CN113264770A - 一种抗弯折MXene/碳复合材料散热膜制备方法 - Google Patents
一种抗弯折MXene/碳复合材料散热膜制备方法 Download PDFInfo
- Publication number
- CN113264770A CN113264770A CN202110583225.4A CN202110583225A CN113264770A CN 113264770 A CN113264770 A CN 113264770A CN 202110583225 A CN202110583225 A CN 202110583225A CN 113264770 A CN113264770 A CN 113264770A
- Authority
- CN
- China
- Prior art keywords
- mxene
- heat dissipation
- film
- carbon composite
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62218—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
- C04B2235/3843—Titanium carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3856—Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种抗弯折MXene/碳复合材料散热膜制备方法,涉及一种复合材料散热膜制备方法,首先采用聚酰亚胺(polyimide)作为基体,刻蚀MAX相得到的MXene颗粒作为增强材料,易成碳聚合物作为中间层,经过充分混合、反应、涂膜、固化形成MXene/成碳聚合物/聚酰亚胺复合膜。其次将制备的MXene/成碳聚合物/聚酰亚胺复合膜装入高温碳化炉中,保护气氛下进行高温热解与碳化形成MXene/碳复合材料。最后用水与乙醇反复清洗其表面,获得抗弯折MXene/碳复合材料散热膜。该方法制备的MXene/碳复合材料散热膜不仅具备优异的耐热性以及散热性,且其质轻强度高,具有突出的抗弯折性能,可用于大功率电子设备、LED背底、微电子与传感器件等散热。
Description
技术领域
本发明涉及一种散热膜制备方法,特别是涉及一种抗弯折MXene/碳复合材料散热膜制备方法。
背景技术
5G、6G网络高速发展阶段,智能手机、笔记本电脑等智能设备离不开CPU等芯片,芯片与散热器之间存在很多沟壑或空隙,充斥着大量空气,然而空气的热阻值很高,因此通常采用其他介质降低热阻。特别是,智能机及电脑等电子设备终究归向便携式、多功能化的方向发展,在方便生活的同时,由于散热问题,同时也成为威胁人类安全的隐患。因此,芯片散热问题也是电子领域的研究热点。
常用的导热硅胶、硅脂由于其黏着性很强,残留物很难清除;而碳化的聚酰亚胺(polyimide)膜,由于其具有低密度、高散热性、能有效反射电磁波和较高的导热系数等优点,具有广阔的应用前景。现在大部分电子设备的散热膜是石墨膜及复合石墨膜、碳化的聚酰亚胺膜等材料,其中石墨膜制备复杂、密度较大、难以成型,制备出的膜厚度为0.1mm左右,其结构缺陷多、散热性较差;碳化的聚酰亚胺膜的厚度通常只有几微米(μm),其密度较小、散热较好,但柔韧性差、不易存储运输,在装备使用过程中消耗过大,所以仅使用纯的碳化聚酰亚胺膜的成本造价过高。
MXene材料柔韧度强、密度低,且导热性好。MXene材料一般是由M层和X层组成,M可以是Ti,X可以是C,因此具有很好的稳定性。MXene可以在聚合物中自由运动获得均匀分布,在很大程度上保留了MXene的二维层片状结构特性而不被破坏,为制备具有优异机械柔韧性的MXene复合材料提供了可能性。由于MXene是二维层状结构,原子和原子之间存在较大空隙,所以在与聚合物进行复合时,一些聚合物分子可分布在双层结构之间,形成了良好的导热通路,实现力学与导热性能协同增强。因此,将MXene材料和碳化的聚酰亚胺复合制备散热膜,不仅制备方法简单、可行性强,且成本低,能够较好地弥补单一碳化聚酰亚胺膜的性能不足。
发明内容
本发明的目的在于提供一种抗弯折MXene/碳复合材料散热膜制备方法,该方法将MXene材料分散在DMAc等有机溶剂中,使MXene能够与聚酰亚胺前驱体均匀地混合,方法简单,易于操作;所加入层状MXene材料,有效地弥补纯聚酰亚胺碳化后柔韧性的不足,制备的MXene/碳复合材料具有较高的导热性、柔韧性和综合性能,解决了现有散热膜不抗弯折的问题。
本发明的目的是通过以下技术方案实现的:
一种抗弯折MXene/碳复合材料散热膜制备方法,所述方法包括如下制备步骤:
(1)将易成碳聚合物和MXene颗粒溶于极性溶剂中,超声、搅拌形成均匀、稳定的混合溶液;
(2)将上述混合溶液按比例加入到聚酰亚胺前驱体溶液中,搅拌、共混形成MXene/易成聚合物/聚酰亚胺复合前驱体;
(3)采用涂膜工艺涂覆于平板形成前驱体膜,放入固化炉中,经过热固化形成具有三层结构的MXene/易成聚合物/聚酰亚胺复合膜;
(4)将MXene/易成聚合物/聚酰亚胺复合膜放入碳化炉,在惰性气体保护氛围下进行高温碳化,降温冷却后再用溶剂清洗其表面,制得抗弯折MXene/碳复合材料散热膜。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(1)中易成碳聚合物为碳含量大于50%的聚醚醚酮、聚酰亚胺、环氧树脂、酚醛树脂、双马来酰亚胺、聚芳炔中的任意一个或任意组合。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(1)中MXene颗粒是二维层状结构Ti2C、Ti3C2、Ti2N、Ti3N2、Ti4N3、Ti3(CN)、Zr2C、Zr3C2、Zr2N、Zr3N2、Zr3N3、Hf2C、Hf2C3、Hf2N、Hf3N2、Hf3N3、V2C、V4C3、V2N、V2N2、V2N3、Cr2C、Cr2C2、Cr2N、Mo2C、Mo2C2、Mo2N、Nb2C、Nb4C3、Nb2N、Ta2C、Ta4C3、Ta2N、Sc2C中的任意一个或任意组合,平均厚度为0.1~10nm,平均粒径为10~10000nm,使用前需经过1~50wt%的氢氟酸刻蚀0.5~12h。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(1)中极性溶剂为水、甲醇、乙醇、甲苯、甲酰胺、三氟乙酸、二甲基亚砜、乙腈、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、六甲基磷酰胺、乙酸、异丙醇、吡啶、四甲基乙二胺、丙酮、三乙胺、正丁醇、二氧六环、四氢呋喃、甲酸甲酯、三丁胺、甲乙酮、乙酸乙酯、氯仿、三辛胺、碳酸二甲酯、乙醚、异丙醚、正丁醚、三氯乙烯、二苯醚、二氯甲烷、二氯乙烷、环己烷、N-甲基吡咯烷酮中的一种或以任意比例组合。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(1)中易成碳聚合物为极性溶剂用量的0.01~20wt%,MXene颗粒为极性溶剂用量的0.01~40wt%,搅拌时间为0.1~5小时,形成均匀稳定的混合溶液为胶体溶液。
所述一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(2)中聚酰亚胺前驱体为聚酰亚胺、聚酰胺酸或其衍生物的溶液,浓度为0.1~50wt%,溶剂为上述权利要求4所指的极性溶剂,前驱体的用量为MXene颗粒用量的0.1~500倍,搅拌时间为0.1~5小时。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(3)中涂膜工艺包括旋涂、刮涂、喷涂、蘸涂、滴涂、模具法、半烘干法。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(3)中混合溶液涂覆成膜,在涂覆过程中控制膜的厚度在0.1~1000μm之间;固化过程温度为100~500℃,保温时间为0.1~24小时。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(4)中碳化膜的清洗采用水或乙醇反复清洗1~5次。
所述的一种抗弯折MXene/碳复合材料散热膜制备方法,所述步骤(4)中惰性气体为氮气、氩气、氦气中的任意一种或任意组合;碳化温度为500~2000℃,保温时间为0.1~24小时。
本发明的优点与效果是:
(1)本发明通过加热、再混合的方法将MXene材料分散在DMAc等有机溶剂中,使MXene能够与聚酰亚胺前驱体均匀地混合,方法简单,易于操作;
(2)本发明所加入了层状MXene材料,呈双层结构,同层原子紧密排列,显示出良好的柔韧性,将其与聚酰亚胺复合碳化,可以有效地弥补纯聚酰亚胺碳化后柔韧性的不足。
(3)MXene和聚酰亚胺为主要原料制备的MXene/碳复合材料具有较高的导热性、柔韧性和综合性能,能解决现有散热膜不抗弯折的问题。
附图说明
图1是MXene/碳复合材料的微观形貌图;
图2是MXene/碳复合材料散热效果模拟图;
图3是不同温度下制备的MXene/碳复合材料的XRD图谱。
具体实施方式
下面结合附图所示实施例对本发明进行详细说明。
实施例1
首先,将0.5g洗涤、干燥后的Ti3C2的MXene颗粒加入0.1g的易成碳聚酰亚胺和20mL的N,N-二甲基乙酰胺超声分散,搅拌1小时后形成包覆易成碳聚酰亚胺包覆的Ti3C2胶体溶液。其次,将5g的聚酰胺酸前驱体溶液加入胶体溶液,搅拌溶液1小时使其混合、摇匀,制得MXene/易成碳聚酰亚胺/聚酰胺酸混合前驱体溶液;然后,将上述混合前驱体溶液喷涂于基板上,放入固化炉中在100℃,200℃分别处理2小时,再升温到300℃固化3小时,制备的MXene/易成碳聚酰亚胺/聚酰亚胺复合膜。最后,将上述复合膜放入高温碳化炉中,在氮气保护下升温到1500℃,保温2h,待冷却后取出,用水与乙醇分别清洗3次,得到的抗弯折MXene/碳复合材料散热膜。经测试,散热膜的导热系数为217W/mK,面密度为84.76g/m2,失重率为40.64%。
实施例2
首先,将0.6g洗涤、干燥后的Ti2N的MXene颗粒加入0.06g的易成碳双马来酰亚胺和15mL的N,N-二甲基乙酰胺超声分散,搅拌2小时后形成包覆易成碳聚酰亚胺包覆的Ti2N胶体溶液。其次,将10g的聚酰亚胺前驱体溶液加入胶体溶液,搅拌溶液1.5小时使其混合、摇匀,制得MXene/易成碳双马来酰亚胺/聚酰亚胺混合前驱体溶液;然后,将上述混合前驱体溶液刮涂于基板上,放入固化炉在100℃,200℃,300℃分别处理2小时,再升温到350℃固化1小时,制备的产物MXene/易成碳双马来酰亚胺/聚酰亚胺复合膜。最后,将上述复合膜放入高温碳化炉中,在氩气保护下升温到1400℃,保温3h,待冷却后取出,得到的抗弯折MXene/碳复合材料散热膜。经测试,散热膜的导热系数为201W/mK,面密度为85.56g/m2,失重率为40.33%。
以上实施例并不是全部实施方式的列举。在本发明基础上的步骤替换、变换、改进等实现制备抗弯折MXene/碳复合材料散热膜的技术方案,也在本发明的权利要求范围之内。
Claims (10)
1.一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述方法包括如下制备步骤:
(1)将易成碳聚合物和MXene颗粒溶于极性溶剂中,超声、搅拌形成均匀、稳定的混合溶液;
(2)将上述混合溶液按比例加入到聚酰亚胺前驱体溶液中,搅拌、共混形成MXene/易成聚合物/聚酰亚胺复合前驱体;
(3)采用涂膜工艺涂覆于平板形成前驱体膜,放入固化炉中,经过热固化形成具有三层结构的MXene/易成聚合物/聚酰亚胺复合膜;
(4)将MXene/易成聚合物/聚酰亚胺复合膜放入碳化炉,在惰性气体保护氛围下进行高温碳化,降温冷却后再用溶剂清洗其表面,制得抗弯折MXene/碳复合材料散热膜。
2.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(1)中易成碳聚合物为碳含量大于50%的聚醚醚酮、聚酰亚胺、环氧树脂、酚醛树脂、双马来酰亚胺、聚芳炔中的任意一个或任意组合。
3.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(1)中MXene颗粒是二维层状结构Ti2C、Ti3C2、Ti2N、Ti3N2、Ti4N3、Ti3(CN)、Zr2C、Zr3C2、Zr2N、Zr3N2、Zr3N3、Hf2C、Hf2C3、Hf2N、Hf3N2、Hf3N3、V2C、V4C3、V2N、V2N2、V2N3、Cr2C、Cr2C2、Cr2N、Mo2C、Mo2C2、Mo2N、Nb2C、Nb4C3、Nb2N、Ta2C、Ta4C3、Ta2N、Sc2C中的任意一个或任意组合,平均厚度为0.1~10nm,平均粒径为10~10000nm,使用前需经过1~50wt%的氢氟酸刻蚀0.5~12h。
4.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(1)中极性溶剂为水、甲醇、乙醇、甲苯、甲酰胺、三氟乙酸、二甲基亚砜、乙腈、N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、六甲基磷酰胺、乙酸、异丙醇、吡啶、四甲基乙二胺、丙酮、三乙胺、正丁醇、二氧六环、四氢呋喃、甲酸甲酯、三丁胺、甲乙酮、乙酸乙酯、氯仿、三辛胺、碳酸二甲酯、乙醚、异丙醚、正丁醚、三氯乙烯、二苯醚、二氯甲烷、二氯乙烷、环己烷、N-甲基吡咯烷酮中的一种或以任意比例组合。
5.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(1)中易成碳聚合物为极性溶剂用量的0.01~20wt%,MXene颗粒为极性溶剂用量的0.01~40wt%,搅拌时间为0.1~5小时,形成均匀稳定的混合溶液为胶体溶液。
6.根据权利要求1所述一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(2)中聚酰亚胺前驱体为聚酰亚胺、聚酰胺酸或其衍生物的溶液,浓度为0.1~50wt%,溶剂为上述权利要求4所指的极性溶剂,前驱体的用量为MXene颗粒用量的0.1~500倍,搅拌时间为0.1~5小时。
7.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(3)中涂膜工艺包括旋涂、刮涂、喷涂、蘸涂、滴涂、模具法、半烘干法。
8.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(3)中混合溶液涂覆成膜,在涂覆过程中控制膜的厚度在0.1~1000μm之间;固化过程温度为100~500℃,保温时间为0.1~24小时。
9.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(4)中碳化膜的清洗采用水或乙醇反复清洗1~5次。
10.根据权利要求1所述的一种抗弯折MXene/碳复合材料散热膜制备方法,其特征在于,所述步骤(4)中惰性气体为氮气、氩气、氦气中的任意一种或任意组合;碳化温度为500~2000℃,保温时间为0.1~24小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110583225.4A CN113264770B (zh) | 2021-05-27 | 2021-05-27 | 一种抗弯折MXene/碳复合材料散热膜制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110583225.4A CN113264770B (zh) | 2021-05-27 | 2021-05-27 | 一种抗弯折MXene/碳复合材料散热膜制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113264770A true CN113264770A (zh) | 2021-08-17 |
CN113264770B CN113264770B (zh) | 2022-11-11 |
Family
ID=77233150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110583225.4A Active CN113264770B (zh) | 2021-05-27 | 2021-05-27 | 一种抗弯折MXene/碳复合材料散热膜制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113264770B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124693A1 (en) * | 2004-12-15 | 2006-06-15 | Meloni Paul A | Thermally conductive polyimide film composites having high mechanical elongation useful as a heat conducting portion of an electronic device |
CN102560453A (zh) * | 2012-03-08 | 2012-07-11 | 哈尔滨工业大学 | 利用石墨烯增强聚酰亚胺树脂碳化制备碳化膜的方法 |
CN110330646A (zh) * | 2019-06-21 | 2019-10-15 | 广东工业大学 | 一种柔性聚酰亚胺基复合介电薄膜材料及其制备方法和应用 |
CN110354697A (zh) * | 2019-06-24 | 2019-10-22 | 大连理工大学盘锦产业技术研究院 | 一种基于MXene材料的混合基质膜及其制备方法 |
CN111471300A (zh) * | 2020-06-01 | 2020-07-31 | 中国科学院合肥物质科学研究院 | 一种导热聚酰亚胺绝缘膜及其制备方法 |
-
2021
- 2021-05-27 CN CN202110583225.4A patent/CN113264770B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060124693A1 (en) * | 2004-12-15 | 2006-06-15 | Meloni Paul A | Thermally conductive polyimide film composites having high mechanical elongation useful as a heat conducting portion of an electronic device |
CN102560453A (zh) * | 2012-03-08 | 2012-07-11 | 哈尔滨工业大学 | 利用石墨烯增强聚酰亚胺树脂碳化制备碳化膜的方法 |
CN110330646A (zh) * | 2019-06-21 | 2019-10-15 | 广东工业大学 | 一种柔性聚酰亚胺基复合介电薄膜材料及其制备方法和应用 |
CN110354697A (zh) * | 2019-06-24 | 2019-10-22 | 大连理工大学盘锦产业技术研究院 | 一种基于MXene材料的混合基质膜及其制备方法 |
CN111471300A (zh) * | 2020-06-01 | 2020-07-31 | 中国科学院合肥物质科学研究院 | 一种导热聚酰亚胺绝缘膜及其制备方法 |
Non-Patent Citations (1)
Title |
---|
杨以娜等: "MXenes在柔性力敏传感器中的应用研究进展", 《无机材料学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN113264770B (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Niu et al. | Highly transparent and self‐healable solar thermal anti‐/deicing surfaces: when ultrathin MXene multilayers marry a solid slippery self‐cleaning coating | |
Li et al. | 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric‐field‐driven jet | |
Zhu et al. | Fabrication of high‐performance silver mesh for transparent glass heaters via electric‐field‐driven microscale 3D printing and UV‐assisted microtransfer | |
CN105405492B (zh) | 具备高热稳定性的柔性透明导电薄膜的制备方法及其产品 | |
US20230183138A1 (en) | Integrated polymer-derived ceramic thin-film sensor produced by layser pyrolysis and additive manufacturing and fabrication method thereof | |
JP2011090878A (ja) | 透明導電体の製造方法 | |
Tiwari et al. | Healable and flexible transparent heaters | |
TWI625226B (zh) | 可撓性透明聚醯亞胺積層板及其製造方法 | |
Zhang et al. | Electrical, mechanical, and electromagnetic shielding properties of silver nanowire‐based transparent conductive films | |
CN112391128B (zh) | 一种高导热石墨烯散热材料及其制备工艺 | |
CN106318250A (zh) | 导热双面胶带的制备工艺 | |
TW201616518A (zh) | 可撓性透明電極及製備其之方法 | |
CN107338426A (zh) | 一种在聚酰亚胺薄膜表面生长高粘结性银金属图案的方法 | |
JP6108389B2 (ja) | 層間熱接続部材および層間熱接続方法 | |
CN113264770B (zh) | 一种抗弯折MXene/碳复合材料散热膜制备方法 | |
CN102390146B (zh) | 散热物表面设置传热层以及散热层的制作方法以及散热层状结构 | |
CN110769527A (zh) | 一种有机高温电热复合膜及制备方法 | |
KR20140132943A (ko) | 이방성 열 전기전도 액정 조성물 및 이를 이용한 방열 및 전자파 차폐 매트릭스의 제조방법 | |
Dong et al. | Bioinspired High‐Adhesion Metallic Networks as Flexible Transparent Conductors | |
Zhang et al. | Adhesion and thermal stability enhancement of IZO films by adding a primer layer on polycarbonate substrate | |
KR101508202B1 (ko) | 수직 배열된 그래핀을 포함하는 방열 코팅층의 형성방법 | |
Dwivedi et al. | Robustification of ITO nanolayer by surface‐functionalization of transparent biopolyimide substrates | |
Qi et al. | Direct Ion Exchange Self‐Metallization: A Novel and Efficient Route for the Preparation of Double‐Surface‐Silvered Polyimide Films | |
KR101924857B1 (ko) | 열전도성 입자 | |
CN109411115B (zh) | 一种高扭矩导热绝缘垫片材料及其生产工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |