CN1232728C - Valve less thin film driving micro pump - Google Patents
Valve less thin film driving micro pump Download PDFInfo
- Publication number
- CN1232728C CN1232728C CN 03118917 CN03118917A CN1232728C CN 1232728 C CN1232728 C CN 1232728C CN 03118917 CN03118917 CN 03118917 CN 03118917 A CN03118917 A CN 03118917A CN 1232728 C CN1232728 C CN 1232728C
- Authority
- CN
- China
- Prior art keywords
- film
- water hole
- tube
- micro
- cavities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 238000009792 diffusion process Methods 0.000 claims abstract description 4
- 210000002469 basement membrane Anatomy 0.000 claims abstract description 3
- 239000012528 membrane Substances 0.000 claims description 19
- 210000004379 membrane Anatomy 0.000 claims description 16
- 238000000034 method Methods 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 239000010408 film Substances 0.000 abstract 4
- 239000012530 fluid Substances 0.000 description 8
- 238000005086 pumping Methods 0.000 description 6
- 230000008602 contraction Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000708 deep reactive-ion etching Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Reciprocating Pumps (AREA)
Abstract
Description
技术领域technical field
本发明涉及薄膜驱动型微泵,属于微流体传输与控制、微机械The invention relates to a film-driven micropump, which belongs to microfluidic transmission and control, micromechanical
技术领域。technology field.
背景技术Background technique
微流体控制系统能精确检测和控制每分钟微升量级的流量,在药物微量输送、燃料微量喷射、细胞分离、集成电子元件冷却以及微量化学分析等方面有着重要的应用前景。微泵作为一个重要的微流体执行器件,是微流体系统发展水平的重要标志。目前应用较多的是薄膜驱动型微泵,它的流量控制是通过驱动膜的往复运动引起泵腔体的体积变化而实现的。驱动膜的驱动原理有压电、静电、电磁、热气动、双金属效应和形状记忆效应驱动等。在使用以上驱动方式的各类驱动器中,压电驱动器因其响应快、承载力高、能耗低和价格低等特点备受关注。薄膜驱动型微泵根据其有无可动阀片又可分为有阀微泵和无阀微泵。有阀微泵往往基于机械驱动,原理简单,制造工艺成熟,易于控制,是目前应用的主流;无阀微泵则利用流体在微尺寸下的新特性,原理新颖,更适于微型化,具有更大的发展前景。无论是有无可动阀片,目前应用的薄膜驱动型微泵普遍采用单膜单腔结构,由周期信号控制单腔容积的变化。假定,上半周期腔体容积增加,则微泵处于吸入状态;反之,下半周期泵腔体容积减少,微泵处于泵出状态。在一个工作周期中,微流体输出只存在于下半周期中,泵出与吸入不能同时进行。因此,存在周期性波动和流量不稳的情况,这很大限制了薄膜驱动型微泵的推广应用。The microfluidic control system can accurately detect and control the flow rate of microliters per minute, and has important application prospects in micro-delivery of drugs, micro-injection of fuel, cell separation, cooling of integrated electronic components, and microchemical analysis. As an important microfluidic actuator, the micropump is an important symbol of the development level of the microfluidic system. At present, the membrane-driven micropump is widely used, and its flow control is realized by changing the volume of the pump cavity caused by the reciprocating motion of the driving membrane. The driving principles of the driving membrane include piezoelectric, electrostatic, electromagnetic, thermopneumatic, bimetallic effect and shape memory effect driving. Among all kinds of drivers using the above driving methods, piezoelectric drivers have attracted much attention due to their fast response, high bearing capacity, low energy consumption and low price. Membrane-driven micropumps can be divided into valved micropumps and valveless micropumps according to whether they have a movable valve or not. Valved micropumps are often based on mechanical drive, with simple principles, mature manufacturing processes, and easy control, and are the mainstream of current applications; valveless micropumps use the new characteristics of fluids in micro-scale, novel principles, and are more suitable for miniaturization. Greater prospects for development. Regardless of whether there is a movable valve or not, the membrane-driven micropumps currently used generally adopt a single-membrane single-chamber structure, and the volume change of the single chamber is controlled by a periodic signal. It is assumed that the volume of the cavity increases in the first half cycle, and the micropump is in the suction state; otherwise, the volume of the pump cavity decreases in the second half cycle, and the micropump is in the pumping state. In a working cycle, the microfluidic output only exists in the second half cycle, and the pumping and suction cannot be performed at the same time. Therefore, there are periodic fluctuations and flow instability, which greatly limits the popularization and application of membrane-driven micropumps.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足之处,提供一种无阀薄膜驱动型微泵,该微泵是一种单膜双腔结构,能有效地解决周期性波动和流量不稳的问题,使输出流量连续稳定。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a valveless film-driven micropump, which is a single-membrane double-chamber structure, which can effectively solve the problems of periodic fluctuations and flow instability , so that the output flow is continuous and stable.
为实现上述目的,本发明采用的技术方案是:在上泵体上开有上泵腔、锥形扩散管、锥形收缩管、左侧水孔及右侧水孔,上泵腔通过扩散管与左侧水孔相连,通过收缩管与右侧水孔相连,在上泵体的下面有下泵体,在下泵体上开有相应的下泵腔、锥形扩散管、锥形收缩管及相应的左侧水孔、右侧水孔,下泵腔通过扩散管与左侧水孔相连,通过收缩管与右侧水孔相连,上、下泵腔由基底膜与功能膜构成的驱动膜隔离,两个扩散管与两个收缩管的锥形角度均相等。In order to achieve the above object, the technical solution adopted by the present invention is: the upper pump body is provided with an upper pump chamber, a tapered diffuser pipe, a tapered shrink pipe, a left water hole and a right water hole, and the upper pump chamber passes through the diffuser pipe. It is connected to the water hole on the left side, and connected to the water hole on the right side through the shrink tube. There is a lower pump body under the upper pump body, and the corresponding lower pump chamber, tapered diffuser tube, tapered shrink tube and Corresponding to the left water hole and the right water hole, the lower pump chamber is connected to the left water hole through the diffusion tube, and connected to the right water hole through the shrinkage tube. The upper and lower pump chambers are driven membranes composed of basement membrane and functional membrane. In isolation, the taper angles of the two diffusers and the two constrictors are equal.
本发明的优点在于:The advantages of the present invention are:
1.由于本发明采用了单膜双腔结构,利用信号控制两个腔体容积的变化,使两个腔体容积变化得到实时互补,输出流量连续稳定,且具有结构及工艺简单、响应快、驱动频率宽、可控性强、能耗低、寿命长等特点。1. Since the present invention adopts a single-membrane double-cavity structure, the volume changes of the two cavities are controlled by signals, so that the volume changes of the two cavities are complemented in real time, the output flow is continuous and stable, and it has simple structure and process, fast response, Wide drive frequency, strong controllability, low energy consumption, long life and so on.
2.本发明可采用微细加工和微机械技术相兼容的材料和工艺制造,具有体积小、成本低、容易和其它微检测和微控制元件集成等特点,适应于大批量生产。2. The present invention can be manufactured using materials and processes compatible with micromachining and micromechanical technology, and has the characteristics of small size, low cost, easy integration with other micro-detection and micro-control components, etc., and is suitable for mass production.
附图说明Description of drawings
图1为本发明一种实施例的结构简图。Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
图2为图1中A-A剖面图。Fig. 2 is a sectional view of A-A in Fig. 1 .
图3为图1实施例的轴视图。FIG. 3 is an axial view of the embodiment of FIG. 1 .
图4为本发明另一种实施例的结构简图。Fig. 4 is a schematic structural diagram of another embodiment of the present invention.
图5为图4中驱动膜的结构示意图。FIG. 5 is a schematic structural diagram of the driving membrane in FIG. 4 .
具体实施方式Detailed ways
如图1、图2、图3所示,在上泵体1上开有上泵腔4、锥形扩散管3、锥形收缩管7、左侧水孔2及右侧水孔8,在上泵体1的基底膜5表面置有一层功能膜6,形成驱动膜,该功能膜可以是压电膜或磁电膜等。上泵腔4通过扩散管3与水孔2相连,通过收缩管7与水孔8相连。在上泵体1的下面有下泵体13,在下泵体13上开有相应的下泵腔11、锥形扩散管12、锥形收缩管10及相应的水孔2、水孔8,下泵腔11通过扩散管12与水孔2相连,通过收缩管10与水孔8相连。上、下泵腔4、11由上述驱动膜隔离。两个扩散管3、12,两个收缩管7、10的锥形角度均相等。在上泵体1的上面置有封盖9,其上开有相应的左侧水孔2及右侧水孔8。As shown in Fig. 1, Fig. 2 and Fig. 3, an
当锥形扩散管3、12,锥形收缩管7、12的锥形角度a为5°~12°之间时,该泵的输出能力较大。When the taper angle a of the
工作时,驱动膜在交变电信号的激励下将发生近抛物球面状变形,从而使泵腔的体积发生增大和减小的交替变化。现将水孔2作进水端、水孔8作出水端,当上泵腔4容积减少ΔV,设上泵腔扩张管3输出流量为Q1、收缩管7输出流量为Q2,由于扩张管、收缩管在流体流向上呈锥形,根据收缩管、扩张管管内流体的流动特性,Q2>Q1,也即上泵腔4处于泵出状态;同时,下泵腔11容积相应增加ΔV,设下泵腔扩张管12输入流量为Q3、收缩管10输入流量为Q4,根据收缩管、扩张管管内流体的流动特性,Q3>Q4,也即下泵腔11处于吸入状态。在进水孔2端,上泵腔扩张管3实际起到流体收缩作用,下泵腔扩张管12起到流体扩张作用,Q3>Q1,整泵在进水孔2端处于吸入状态。在出水孔8端,上泵腔收缩管7实际起到流体扩张作用,下泵腔收缩管10起到流体收缩作用,Q2>Q4,整泵在出水孔8端处于泵出状态。由于上、下泵腔4、11对应布置,上泵腔4容积增加时,根据以上分析过程同理可知,整泵在进水孔2端仍处于吸入状态、在出水孔8端处于泵出状态。因此,在一个工作周期中,微泵实现了流体的连续吸入和泵出。微泵流量大小由交变电信号的幅度和频率控制。同时,本发明使用化学性能稳定、绝缘性能良好的光敏聚酰亚胺薄膜作为电隔离层,提高了微泵的可靠性和寿命。When working, the driving membrane will undergo a nearly parabolic deformation under the excitation of the alternating electric signal, so that the volume of the pump chamber will alternately change in increase and decrease. Now take the
本发明的主要技术指标可达到:外形尺寸为8mm×8mm×1.5mm(长×宽×高),腔体尺寸为5mm×0.3mm(直径×高),压电薄膜尺寸为3mm×3mm×40μm;流量在0.5-100μL/min连续可调;最高泵压为2.6Kpa。The main technical indicators of the present invention can be achieved: the overall size is 8mm×8mm×1.5mm (length×width×height), the cavity size is 5mm×0.3mm (diameter×height), and the piezoelectric film size is 3mm×3mm×40μm ; The flow rate is continuously adjustable from 0.5-100μL/min; the maximum pump pressure is 2.6Kpa.
结合图1对本发明的具体工艺流程作一定叙述。该微泵可由3层硅(玻璃)结构经硅(玻)-硅(玻)键合工艺组合而成,分别为上泵体、下泵体及封盖。首先使用厚膜制备工艺在上泵体的Si基下表面直接沉积一层约40μm的压电膜,在压电膜的背面使用深度反应离子刻蚀技术刻蚀出上泵腔体,进水孔,出水孔,收缩管,扩张管。刻蚀上泵腔体时,刻蚀至Si膜厚度约为100μm。下泵体的制作工艺除了无压电薄膜的制备,其余与上泵体相同。封盖的制作相对较为简单,只需刻蚀出相应的进、出水孔即可。三层结构采用硅(玻)-硅(玻)直接键合工艺键合在一起就组成了整泵。整个加工过程十分简单,适宜于批量生产。The specific technical process of the present invention is described in conjunction with Fig. 1. The micropump can be composed of three layers of silicon (glass) structures through a silicon (glass)-silicon (glass) bonding process, which are respectively an upper pump body, a lower pump body and a cover. First, a thick film preparation process is used to directly deposit a piezoelectric film of about 40 μm on the lower surface of the Si base of the upper pump body, and the deep reactive ion etching technology is used to etch the upper pump cavity and the water inlet hole on the back of the piezoelectric film. , Outlet hole, shrinkage tube, expansion tube. When etching the upper pump cavity, etch until the thickness of the Si film is about 100 μm. The manufacturing process of the lower pump body is the same as that of the upper pump body except for the preparation of the non-piezoelectric film. The production of the cover is relatively simple, only need to etch the corresponding water inlet and outlet holes. The three-layer structure is bonded together by silicon (glass)-silicon (glass) direct bonding process to form the whole pump. The whole processing process is very simple and suitable for mass production.
本发明的结构还可如图4、图5所示,由上泵体16,下泵体13及驱动膜组成,驱动膜由基底膜15及功能膜14构成,固定于上泵体16与下泵体13之间。The structure of the present invention can also be shown in Fig. 4, Fig. 5, be made up of
显然,本发明不仅适用于压电微泵,且可应用于其它的薄膜驱动微泵,如SMA薄膜驱动微泵、磁力薄膜驱动微泵、双金属热驱动微泵、热气驱动微泵等。Obviously, the present invention is not only applicable to piezoelectric micropumps, but also can be applied to other film-driven micropumps, such as SMA film-driven micropumps, magnetic film-driven micropumps, bimetal heat-driven micropumps, hot gas-driven micropumps, etc.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03118917 CN1232728C (en) | 2003-04-11 | 2003-04-11 | Valve less thin film driving micro pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 03118917 CN1232728C (en) | 2003-04-11 | 2003-04-11 | Valve less thin film driving micro pump |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1442612A CN1442612A (en) | 2003-09-17 |
CN1232728C true CN1232728C (en) | 2005-12-21 |
Family
ID=27797223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 03118917 Expired - Fee Related CN1232728C (en) | 2003-04-11 | 2003-04-11 | Valve less thin film driving micro pump |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1232728C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100356061C (en) * | 2006-02-14 | 2007-12-19 | 南京航空航天大学 | Ribbed miniature no-valve pump |
CN101709695B (en) * | 2009-11-19 | 2011-12-14 | 复旦大学 | Driving micro pump of photoinduced bending film |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100335784C (en) * | 2003-12-05 | 2007-09-05 | 清华大学 | Mini jockey pump |
DE10360709A1 (en) * | 2003-12-19 | 2005-10-06 | Bartels Mikrotechnik Gmbh | Micropump and glue-free process for bonding two substrates |
CN1583541B (en) * | 2004-05-27 | 2010-09-29 | 哈尔滨工程大学 | Micro-actuator adopting multi-layer driving film structure and manufacturing method thereof |
CN100443397C (en) * | 2004-05-28 | 2008-12-17 | 哈尔滨工业大学 | Processing method of micro-cooling measurement and control system |
CN1329659C (en) * | 2004-07-12 | 2007-08-01 | 哈尔滨工业大学 | Valveless micro-pump and packaging method thereof |
CN100335785C (en) * | 2004-11-12 | 2007-09-05 | 南京航空航天大学 | Piezoelectric pump |
CN100434728C (en) * | 2005-04-07 | 2008-11-19 | 北京大学 | Micro diffusion pump and its preparation method |
CN101975154B (en) * | 2010-10-12 | 2012-07-04 | 江苏大学 | Valve-free piezoelectric pump of logarithmic spiral combined tube |
CN101975153B (en) * | 2010-10-12 | 2012-07-04 | 江苏大学 | Valveless piezoelectric pump of elliptical combined pipe |
CN102562540A (en) * | 2011-12-27 | 2012-07-11 | 太原理工大学 | Diaphragm compressed valve-less micropump |
CN102691647B (en) * | 2012-05-02 | 2015-07-08 | 江苏大学 | Valveless piezoelectric pump with, axially symmetric elliptic tubes |
CN102691648B (en) * | 2012-05-02 | 2015-10-28 | 江苏大学 | A kind of axisymmetric logarithmic spiral pipe Valveless piezoelectric pump |
CN103644101B (en) * | 2013-11-11 | 2015-12-09 | 江苏大学 | A double-cavity parallel conical tube valveless piezoelectric pump |
CN104110355B (en) * | 2014-07-02 | 2016-04-20 | 南京理工大学 | The Micropump device that a kind of photo-induced telescopic material drives |
CN105526135B (en) * | 2015-12-08 | 2018-02-06 | 北京有色金属研究总院 | A kind of reversely low driving voltage bilateral pumping diaphragm valveless mems electrostatic pump and preparation method thereof |
CN105465590A (en) * | 2015-12-16 | 2016-04-06 | 太原重工股份有限公司 | Lubricating system and equipment with same |
CN107023464A (en) * | 2016-01-29 | 2017-08-08 | 研能科技股份有限公司 | Piezoelectric actuator |
CN107246377B (en) * | 2017-06-20 | 2019-04-30 | 江苏大学 | Valveless piezoelectric pump with one-way vortex tube structure and control method |
CN107731766A (en) * | 2017-09-14 | 2018-02-23 | 电子科技大学 | A kind of self-loopa fluid means for systems-on-a-chip radiating |
CN107605713A (en) * | 2017-10-26 | 2018-01-19 | 电子科技大学 | A kind of valve free pump of big flow |
CN110985358A (en) * | 2019-12-17 | 2020-04-10 | 西安电子科技大学 | Micropump driven by magnetic control SMP composite film |
CN112040723B (en) * | 2020-08-17 | 2022-10-28 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Integrated micro radiator and radiating system |
CN113833634B (en) * | 2021-09-01 | 2023-05-23 | 北京航空航天大学 | Electromagnetic driving MEMS micropump and integrated processing technology of micropump |
CN115163465B (en) * | 2022-08-02 | 2024-03-19 | 江苏大学 | Pulse miniature valveless diaphragm pump based on cavitation effect |
CN115479015B (en) * | 2022-10-14 | 2023-05-05 | 西安石油大学 | Valveless micropump for electrorheological fluid delivery and pumping method thereof |
-
2003
- 2003-04-11 CN CN 03118917 patent/CN1232728C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100356061C (en) * | 2006-02-14 | 2007-12-19 | 南京航空航天大学 | Ribbed miniature no-valve pump |
CN101709695B (en) * | 2009-11-19 | 2011-12-14 | 复旦大学 | Driving micro pump of photoinduced bending film |
Also Published As
Publication number | Publication date |
---|---|
CN1442612A (en) | 2003-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1232728C (en) | Valve less thin film driving micro pump | |
CN102678526B (en) | The travelling-wave-type Valveless Piezoelectric Micropump of multistage diffusion microchannel | |
CN102536755B (en) | A kind of closed-loop piezoelectric film pump and flow control method | |
Zhang et al. | Advances in valveless piezoelectric pump with cone-shaped tubes | |
CN1399070A (en) | Multiple-cavity piezoelectric film driven pump | |
CN100434728C (en) | Micro diffusion pump and its preparation method | |
Guo et al. | Valveless piezoelectric micropump of parallel double chambers | |
CN103939317A (en) | Micropump based on ultra-magnetostriction thin film actuator | |
CN102691648A (en) | Valveless piezoelectric pump with axisymmetric logarithmic spiral pipe | |
CN103511230B (en) | A kind of bicavate electric actuation valve free pump | |
CN107605713A (en) | A kind of valve free pump of big flow | |
CN100540896C (en) | A new self-priming micropump | |
CN102428273A (en) | Micropump | |
CN103016296B (en) | Based on the piezoelectric micropump of synthesizing jet-flow | |
CN203248325U (en) | Piezoelectric micropump based on synthetic jet | |
CN105508207A (en) | Piezoelectric pump with cymbal-shaped pump bodies | |
CN2623906Y (en) | Valveless film driven micropump | |
CN102230465B (en) | Valveless piezoelectric pump of Archimedes helical flow pipe | |
CN102562540A (en) | Diaphragm compressed valve-less micropump | |
CN203742955U (en) | Micropump based on giant magnetostrictive thin film driver | |
CN203925952U (en) | Closed-loop piezoelectric film pump | |
CN104358674A (en) | Biplane oil driven micropump based on giant magnetostrictive film driver | |
Yunas et al. | Design and fabrication of MEMS micropumps using double sided etching | |
CN105089993B (en) | Piezoelectric pump based on secondary resonance | |
CN202117898U (en) | Valveless piezoelectric pump with Achimedean spiral flow tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |