base extraction solvent that converts the salt to an acid, it may contain the product acid. The acid in the wash cake may or may not be separated from the salt, or redissolved with an alkaline compound. Any of the crystallization methods discussed above can be used for crystallization and precipitation, but the method of crystallization and recrystallization by direct extraction of salt is preferred. Precipitation of the product under a base extraction solvent is preferred for the final crystallization step. The number of times of recrystallization is not particularly limited, preferably 1-2 times.
上述方法可使用不同种类的碱萃取溶剂于不同步骤以除去杂质。碱萃取溶剂用量可为每摩尔羧基官能团的0.1-100摩尔,优选1-10摩尔。甲醇或乙醇是醚碱盐的优选碱萃取溶剂,而亚烷基二醇、丙酮、四氢呋喃、或四氢吡喃则是羰基碱盐的优选碱萃取溶剂。The above method can use different types of alkaline extraction solvents in different steps to remove impurities. The amount of base extraction solvent can be 0.1-100 moles, preferably 1-10 moles, per mole of carboxyl functional groups. Methanol or ethanol are preferred base extraction solvents for ether base salts, while alkylene glycols, acetone, tetrahydrofuran, or tetrahydropyran are preferred base extraction solvents for carbonyl base salts.
盐碱取代是通过另一种碱来取代盐中的碱以提高产物回收率的方法。如前所述,羰基碱盐较难形成且溶解成本较高,但较易回收且回收成本较低。例如,制造NMP-PTA盐较制造吗啉-PTA盐昂贵数倍,但它能被较便宜的水来回收。本发明发现盐的碱化合物可被另一高沸点的碱化合物所取代,所以,醚碱盐或常规盐可被转换成羰基碱盐。因此,使得能以较经济的碱化合物来制造纯化盐,然后将其转换成另一种较易回收且回收成本较低的盐。将被转换的盐与取代碱混合,混合亦可加或不加溶解剂。然后以传统加热或电磁波方式,使用一般溶液分离的方法,如蒸发或蒸馏,将被取代的碱化合物和/或溶解剂从溶液中分离出。该被取代的盐,可于碱萃取溶剂存在或不存在的情况下,冷却沉淀出来,或由盐直接萃取而得。溶解剂,例如水,可用以溶解未转化的盐,然后回收,或于一系列的步骤中继续转换。盐碱取代亦包括在另一碱化合物存在的情况下,改变盐的结晶,如形状或大小。取代碱的用量可为每摩尔羧基官能团的0.1-100摩尔,优选以1-10摩尔。Salt-base substitution is a method in which a base in a salt is replaced by another base to increase product recovery. As mentioned earlier, carbonyl base salts are more difficult to form and more expensive to dissolve, but easier and less expensive to recover. For example, making NMP-PTA salt is several times more expensive than making morpholine-PTA salt, but it can be recovered with less expensive water. The present invention finds that the base compound of a salt can be replaced by another base compound with a high boiling point, so that an ether base salt or a conventional salt can be converted into a carbonyl base salt. Thus, it enables the manufacture of a purified salt from a more economical base compound, which is then converted into another salt which is easier and less expensive to recover. The converted salt is mixed with the substituting base, with or without the addition of a dissolving agent. The substituted base compound and/or dissolving agent are then separated from the solution by conventional heating or electromagnetic wave methods, using common solution separation methods, such as evaporation or distillation. The substituted salt can be precipitated by cooling in the presence or absence of a base extraction solvent, or can be obtained by direct extraction from the salt. A solvent, such as water, can be used to dissolve the unconverted salt, which can then be recovered, or the conversion can be continued in a series of steps. Salt-base substitution also includes changing the crystallization of a salt, such as shape or size, in the presence of another base compound. The amount of the substituting base can be 0.1-100 moles, preferably 1-10 moles, per mole of carboxyl functional groups.
除了用不会转化盐为酸的碱萃取溶剂来洗涤过滤饼外,也可用会转化盐为酸的碱萃取溶剂或用酸取代溶剂来洗涤过滤饼。此可视为合并洗涤与下一步将讨论酸取代法的步骤,它也是Lee所使用的方法。然而,洗涤在盐的转化及产物性质上只有很小的控制性。本发明认为较好的方法是在过滤前将纯化的产物酸沉淀出来,或沉淀分离出纯化盐,然后以下一步所讨论的方法将盐转化为产物酸,因为二者对盐的转化、自产物中萃取杂质及碱化合物、及产物颗粒的大小、皆具有较好的控制性。对某些碱盐来说,盐颗粒的大小会影响产物颗粒的大小,而盐颗粒的大小可通过喷雾干燥、调节组成、驻留时间、温度、搅动、或其它来控制。In addition to washing the filter cake with a base extraction solvent that does not convert the salt to an acid, the filter cake can also be washed with a base extraction solvent that converts the salt to an acid or with an acid replacement solvent. This can be viewed as a combined wash with the acid substitution method discussed next, which is also the method used by Lee. However, washing has only little control over salt conversion and product properties. The present invention thinks that the better method is to precipitate the purified product acid before filtration, or to separate the purified salt by precipitation, and then convert the salt to the product acid in the method discussed in the next step, because both of the conversion of the salt, from the product The extraction of impurities and alkali compounds, as well as the size of product particles, all have good controllability. For certain base salts, the size of the salt particles can affect the size of the product particles, and the size of the salt particles can be controlled by spray drying, adjusting composition, residence time, temperature, agitation, or otherwise.
因此,除去杂质的方法包括溶液前处理、冷却结晶、溶液组成控制及冷却结晶、于碱萃取溶剂存在下沉淀盐、于碱萃取溶剂存在下沉淀产物、盐直接萃取、再盐化结晶、碱盐取代、用碱萃取溶剂洗涤、用碱萃取溶剂沥滤、或上述方法的所有可能组合。除了自粗酸或其衍生物除去杂质之外,此步骤亦将过量碱化合物从过滤饼中除去以降低下述步骤所制造的终产物中的碱化合物残留量。Therefore, the methods for removing impurities include solution pretreatment, cooling crystallization, solution composition control and cooling crystallization, precipitation of salts in the presence of alkali extraction solvents, precipitation of products in the presence of alkali extraction solvents, direct extraction of salts, resalination crystallization, alkali salts Substitution, washing with a base extraction solvent, leaching with a base extraction solvent, or all possible combinations of the above. In addition to removing impurities from the crude acid or its derivatives, this step also removes excess base compounds from the filter cake to reduce residual base compounds in the final product produced in the following steps.
制造纯化产物同时除去残留碱化合物 Manufacture of purified products while removing residual base compounds
此步骤的目的是由盐回收产物,若过滤饼中含有够量的盐,和/或于制造终产物前除去残留碱化合物。由纯化盐回收产物的方法包括酸取代、热解、或电解。优选于萃取溶剂存在下回收产物。因溶液组成、温度、搅拌、和驻留时间均会影响产物颗粒的形状和大小,这些因素应配合碱与杂质的萃取以达最佳的状况。The purpose of this step is to recover the product from the salt, if the filter cake contains a sufficient amount of salt, and/or to remove residual alkali compounds before making the final product. Methods for recovering product from purified salts include acid displacement, pyrolysis, or electrolysis. The product is preferably recovered in the presence of an extractive solvent. Because the solution composition, temperature, stirring, and residence time will affect the shape and size of the product particles, these factors should cooperate with the extraction of alkali and impurities to achieve the best condition.
酸取代Acid substitution
为将盐转化为产物,加入酸取代溶剂以取代及沉淀盐中的产物酸。盐可先与碱萃取溶剂混合。较好的方法是在加入酸取代溶剂前完全溶解醚碱盐或常规盐于溶解剂中,而优选的溶解剂为水、甲醇、乙醇、亚烷基二醇、或其混合物。羰基碱盐不溶于多数溶剂,而水为该盐优选的酸取代溶剂。较好的方法是在碱萃取溶剂如甲醇、乙醇、丙酮、四氢呋喃、或四氢吡喃的存在下加入水。酸取代可于电磁波下操作。在碱萃取溶剂存在下的酸取代可降低回收产物中的残留碱化合物和杂质的包含量。To convert the salt to the product, an acid displacement solvent is added to displace and precipitate the product acid from the salt. The salt can first be mixed with the base extraction solvent. A better method is to completely dissolve the ether alkali salt or conventional salt in a dissolving agent before adding the acid to replace the solvent, and the preferred dissolving agent is water, methanol, ethanol, alkylene glycol, or a mixture thereof. Carbonyl base salts are insoluble in most solvents and water is the preferred acid substitution solvent for the salts. A preferred method is to add water in the presence of a base extraction solvent such as methanol, ethanol, acetone, tetrahydrofuran, or tetrahydropyran. Acid substitution can be performed under electromagnetic waves. Acid substitution in the presence of a base extraction solvent reduces the inclusion of residual base compounds and impurities in the recovered product.
酸取代溶剂可以是脂族羧酸、无机酸、水等。脂族羧酸可以是甲酸、醋酸、丙酸、丁酸、羟基醋酸、乳酸、苹果酸、酒石酸、内消旋酒石酸、柠檬酸、一氯醋酸、一溴醋酸酸、一硝基酸酸、三氟醋酸、和三氯醋酸;而无机酸可以是硝酸、盐酸、溴化氢、碘化氢、硫酸、磷酸、和高氯酸。如前所讨论,水或碱萃取溶剂可以是羰基碱盐的酸取代溶剂。酸取代溶剂可以是上述的酸以任何比例的混合物,或与溶解剂或碱萃取溶剂以任何比例的混合物,而该酸的比例大于1%重量。醚碱盐或常规盐的优选酸取代溶剂为脂族羧酸,而最优选醋酸。羰基碱盐则以水为最佳。酸取代溶剂的用量为芳香多羧酸内每摩尔羧酸官能团的0.5-100摩尔。通常的用量是比羧酸官能团的摩尔数稍多一点。热解Acid-substituted solvents may be aliphatic carboxylic acids, mineral acids, water, and the like. The aliphatic carboxylic acid can be formic acid, acetic acid, propionic acid, butyric acid, hydroxyacetic acid, lactic acid, malic acid, tartaric acid, meso-tartaric acid, citric acid, monochloroacetic acid, monobromoacetic acid, mononitro acid, tris Fluoroacetic acid, and trichloroacetic acid; while the inorganic acid may be nitric acid, hydrochloric acid, hydrogen bromide, hydrogen iodide, sulfuric acid, phosphoric acid, and perchloric acid. As previously discussed, water or base extraction solvents can be acid substitution solvents for carbonyl base salts. The acid-substituted solvent can be a mixture of the above-mentioned acids in any proportion, or a mixture with a dissolving agent or a base extraction solvent in any proportion, and the proportion of the acid is greater than 1% by weight. Preferred acid substitution solvents for ether base or conventional salts are aliphatic carboxylic acids, with acetic acid being most preferred. The carbonyl base salt is preferably water. The acid-substituted solvent is used in an amount of 0.5-100 moles per mole of carboxylic acid functional groups in the aromatic polycarboxylic acid. The usual amount is slightly more than the number of moles of carboxylic acid functional groups. Pyrolysis
将热加到纯化盐,于50-350℃的温度范围,可以热分解盐中的碱化合物。盐亦可与具有理想沸点的碱萃取溶剂混合,该沸点可以压力调控。优选的碱萃取化合物为水、蒸气、或醇。热可以通过热转移方式施加,诸如热传导方式,或直接与热介质接触。Adding heat to the purified salt can thermally decompose the alkali compound in the salt at a temperature range of 50-350°C. Salts can also be mixed with base extraction solvents having the desired boiling point which can be pressure controlled. Preferred base extraction compounds are water, steam, or alcohols. Heat may be applied by thermal transfer means, such as heat conduction, or by direct contact with a heat medium.
除了上述传统的加热方法外,盐亦可在电磁波下加热分解。优选的方法是将盐与碱萃取溶剂,如水、蒸气、或醇等,以任何比例混合,而溶剂可溶解盐或酸取代盐,且可吸收电磁波以协助盐的分解。电磁波能热搅动这些分子并将它们从无法吸收电磁波的产物结晶分离,溶液因而被热解成已转化的产物与未转化盐的混合物。若将溶剂浓度和温度维持于一适当的范围,溶液则能持续地被电磁波分解。也可在一续列的步骤中加碱萃取溶剂至该混合物中使之继续分解。未转化的盐还可溶于溶解剂中而与产物分离,且滤液可循环使用,或以一连串步骤通过电磁波来继续热解滤液。因此,此法能以分批或连续的方式使用。与传统方法比较,电磁波热解使用较少的能量及处理时间。例如,与需要2-12小时驻留时间的传统方法比较,此方法只需0.04-0.6小时。另外,由内而外的热搅动方式将可减少包含碱化合物于晶体中的机会。In addition to the traditional heating methods mentioned above, salt can also be heated and decomposed under electromagnetic waves. The preferred method is to mix the salt with a base extraction solvent, such as water, steam, or alcohol, in any proportion, and the solvent can dissolve the salt or acid-substituted salt, and can absorb electromagnetic waves to assist the decomposition of the salt. Electromagnetic waves can thermally stir these molecules and separate them from crystallized products that cannot absorb electromagnetic waves, and the solution is thus pyrolyzed into a mixture of converted products and unconverted salts. If the solvent concentration and temperature are maintained in an appropriate range, the solution can be continuously decomposed by electromagnetic waves. It is also possible to add a base extraction solvent to the mixture in a subsequent step to continue the decomposition. The unconverted salt can also be dissolved in a dissolving solvent to separate from the product, and the filtrate can be recycled, or the filtrate can be further pyrolyzed by electromagnetic waves in a series of steps. Therefore, this method can be used in batch or continuous mode. Compared with traditional methods, electromagnetic wave pyrolysis uses less energy and processing time. For example, this method requires only 0.04-0.6 hours compared to conventional methods that require 2-12 hours of dwell time. In addition, the thermal agitation from the inside out will reduce the chance of including alkali compounds in the crystals.
分解的碱化合物能以一般常用方法自产物中分离,如蒸发、真空吸取、蒸馏、吸收剂吸收、或以惰性气体、蒸气、或溶解剂运离等。The decomposed base compound can be separated from the product by commonly used methods, such as evaporation, vacuum absorption, distillation, absorption by absorbent, or transport away with inert gas, vapor, or solvent.
对羰基碱盐而言,较好的方法是使盐直接与蒸气接触或以水或以蒸汽为碱萃取溶剂,通过电磁波作用能同时热解又酸取代盐。于此种情况下,产物颗粒大小将由较容易控制的盐颗粒大小来决定。此外,以亚烷基二醇为溶剂来热解残留盐及蒸发溶剂则能避免使用过滤、干燥及气体搬运等步骤程序,此将于后面讨论之。For carbonyl alkali salts, a better method is to make the salt directly contact with steam or use water or steam as the base extraction solvent, and then pyrolyze and replace the salt with acid at the same time through the action of electromagnetic waves. In this case, the product particle size will be determined by the more easily controlled salt particle size. In addition, using alkylene glycol as a solvent to pyrolyze the residual salt and evaporate the solvent can avoid the use of filtration, drying and gas transfer procedures, which will be discussed later.
电解electrolysis
通电流于由纯化盐溶解于碱萃取溶剂中而形成的溶液中,阴极将吸引碱阳离子而阳极将吸引酸阴离子。如果所施电流够大,产物酸会在阳极周围沉淀。另外的方法是将酸取代溶剂或热加在此一电极附近以沉淀该产物酸,同时以电场将碱阳离子分离以减少产物酸包含于碱化合物中的机会。以目前常用方法来设计电极以减少围绕于其它电极的离子的干扰。此电解法类似于目前已熟知的金属元素电解制造法,但本发明并不局限于任一特定方法。所使用的电流量并无特别的限制,其取决于理想的产率及分离离子的电场。使用不会与离子反应并且不会溶入溶液中而污染产物的材料,或能将离子沉积于电极上的材料作为电极。优选的碱萃取溶剂为甲醇、乙醇、亚烷基二醇、或这些溶剂的混合物。By passing an electric current through the solution formed by dissolving the purified salt in the base extraction solvent, the cathode will attract base cations and the anode will attract acid anions. If the applied current is high enough, the product acid will precipitate around the anode. Alternative methods are to replace the solvent with acid or apply heat near this electrode to precipitate the product acid, while using an electric field to separate the base cations to reduce the chance of the product acid being contained in the base compound. Electrodes are designed in the usual way to reduce the interference of ions surrounding other electrodes. This electrolytic method is similar to the well-known electrolytic production methods of metal elements, but the present invention is not limited to any specific method. The amount of current used is not particularly limited and depends on the desired yield and the electric field to separate the ions. Materials that do not react with ions and do not dissolve into solution to contaminate the product, or that deposit ions on the electrodes, are used as electrodes. Preferred base extraction solvents are methanol, ethanol, alkylene glycols, or mixtures of these solvents.
回收产物可使用目前常用的方法分离,其过滤饼可使用碱萃取溶剂、酸取代溶剂,或以任何混合比例的溶剂混合物来洗涤。有些回收产物若使用下列步骤则可不需分离而直接用于聚合。The recovered product can be separated by the commonly used methods at present, and its filter cake can be washed with an alkali extraction solvent, an acid replacement solvent, or a solvent mixture in any mixing ratio. Some recovered products can be used directly for polymerization without isolation if the following procedure is used.
目前已知技术只以洗涤方式除去残留碱化合物或使盐转化为产物,其不足以将终产物中的碱化合物除至理想程度。这些终产物含相当高残余碱化合物的原因为已洗涤的饼中仍含有太多的碱化合物、产物回收时未自结晶中萃取残留碱化合物、将含有高碱化合物浓度的溶液直接热解、将碱化合物回流至热解溶液中、或以洗涤溶液做为酸取代溶剂用于转化盐而残留许多未转化盐于产物中等。Currently known techniques only remove residual alkali compounds or convert salts into products by washing, which is not enough to remove alkali compounds in the final product to an ideal level. The reasons for these final products containing relatively high residual base compounds are that the washed cake still contains too much base compound, the residual base compound is not extracted from the crystallization when the product is recovered, the solution containing a high base compound concentration is directly pyrolyzed, the The base compound is refluxed into the pyrolysis solution, or the washing solution is used as an acid replacement solvent to convert the salt, leaving many unconverted salts in the product, etc.
另一方面,本发明将尽可能除去盐中的多余碱化合物,并自回收产物中萃取残留碱化合物以减少残留量。然而,因为碱化合物是盐的一个成分,所以于回收产物时无法完全避免接触碱。因此,这些只能减少,但无法自回收产物中完全除去残留碱化合物。前面所述的一些除碱步骤可以不做,但将增加残留碱化合物的量。因为残留碱化合物很难除去,所以应尽可能于每一步骤中降低碱化合物的含量。On the other hand, the present invention will remove excess alkali compounds in the salt as much as possible, and extract residual alkali compounds from recovered products to reduce the residual amount. However, since the base compound is a component of the salt, contact with the base cannot be completely avoided when recovering the product. Therefore, these can only be reduced, but not completely removed from the recovered product. Some of the alkali removal steps mentioned above can be omitted, but the amount of residual alkali compounds will be increased. Since the residual alkali compound is difficult to remove, the content of the alkali compound should be reduced as much as possible in each step.
以下将提供本发明去除回收产物里残留碱化合物的新方法,使其能适用于制造聚酯。该新方法包括沥滤、汽提、以电磁波热搅动、蒸发热解、或上述程序的组合。The following will provide a new method of the present invention for removing residual alkali compounds in the recovered product, so that it can be applied to the manufacture of polyester. The new method includes leaching, stripping, thermal agitation with electromagnetic waves, evaporative pyrolysis, or a combination of the above procedures.
用碱萃取溶剂在预定量及时间内沥滤回收产物,沥滤次数可一次或多次。沥滤或汽提过滤饼内残留溶剂的方法已广为人知,而本发明并不局限于任一特定方法。但沥滤或汽提仅能除去那些被吸附或截留的部分碱化合物,而无法除去那些包含于晶体内的碱化合物。The product is recovered by leaching with an alkali extraction solvent within a predetermined amount and time, and the leaching times can be one or more times. Methods of leaching or stripping residual solvent from filter cakes are well known, and the present invention is not limited to any particular method. However, leaching or stripping can only remove some of the alkali compounds that are adsorbed or trapped, but cannot remove those alkali compounds contained in the crystals.
电磁波热搅动能将电磁波施于回收产物或其与碱萃取溶剂的混合物中。此法类似于电磁波热解盐的方法,但其重点是在除去包含于回收产物里的残留碱化合物。电磁波对产物晶体无作用,但能引起残留的碱化合物及溶剂热搅动而发热,而使吸附在表面或包含于晶体内的碱离子及溶剂从晶体内分离出来。分解的碱化合物和其它溶剂则以气体、液体吸附、或被晶体周围的碱萃取溶剂沥滤分离。碱萃取溶剂可连续或分批的方式加入以协助残留盐的分解。此方法能除去残留碱化合物并同时干燥产物。Electromagnetic wave thermal agitation can apply electromagnetic waves to the recovered product or its mixture with the base extraction solvent. This method is similar to the method of electromagnetic pyrolysis of salt, but its focus is on removing residual alkali compounds contained in the recovered product. The electromagnetic wave has no effect on the product crystal, but it can cause the residual alkali compound and solvent to stir and generate heat, so that the alkali ion and solvent adsorbed on the surface or contained in the crystal are separated from the crystal. Decomposed base compounds and other solvents are separated as gas, liquid adsorption, or leached by the base extraction solvent around the crystals. The base extraction solvent can be added continuously or in batches to assist in the decomposition of residual salts. This method removes residual alkali compounds and simultaneously dries the product.
蒸发热解是蒸发残留溶剂,如水或醋酸,并热解残留碱化合物,其操作温度可以是50-350℃,优选90-210℃。回收产物与单体,如亚烷基二醇混合、或与由产物酸与该单体聚合所得的寡聚物(oligomer)混合(该寡聚物链的大小为1-100基本单元)、或与碱萃取溶剂(如升温的水)混合。高沸点的亚烷基二醇或寡聚物是用以热解残留盐并自溶液中蒸发残余溶剂。除此之外,亚烷基二醇为聚酯的构造单元,该溶液或过滤饼能直接用以生产聚酯,因此可免去干燥及气体输送的步骤。如果聚酯设备与纯化设备不在同一处,则此方法可在任一处进行。最好是以热转移或电磁波热搅动来加热以避免引入其它成分。所蒸发的残留溶剂则以真空抽吸或其它适当方法除去。亚烷基二醇的用量最好是聚合时所需的量,以使处理后的溶液能直接用以制造聚酯。此步骤亦可应用于现有的制造方法,将未干燥的终产物与亚烷基二醇混合从而免去干燥及气体输送的步骤。以此法所得的溶液不同于上述产物回收的热解溶液,因其含相当高的碱化合物和其它溶剂,所以不适用以制造聚酯。Evaporative pyrolysis is to evaporate the residual solvent, such as water or acetic acid, and pyrolyze the residual alkali compound. The operating temperature can be 50-350°C, preferably 90-210°C. The recovered product is mixed with a monomer, such as an alkylene glycol, or with an oligomer (oligomer) obtained by polymerizing the product acid with the monomer (the size of the oligomer chain is 1-100 basic units), or Mix with an alkaline extraction solvent such as warmed water. High boiling alkylene glycols or oligomers are used to pyrolyze residual salts and evaporate residual solvents from solution. In addition, alkylene glycol is the building block of polyester, and the solution or filter cake can be directly used to produce polyester, thus eliminating the steps of drying and gas delivery. If the polyester plant and the purification plant are not co-located, the method can be performed at either. It is best to heat by heat transfer or electromagnetic wave thermal agitation to avoid the introduction of other ingredients. The evaporated residual solvent is removed by vacuum suction or other suitable means. The amount of alkylene glycol used is preferably that amount required for polymerization so that the treated solution can be used directly to make polyester. This step can also be applied to the existing manufacturing method by mixing the undried end product with the alkylene glycol so as to avoid the steps of drying and gas delivery. The solution obtained in this way is different from the pyrolysis solution of the product recovery mentioned above, because it contains relatively high alkali compounds and other solvents, so it is not suitable for the manufacture of polyester.
用于产物回收、洗涤、沥滤、汽提、电磁波热搅动、或蒸发热解的碱萃取溶剂不一定是同一种类。碱萃取溶剂的用量并无特别的限制,通常是每摩尔羧酸官能团0.5-1000摩尔。Alkaline extraction solvents used for product recovery, washing, leaching, stripping, electromagnetic wave thermal agitation, or evaporative pyrolysis are not necessarily of the same kind. The amount of base extraction solvent used is not particularly limited, and is usually 0.5-1000 mol per mol of carboxylic acid functional group.
若不以亚烷基二醇蒸发热解来去除残留碱化合物,如果需要,亦能以目前常用的流动惰性气体来干燥除去残留溶液,或以前述的电磁波来干燥。If the residual alkali compound is not removed by evaporative pyrolysis of the alkylene glycol, if necessary, the residual solution can also be dried by the current commonly used flowing inert gas, or by the aforementioned electromagnetic wave.
溶剂萃取的纯化方法可操作于空气、蒸气、惰性气体(如氮、氩、氦)、或还原性气体(如氢或分子量较低的烃气体)下。这个方法可以是分批、半分批、或连续的。The purification method by solvent extraction can be operated under air, steam, inert gas (such as nitrogen, argon, helium), or reducing gas (such as hydrogen or lower molecular weight hydrocarbon gas). This process can be batch, semi-batch, or continuous.
循环利用可以改善产物回收和溶剂使用效率。例如,滤液可以循环至前一步骤或用以洗涤或沥滤,以减少溶剂需求并量并改善产物回收。循环利用的滤液可以处理或不处理。滤液能以任何适当的方法处理,如蒸馏、过滤、离心、沉降、蒸发、冷却、多加溶剂、或以上的任何组合。循环利用以改良效率的方法已广为人知,本发明并不局限于任一特定方法。Recycling can improve product recovery and solvent usage efficiency. For example, the filtrate can be recycled to a previous step or used for washing or leaching to reduce solvent requirements and improve product recovery. The recycled filtrate may or may not be treated. The filtrate can be treated by any suitable method, such as distillation, filtration, centrifugation, settling, evaporation, cooling, addition of additional solvent, or any combination of the above. Methods of recycling to improve efficiency are well known, and the present invention is not limited to any particular method.
上述纯化方法所得的产物纯度很意外并惊讶地发现无法以目前标准HPLC测量方法测出杂质。与现有技术的产物纯度比较,约纯一百倍。产物高温烘烤的颜色可达到目前的标准,其表明碱化合物已除至令人满意的程度。低杂质的PTA能提供许多优点:增加聚合分子量、生产更强更细的纤维、降低保特瓶的氧渗透率、增加纺纱转速以增加产量、及许多尚未发现的优点。The purity of the product obtained by the above purification method is unexpected and surprisingly found that the impurity cannot be detected by the current standard HPLC measurement method. Compared with the product purity of the prior art, it is about one hundred times purer. The color of the product baked at high temperature can reach the current standard, which indicates that the alkali compound has been removed to a satisfactory degree. Low-impurity PTA offers many advantages: increased polymer molecular weight, stronger and finer fibers, lower oxygen permeability for plastic bottles, increased spinning speed for increased yield, and many other advantages that have yet to be discovered.
结合上述纯化方法与目前已知技术的氧化和溶剂及催化剂回收方法能提供一套降低相当多投资及生产成本的新方法。此方法能应用于生产所有芳香多羧酸,该芳香多羧酸通过氧化相应的烷基而生产,诸如PTA、IPA、TMA、2,6-NDA、2,7-NDA等。PTA是最典型的例子,它将被用以说明此新方法。Combining the above purification methods with oxidation and solvent and catalyst recovery methods of the presently known technology can provide a new set of methods which reduce investment and production costs considerably. This method can be applied to the production of all aromatic polycarboxylic acids produced by oxidation of the corresponding alkyl groups, such as PTA, IPA, TMA, 2,6-NDA, 2,7-NDA and the like. PTA is the most typical example that will be used to illustrate this new method.
此结合能将目前生产高纯度芳香多羧酸的二套工艺步骤减为一套,这主要是充分发挥本发明的新纯化方法中的下列特性与优点。This combination can reduce the two sets of process steps for the current production of high-purity aromatic polycarboxylic acid into one set, which mainly brings into full play the following characteristics and advantages in the new purification method of the present invention.
1)除了以CTA为进料外,新纯化方法亦能将反应器流出物直接做为进料而不需使用目前已知技术分离CTA。该流出物含有例如催化剂(包括催化剂促进剂)和醋酸等成分,而这些成分可从上述纯化方法的过程里分离。如此可允许将目前所使用的二套工艺步骤减为一套以显著降低投资及生产成本。1) In addition to using CTA as a feed, the new purification method can also directly use the reactor effluent as a feed without using currently known techniques to separate CTA. The effluent contains components such as catalyst (including catalyst promoters) and acetic acid which can be separated from the purification process described above. This allows reducing the currently used two sets of process steps into one, significantly reducing investment and production costs.
2)目前技术必须考虑下列因素,如粘度、颗粒大小、产物回收、和晶体含杂质等,而上述盐直接萃取的结晶方法可以不考虑这些因素。此外,碱萃取溶剂亦可用以调节分离和传送的淤浆粘度。2) The current technology must consider the following factors, such as viscosity, particle size, product recovery, and crystal impurities, etc., and the crystallization method of the above-mentioned salt direct extraction can not consider these factors. In addition, the base extraction solvent can also be used to adjust the slurry viscosity for separation and transfer.
3)新纯化方法能较目前氢化方法除去更多的杂质。这使得氧化反应器可在更为经济的条件下操作,如较低的碳氢化合物燃烧率和催化剂消耗率等。3) The new purification method can remove more impurities than the current hydrogenation method. This allows the oxidation reactor to operate under more economical conditions, such as lower hydrocarbon burn rates and catalyst consumption rates.
4)新纯化方法可以不需要结晶器来结晶。4) The new purification method may not require a crystallizer for crystallization.
5)新纯化方法可使用亚烷基二醇来蒸发热解,以避免干燥及气体输送的步骤。5) The new purification method can use alkylene glycol for evaporative pyrolysis to avoid the steps of drying and gas delivery.
6)新纯化方法使用物理分离方法而不是化学反应方法来除去杂质,因此纯化的投资及生产成本均较低。6) The new purification method uses a physical separation method instead of a chemical reaction method to remove impurities, so the investment and production costs for purification are relatively low.
7)新纯化方法能生产出比目前更高纯度的产物。此提供很多前述的潜在优点。7) The new purification method can produce a product with higher purity than the current one. This offers many of the aforementioned potential advantages.
本发明发挥这些相互协同的优点和非显而易见的特征,以提供一套以前未曾建议的结合,其能降低相当多的投资及生产成本。新结合方法包括氧化、溶解粗酸、从纯化盐中除去杂质及碱化合物、自盐回收产物时还同时除去残留碱化合物、以及回收溶剂和催化剂。此工艺的步骤程序描述如下:The present invention exploits these mutually synergistic advantages and non-obvious features to provide a set of previously unsuggested combinations which can reduce investment and production costs considerably. The new combined method includes oxidation, dissolution of crude acid, removal of impurities and base compounds from the purified salt, removal of residual base compounds while recovering product from the salt, and recovery of solvent and catalyst. The step-by-step procedure of this process is described as follows:
氧化Oxidation
这个步骤将芳香化合物上对应的烷基氧化而生产芳香多羧酸。此芳香多羧酸的氧化已于过去50年被广泛地研究,本发明可使用任何先前的方法,而不局限于任一特定方法。This step oxidizes the corresponding alkyl groups on aromatic compounds to produce aromatic polycarboxylic acids. Oxidation of such aromatic polycarboxylic acids has been extensively studied over the past 50 years, and the present invention may use any of the previous methods and is not limited to any particular method.
中世纪公司所开发的方法为目前广泛应用的氧化方法,其以醋酸为溶剂来协助淤浆的混合和循环;以重金属,如钴和锰,为催化剂;以含溴的化合物为促进剂。反应条件通常是在175-230℃和1500-3000kPa。The method developed by Medieval Company is an oxidation method widely used at present. It uses acetic acid as solvent to assist the mixing and circulation of slurry; heavy metals, such as cobalt and manganese, as catalysts; and bromine-containing compounds as accelerators. The reaction conditions are usually at 175-230°C and 1500-3000kPa.
进料可包括循环回流物,其可含催化剂、反应器溶剂、或来自下列步骤的中间产物,如溶解粗酸与碱化合物、由纯化盐中除去杂质及碱化合物、及溶剂及催化剂回收等。Feeds may include recycled reflux, which may contain catalyst, reactor solvent, or intermediates from steps such as dissolution of crude acid and base compounds, removal of impurities and base compounds from purified salt, and solvent and catalyst recovery, among others.
溶解粗酸或衍生物Soluble crude acid or derivatives
将粗芳香多羧酸或其衍生物溶解于碱化合物中已在前面描述。先前也曾提到,新纯化方法能以反应器流出物或目前方法的CTA为粗酸进料。因此,在这二种极端间有许多选择以制备粗酸。例如,若将反应器流出物急骤蒸发后的淤浆作为粗酸,则反应器溶剂及催化剂将随杂质一齐出现于溶剂萃取纯化方法的滤液中,其然后在溶剂及催化剂的回收步骤中回收。其它选择是采用已知技术所教示的方法,将反应器的溶剂及催化剂自粗酸中分离出来,而已知技术所教示的方法诸如急骤蒸发、蒸发、加热/冷却、结晶、过滤、离心澄清器、蒸馏、分类塔、水力旋风器、旋风分离器、沉降、以水取代母液、薄膜渗透、或目前制造CTA方法的任一中间步骤。分离的母液可回流至反应器或送到溶剂及催化剂回收的步骤。本发明并不局限于任一特定方法来分离反应器流出物。但优选的方法是蒸发急骤蒸发反应器流出物中的大部分母液,并循环回流一小部分含催化剂的自粗酸分离的母液。蒸发亦可于电磁波下操作。这个方法能在不使用结晶器方式下,从反应器流出物中回收大部分的粗酸。The dissolution of the crude aromatic polycarboxylic acid or its derivatives in the base compound has been described previously. It was also mentioned previously that the new purification process can use either the reactor effluent or the CTA of the current process as the crude acid feed. Therefore, there are many options between these two extremes to produce crude acid. For example, if the slurry after flash evaporation of the reactor effluent is used as the crude acid, the reactor solvent and catalyst will appear along with the impurities in the filtrate of the solvent extraction purification process, which is then recovered in the solvent and catalyst recovery step. Other options are to separate the reactor solvent and catalyst from the crude acid by methods taught by known techniques such as flash evaporation, evaporation, heating/cooling, crystallization, filtration, centrifugal clarifiers , distillation, classification tower, hydrocyclone, cyclone separator, settling, replacement of mother liquor with water, membrane osmosis, or any intermediate step in the current manufacturing method of CTA. The separated mother liquor can be returned to the reactor or sent to the steps of solvent and catalyst recovery. The present invention is not limited to any particular method for separating the reactor effluent. The preferred method, however, is to evaporate most of the mother liquor in the flash reactor effluent and to recycle a small portion of the catalyst-containing mother liquor separated from the crude acid. Evaporation can also operate under electromagnetic waves. This method recovers most of the crude acid from the reactor effluent without using a crystallizer.
粗酸的另外可能来源是来自处理或未处理过的回流滤液,或来自溶剂及催化剂回收的步骤。Another possible source of crude acid is from treated or untreated reflux filtrate, or from solvent and catalyst recovery steps.
除去杂质和过量的碱化合物 Remove impurities and excess alkali compounds
前面已经描述如何除去杂质。如前所述,控制组成以冷却结晶能减少所需结晶器的数目,盐直接萃取结晶法则能免使用结晶器。How to remove impurities has been described above. As mentioned earlier, controlling the composition for cooling crystallization can reduce the number of crystallizers required, and direct salt extraction crystallization can eliminate the use of crystallizers.
处理或未处理过的滤液可循环回流至其它步骤,或送至溶剂及催化剂回收的步骤。部份杂质必须从这个步骤中除去以避免继续累积,而这可以任何合适的方法进行。其中一例为将含大量杂质的滤液蒸发,其底部残留物则回流至反应器,或以产物回收的方法,在回流之前,将杂质盐转化成杂质。The treated or untreated filtrate can be recycled to other steps, or sent to solvent and catalyst recovery steps. Some impurities must be removed from this step to avoid further accumulation, and this can be done by any suitable method. One example is to evaporate the filtrate containing a large amount of impurities, and return the bottom residue to the reactor, or to convert the impurity salts into impurities by the method of product recovery before reflux.
制造纯化产物时还同时除去残留碱化合物 Residual alkali compounds are also removed while producing purified products
前面已描述过这个步骤。若使用亚烷基二醇以蒸发热解来除去残留碱化合物,则可以不需要目前的干燥或气体输送步骤。This step has been described previously. If alkylene glycols are used to remove residual base compounds by evaporative pyrolysis, the current drying or gas delivery steps may not be required.
与目前PTA方法所得的颗粒大小相比较,以酸取代方法所回收的产物颗粒一般较小,但较均匀。若以亚烷基二醇来除去残留碱化合物,则处理后的混合物能直接用于制造PET。然而,如有必要的话,可以重新溶解及再结晶以调整PTA的松密度。此可由目前已知的多种方法来实现。再结晶后的PTA松密度不仅会与目前市售的PTA一样,而且纯度会更高而包含更少的杂质。Compared with the particle size obtained by the current PTA method, the product particles recovered by the acid substitution method are generally smaller, but more uniform. If the residual alkali compounds are removed with alkylene glycol, the treated mixture can be directly used for the manufacture of PET. However, if necessary, it can be redissolved and recrystallized to adjust the bulk density of PTA. This can be accomplished by various methods known to date. The bulk density of PTA after recrystallization will not only be the same as that of the currently commercially available PTA, but also the purity will be higher and contain less impurities.
溶剂及催化剂回收Solvent and catalyst recovery
除了使用目前已知方法来回收反应器溶剂、水、催化剂外,这个步骤也回收碱化合物、碱萃取溶剂、酸取代溶剂(如果它被用以回收产物且不同于反应器溶剂)、和溶解剂(如其被使用且不同于水)。另外,从一些纯化步骤的循环回流滤液也可能含有残余杂质和产物。In addition to recovering the reactor solvent, water, and catalyst using currently known methods, this step also recovers base compounds, base extraction solvent, acid substitution solvent (if it is used to recover product and is different from the reactor solvent), and solvent (as it is used and different from water). Additionally, recycle filtrates from some purification steps may also contain residual impurities and products.
并非所有成分皆必须回收至原来纯度。某些成分能以混合物回收。例如,在溶解粗酸的步骤中,可使用碱化合物和溶解剂的混合物。再者,如果该混合物包含一些酸取代溶剂,其对纯化效率也并无明显的影响。Not all components have to be recovered to their original purity. Some components can be recovered as a mixture. For example, in the step of dissolving the crude acid, a mixture of a base compound and a dissolving agent may be used. Furthermore, if the mixture contained some acid in place of the solvent, it had no significant effect on the purification efficiency.
在所有溶剂中,某些溶剂可能形成共沸混合物。如果以酸取代法来回收产物,则碱化合物和酸取代溶剂可能会形成电解质。然而,用于分离这些成分的方法已广为人知,如蒸馏、过滤、离心、沉降、蒸发、热解、冷却、薄膜渗透、以更强的碱来取代、以更强的酸来取代、加入另一物质以破坏共沸混合物等。本发明也可使用电磁波于蒸发、蒸馏、和热解等。In all solvents, some solvents may form azeotropes. If acid substitution is used to recover the product, the base compound and the acid substitution solvent may form an electrolyte. However, methods for separating these components are well known, such as distillation, filtration, centrifugation, settling, evaporation, pyrolysis, cooling, membrane permeation, substitution with a stronger base, substitution with a stronger acid, addition of another Substances to break azeotropes, etc. The present invention can also use electromagnetic waves for evaporation, distillation, and pyrolysis, etc.
结论in conclusion
因此,本发明的纯化方法不仅除去粗芳香多羧酸或其衍生物内的杂质,还同时提供除去用以纯化的碱化合物的方法,否则它会污染该终产物。本发明解决了过去未解决或未知的问题,它使溶剂萃取的纯化方法变为实际可行。Thus, the purification method of the present invention not only removes impurities in the crude aromatic polycarboxylic acid or its derivatives, but also simultaneously provides a means of removing the base compound used for purification, which would otherwise contaminate the final product. The present invention solves previously unsolved or unknown problems, and it makes the solvent extraction purification method practical.
新纯化方法减少了用于结晶的结晶器的数量,或完全不用。用亚烷基二醇分离残留碱化合物可免去目前技术所需的干燥及气体输送的步骤。New purification methods reduce the number of crystallizers used for crystallization, or eliminate them entirely. The use of alkylene glycols to separate residual base compounds eliminates the drying and gas delivery steps required by current techniques.
与目前已知技术相比较,新纯化方法能生产以标准HPLC方法无法测出杂质含量的纯度的产品,其改进大约有一百倍。高纯度提供许多潜在的优点,例如可用以制造更强更细的新纤维、提高纺织速度以增加PET纤维的产率、减少氧渗透率以提供PET保特瓶的新用途、以及许多其它尚未发现的优点。Compared with the currently known technology, the new purification method can produce a pure product with an impurity content that cannot be measured by standard HPLC methods, which is an improvement of about one hundred times. High purity offers many potential advantages such as being able to create stronger and finer new fibers, increasing spinning speeds to increase the yield of PET fibers, reducing oxygen permeability to provide new uses for PET plastic bottles, and many others yet to be discovered The advantages.
本发明充分发挥新纯化方法所发现的一些特殊特性及优点,并与目前的氧化和溶剂及催化剂回收的方法结合,能将目前的二套方法步骤减为一套。这种以前未曾提到的结合能大量降低高纯度芳香多羧酸的投资及生产成本。The invention makes full use of some special characteristics and advantages found in the new purification method, and combines with the current method of oxidation, solvent and catalyst recovery, and can reduce the current two sets of method steps into one set. This previously unmentioned combination can substantially reduce the investment and production costs of high purity aromatic polycarboxylic acids.
除了芳香多羧酸外,该纯化方法能用以纯化任何含有相近物性与化性杂质的有机酸或其衍生物。该等衍生物可含有任何数目的酸官能团;酸基被其它官能团取代;酸基在不同位置;或酸基在相同位置但其氢被其它官能团所取代,如甲基等。In addition to aromatic polycarboxylic acids, this purification method can be used to purify any organic acid or its derivatives containing similar physical and chemical impurities. These derivatives may contain any number of acid functional groups; acid groups substituted by other functional groups; acid groups in different positions; or acid groups in the same position but with hydrogens replaced by other functional groups, such as methyl groups and the like.
因此,本发明的范围应以所附的权利要求及其法律上等同物来确定,而不是由所叙述的具体实施例来决定。以下将举例说明本发明。Accordingly, the scope of the invention should be determined by the appended claims and their legal equivalents rather than by the specific examples described. The present invention will be illustrated below.
参考实施例Reference Example
表1所示为实验中使用的PTA方法所生产的粗对苯二酸(CTA)杂质含量:
其中ppmw表示重量的百万分之一。Where ppmw means parts per million by weight.
比较实施例1Comparative Example 1
表2所示为将与表1具有相同组成的CTA用现有技术的传统氢化纯化方法纯化,得到如表2所示杂质含量的PTA产物:
该纯化产物的杂质含量为典型商用聚合等级的对苯二酸。The impurity content of the purified product was typical of commercial polymer grade terephthalic acid.
比较实施例2(除去杂质但未除去碱化合物) Comparative Example 2 (removal of impurities but not removal of alkali compounds)
将150克表1所述的CTA样品与198克吗啉及180克水混合。将该溶液加热至100℃使CTA完全溶解,然后冷却至室温使之沉淀。过滤淤浆以与母液分离,而后用吗啉洗涤过滤饼以获得196克的湿饼。然后将该回收的固体与84克水和22克吗啉混合。并将该溶液温度升至110℃以蒸发57ml的冷凝物,然后将该溶液冷却至室温使之沉淀。而后,用吗啉洗涤过滤饼以获得145克的纯盐。然后将该盐与235克醋酸和14克水混合使PTA沉淀。随之用约600克水洗涤过滤饼,然后将湿饼在烘箱中于约275℃下干燥4小时,以获得40克的干PTA。表4为HPLC分析杂质的结果,但颜色测量过滤饼的B值为6.5,较标准值1.6高约4倍。这显示PTA里含有显著量的吗啉。
比较实施例3(通过直接添加醋酸以沉淀产物) Comparative Example 3 (by directly adding acetic acid to precipitate the product)
将3克表1所述的CTA样品在室温下完全溶于含有5.010克三乙胺及9.047克甲醇溶液中。然后加入7.570克醋酸以沉淀结晶,然后过滤及干燥,得到2.179克的对苯二酸。HPLC分析显示该酸含有如表5所示的杂质。
实施例1(自沥滤沉淀物的直接萃取结晶法)Example 1 (direct extraction crystallization method from leached sediment)
将40克表1所述的CTA样品与52克吗啉及48克水混合。将溶液加热至110℃以溶解CTA并且蒸发约29ml的冷凝物,随之冷却至室温使之沉淀。用甲醇洗涤及沥滤过滤饼后得到55克的湿饼。该湿饼与30克甲醇混合,然后加85克的醋酸至溶液中,以沉淀对苯二酸。然后用约35克甲醇洗涤该湿饼,再用35克甲醇沥滤3次,得到一31.5克的湿饼。湿饼在烘箱中于约250℃干燥4小时后得24克的干饼。该饼的B-值为2.73,其仍高于标准值,HPLC分析显示该PTA含有表6中的杂质。
实施例2(通过蒸发热解的再盐化的结晶法)Example 2 (Crystalization method of resalination by evaporative pyrolysis)
将925克如表1所述的CTA样品与1103克吗啉及1205克水混合。将溶液加热至110℃并蒸发约404ml的冷凝物,且在急速结晶之前停止。随之将溶液冷却至室温静置4小时以沉淀结晶。加入250克乙醇以稀释淤浆,并用大约750克乙醇洗涤和沥滤过滤饼后得到1455克的盐。取1005克的盐溶于465克水。将溶液加热至109℃,且在蒸发约280ml的冷凝物后急速结晶。用650克乙醇沥滤该盐,且用250克乙醇洗涤过滤饼,得到702克的纯盐。将35克的盐溶于40克水及40克乙醇中,且将60克的醋酸加入溶液中以沉淀该产物结晶。然后用大约200克的水洗涤及沥滤过滤饼3次后得到27.5克的湿饼。而后与130克的EG混合。该溶液在常压下加热至150-160℃,直到没有冷凝褐色液体从溶液中分离出。热液马上被过滤,以300克水洗涤及沥滤后得到15.4克的湿饼。将放在一吸附剂上的湿饼于微波炉内以中度功率加热20分钟,然后在烘箱中于约250℃干燥4小时后得到11.6克的干饼。该饼的B-值为1.58,其符合标准值,HPLC分析显示该PTA含有表7所示的杂质。
实施例3(模拟反应器流出物的条件以及沥滤)Example 3 (conditions and leaching of simulated reactor effluent)
将150克如表1所述的CTA样品在室温下与组成类似于反应器流出物急骤蒸发的组成物的溶液混合。该溶液含有202克吗啉、191克水、29克48%氢溴酸、0.23克乙酸钴四水合物、0.3克醋酸镁四水合物、和60克醋酸。将溶液温度加热至110℃以溶解CTA并蒸发79ml的冷凝液。该溶液随即被冷却至室温以沉淀,并以甲醇洗涤及沥滤过滤饼后得到278克的湿饼。该湿饼与133克水混合,并将该溶液温度加热至110℃以蒸发88ml的冷凝液,且该溶液被冷却至室温以沉淀。该过滤饼以甲醇洗涤及沥滤后得到160克的湿饼。该湿饼然后与160克的甲醇混合,而后加入180克的醋酸以沉淀对苯二酸。以500克的水洗涤和沥滤该湿饼,并以35克甲醇沥滤3次以得到123克的湿饼。将放在一吸附剂上的湿饼于微波炉内以中度功率加热20分钟,随之在烘箱中于约250℃干燥4小时后得73克的干饼。该饼的B-值为2.22,所有金属含量均低于指定标准,且HPLC分析显示该PTA的杂质含量如表8所示。
实施例4(以电磁波热解)Example 4 (pyrolysis with electromagnetic waves)
将10.05克实施例2的纯盐样品溶于6克的水中。将溶液在600瓦微波炉中加热3分钟,且该残留的混合物含有约9.29克的固体。6.27克的水与该固体混合,并于微波炉中加热3分钟以得到8.82克的固体。而后,6.66克的水再与固体混合并加热3分钟以得到8.49克固体。该固体再与10.85克的水混合,并于微波炉中加热4分钟以得到8.14克的固体。该固体继续与9.59克的水混合并于微波炉中加热3分钟以得7.82克的固体。以上每个步骤中,重量的减少系来自盐的分解。A 10.05 gram sample of the pure salt of Example 2 was dissolved in 6 grams of water. The solution was heated in a 600 watt microwave oven for 3 minutes, and the residual mixture contained about 9.29 grams of solids. 6.27 grams of water were mixed with the solid and heated in the microwave for 3 minutes to give 8.82 grams of solid. Then, 6.66 grams of water were mixed with the solid and heated for 3 minutes to obtain 8.49 grams of solid. The solid was then mixed with 10.85 grams of water and heated in a microwave oven for 4 minutes to give 8.14 grams of solid. The solid was further mixed with 9.59 grams of water and heated in the microwave for 3 minutes to give 7.82 grams of solid. In each of the above steps, the weight loss comes from the decomposition of the salt.
实施例5(粗NDC)Embodiment 5 (crude NDC)
将150克的粗2,6-和2,7-萘二甲酸二甲酯(NDC)样品与161克吗啉和180克水混合。然后将该溶液温度加热至110℃以蒸发86ml的溶剂。随之将溶液冷却使沉淀出结晶,并过滤以与母液分离。将该过滤饼用含10wt%水的吗啉的混合物洗涤以得到186克的湿饼。湿饼再溶于72克的水及18克的吗啉中,并将该溶液加热以蒸发约35ml的冷凝液。随之冷却该溶液以沉淀、过滤、并用含10wt%水的吗啉的溶剂混合物洗涤,得到158克的湿饼。然后将含16克的水和158克的醋酸的混合物加至该纯化盐中,以沉淀该产物酸。再经过滤、水洗、干燥后得到85克的纯化酸。将该粗NDC纯化至99.993%的纯度。粗酸的毛细管电泳法分析显示有11个峰,其时间及面积分别在(8.86,3.824),(8.92,2.891),(8.92,5.518),(9.06,10.038),(9.18,36.226),(9.45,18.536),(9.52,13.944),(9.57,8.298),(11.87,0.106),(11.99,0.598)。纯化酸的毛细管电泳法显示有二个峰,其时间及面积分别在(9.49,99.993)和(9.55,0.007)。实施例6(以电磁波溶解且使用NMP于乙醇内结晶)A 150 gram sample of crude dimethyl 2,6- and 2,7-naphthalene dicarboxylate (NDC) was mixed with 161 grams of morpholine and 180 grams of water. The temperature of the solution was then heated to 110°C to evaporate 86 ml of solvent. The solution was then cooled to precipitate crystals and filtered to separate from the mother liquor. The filter cake was washed with a mixture of morpholine containing 10 wt% water to give 186 grams of wet cake. The wet cake was redissolved in 72 grams of water and 18 grams of morpholine, and the solution was heated to evaporate about 35 ml of condensate. The solution was then cooled to precipitate, filtered, and washed with a solvent mixture of morpholine containing 10 wt% water to yield 158 grams of a wet cake. A mixture of 16 grams of water and 158 grams of acetic acid was then added to the purified salt to precipitate the product acid. After filtering, washing with water and drying, 85 grams of purified acid were obtained. The crude NDC was purified to 99.993% purity. The capillary electrophoresis analysis of crude acid showed 11 peaks, the time and area of which were at (8.86, 3.824), (8.92, 2.891), (8.92, 5.518), (9.06, 10.038), (9.18, 36.226), ( 9.45, 18.536), (9.52, 13.944), (9.57, 8.298), (11.87, 0.106), (11.99, 0.598). The capillary electrophoresis of the purified acid showed two peaks whose time and area were at (9.49, 99.993) and (9.55, 0.007), respectively. Example 6 (dissolved by electromagnetic waves and crystallized in ethanol using NMP)
将12.5克如表1所述的CTA样品与60克的NMP混合,该NMP先于600瓦微波炉中预热30秒。该CTA再以低功率微波炉加热约3.5分钟以完全溶解。然后于结晶期间将13克的乙醇加入溶液中,并置于冰浴中约60分钟以冷却该溶液。而后过滤该盐,且以50%乙醇和50%NMP的混合溶剂洗涤以得到26.2克的盐。该盐再与31克的NMP混合并于微波炉内以低功率加热2.7分钟后完全溶解。再将15克的乙醇于结晶期间加入溶液中,并置于冰浴中约60分钟以冷却该溶液。而后过滤该盐,且以50%乙醇和50%NMP的混合溶剂洗涤以得到16克纯盐。其中3克的纯盐放在一堆吸过水的过滤纸之间。并将微波炉内设在低功率以加热分解该纯盐,直至重量不再改变,获得1.2克的PTA。表9显示该HPLC所分析的杂质。
以上实施例主要是用以帮助对本发明方法的了解,而不是用以局限本发明范围于某一特定的化合物或处理步骤。本发明的范围由 书来界定。The above examples are mainly used to help the understanding of the method of the present invention, but not to limit the scope of the present invention to a specific compound or processing step. The scope of the invention is defined by the book.
Claims (38)
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10964898P | 1998-11-24 | 1998-11-24 | |
US60/109,648 | 1998-11-24 | ||
US26749999A | 1999-03-12 | 1999-03-12 | |
US09/267,499 | 1999-03-12 | ||
US09/286,262 US6392091B2 (en) | 1998-11-24 | 1999-04-05 | Process of purifying and producing high purity aromatic polycarboxylic acids |
US09/286,262 | 1999-04-15 | ||
US09/347,486 US6291707B1 (en) | 1999-03-12 | 1999-07-02 | Process of purifying and producing high purity aromatic polycarboxylic acids and derivatives thereof |
US09/347,486 | 1999-07-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1332714A true CN1332714A (en) | 2002-01-23 |
CN1264798C CN1264798C (en) | 2006-07-19 |
Family
ID=27493707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB99813645XA Expired - Fee Related CN1264798C (en) | 1998-11-24 | 1999-11-19 | Purification and production method of high-purity aromatic polycarboxylic acid and derivatives thereof |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1131276A4 (en) |
JP (1) | JP2003510247A (en) |
KR (1) | KR100642625B1 (en) |
CN (1) | CN1264798C (en) |
WO (1) | WO2000031014A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100361951C (en) * | 2003-06-05 | 2008-01-16 | 伊斯曼化学公司 | Extraction method for removing impurities from aqueous mixtures |
CN102701961A (en) * | 2004-09-02 | 2012-10-03 | 奇派特石化有限公司 | Optimized liquid-phase oxidation |
CN1572767B (en) * | 2003-06-05 | 2013-03-13 | 奇派特石化有限公司 | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid |
CN1572765B (en) * | 2003-06-05 | 2013-04-17 | 奇派特石化有限公司 | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7282151B2 (en) | 2003-06-05 | 2007-10-16 | Eastman Chemical Company | Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration |
US7452522B2 (en) | 2003-06-05 | 2008-11-18 | Eastman Chemical Company | Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid |
US7494641B2 (en) | 2003-06-05 | 2009-02-24 | Eastman Chemical Company | Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid |
US7888530B2 (en) | 2004-09-02 | 2011-02-15 | Eastman Chemical Company | Optimized production of aromatic dicarboxylic acids |
US7683210B2 (en) * | 2004-09-02 | 2010-03-23 | Eastman Chemical Company | Optimized liquid-phase oxidation |
US20080161598A1 (en) | 2004-09-02 | 2008-07-03 | Eastman Chemical Company | Optimized Production of Aromatic Dicarboxylic Acids |
US20070238899A9 (en) | 2004-09-02 | 2007-10-11 | Robert Lin | Optimized production of aromatic dicarboxylic acids |
US7273559B2 (en) | 2004-10-28 | 2007-09-25 | Eastman Chemical Company | Process for removal of impurities from an oxidizer purge stream |
US7291270B2 (en) | 2004-10-28 | 2007-11-06 | Eastman Chemical Company | Process for removal of impurities from an oxidizer purge stream |
US7402694B2 (en) | 2005-08-11 | 2008-07-22 | Eastman Chemical Company | Process for removal of benzoic acid from an oxidizer purge stream |
US7569722B2 (en) | 2005-08-11 | 2009-08-04 | Eastman Chemical Company | Process for removal of benzoic acid from an oxidizer purge stream |
US7897808B2 (en) | 2006-03-01 | 2011-03-01 | Eastman Chemical Company | Versatile oxidation byproduct purge process |
US7880032B2 (en) | 2006-03-01 | 2011-02-01 | Eastman Chemical Company | Versatile oxidation byproduct purge process |
US20070203359A1 (en) | 2006-03-01 | 2007-08-30 | Philip Edward Gibson | Versatile oxidation byproduct purge process |
US7863481B2 (en) | 2006-03-01 | 2011-01-04 | Eastman Chemical Company | Versatile oxidation byproduct purge process |
KR101144887B1 (en) | 2009-12-16 | 2012-05-14 | 호남석유화학 주식회사 | Purification method for iso-phthalic acid |
WO2015186073A1 (en) * | 2014-06-04 | 2015-12-10 | Reliance Industries Limited | Process for the purification of crude carboxylic acid |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1011411B (en) * | 1953-07-20 | 1957-07-04 | Bataafsche Petroleum | Process for obtaining pure tert. Butylbenzoic acids |
GB1003650A (en) * | 1963-04-05 | 1965-09-08 | Teijin Ltd | Process for producing purified terephthalic acid |
EP0636600B1 (en) * | 1993-02-12 | 1998-05-20 | Mitsui Chemicals, Inc. | Method of purifying aromatic dicarboxylic acid |
US5840968A (en) * | 1995-06-07 | 1998-11-24 | Hfm International, Inc. | Method and apparatus for preparing purified terephthalic acid |
US6133476A (en) * | 1996-09-17 | 2000-10-17 | Lin; Tsong-Dar Vincent | Process for purification of aromatic polycarboxylic acids |
-
1999
- 1999-11-19 JP JP2000583843A patent/JP2003510247A/en active Pending
- 1999-11-19 CN CNB99813645XA patent/CN1264798C/en not_active Expired - Fee Related
- 1999-11-19 WO PCT/US1999/027604 patent/WO2000031014A1/en not_active Application Discontinuation
- 1999-11-19 EP EP99967120A patent/EP1131276A4/en not_active Withdrawn
- 1999-11-19 KR KR1020017006507A patent/KR100642625B1/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100361951C (en) * | 2003-06-05 | 2008-01-16 | 伊斯曼化学公司 | Extraction method for removing impurities from aqueous mixtures |
CN1572767B (en) * | 2003-06-05 | 2013-03-13 | 奇派特石化有限公司 | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid |
CN1572765B (en) * | 2003-06-05 | 2013-04-17 | 奇派特石化有限公司 | Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid |
CN102701961A (en) * | 2004-09-02 | 2012-10-03 | 奇派特石化有限公司 | Optimized liquid-phase oxidation |
CN102701961B (en) * | 2004-09-02 | 2015-11-25 | 奇派特石化有限公司 | The liquid-phase oxidation optimized |
Also Published As
Publication number | Publication date |
---|---|
JP2003510247A (en) | 2003-03-18 |
KR100642625B1 (en) | 2006-11-10 |
CN1264798C (en) | 2006-07-19 |
WO2000031014A1 (en) | 2000-06-02 |
EP1131276A1 (en) | 2001-09-12 |
WO2000031014A8 (en) | 2000-08-17 |
EP1131276A4 (en) | 2002-09-18 |
KR20010101068A (en) | 2001-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1264798C (en) | Purification and production method of high-purity aromatic polycarboxylic acid and derivatives thereof | |
US6291707B1 (en) | Process of purifying and producing high purity aromatic polycarboxylic acids and derivatives thereof | |
US20020002304A1 (en) | Process of purifying and producing high purity aromatic polycarboxylic acids | |
CN1310866C (en) | Process for the oxidative purification of terephthalic acid | |
TW201350520A (en) | Ethanolysis of PET to form DET and oxidation thereof | |
WO1998012157A2 (en) | Process for purification of aromatic polycarboxylic acids | |
JP2001288139A (en) | Method for producing high-purity terephthalic acid | |
GB2295149A (en) | Process for preparing an aqueous slurry of terephthalic acid by oxidation of p-xylene in acetic acid and washing with p-xylene or an acetic acid ester | |
CN1705629A (en) | Process for production of a carboxylic acid/diol mixture suitable for use in polyester production | |
CN1168131A (en) | Process for purifying crude naphthalenedicarboxylic acid | |
CN1910130A (en) | Process for production of a dried carboxylic acid cake suitable for use in polyester production | |
JP2001226315A (en) | Method for producing terephthalic acid | |
KR101943115B1 (en) | Improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry | |
CN1914145A (en) | Method for producing aromatic carboxylic acid | |
NZ550500A (en) | Recycling 2,6-naphthalenedicarboxlic acid (2,6-NDA) contained in polyethylene naphthalate in a process to produce diesters | |
KR101946657B1 (en) | Improving terephthalic acid purge filtration rate by controlling % water in filter feed slurry | |
US6579990B2 (en) | Process for producing refined pyromellitic acid and refined pyromellitic anhydride | |
CN116323538A (en) | The production method of fluorenone | |
JPH1180074A (en) | Production of highly pure 2,6-naphthalene dicarboxylic acid | |
CN1708472A (en) | Process for producing terephthalic acid | |
TWI249521B (en) | Process of purifying and producing high purity aromatic polycarboxylic acids and derivatives thereof | |
JPH1053557A (en) | Production of 2,6-naphthalenedicarboxylic acid having high purity | |
TW201502086A (en) | Pure plant waste water purification and recycle | |
FR2595692A1 (en) | PROCESS FOR THE PRODUCTION OF NAPHTHALENEDICARBOXYLIC ACID AT THE SAME TIME AS TRIMELLITIC ACID | |
JP7169241B2 (en) | Method for producing mixture of aromatic carboxylic acid and aliphatic organic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
C10 | Entry into substantive examination | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060719 Termination date: 20111119 |