[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN113020598B - 一种选区激光熔化成形镍基高温合金及其制备方法 - Google Patents

一种选区激光熔化成形镍基高温合金及其制备方法 Download PDF

Info

Publication number
CN113020598B
CN113020598B CN202110235894.2A CN202110235894A CN113020598B CN 113020598 B CN113020598 B CN 113020598B CN 202110235894 A CN202110235894 A CN 202110235894A CN 113020598 B CN113020598 B CN 113020598B
Authority
CN
China
Prior art keywords
nickel
powder
alloy
equal
based superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110235894.2A
Other languages
English (en)
Other versions
CN113020598A (zh
Inventor
苏海军
赵勇
王萌
张军
郭敏
刘林
傅恒志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110235894.2A priority Critical patent/CN113020598B/zh
Publication of CN113020598A publication Critical patent/CN113020598A/zh
Priority to US17/685,824 priority patent/US20240189897A1/en
Application granted granted Critical
Publication of CN113020598B publication Critical patent/CN113020598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • B22F2301/155Rare Earth - Co or -Ni intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Automation & Control Theory (AREA)
  • Structural Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种选区激光熔化成形镍基高温合金及其制备方法,属于金属粉末增材制造技术领域。本发明采用CrFeNb合金粉末作为晶粒细化剂,元素成分在镍基高温合金粉末的成分范围内,保证制备的镍基高温合金的成分与原始合金同质;CrFeNb合金粉末能够细化镍基高温合金中的晶粒,使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能。实施例的结果显示,本发明制备的镍基高温合金的室温屈服强度≥710MPa,抗拉强度≥1010MPa,延伸率≥19%,硬度≥330HV;经过热处理后,镍基高温合金的屈服强度≥1400MPa,抗拉强度≥1100MPa,延伸率≥5.09%,硬度≥530HV。

Description

一种选区激光熔化成形镍基高温合金及其制备方法
技术领域
本发明涉及金属粉末增材制造技术领域,尤其涉及一种选区激光熔化成形镍基高温合金及其制备方法。
背景技术
镍基高温合金能够在600℃以上承受较高应力,并具有良好的抗氧化和抗腐蚀性能、优异的力学性能以及较好的冷、热加工性能,因此被广泛应用于航空、航天发动机和地面燃气轮机等热端部件,是现代国民经济和国防建设不可替代的关键结构材料。其中,IN718合金是世界上使用量最大的高温合金,占高温合金总量的35%以上,由于其具有优异的机械力学性能和铸造、焊接、机加工等冷、热加工性能且成本低廉,被广泛应用于航空发动机的机匣、紧固件及传动部件等中温服役的热端部件。
目前,采用3D打印技术制备镍基高温合金是一种常见的生产工艺,虽然可以通过调整成形参数获得致密度高、成形质量好、组织细化、少或无冶金缺陷的样品,但由于加工过程中产生的高温度梯度、高冷却速率,使得镍基高温合金内部极易产生强各向异性的柱状晶粒结构,而非全部的等轴晶组织,导致合金的力学性能也呈现出各向异性的特征,严重影响镍基高温合金的使用寿命。因此,需要提供一种能够细化晶粒、提高镍基高温合金力学性能的制备方法。
发明内容
本发明的目的在于提供一种选区激光熔化成形镍基高温合金及其制备方法,本发明提供的制备方法能够促进等轴晶的形成,提高镍基高温合金的力学性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种选区激光熔化成形镍基高温合金的制备方法,包括以下步骤:
(1)将镍基高温合金粉末与晶粒细化剂依次进行球磨和干燥,得到混合粉末;所述镍基高温合金粉末为IN718合金粉末,所述晶粒细化剂为CrFeNb合金粉末;
(2)对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金。
优选地,以质量百分比计,所述步骤(1)中镍基高温合金粉末包括下述组分:Fe:18~19%,Ni:52~53%,Cr:19~20%,Mo:3.0~3.5%,Al:0.2~0.3%,Ti:0.7~0.8%,Nb:5.4~5.6%,Co:0.2~0.3%,C:0.01~0.02%,Mn:0.04~0.05%,Si:0.1~0.2%,Cu:0.02~0.03%,S≤0.0015%和B≤0.005%。
优选地,所述步骤(1)中镍基高温合金粉末的粒径≤53μm,平均粒径为20~25μm,氧含量为300~310ppm,松装密度为4.30~4.40g/cm3,振实密度为5.00~5.10g/cm3
优选地,以质量百分比计,所述步骤(1)中的CrFeNb合金粉末包括下述组分:Cr:24~28%,Fe:25~30%和Nb:45~50%。
优选地,所述步骤(1)中CrFeNb合金粉末的粒径≤25μm,理论密度为8.0~8.5g/cm3
优选地,以质量百分比计,所述步骤(1)的混合粉末中晶粒细化剂的含量为2~4%。
优选地,所述步骤(1)中干燥的温度为60~80℃,干燥的时间为12~24h。
优选地,所述步骤(2)中选区激光熔化成形的参数:激光功率为200~250W,扫描速度为667~833mm/s,加工层厚为40~60μm,扫描间距为50~90μm,光斑直径为75μm。
优选地,所述步骤(2)中的选区激光熔化成形在保护气氛中进行,所述保护气氛为高纯氩气。
本发明提供了上述技术方案所述制备方法制备得到的镍基高温合金。
本发明提供了一种选区激光熔化成形镍基高温合金的制备方法,包括以下步骤:(1)将镍基高温合金粉末与晶粒细化剂依次进行球磨和干燥,得到混合粉末;所述镍基高温合金粉末为IN718合金粉末,所述晶粒细化剂为CrFeNb合金粉末;(2)对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金。本发明采用CrFeNb合金粉末作为晶粒细化剂,合金粉末中的元素成分均在镍基高温合金粉末的成分范围内,不会引入杂质元素,保证制备的镍基高温合金的成分与原始合金同质;在进行选区激光熔化成形的过程中,CrFeNb合金粉末能够细化镍基高温合金中的晶粒,使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能。实施例的结果显示,本发明提供的制备方法制备的镍基高温合金的室温屈服强度≥710MPa,抗拉强度≥1010MPa,延伸率≥19%,硬度≥330HV;经过热处理后,镍基高温合金的屈服强度≥1400MPa,抗拉强度≥1100MPa,延伸率≥5.09%,硬度≥530HV。
附图说明
图1为本发明实施例1所述步骤(1)制备的混合粉末的电镜图;
图2为本发明实施例1制备的镍基高温合金的试样图;
图3为本发明实施例1制备的镍基高温合金的显微组织图;
图4为本发明实施例2制备的镍基高温合金的试样图;
图5为本发明实施例1和对比例1制备的镍基高温合金的室温拉伸曲线对比图;
图6为本发明实施例2和对比例1制备的镍基高温合金和热处理镍基高温合金的室温拉伸曲线对比图。
具体实施方式
本发明提供了一种选区激光熔化成形镍基高温合金的制备方法,包括以下步骤:
(1)将镍基高温合金粉末与晶粒细化剂依次进行球磨和干燥,得到混合粉末;所述镍基高温合金粉末为IN718合金粉末,所述晶粒细化剂为CrFeNb合金粉末;
(2)对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金。
本发明将镍基高温合金粉末与晶粒细化剂依次进行球磨和干燥,得到混合粉末。
在本发明中,所述镍基高温合金粉末为IN718合金粉末,以质量百分比计,所述镍基高温合金粉末优选包括下述组分:Fe:18~19%,Ni:52~53%,Cr:19~20%,Mo:3.0~3.5%,Al:0.2~0.3%,Ti:0.7~0.8%,Nb:5.4~5.6%,Co:0.2~0.3%,C:0.01~0.02%,Mn:0.04~0.05%,Si:0.1~0.2%,Cu:0.02~0.03%,S≤0.0015%和B≤0.005%,更优选为Fe:18.63%,Ni:52.1448%,Cr:19.14%,Mo:3.13%,Al:0.23%,Ti:0.76%,Nb:5.41%,Co:0.28%,C:0.0191%,Mn:0.044%,Si:0.18%,Cu:0.028%,S:0.0011%和B:0.003%。本发明对所述镍基高温合金粉末的具体来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
在本发明中,所述镍基高温合金粉末的粒径优选≤53μm,更优选≤50μm;所述镍基高温合金粉末的平均粒径优选为20~25μm,更优选为21~24μm;所述镍基高温合金粉末的氧含量优选为300~310ppm,更优选为300ppm;所述镍基高温合金粉末的松装密度优选为4.30~4.40g/cm3,更优选为4.35g/cm3;所述镍基高温合金粉末的振实密度优选为5.00~5.10g/cm3,更优选为5.05g/cm3。本发明采用镍基高温合金粉末作为原料,通过选区激光熔化成形得到高性能的镍基高温合金。
在本发明中,所述晶粒细化剂为CrFeNb合金粉末,以质量百分比计,所述CrFeNb合金粉末优选包括下述组分:Cr:24~28%,Fe:25~30%和Nb:45~50%,更优选为Cr:25.9%,Fe:27.8%和Nb:46.3%。在本发明中,所述CrFeNb合金粉末的粒径优选≤25μm,更优选≤20μm;所述CrFeNb合金粉末的理论密度优选为8.0~8.5g/cm3,更优选为8.2~8.3g/cm3。本发明采用CrFeNb合金粉末作为晶粒细化剂,可以使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能,同时合金粉末中的元素成分均在镍基高温合金粉末的成分范围内,不会引入杂质元素,保证制备的镍基高温合金的成分与原始合金同质。
在本发明中,所述CrFeNb合金粉末的制备方法优选包括以下步骤:
1)采用真空非自耗电弧熔炼炉将Cr源、Fe源和Nb源进行熔炼,得到CrFeNb合金锭;
2)将所述步骤1)得到的CrFeNb合金锭依次进行锤击成粉、研磨和过筛,得到CrFeNb合金粉末。
本发明优选采用真空非自耗电弧熔炼炉将Cr源、Fe源和Nb源进行熔化,得到CrFeNb合金锭。
在本发明中,所述Cr源、Fe源和Nb源优选为Cr、Fe和Nb的单质。本发明对所述Cr源、Fe源和Nb源的具体来源没有特殊的限定,采用本领域技术人员熟知的市售产品即可。
在本发明中,所述熔炼时的搅拌电流优选为0~50A,更优选为10~40A;所述熔炼时的熔炼电流优选为500~600A,更优选为520~580A。本发明采用真空非自耗电弧熔炼的方式可以使各组分混合均匀。
得到CrFeNb合金锭后,本发明优选将所述CrFeNb合金锭依次进行锤击成粉、研磨和过筛,得到CrFeNb合金粉末。
本发明对所述锤击成粉和研磨的具体工艺没有特殊的限定,采用本领域技术人员熟知的锤击成粉和研磨的操作即可。
在本发明中,所述过筛优选为过600目网筛。本发明通过将研磨后的粉末过600目网筛,可以保证晶粒细化剂的粒径≤25μm。
在本发明中,以质量百分比计,所述混合粉末中晶粒细化剂的含量优选为2~4%,更优选为3%。在本发明中,所述晶粒细化剂能够细化镍基高温合金中的晶粒,使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能。
在本发明中,所述球磨的球料比优选为(1~3):1,更优选为2:1;所述球磨的转速优选为100~300r/min,更优选为200r/min;所述球磨的时间优选为3~5h,更优选为4h。本发明通过球磨的方式可以使镍基高温合金粉末和晶粒细化剂充分混合。
在本发明中,所述干燥的温度优选为60~80℃,更优选为70℃;所述干燥的时间优选为12~24h,更优选为18h。本发明通过干燥可以去除混合粉末中的球磨介质和水分。
在本发明中,所述球磨优选在行星式球磨机中进行,所述干燥优选在烘箱中进行。本发明对所述行星式球磨机和烘箱的具体型号和来源没有特殊的限定,采用本领域技术人员熟知的仪器设备即可。
得到混合粉末后,本发明对所述混合粉末进行选区激光熔化成形,得到镍基高温合金。
在本发明中,所述选区激光熔化成形的激光功率优选为200~250W,更优选为220~230W;扫描速度优选为667~833mm/s,更优选为700~800mm/s;加工层厚优选为40~60μm,更优选为50μm;扫描间距优选为50~90μm,更优选为60~80μm;光斑直径优选为75μm;激光扫描的方式优选为分组变相扫描,相邻的层之间扫描方向优选相互垂直。本发明采用选区激光熔化成形的方式制备镍基高温合金,通过优化3D打印过程中的工艺参数,可以进一步提高合金的力学性能。
在本发明中,所述选区激光熔化成形过程中所采用的基板优选为304不锈钢;所述基板的预热温度优选为100~120℃,更优选为110℃。
在本发明中,所述选区激光熔化成形优选在保护气氛中进行;所述保护气氛优选为高纯氩气,所述高纯氩气的纯度优选≥99.99wt.%;所述保护气氛中的氧含量优选≤500ppm,更优选≤400ppm。本发明在保护气氛中进行3D打印,可以防止混合粉末与空气中的氧气发生氧化反应。
得到镍基高温合金后,本发明优选采用电火花线切割的方式将镍基高温合金从基板上分离。本发明对所述电火花线切割的具体工艺没有特殊的限定,采用本领域技术人员熟知的操作即可。
得到镍基高温合金后,本发明优选对所述镍基高温合金进行热处理。在本发明中,所述热处理的方式优选包括:将镍基高温合金升温至1050~1200℃保温1~2h,保温结束后随炉冷却至950~1000℃并保温1~1.5h,接着空冷至700~750℃保温6~10h,然后以50~60℃/h的速率冷却至600~650℃保温6~10h,最后随炉冷却至室温,得到热处理镍基高温合金。
本发明通过对镍基高温合金进行热处理,能够进一步提高镍基高温合金的力学性能。
本发明提供的制备方法简单,生产工艺成熟,采用选区激光熔化成形进行制备,生产效率高,适于工艺生产,且生产成本低。
本发明还提供了上述技术方案所述制备方法制备得到的镍基高温合金。本发明制备的镍基高温合金力学性能优异,且没有引入其他的杂质元素,能够应用到航空、航天发动机和地面燃气轮机等领域。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
镍基高温合金粉末为IN718合金粉末,以质量百分比计,镍基高温合金粉末的组分为:Fe:18.63%,Ni:52.1448%,Cr:19.14%,Mo:3.13%,Al:0.23%,Ti:0.76%,Nb:5.41%,Co:0.28%,C:0.0191%,Mn:0.044%,Si:0.18%,Cu:0.028%,S:0.0011%和B:0.003%;
镍基高温合金粉末的的粒径≤53μm,平均粒径为21.5μm,氧含量为302ppm,松装密度为4.38g/cm3,振实密度为5.08g/cm3
晶粒细化剂为CrFeNb合金粉末,以质量百分比计,CrFeNb合金粉末的组分为:Cr:25.9%,Fe:27.8%和Nb:46.3%;CrFeNb合金粉末的粒径≤25μm,理论密度为8.2g/cm3
镍基高温合金的制备方法,由以下步骤组成:
(1)将镍基高温合金粉末与晶粒细化剂放入到行星式球磨机的球磨罐中,然后倒入分析纯酒精将粉末淹没,控制球料比为1:1,转速为200r/min,球磨4h,球磨结束后将球磨后的产物放入烘箱中,在80℃下干燥12h,得到混合粉末;以质量百分比计,所述混合粉末中晶粒细化剂的含量为2%;
(2)按照镍基高温合金的特征,在计算机上建立三维实体模形并保存为STL格式的文件,将其导入选区激光熔化成形设备的建造软件中,进行分层处理;选用304不锈钢作为基板,将基板预热至110℃,通入纯度为99.99wt.%的高纯氩气,使氧气含量≤500ppm,设置选区激光熔化成形的参数:激光功率为200W,扫描速度为667mm/s,加工层厚为40μm,扫描间距为75μm,光斑直径为75μm,激光体积能量密度为100J/mm3,激光扫描的方式为分组变相扫描,相邻的层之间扫描方向相互垂直,对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金,最后采用电火花线切割的方式将镍基高温合金从基板上分离。
实施例1制备的镍基高温合金的室温屈服强度为710MPa,抗拉强度为1010MPa,延伸率为24.05%,硬度为334HV。
图1为本发明实施例1所述步骤(1)制备的混合粉末的电镜图。由图1可以看出,混合粉末中镍基高温合金粉末颗粒与CrFeNb合金粉末颗粒混合均匀。
图2为本发明实施例1制备的镍基高温合金的试样图。
图3为本发明实施例1制备的镍基高温合金的显微组织图。由图3可以看出,CrFeNb合金粉末可以改变镍基高温合金内部各向异性的柱状晶粒结构。
实施例2
采用的镍基高温合金粉末和晶粒细化剂与实施例1相同;
镍基高温合金的制备方法,由以下步骤组成:
(1)将镍基高温合金粉末与晶粒细化剂放入到行星式球磨机的球磨罐中,然后倒入分析纯酒精将粉末淹没,控制球料比为3:1,转速为300r/min,球磨3h,球磨结束后将球磨后的产物放入烘箱中,在60℃下干燥24h,得到混合粉末;以质量百分比计,所述混合粉末中晶粒细化剂的含量为4%;
(2)按照镍基高温合金的特征,在计算机上建立三维实体模形并保存为STL格式的文件,将其导入选区激光熔化成形设备的建造软件中,进行分层处理;选用304不锈钢作为基板,将基板预热至110℃,通入纯度为99.99wt.%的高纯氩气,使氧气含量≤500ppm,设置选区激光熔化成形的参数:激光功率为250W,扫描速度为833mm/s,加工层厚为40μm,扫描间距为75μm,光斑直径为75μm,激光体积能量密度为100J/mm3,激光扫描的方式为分组变相扫描,相邻的层之间扫描方向相互垂直,对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金,最后采用电火花线切割的方式将镍基高温合金从基板上分离。
实施例2制备的镍基高温合金的室温屈服强度为802MPa,抗拉强度为1119MPa,延伸率为19.42%,硬度为365HV。
对实施例2得到的镍基高温合金进行热处理,所述热处理的工艺为:将镍基高温合金升温至1100℃保温1.5h,保温结束后随炉冷却至980℃并保温1h,接着空冷至720℃保温8h,然后以56℃/h的速率冷却至620℃保温8h,最后随炉冷却至室温,得到热处理镍基高温合金。热处理镍基高温合金的屈服强度为1426MPa,抗拉强度为1199MPa,延伸率为5.09%,硬度为531HV。
图4为本发明实施例2制备的镍基高温合金的试样图。
对比例1
采用的镍基高温合金粉末与实施例1相同;
镍基高温合金的制备方法,由以下步骤组成:
(1)将镍基高温合金粉末放入到行星式球磨机的球磨罐中,然后倒入分析纯酒精将粉末淹没,控制球料比为1:1,转速为200r/min,球磨4h,球磨结束后将球磨后的产物放入烘箱中,在80℃下干燥12h,得到球磨粉末;
(2)按照镍基高温合金的特征,在计算机上建立三维实体模形并保存为STL格式的文件,将其导入选区激光熔化成形设备的建造软件中,进行分层处理;选用304不锈钢作为基板,将基板预热至110℃,通入纯度为99.99wt.%的高纯氩气,使氧气含量≤500ppm,设置选区激光熔化成形的参数:激光功率为250W,扫描速度为833mm/s,加工层厚为40μm,扫描间距为75μm,光斑直径为75μm,激光体积能量密度为100J/mm3,激光扫描的方式为分组变相扫描,相邻的层之间扫描方向相互垂直,对所述步骤(1)得到的球磨粉末进行选区激光熔化成形,得到镍基高温合金,最后采用电火花线切割的方式将镍基高温合金从基板上分离。
对比例1制备的镍基高温合金的室温屈服强度为679MPa,抗拉强度为964MPa,延伸率为28.83%,硬度为315HV。
对对比例1得到的镍基高温合金进行热处理,所述热处理的工艺为:将镍基高温合金升温至1100℃保温1.5h,保温结束后随炉冷却至980℃并保温1h,接着空冷至720℃保温8h,然后以56℃/h的速率冷却至620℃保温8h,最后随炉冷却至室温,得到热处理镍基高温合金。热处理镍基高温合金的抗拉强度为1130MPa,屈服强度为1356MPa,延伸率为17.88%,硬度为479.8HV。
通过对实施例1、实施例2和对比例1制备的镍基高温合金的力学性能进行对比可以看出,实施例1制备的镍基高温合金的力学性能相比于对比例1,屈服强度提升5%,抗拉强度提升5%,塑性相接近;实施例2制备的镍基高温合金的力学性能相比于对比例1,其屈服强度提升18%,抗拉强度提升16%,硬度提升16%;实施例2制备的热处理镍基高温合金相比于对比例1,屈服强度提升5%,抗拉强度提升6%,硬度提升11%。
图5为本发明实施例1和对比例1制备的镍基高温合金的室温拉伸曲线对比图。从图5可以看出,本发明制备的镍基高温合金具有更高的室温屈服强度,说明CrFeNb合金粉末能够细化镍基高温合金中的晶粒,使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能。
图6为本发明实施例2和对比例1制备的镍基高温合金和热处理镍基高温合金的室温拉伸曲线对比图。由图6可以看出,本发明制备的镍基高温合金经过热处理后,屈服强度大幅度提高,说明CrFeNb合金粉末能够细化镍基高温合金中的晶粒,使合金内部各向异性的柱状晶粒结构转变为等轴晶组织,从而提高合金的力学性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种选区激光熔化成形镍基高温合金的制备方法,包括以下步骤:
(1)将镍基高温合金粉末与晶粒细化剂依次进行球磨和干燥,得到混合粉末;所述镍基高温合金粉末为IN718合金粉末,所述晶粒细化剂为CrFeNb合金粉末;
(2)对所述步骤(1)得到的混合粉末进行选区激光熔化成形,得到镍基高温合金;
以质量百分比计,所述步骤(1)中的CrFeNb合金粉末包括下述组分:Cr:24~28%,Fe:25~30%和Nb:45~50%;
以质量百分比计,所述步骤(1)的混合粉末中晶粒细化剂的含量为2~4%;
所述步骤(2)中选区激光熔化成形的参数:激光功率为200~250W,扫描速度为667~833mm/s,加工层厚为40~60μm,扫描间距为50~90μm,光斑直径为75μm。
2.根据权利要求1所述的制备方法,其特征在于,以质量百分比计,所述步骤(1)中镍基高温合金粉末包括下述组分:Fe:18~19%,Ni:52~53%,Cr:19~20%,Mo:3.0~3.5%,Al:0.2~0.3%,Ti:0.7~0.8%,Nb:5.4~5.6%,Co:0.2~0.3%,C:0.01~0.02%,Mn:0.04~0.05%,Si:0.1~0.2%,Cu:0.02~0.03%和S≤0.0015%,B≤0.005%。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中镍基高温合金粉末的粒径≤53μm,平均粒径为20~25μm,氧含量为300~310ppm,松装密度为4.30~4.40g/cm3,振实密度为5.00~5.10g/cm3
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中CrFeNb合金粉末的粒径≤25μm,理论密度为8.0~8.5g/cm3
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(1)中干燥的温度为60~80℃,干燥的时间为12~24h。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)中的选区激光熔化成形在保护气氛中进行,所述保护气氛为高纯氩气。
7.权利要求1~6任意一项所述制备方法制备得到的镍基高温合金。
CN202110235894.2A 2021-03-03 2021-03-03 一种选区激光熔化成形镍基高温合金及其制备方法 Active CN113020598B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110235894.2A CN113020598B (zh) 2021-03-03 2021-03-03 一种选区激光熔化成形镍基高温合金及其制备方法
US17/685,824 US20240189897A1 (en) 2021-03-03 2022-03-03 Nickel-based superalloy formed by selective laser melting and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110235894.2A CN113020598B (zh) 2021-03-03 2021-03-03 一种选区激光熔化成形镍基高温合金及其制备方法

Publications (2)

Publication Number Publication Date
CN113020598A CN113020598A (zh) 2021-06-25
CN113020598B true CN113020598B (zh) 2022-03-11

Family

ID=76466020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110235894.2A Active CN113020598B (zh) 2021-03-03 2021-03-03 一种选区激光熔化成形镍基高温合金及其制备方法

Country Status (2)

Country Link
US (1) US20240189897A1 (zh)
CN (1) CN113020598B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560601B (zh) * 2021-07-28 2022-08-19 燕山大学 一种高温合金与热障涂层一体化成型的方法及带有热障涂层的合金材料
CN114480893B (zh) * 2021-12-31 2022-11-11 中南大学 一种减少镍基高温合金增材制造裂纹的方法及镍基高温合金
CN114959435B (zh) * 2022-05-26 2023-04-11 中联先进钢铁材料技术有限责任公司 一种Nb-Cr-Fe三元中间合金及其制备方法和应用
CN115319113A (zh) * 2022-08-12 2022-11-11 中国航发北京航空材料研究院 一种航空发动机旋流机匣激光选区熔化制造方法
CN116079075A (zh) * 2023-04-13 2023-05-09 太原理工大学 基于差异化空间能量策略的slm增材制造殷瓦合金方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2790858B1 (en) * 2011-12-14 2017-02-08 General Electric Technology GmbH Method for additively manufacturing an article made of a difficult-to-weld material
WO2015108599A2 (en) * 2013-11-04 2015-07-23 United Technologies Corporation Method for preparation of a superalloy having a crystallographic texture controlled microstructure by electron beam melting
US11802321B2 (en) * 2015-03-17 2023-10-31 Elementum 3D, Inc. Additive manufacturing of metal alloys and metal alloy matrix composites
CN104846254A (zh) * 2015-04-27 2015-08-19 西北工业大学 用于k4169高温合金的稀土细化剂及制备和使用方法
CN106180719B (zh) * 2016-09-27 2019-01-18 飞而康快速制造科技有限责任公司 激光选区熔化增材制造的in718构件、系统、热处理方法及装置
US20190032175A1 (en) * 2017-02-01 2019-01-31 Hrl Laboratories, Llc Aluminum alloys with grain refiners, and methods for making and using the same
DE102017212731A1 (de) * 2017-07-25 2019-01-31 Siemens Aktiengesellschaft Faserverstärktes Bauteil und Herstellungsverfahren dazu
CN109439962B (zh) * 2018-07-27 2020-05-15 中南大学 一种选区激光熔化成形镍基高温合金的方法
WO2020041726A1 (en) * 2018-08-24 2020-02-27 Oregon State University Additive-containing alloy embodiments and methods of making and using the same
CN110872652B (zh) * 2018-08-29 2021-09-24 中国科学院金属研究所 一种高温合金内部晶粒细化剂的制备方法及应用
CN110899698B (zh) * 2019-12-19 2021-05-18 华中科技大学 一种采用钪铝合金成型尾翼搭载发动机壳体的方法及产品
TWI711705B (zh) * 2020-01-30 2020-12-01 國家中山科學研究院 改質後的合金粉體及其改質方法
CN112011702B (zh) * 2020-08-30 2021-11-23 中南大学 采用微米陶瓷颗粒制备纳米相增强镍基高温合金的方法

Also Published As

Publication number Publication date
CN113020598A (zh) 2021-06-25
US20240189897A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
CN113020598B (zh) 一种选区激光熔化成形镍基高温合金及其制备方法
CN108467972B (zh) 一种高承温能力的镍基变形高温合金及其制备方法
CN108486433B (zh) 选区激光熔化技术用Al-Mg-Sc-Zr系铝合金组合物及成型件制备方法
CN112935252B (zh) 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法
CN112893852A (zh) 一种难熔高熵合金粉末制备方法
WO2022042204A1 (zh) 一种预防选区激光熔融镍基高温合金开裂的方法
CN111496244A (zh) 一种增材制造高强铝合金粉及其制备方法和应用
CN110666175B (zh) 一种镍基高温合金粉末的热等静压成型方法
CN114939654B (zh) 一种用于激光增材制造的高熵合金粉末及其制备方法、应用
CN114606413B (zh) 一种增材制造用高温合金及其用途
CN111549244A (zh) 一种Ti35钛合金铸锭的制备方法
CN112981186B (zh) 低层错能的高温合金、结构件及其应用
CN110629074B (zh) 一种抗氧化镍基高温合金粉末及其制备方法
CN114774727B (zh) 纳米二氧化锆增强NbMoTaW难熔高熵合金的制备方法
CN114480901B (zh) 一种通过碳化物增强增材制造镍基高温合金性能的方法、镍基高温合金粉末及其应用
CN114032421B (zh) 一种增材制造用镍基高温合金、镍基高温合金粉末材料和制品
CN114657439A (zh) 一种具有良好室温塑性的难熔高熵合金及其制备方法
WO2024119780A1 (zh) 一种增材制造用高温合金及其增材制造方法
CN115074580B (zh) Ni2Al3-TiC高温合金细化剂及制备方法和应用
CN114807646B (zh) 镍基合金板坯及其制备方法
CN114934211B (zh) 镍基高温合金、镍基高温合金粉末和镍基高温合金构件
CN113618068B (zh) 一种无热裂纹高性能gh3536镍基高温合金激光增材制造方法
CN105506428B (zh) 一种抗氦离子溅射的钒合金的制备方法
CN114559054A (zh) 一种激光粉末床熔融制备gh99镍基合金成形工艺
CN116716501B (zh) 一种航空航天用钛合金及其熔炼工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant