CN113670456B - A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution - Google Patents
A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution Download PDFInfo
- Publication number
- CN113670456B CN113670456B CN202111047931.3A CN202111047931A CN113670456B CN 113670456 B CN113670456 B CN 113670456B CN 202111047931 A CN202111047931 A CN 202111047931A CN 113670456 B CN113670456 B CN 113670456B
- Authority
- CN
- China
- Prior art keywords
- focal length
- wavefront
- conversion device
- length free
- free
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 238000006243 chemical reaction Methods 0.000 claims abstract description 99
- 238000001514 detection method Methods 0.000 claims abstract description 59
- 230000009466 transformation Effects 0.000 claims description 55
- 230000001131 transforming effect Effects 0.000 claims description 43
- 230000003287 optical effect Effects 0.000 claims description 41
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000004973 liquid crystal related substance Substances 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010587 phase diagram Methods 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 230000011218 segmentation Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 5
- 230000004075 alteration Effects 0.000 description 18
- 238000000605 extraction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
- G01J2009/002—Wavefront phase distribution
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Eye Examination Apparatus (AREA)
Abstract
一种空间分辨率可调的哈特曼波前传感器及波前复原方法,属于光电检测领域,包括工控机;与工控机相连的焦距变换装置和光电探测装置,所述焦距变换装置的光轴方向平行于被测光束的法线方向;设置在焦距变换装置和光电探测装置之间的波前分割装置,光电探测装置的接收面位于波前分割装置的焦平面处;焦距变换装置收集被检测光束,通过波前分割装置聚焦于光电探测装置接收面上,同时在光电探测装置接收面上形成阵列光斑信息,通过工控机记录阵列光斑信息并计算出波前复原信息。本发明可根据被测光束的实际探测需求调节空间分辨率,进一步提升波前传感器的探测性能,能在大动态范围探测需求条件下提升测量精度,为高精度的波前探测提供了有力保障。
A Hartmann wavefront sensor with adjustable spatial resolution and a wavefront restoration method belong to the field of photoelectric detection, and include an industrial computer; a focal length conversion device and a photoelectric detection device connected to the industrial computer; The direction is parallel to the normal direction of the measured beam; the wavefront dividing device is arranged between the focal length conversion device and the photoelectric detection device, and the receiving surface of the photoelectric detection device is located at the focal plane of the wavefront dividing device; the focal length conversion device collects the detected The light beam is focused on the receiving surface of the photoelectric detection device through the wavefront dividing device, and at the same time, array spot information is formed on the receiving surface of the photoelectric detection device, and the array spot information is recorded by the industrial computer and the wavefront restoration information is calculated. The invention can adjust the spatial resolution according to the actual detection requirement of the measured beam, further improve the detection performance of the wavefront sensor, improve the measurement accuracy under the condition of large dynamic range detection requirement, and provide a strong guarantee for high-precision wavefront detection.
Description
技术领域technical field
本发明属于光电检测技术领域,具体涉及一种空间分辨率可调的哈特曼波前传感器及波前复原方法。The invention belongs to the technical field of photoelectric detection, and in particular relates to a Hartmann wavefront sensor with adjustable spatial resolution and a wavefront recovery method.
背景技术Background technique
哈特曼波前传感器具有结构紧凑、抗干扰能力强、光能利用率高等优点,其在自适应光学、光学检测、光电探测等领域得到了广泛应用。The Hartmann wavefront sensor has the advantages of compact structure, strong anti-interference ability, and high utilization rate of light energy. It has been widely used in adaptive optics, optical detection, photoelectric detection and other fields.
公开号为CN1245904的中国专利公开了一种哈特曼波前传感器的经典结构形式,它是采用如微透镜阵列等光学元件,对入射光波的波前进行空间分割,将波面分割成多个子区域,最后将每个子区域的光束聚焦于光电探测器的接收面上,在接收面上形成一系列的阵列光斑,最后通过对阵列光斑质心的变化信息进行分析、处理,结合相应的复原算法,从而获得被测光束的波前信息。由于这种结构形式的波前传感器具有标定系统误差的优点,使其在实际的工程应用中备受青睐。在大动态范围需求的前提下,如何提升哈特曼波前传感器探测精度的研究工作已经成为一个研究热点。The Chinese patent publication number CN1245904 discloses a classic structural form of the Hartmann wavefront sensor, which uses optical elements such as microlens arrays to spatially divide the wavefront of the incident light wave and divide the wavefront into multiple sub-regions. Finally, focus the beam of each sub-area on the receiving surface of the photodetector, and form a series of array spots on the receiving surface. Finally, by analyzing and processing the change information of the centroid of the array spot, combined with the corresponding recovery algorithm, Obtain the wavefront information of the measured beam. Because the wavefront sensor with this structure has the advantage of calibrating the system error, it is favored in practical engineering applications. Under the premise of large dynamic range requirements, how to improve the detection accuracy of Hartmann wavefront sensors has become a research hotspot.
影响哈特曼波前传感器探测精度的因素主要有:信息提取、复原算法、结构形式。信息提取方面,光斑质心变化信息的准确提取,是实现高精度波前复原的保障,因此可以通过提升质心计算的精度,提高波前探测精度,例如“哈特曼夏克波前传感器的高精度质心探测方法”(李晶,巩岩等.[J].中国激光,2014,41(3))。波前复原方面,根据质心计算提供的信息,准确的重新构建被测光束的波前信息,因此通过改进、优化波前复原的算法,可以有效提升精度,例如公开号为CN102749143A的中国专利公开的一种提高夏克-哈特曼波前传感器测量精度的波前重构方法。从结构形式方面,可以通过提升空间分辨率的方式,增加波前分割子区域的数量,提高波前探测的精度。虽然通过优化信息提取的手段和波前重构算法能够进一步提升波前重构的精度,但是空间分辨率始终是波前探测的前提条件。在采用模式法进行波前复原时,无论是信息提取方面还是波前复原方面,都无法决定能够采用多少阶泽尼克多项式对被测波前进行复原。而采用足够的阶数,是保障完好复原出被测波前的保障。例如,当被测光束含有35阶的高阶像差时,而空间分辨率仅为2×2,在这样空间分辨率的条件下,仅能实现低阶像差成分的复原(前7阶),无法体现出35阶的高阶项,在这样的条件下,无论是信息提取方面还是波前复原算法方面,都无法提升精度,只能提升空间分辨率。当空间分辨率提升到10×10时,其能够实现65阶像差的复原,在这样空间分辨率的前提下,采用优化信息提取的手段和波前重构算法的方法才更加有意义。The main factors affecting the detection accuracy of the Hartmann wavefront sensor are: information extraction, restoration algorithm, and structural form. In terms of information extraction, the accurate extraction of the spot centroid change information is the guarantee for the realization of high-precision wavefront restoration. Therefore, the accuracy of the wavefront detection can be improved by improving the accuracy of the centroid calculation. Method” (Li Jing, Gong Yan, etc. [J]. China Laser, 2014, 41(3)). In terms of wavefront recovery, the wavefront information of the measured beam can be accurately reconstructed according to the information provided by the centroid calculation. Therefore, by improving and optimizing the wavefront recovery algorithm, the accuracy can be effectively improved. For example, the Chinese Patent Publication No. CN102749143A discloses A wavefront reconstruction method to improve the measurement accuracy of the Shack-Hartmann wavefront sensor. In terms of structural form, the number of sub-regions divided by the wavefront can be increased by improving the spatial resolution to improve the accuracy of wavefront detection. Although the accuracy of wavefront reconstruction can be further improved by optimizing information extraction methods and wavefront reconstruction algorithms, spatial resolution is always a prerequisite for wavefront detection. When using the pattern method to restore the wavefront, it is impossible to decide how many orders of Zernike polynomials can be used to restore the measured wavefront, whether in terms of information extraction or wavefront restoration. The adoption of a sufficient order is the guarantee that the measured wavefront can be recovered in good condition. For example, when the measured beam contains 35th-order high-order aberrations, and the spatial resolution is only 2×2, under the condition of such spatial resolution, only low-order aberration components can be restored (the first 7th order) , cannot reflect the high-order term of the 35th order. Under such conditions, neither the information extraction nor the wavefront restoration algorithm can improve the accuracy, but only improve the spatial resolution. When the spatial resolution is increased to 10×10, it can restore the 65th-order aberrations. Under the premise of such spatial resolution, it is more meaningful to use the means of optimizing information extraction and the method of wavefront reconstruction algorithm.
然而,目前缺少一种能够有效调节波前传感器空间分辨率的方法,因此迫切需要研制出一种能够在动态范围较大的条件下,依然可以进一步提升波前探测的精度的哈特曼波前传感器。However, there is currently a lack of a method that can effectively adjust the spatial resolution of the wavefront sensor. Therefore, it is urgent to develop a Hartmann wavefront that can further improve the accuracy of wavefront detection under the condition of a large dynamic range. sensor.
发明内容SUMMARY OF THE INVENTION
为了解决如何在大动态范围条件下提升哈特曼波前传感器的探测精度的难题,本发明提供一种空间分辨率可调的哈特曼波前传感器及波前复原方法。In order to solve the problem of how to improve the detection accuracy of the Hartmann wavefront sensor under the condition of large dynamic range, the present invention provides a Hartmann wavefront sensor with adjustable spatial resolution and a wavefront recovery method.
本发明为解决技术问题所采用的技术方案如下:The technical scheme adopted by the present invention for solving the technical problem is as follows:
本发明的一种空间分辨率可调的哈特曼波前传感器,包括:A Hartmann wavefront sensor with adjustable spatial resolution of the present invention includes:
工控机;industrial computer;
与工控机相连的焦距变换装置和光电探测装置,所述焦距变换装置的光轴方向平行于被测光束的法线方向;A focal length conversion device and a photoelectric detection device connected with the industrial computer, the optical axis direction of the focal length conversion device is parallel to the normal direction of the measured beam;
设置在焦距变换装置和光电探测装置之间的波前分割装置,所述光电探测装置的接收面位于波前分割装置的焦平面处;a wavefront dividing device arranged between the focal length conversion device and the photoelectric detection device, the receiving surface of the photoelectric detection device is located at the focal plane of the wavefront dividing device;
所述焦距变换装置收集被检测光束,通过波前分割装置聚焦于光电探测装置接收面上,同时在光电探测装置接收面上形成阵列光斑信息,通过工控机记录阵列光斑信息并计算出波前复原信息。The focal length conversion device collects the detected light beam, focuses it on the receiving surface of the photoelectric detection device through the wavefront dividing device, and forms array spot information on the receiving surface of the photoelectric detection device, records the array spot information through the industrial computer and calculates the wavefront recovery. information.
进一步的,所述焦距变换装置包括:与工控机相连的共轭补偿装置、安装在共轭补偿装置上的第一焦距自由变换装置和第二焦距自由变换装置;第二焦距自由变换装置置于第一焦距自由变换装置后方;所述共轭补偿装置带动第一焦距自由变换装置与第二焦距自由变换装置沿光轴方向移动。Further, the focal length conversion device includes: a conjugate compensation device connected with the industrial computer, a first focal length free conversion device and a second focal length free conversion device installed on the conjugate compensation device; behind the first focal length free transformation device; the conjugate compensation device drives the first focal length free transformation device and the second focal length free transformation device to move along the optical axis direction.
进一步的,所述第一焦距自由变换装置的焦距f1与第二焦距自由变换装置的焦距f2满足:Further, the focal length f 1 of the first focal length free transformation device and the focal length f 2 of the second focal length free transformation device satisfy:
(1)第一焦距自由变换装置与第二焦距自由变换装置之间的光学间隔 L=f1+f2;(1) The optical interval L=f 1 +f 2 between the first focal length free transformation device and the second focal length free transformation device;
(2)焦距变换装置1所需倍率β=f2/f1;(2) The required magnification of the focal
(3)f1=L/(1+β),f2=βL/(1+β)。(3) f 1 =L/(1+β), f 2 =βL/(1+β).
进一步的,所述第一焦距自由变换装置和第二焦距自由变换装置组成倍率变换光学系统,该倍率变换光学系统的结构形式为开普勒式望远结构或伽利略式望远结构。Further, the first focal length free transforming device and the second focal length free transforming device constitute a magnification transforming optical system, and the structural form of the magnification transforming optical system is a Kepler telescopic structure or a Galilean telescopic structure.
进一步的,当要求满足共轭探测时,该倍率变换光学系统选取开普勒式望远结构,第一焦距自由变换装置与第二焦距自由变换装置均为正透镜,焦距f1、 f2均大于零;当无特殊要求时,该倍率变换光学系统选取伽利略式望远结构,第一焦距自由变换装置与第二焦距自由变换装置均为正透镜,焦距f1小于零,焦距f2大于零。Further, when conjugate detection is required, the magnification conversion optical system selects a Kepler telephoto structure, the first focal length free conversion device and the second focal length free conversion device are both positive lenses, and the focal lengths f 1 and f 2 are both positive lenses. greater than zero; when there is no special requirement, the magnification conversion optical system adopts the Galilean telephoto structure, the first focal length free transforming device and the second focal length free transforming device are both positive lenses, the focal length f 1 is less than zero, and the focal length f 2 is greater than zero .
进一步的,所述第一焦距自由变换装置采用液晶空间光调制器、数字微镜、变形镜或变焦光学镜组;所述第二焦距自由变换装置采用液晶空间光调制器、数字微镜、变形镜或变焦光学镜组。Further, the first focal length free transformation device adopts a liquid crystal spatial light modulator, a digital micromirror, a deformable mirror or a zoom optical lens group; the second focal length free transformation device adopts a liquid crystal spatial light modulator, a digital micromirror, a deformation mirror or zoom optics.
进一步的,所述第一焦距自由变换装置与第二焦距自由变换装置均采用液晶空间光调制器实现焦距变换,被检测光束为矩形方形光斑,尺寸为D=2mm×2mm;所述第一焦距自由变换装置与第二焦距自由变换装置的相位图满足公式 (1):Further, the first focal length free transformation device and the second focal length free transformation device both use a liquid crystal spatial light modulator to realize focal length transformation, and the detected light beam is a rectangular square spot with a size of D=2mm×2mm; the first focal length The phase diagram of the free transformation device and the second focal length free transformation device satisfies the formula (1):
其中,λ表示被测光束的波长,f表示焦距变换装置的焦距,表示空间光调制器要生成的面型,x,y分别为坐标值;将f1、f2分别带入到公式(1)中,获得第一焦距自由变换装置与第二焦距自由变换装置所需要产生的面型。Among them, λ represents the wavelength of the measured beam, f represents the focal length of the focal length conversion device, Represents the surface shape to be generated by the spatial light modulator, x and y are the coordinate values respectively; bring f 1 and f 2 into formula (1) respectively, to obtain the first focal length free transformation device and the second focal length free transformation device. The face shape that needs to be produced.
采用本发明的一种空间分辨率可调的哈特曼波前传感器实现的波前复原方法,包括以下步骤:The wavefront restoration method realized by adopting a Hartmann wavefront sensor with adjustable spatial resolution of the present invention includes the following steps:
(1)被测光束通过第一焦距自由变换装置形成汇聚光束汇聚于第一焦距自由变换装置的焦点处,在经焦点继续向前传输时形成发散光束,传输至第二焦距自由变换装置处,经第二焦距自由变换装置准直后进入波前分割装置分割成多个子区域,在光电探测装置的接收面处形成阵列光斑;(1) The measured beam forms a converging beam through the first focal length free transforming device and converges at the focal point of the first focal length free transforming device, forms a diverging beam when it continues to transmit forward through the focus, and transmits to the second focal length free transforming device, After being collimated by the second focal length free transformation device, it enters the wavefront dividing device and is divided into a plurality of sub-regions, and an array light spot is formed at the receiving surface of the photoelectric detection device;
(2)通过工控机驱动共轭补偿装置调整焦距变换装置与波前分割装置之间的间隔;(2) Adjust the interval between the focal length conversion device and the wavefront dividing device by driving the conjugate compensation device through the industrial computer;
(3)光电探测装置将接收面处的阵列光斑数据传输至工控机中,通过工控机记录并存储阵列光斑数据;工控机根据公式(1)、焦距f1与焦距f2的需求及阵列光斑数据,利用灰度加权方法计算出相应的面型,同时根据公式(2)计算光斑的质心,根据质心偏移信息及公式(3)计算出波前斜率信息,采用基于模式法的复原方法复原波前信息,并控制第一焦距自由变换装置和第二焦距自由变换装置产生相应的面型,实现第一焦距自由变换装置与第二焦距自由变换装置的焦距变换;( 3 ) The photoelectric detection device transmits the array light spot data at the receiving surface to the industrial computer, and records and stores the array light spot data through the industrial computer ; The corresponding surface shape is calculated by the gray-scale weighting method, and the centroid of the light spot is calculated according to formula (2), and the wavefront slope information is calculated according to the centroid offset information and formula (3), and the restoration method based on the pattern method is used to restore wavefront information, and control the first focal length free transformation device and the second focal length free transformation device to generate corresponding surface shapes, so as to realize the focal length transformation of the first focal length free transformation device and the second focal length free transformation device;
其中,Iij表示光电探测装置接收面上第(i,j)个像素的光强,xij、yij分别表示第(i,j)个像素的坐标,xc、yc分别表示参考光束在该子孔径形成光斑的质心位置;Among them, I ij represents the light intensity of the (i, j)th pixel on the receiving surface of the photodetector, x ij , y ij represent the coordinates of the (i, j) th pixel, respectively, x c , y c represent the reference beam, respectively The centroid position of the light spot is formed at the sub-aperture;
其中,Lk(x,y)表示第k项Legendre多项式,l表示在波前复原时所采用的Legendre多项式的项数;f表示焦距变换装置的焦距;ak表示第k项Legendre多项式的系数;gx(i)表示X方向的斜率,gy(i)表示Y方向的斜率,s表示子孔径的数量,Δx表示表示X方向质心偏移量,Δy表示Y方向质心偏移量,表示微积分。Among them, L k (x, y) represents the k-th Legendre polynomial, l represents the number of Legendre polynomial terms used in wavefront restoration; f represents the focal length of the focal length conversion device; a k represents the k-th Legendre polynomial coefficients ; g x (i) represents the slope in the X direction, g y (i) represents the slope in the Y direction, s represents the number of sub-apertures, Δx represents the centroid offset in the X direction, Δy represents the centroid offset in the Y direction, Represents calculus.
进一步的,步骤(2)中,所述共轭补偿装置的移动方向与光轴传输方向平行,其调节量为变倍前第二焦距自由变换装置的焦距f2与变倍后第二焦距自由变换装置的焦距f2ˊ的差值即f2ˊ-f2;当该差值为正时,与光轴传输方向反向调节,使共轭补偿装置远离波前分割装置;当该差值为负时,与光轴传输方向同向调节,使共轭补偿装置接近波前分割装置。Further, in step (2), the moving direction of the conjugate compensation device is parallel to the transmission direction of the optical axis, and the adjustment amount is the focal length f 2 of the second focal length free conversion device before zooming and the second focal length free after zooming. The difference between the focal length f 2 ˊ of the conversion device is f 2 ˊ-f 2 ; when the difference is positive, it is adjusted in the opposite direction to the transmission direction of the optical axis, so that the conjugate compensation device is far away from the wavefront dividing device; When it is negative, it is adjusted in the same direction as the transmission direction of the optical axis, so that the conjugate compensation device is close to the wavefront division device.
进一步的,步骤(3)中,采用基于模式法的复原方法复原波前信息,模式法波前斜率信息的计算过程如下:Further, in step (3), adopt the restoration method based on the pattern method to restore the wavefront information, and the calculation process of the pattern method wavefront slope information is as follows:
G=L·A (4)G=L·A (4)
其中,列向量G为M个子孔径在X和Y方向上的波前斜率信息;L表示采用模式法进行波前重构时的重构矩阵;A表示模式系数;Among them, the column vector G is the wavefront slope information of the M sub-apertures in the X and Y directions; L is the reconstruction matrix when the wavefront is reconstructed by the mode method; A is the mode coefficient;
利用最小二乘的拟合方式,得到最小范数解:Using the least squares fitting method, the minimum norm solution is obtained:
A=L+·G (5)A=L + ·G (5)
其中,L+为矩阵L的广义逆矩阵,将系数带入公式(6)获得波前斜率φ(x,y):Among them, L + is the generalized inverse matrix of matrix L, and the coefficients are brought into formula (6) to obtain the wavefront slope φ(x, y):
其中,ak表示第k项Legendre多项式的系数。where a k represents the coefficient of the k-th Legendre polynomial.
本发明的有益效果是:The beneficial effects of the present invention are:
虽然通过优化信息提取的手段和波前重构的算法能够进一步提升波前重构的精度,但是空间分辨率始终是波前探测的前提条件。例如:当波前分割装置器件4的子孔径数为2x2时,在采用模式法进行波前复原时,其仅进能够针对低阶像差(前5阶像差)成分进行复原,无法检测高阶像差成分,即使此时采用优化信息提取手段和波前重构算法的技术途径,也难以实现高阶像差成分的检测。而此时将波前分割装置器件4的子孔径数为9x9时,此时能够获取更多关于入射波前的细节信息,其能够复原的像差阶数将提升至65阶,重构的波前面型更加贴切实际。由此可知,只有在空间分辨率满足需求的前提下,优化信息提取手段和波前重构算法,才能达到提升重构精度的预期效果。此外,当需要对不同口径的光束进行波前探测时,传统的哈特曼波前传感器的空间分辨率将随着口径的减小而减小,从而降低波前探测的精度。Although the accuracy of wavefront reconstruction can be further improved by optimizing information extraction methods and wavefront reconstruction algorithms, spatial resolution is always a prerequisite for wavefront detection. For example: when the number of sub-apertures of the
综上所述,本发明提供了一种空间分辨率可调的哈特曼波前传感器及波前复原方法,该空间分辨率可调的哈特曼波前传感器,可以根据被测光束的实际探测需求,调节空间分辨率,进一步提升波前传感器的探测性能。To sum up, the present invention provides a Hartmann wavefront sensor with adjustable spatial resolution and a method for restoring wavefront. The Hartmann wavefront sensor with adjustable spatial resolution can To meet the detection requirements, adjust the spatial resolution to further improve the detection performance of the wavefront sensor.
本发明中,焦距变换装置是一种焦距可调并且能够补偿离焦像差的装置,其中的第一焦距自由变换装置与第二焦距自由变换装置在倍率变换的过程中,除了能够实现焦距变换,还能够起到消除像差保障系统光束质量的作用。通过焦距变换装置调整倍率变换光学系统的倍率,控制波前分割装置有效子孔径的数量,实现空间分辨率的调正,在大动态范围探测需求的条件下,依然能够提升测量精度。In the present invention, the focal length conversion device is a device with adjustable focal length and capable of compensating for defocus aberration, wherein the first focal length free conversion device and the second focal length free conversion device in the process of magnification conversion, in addition to being able to realize focal length conversion , and can also play a role in eliminating aberrations and ensuring the beam quality of the system. The magnification of the magnification conversion optical system is adjusted by the focal length conversion device, the number of effective sub-apertures of the wavefront division device is controlled, and the spatial resolution is adjusted. Under the condition of large dynamic range detection requirements, the measurement accuracy can still be improved.
本发明中,波前分割装置位于焦距变换装置与光电探测装置之间,能够将映射光束聚焦于光电探测装置的接收面上,在光电探测装置接收面上形成阵列光斑信息,进而根据阵列光斑的变化信息,重构被测光束的波前信息。In the present invention, the wavefront dividing device is located between the focal length conversion device and the photoelectric detection device, which can focus the mapping beam on the receiving surface of the photoelectric detection device, and form the array spot information on the receiving surface of the photoelectric detection device, and then according to the array spot information Change the information and reconstruct the wavefront information of the measured beam.
本发明采用空间分辨率可调的哈特曼波前传感器进行探测,即使在被测光束尺寸比较小的情况下,通过倍率变换也能够实现较高的空间分辨率,为高精度的波前探测提供了有力保障。The invention adopts the Hartmann wavefront sensor with adjustable spatial resolution for detection, and even when the size of the measured beam is relatively small, a higher spatial resolution can be achieved through magnification conversion, which is a high-precision wavefront detection. Provides a strong guarantee.
采用本发明的一种空间分辨率可调的哈特曼波前传感器实现的波前复原方法,提高了空间分辨率,在大动态范围探测需求的条件下提高了波前探测精度。The wavefront restoration method realized by adopting the Hartmann wavefront sensor with adjustable spatial resolution of the present invention improves the spatial resolution and improves the detection accuracy of the wavefront under the condition of a large dynamic range detection requirement.
附图说明Description of drawings
图1为本发明的一种空间分辨率可调的哈特曼波前传感器的结构示意图。FIG. 1 is a schematic structural diagram of a Hartmann wavefront sensor with adjustable spatial resolution according to the present invention.
图2为焦距变换装置的光学结构示意图。FIG. 2 is a schematic diagram of the optical structure of the focal length conversion device.
图3为具体实施方式一中,β=2x时,波前分割装置的匹配示意图。FIG. 3 is a schematic diagram of the matching of the wavefront division device when β=2x in the first embodiment.
图4为具体实施方式一中,β=2x时,波前重构的残差图(RMS=0.022μm)。FIG. 4 is a residual diagram of wavefront reconstruction (RMS=0.022 μm) when β=2x in the first embodiment.
图5为具体实施方式二中,β=4x时,波前分割装置的匹配示意图。FIG. 5 is a schematic diagram of the matching of the wavefront division device when β=4x in the second embodiment.
图6为具体实施方式二中,β=4x时,波前重构的残差图(RMS=0.01μm)。FIG. 6 is a residual diagram of wavefront reconstruction (RMS=0.01 μm) when β=4x in the second embodiment.
图中,1、焦距变换装置,2、第一焦距自由变换装置,3、第二焦距自由变换装置,4、波前分割装置,5、光电探测装置,6、工控机,7、共轭补偿装置。In the figure, 1, focal length conversion device, 2, first focal length free conversion device, 3, second focal length free conversion device, 4, wavefront division device, 5, photoelectric detection device, 6, industrial computer, 7, conjugate compensation device.
具体实施方式Detailed ways
以下结合附图对本发明作进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings.
如图1所示,本发明的一种空间分辨率可调的哈特曼波前传感器,主要包括:焦距变换装置1、波前分割装置4、光电探测装置5和工控机6。As shown in FIG. 1 , a Hartmann wavefront sensor with adjustable spatial resolution of the present invention mainly includes: a focal
焦距变换装置1通过数据线与工控机6连接。焦距变换装置1置于系统最前端,焦距变换装置1的光轴方向平行于被测光束的法线方向,并且焦距变换装置1的光轴垂直于波前分割装置4和光电探测装置5。焦距变换装置1能够使被检测光源的口径与波前分割装置4的尺寸相匹配。焦距变换装置1用于收集被检测光束,用于对被测光束进行尺寸变换,调整被测光束映射到波前分割装置4上的覆盖面积,改变波前分割装置4有效子孔径的数目,从而改变空间分辨率。The focal
焦距变换装置1主要由第一焦距自由变换装置2、第二焦距自由变换装置3 和共轭补偿装置7组成。第一焦距自由变换装置2和第二焦距自由变换装置3 均安装在共轭补偿装置7上。第二焦距自由变换装置3置于第一焦距自由变换装置2后方,即第一焦距自由变换装置2置于第二焦距自由变换装置3前端,第一焦距自由变换装置2与第二焦距自由变换装置3之间的光学间隔为L。The focal
焦距变换装置1中,第一焦距自由变换装置2的焦距f1与第二焦距自由变换装置3的焦距f2满足如下的几何关系:In the focal
(1)焦距变换装置1的光学间隔为L=f1+f2;(1) The optical interval of the focal
(2)焦距变换装置1所需倍率为β=f2/f1;(2) The required magnification of the focal
(3)第一焦距自由变换装置2的焦距f1=L/(1+β),第二焦距自由变换装置 3的焦距f2=βL/(1+β)。(3) The focal length f 1 of the first focal length
第一焦距自由变换装置2和第二焦距自由变换装置3组成倍率变换光学系统,该倍率变换光学系统的结构形式可以是开普勒式望远结构或伽利略式望远结构,可以根据使用需求任意变换,并且能够保障系统的光束质量。当需要满足共轭探测时,则选取开普勒式望远结构,如图2中(a)所示,此时,第一焦距自由变换装置2与第二焦距自由变换装置3均为正透镜,焦距f1、f2均大于零。当无特殊要求时,则选取伽利略式望远结构,如图2中(b)图所示,此时,第一焦距自由变换装置2与第二焦距自由变换装置3均为正透镜,焦距f1小于零,焦距f2大于零。The first focal length
第一焦距自由变换装置2与第二焦距自由变换装置3可以选用液晶空间光调制器、数字微镜、变形镜、变焦光学镜组等具有变焦和消除像差功能的器件。The first focal length
本实施方式中,为了满足自适应光学共轭校正的需求,第一焦距自由变换装置2和第二焦距自由变换装置3组成倍率变换光学系统采用能够起到像传递作用的开普勒式望远结构。In this embodiment, in order to meet the requirements of adaptive optics conjugate correction, the first focal length free transforming
本实施方式中,第一焦距自由变换装置2与第二焦距自由变换装置3的光学间隔L=30mm,且第一焦距自由变换装置2的焦距为f1=10mm,则第二焦距自由变换装置3的焦距f2=β×f1。第一焦距自由变换装置2的焦距大于第二焦距自由变换装置3的焦距,在像传递的过程中对物体的像进行放大,以满足空间分辨率的需求。In this embodiment, the optical distance L=30mm between the first focal length free transforming
本实施方式中,第一焦距自由变换装置2与第二焦距自由变换装置3均选用液晶空间光调制器实现焦距变换,并且能够消除离焦像差,被检测光束尺寸为:D=2mm×2mm矩形方形光斑。当第一焦距自由变换装置2与第二焦距自由变换装置3均选用液晶空间光调制器时,其相位图满足公式(1)所示的关系:In this embodiment, both the first focal length free transforming
其中,λ表示被测光束的波长,f表示焦距变换装置1的焦距,表示空间光调制器要生成的面型,x,y分别为坐标值。将f1、f2分别带入到公式(1) 中,即可获得第一焦距自由变换装置2与第二焦距自由变换装置3所需要产生的面型。Among them, λ represents the wavelength of the measured beam, f represents the focal length of the focal
共轭补偿装置7通过数据线与工控机6连接。共轭补偿装置7能够带动第一焦距自由变换装置2与第二焦距自由变换装置3沿光轴方向进行移动,移动量近似等于第二焦距自由变换装置3调节前后焦距的差值。The
共轭补偿装置7用于调整第二焦距自由变换装置3与波前分割装置4之间的距离,能够保障被探测平面与波前分割平面的共轭关系,满足自适应光学校正系统的特殊需求。The
共轭补偿装置7可以选用以电机、压电陶瓷等驱动的具有直线位移调整功能的机构。The
本实施方式中,共轭补偿装置7采用压电陶瓷驱动的直线位移平台,其行程为30mm。In this embodiment, the
波前分割装置4置于第二焦距自由变换装置3的后方,同时波前分割装置4 置于光电探测装置5的前方,波前分割装置4用于接收焦距变换装置1输出的光束,波前分割装置4将变换后的光束进行空间分割,形成多个子区域,并将分割后子区域内的光束成像于光电探测装置5的接收面处。The
波前分割装置4子阵面的法线方向与焦距变换装置1的光轴方向保持一致,波前分割装置4整体尺寸大于被检测光源的口径,并且波前分割装置4整体尺寸与光电探测装置5的接收面尺寸相匹配。The normal direction of the sub-front of the
波前分割装置4可以采用连续表面微透镜阵列、二元菲涅尔微透镜阵列或梯度折射率微透镜阵列。The
本实施方式中,波前分割装置4具体采用连续表面微透镜阵列,单一子孔径大小为0.5mm×0.5mm,整体尺寸为15mm×15mm,焦距为30mm。In this embodiment, the
本实施方式中,波前分割装置4双面镀增透膜,提高能量利用率。In this embodiment, the
光电探测装置5通过数据线与工控机6连接。光电探测装置5的接收面位于波前分割装置4的焦平面处。光电探测装置5的接收面尺寸与波前分割装置4 整体尺寸相匹配。光电探测装置5接收被波前分割装置4分割后子区域内的像斑信息,记录子区域像斑的变化信息,进一步采用相应的重构算法,重构被测光束的波前像差。The
光电探测装置5可以选用四象限传感器、CCD探测器或CMOS探测器等光电转换器件。The
本实施方式中,光电探测装置5具体采用CCD探测器,接收面分辨率为1024 ×1024,像元尺寸为14μm,接收面尺寸为14.336mm×14.336mm。In this embodiment, the
利用本发明的一种空间分辨率可调的哈特曼波前传感器,实现被测光束波前复原的方法,其具体流程如下:Utilizing a Hartmann wavefront sensor with adjustable spatial resolution of the present invention to realize the method for restoring the measured beam wavefront, the specific process is as follows:
1、将被测光束通过第一焦距自由变换装置2形成汇聚光束,汇聚于第一焦距自由变换装置2的焦点,在经过焦点继续向前传输时形成发散光束,发散光束传输至第二焦距自由变换装置3处进行准直,经第二焦距自由变换装置3准直后进入波前分割装置4,经过波前分割装置4后,分割成多个子区域,在光电探测装置5的接收面处形成阵列光斑。1. Pass the measured beam through the first focal length
焦距变换装置1通过调整第一焦距自由变换装置2的焦距f1与第二焦距自由变换装置3的焦距f2,改变倍率β,将映射到波前分割装置4上的光斑面积改变β2倍,增加子孔径数目为原有的(β2-1)倍。The focal
2、通过工控机6驱动共轭补偿装置7调整焦距变换装置1与波前分割装置4之间的间隔,以满足共轭探测的需求。共轭补偿装置7的移动方向与光轴传输方向平行,其调节量为变倍前第二焦距自由变换装置3的焦距f2与变倍后第二焦距自由变换装置3的焦距f2ˊ两者的差值,即f2ˊ-f2;当该差值为正时,与光轴传输方向反向调节,使共轭补偿装置7远离波前分割装置4;当该差值为负时,与光轴传输方向同向调节,使共轭补偿装置7接近波前分割装置4。2. The
3、最后,光电探测装置5将接收面处的阵列光斑数据即阵列光斑的光强信息通过数据线传输至工控机6中,通过工控机6记录并存储阵列光斑数据。工控机6根据公式(1)中的关系、焦距f1与焦距f2的需求以及存储的阵列光斑数据,利用灰度加权方法计算出相应的面型,同时根据公式(2)计算光斑的质心,根据公式(3)计算出波前斜率信息,采用基于模式法的复原方法,复原波前信息,并控制第一焦距自由变换装置2和第二焦距自由变换装置3产生相应的面型,实现第一焦距自由变换装置2与第二焦距自由变换装置3的焦距变换。3. Finally, the
其中,Iij表示光电探测装置5接收面上第(i,j)个像素的光强,xij、yij分别表示第(i,j)个像素的坐标,xc、yc分别表示参考光束在该子孔径形成光斑的质心位置。Among them, I ij represents the light intensity of the (i, j)th pixel on the receiving surface of the
根据质心偏移的信息,根据公式(3)计算出波前斜率信息。According to the information of the centroid offset, the wavefront slope information is calculated according to formula (3).
其中,Lk(x,y)表示第k项Legendre多项式,l表示在波前复原时所采用的Legendre多项式的项数。f表示焦距变换装置1的焦距。ak表示第k项Legendre 多项式的系数。gx(i)表示X方向的斜率。gy(i)表示Y方向的斜率。s表示子孔径的数量。Δx表示表示X方向质心偏移量。Δy表示Y方向质心偏移量。表示微积分。Wherein, L k (x, y) represents the k-th Legendre polynomial, and l represents the number of Legendre polynomial terms used in the wavefront restoration. f represents the focal length of the focal
其中,采用基于模式法的复原方法,复原波前信息,模式法波前斜率信息的计算过程如下:Among them, the restoration method based on the pattern method is used to restore the wavefront information, and the calculation process of the wavefront slope information of the pattern method is as follows:
G=L·A (4)G=L·A (4)
其中,列向量G为M个子孔径在X和Y方向上的波前斜率信息;L表示采用模式法进行波前重构时的重构矩阵;A表示模式系数。利用最小二乘的拟合方式,可以得到最小范数解:Among them, the column vector G is the wavefront slope information of the M sub-apertures in the X and Y directions; L is the reconstruction matrix when the wavefront is reconstructed by the mode method; A is the mode coefficient. Using the least squares fitting method, the minimum norm solution can be obtained:
A=L+·G (5)A=L + ·G (5)
其中,L+为矩阵L的广义逆矩阵,将系数带入公式(6),即可获得波前斜率φ(x,y):Among them, L + is the generalized inverse matrix of matrix L, and the coefficients are brought into formula (6) to obtain the wavefront slope φ(x, y):
其中,ak表示第k项Legendre多项式的系数。where a k represents the coefficient of the k-th Legendre polynomial.
具体实施方式一Specific implementation one
设焦距变换装置1所需倍率为β=2x,则第一焦距自由变换装置2的焦距 f1=10mm,第二焦距自由变换装置3的焦距f2=20mm。此时,映射光斑尺寸与波前分割装置4的匹配关系如图3所示,有效子孔径数目为:8x8。采用本发明的复原方法,将光电探测装置5探测的波前像差信息与被测光束实际含有的像差相减,获得波前重构的残差图如图4所示,复原后RMS(均方根值)=0.022μ m。波前复原残差更小,表明更加接近理论值,测量精度更高。Assuming that the required magnification of the focal
具体实施方式二Specific embodiment two
设焦距变换装置1所需倍率为β=3x,则第一焦距自由变换装置2的焦距 f1=10mm,第二焦距自由变换装置3的焦距f2=30mm。此时,映射光斑尺寸与波前分割装置4的匹配关系如图5所示,有效子孔径数目为:12x12。采用本发明的复原方法,将光电探测装置5探测的波前像差信息与被测光束实际含有的像差相减,获得的波前重构的残差图如图6所示,复原后RMS(均方根值)=0.01 μm。波前复原残差更小,表明更加接近理论值,测量精度更高。Assuming that the required magnification of the focal
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111047931.3A CN113670456B (en) | 2021-09-08 | 2021-09-08 | A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111047931.3A CN113670456B (en) | 2021-09-08 | 2021-09-08 | A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113670456A CN113670456A (en) | 2021-11-19 |
CN113670456B true CN113670456B (en) | 2022-10-21 |
Family
ID=78548823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111047931.3A Active CN113670456B (en) | 2021-09-08 | 2021-09-08 | A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113670456B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116087067B (en) * | 2023-04-07 | 2023-12-29 | 深圳市帝迈生物技术有限公司 | Optical flow cytometer for blood cell characterization |
CN116678320B (en) * | 2023-08-03 | 2023-10-27 | 中国人民解放军63921部队 | Telescope surface type optical detection system and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472570B (en) * | 2013-09-17 | 2015-06-10 | 中国科学院长春光学精密机械与物理研究所 | Hartmann sensor zooming collimation lens matched with pupils |
CN104239740B (en) * | 2014-09-26 | 2018-04-13 | 中国科学院光电技术研究所 | Mode wavefront restoration method based on Hartmann wavefront sensor |
CN106482838B (en) * | 2016-09-30 | 2019-07-05 | 中国科学院光电技术研究所 | A Wavefront Sensor Based on Adaptive Fitting |
CN112304443B (en) * | 2020-10-30 | 2022-10-21 | 中国科学院光电技术研究所 | Hartmann wavefront sensor with variable spatial resolution |
-
2021
- 2021-09-08 CN CN202111047931.3A patent/CN113670456B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113670456A (en) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100580501C (en) | Adaptive Optics Stellar Target Imaging System Based on Image Clearing Principle | |
CN1987547B (en) | A device for automatically correcting telescope aberrations by using the secondary mirror of the telescope | |
CN106371102B (en) | Inverse Synthetic Aperture Lidar Signal Receiving System Based on Adaptive Optics | |
CN113670456B (en) | A Wavefront Restoration Method Using a Hartmann Wavefront Sensor with Adjustable Spatial Resolution | |
CN112304443B (en) | Hartmann wavefront sensor with variable spatial resolution | |
CN102122082B (en) | Phase shift error correction device of sparse optical synthetic aperture imaging system | |
CN102879110B (en) | Adaptive optical system based on modulation and non-modulation combined pyramid wave-front sensor | |
CN103335950B (en) | Device and method for measuring atmospheric turbulence non-isoplanatic wavefront error and turbulence characteristic parameters | |
CN1831499A (en) | Self-adaptive optical system based on microprism shack-Hartmann wavefront sensor | |
CN1908722A (en) | High-resolution imaging self-adaptive optical telescope suitable for working in daytime | |
CN101285712B (en) | Linear phase inversion wavefront sensor based on discrete light intensity measuring device | |
CN104034434B (en) | Wavefront phase sensor based on self-adaptive fiber coupler array | |
CN114323310B (en) | High-resolution Hartmann wavefront sensor | |
CN109739033A (en) | A liquid crystal aberration correction method without wavefront detection | |
CN110487425A (en) | A kind of wavefront sensing methods and its device based on defocus type light-field camera | |
CN102507019A (en) | Hartmann wavefront sensor based on micro-scanning for image quality detection | |
CN114283093B (en) | A distortion image correction method based on wavefront control | |
CN105466576B (en) | Device and method for synchronously measuring height and angle non-isohalo wavefront errors of atmospheric turbulence | |
CN110736555B (en) | Laser transmission thermal halo effect and adaptive optical compensation simulation device thereof | |
CN105044906B (en) | A kind of Quick Extended target imaging bearing calibration based on image information | |
CN114186664B (en) | A method of pattern wavefront restoration based on neural network | |
CN103256990B (en) | A kind of diffraction pyramid wave-front sensor | |
CN210893429U (en) | Defocusing type light field camera wavefront sensor | |
CN101285711A (en) | Linear phase inversion wavefront sensor based on area array CCD | |
CN116047748B (en) | Wavefront control device for adaptive optical telescope based on variable resolution Hartmann |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |