CN111952837A - A coupling output structure of a terahertz quantum cascade laser and its packaging method - Google Patents
A coupling output structure of a terahertz quantum cascade laser and its packaging method Download PDFInfo
- Publication number
- CN111952837A CN111952837A CN202010800920.7A CN202010800920A CN111952837A CN 111952837 A CN111952837 A CN 111952837A CN 202010800920 A CN202010800920 A CN 202010800920A CN 111952837 A CN111952837 A CN 111952837A
- Authority
- CN
- China
- Prior art keywords
- quantum cascade
- cascade laser
- terahertz quantum
- axis parabolic
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 21
- 238000010168 coupling process Methods 0.000 title claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012858 packaging process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3401—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Semiconductor Lasers (AREA)
Abstract
本发明涉及一种太赫兹量子级联激光器的耦合输出结构,包括太赫兹量子级联激光器、第一离轴抛物面反射镜、第二离轴抛物面反射镜,所述第一离轴抛物面反射镜的焦点位于所述太赫兹量子级联激光器的前端面内,用以收集和准直所述太赫兹量子级联激光器发出的激光,并形成第一准平行光束;所述第二离轴抛物面反射镜位于所述太赫兹量子级联激光器的后端面内,用以收集和准直所述太赫兹量子级联激光器发出的激光,并形成第二准平行光束。本发明还涉及一种太赫兹量子级联激光器的耦合输出结构的封装方法。本发明能够实现双端面的激光高效耦合输出。
The invention relates to a coupling output structure of a terahertz quantum cascaded laser, comprising a terahertz quantum cascaded laser, a first off-axis parabolic mirror, and a second off-axis parabolic mirror. The focal point is located in the front end surface of the terahertz quantum cascade laser to collect and collimate the laser light emitted by the terahertz quantum cascade laser, and form a first quasi-parallel beam; the second off-axis parabolic mirror It is located in the rear end surface of the terahertz quantum cascade laser, and is used for collecting and collimating the laser light emitted by the terahertz quantum cascade laser, and forming a second quasi-parallel beam. The invention also relates to a packaging method of the coupling-out structure of the terahertz quantum cascade laser. The invention can realize the high-efficiency coupling output of the laser with double end faces.
Description
技术领域technical field
本发明涉及太赫兹激光器技术领域,特别是涉及一种太赫兹量子级联激光器的耦合输出结构及其封装方法。The invention relates to the technical field of terahertz lasers, in particular to a coupling output structure of a terahertz quantum cascade laser and a packaging method thereof.
背景技术Background technique
太赫兹(THz)量子级联激光器(QCL)是THz频段一种非常重要的紧凑型激光源,它具有体积小、性能稳定、能量转换效率高、使用寿命长等特点。在各种形状的THz QCL中,脊条形器件是最常见的一种。由于激光器脊条在厚度方向的尺寸小于激光波长,THz QCL端面发射的激光呈现出一定的发散性,为了改善这种激光器的输出光束,可以对脊条形结构或激光输出端面进行工艺改进,通过制备结构光栅或者端面微结构来改善其输出激光束的质量,不过这种方法增加了器件的工艺制备难度,同时由于脊条结构的改变,器件最终输出的光功率受到了一定的损失;另一种办法是,通过在脊条形激光器的端面增加如高阻硅透镜这样的微型光学结构,来改善光束质量,但由于高阻硅透镜对THz激光也存在一定的吸收,相比改善前端面输出的光功率,改善后器件最终输出的光功率也存在一定的损失。因此,需要寻找更好的减小损耗的耦合输出方法。Terahertz (THz) quantum cascade laser (QCL) is a very important compact laser source in the THz frequency band. It has the characteristics of small size, stable performance, high energy conversion efficiency, and long service life. Among the various shapes of THz QCLs, the ridge-stripe device is the most common one. Since the size of the laser ridge in the thickness direction is smaller than the laser wavelength, the laser emitted from the end face of the THz QCL exhibits a certain divergence. Structural gratings or end-face microstructures are prepared to improve the quality of the output laser beam. However, this method increases the difficulty of device fabrication, and at the same time, due to the change of the ridge structure, the final output optical power of the device suffers a certain loss; another One way is to improve the beam quality by adding micro-optical structures such as high-resistance silicon lenses to the end face of the ridge-stripe laser. There is also a certain loss in the final output optical power of the device after improvement. Therefore, it is necessary to find a better coupling-out method to reduce the loss.
此外,脊条形激光器工作时,其前后两个端面具有对称性和相同性质,输出激光的频率和功率是基本一致的。然而,在实际应用过程中,通常只对激光器的一个端面进行耦合,且采用的耦合输出方法需要在真空下操作移动耦合光学件的位置,实现方式较为复杂,容易出现低温杜瓦漏气的情况,此时另一个端面输出的激光被浪费掉;尽管也有将另一个端面通过蒸镀介质/金属高反射膜来提高出光端面总功率的办法,但由于高反射膜的制备工艺质量不高以及激光输出端面存在反射损耗等,上述改进通常只能获得单面输出约1.4倍的激光功率,仍然有0.6倍的单面输出功率被浪费。对激光器两个端面同时耦合输出的结构目前还未报道。因此,为了实现另一端面输出功率的有效耦合,使得激光器的总输出功率达到单面输出功率的2倍,急需解决脊条形激光器两个端面输出激光的高效耦合以及同时输出的问题。In addition, when the ridge bar laser works, its front and rear end faces have symmetry and the same properties, and the frequency and power of the output laser are basically the same. However, in the actual application process, only one end face of the laser is usually coupled, and the coupling-out method used requires the position of the coupling optics to be moved under vacuum. At this time, the laser output from the other end face is wasted; although there is also a way to increase the total power of the light-emitting end face by evaporating the other end face by evaporating a medium/metal high-reflection film, due to the low quality of the preparation process of the high-reflection film and the laser There is reflection loss on the output end face, etc. The above improvement usually only obtains about 1.4 times the laser power of the single-sided output, and 0.6 times the single-sided output power is still wasted. The structure in which the two end faces of the laser are coupled out at the same time has not yet been reported. Therefore, in order to realize the effective coupling of the output power of the other end face and make the total output power of the laser reach twice the output power of the single face, it is urgent to solve the problem of efficient coupling and simultaneous output of the two end faces of the ridge bar laser.
发明内容SUMMARY OF THE INVENTION
本发明提供一种太赫兹量子级联激光器的耦合输出结构及其封装方法,能够实现双端面的激光高效耦合输出。The invention provides a coupling output structure of a terahertz quantum cascade laser and a packaging method thereof, which can realize high-efficiency coupling output of double-end surface lasers.
本发明解决其技术问题所采用的技术方案是:提供一种太赫兹量子级联激光器的耦合输出结构,包括太赫兹量子级联激光器、第一离轴抛物面反射镜、第二离轴抛物面反射镜,所述第一离轴抛物面反射镜的焦点位于所述太赫兹量子级联激光器的前端面内,用以收集和准直所述太赫兹量子级联激光器发出的激光,并形成第一准平行光束;所述第二离轴抛物面反射镜位于所述太赫兹量子级联激光器的后端面内,用以收集和准直所述太赫兹量子级联激光器发出的激光,并形成第二准平行光束。The technical solution adopted by the present invention to solve the technical problem is to provide a coupling output structure of a terahertz quantum cascade laser, including a terahertz quantum cascade laser, a first off-axis parabolic mirror, and a second off-axis parabolic mirror , the focus of the first off-axis parabolic mirror is located in the front end surface of the terahertz quantum cascade laser to collect and collimate the laser light emitted by the terahertz quantum cascade laser, and form a first quasi-parallel a light beam; the second off-axis parabolic mirror is located in the rear end face of the terahertz quantum cascade laser to collect and collimate the laser light emitted by the terahertz quantum cascade laser, and form a second quasi-parallel beam .
所述第一离轴抛物面反射镜的焦点与所述太赫兹量子级联激光器的前端面的中心重合;所述第二离轴抛物面反射镜的焦点与所述太赫兹量子级联激光器的后端面的中心重合。The focus of the first off-axis parabolic mirror coincides with the center of the front face of the terahertz quantum cascade laser; the focus of the second off-axis parabolic mirror is coincident with the rear face of the terahertz quantum cascade laser the center coincides.
所述太赫兹量子级联激光器封装在热沉上,所述热沉、第一离轴抛物面反射镜和第二离轴抛物面反射镜安装在导热样品架上。The terahertz quantum cascade laser is packaged on a heat sink, and the heat sink, the first off-axis parabolic mirror and the second off-axis parabolic mirror are mounted on a thermally conductive sample holder.
所述太赫兹量子级联激光器为单面金属波导结构或半绝缘表面等离子体结构。The terahertz quantum cascade laser is a single-sided metal waveguide structure or a semi-insulating surface plasmon structure.
所述太赫兹量子级联激光器的工作频率范围覆盖1.2~5.2THz。The operating frequency range of the terahertz quantum cascade laser covers 1.2-5.2 THz.
所述第一离轴抛物面反射镜的直径焦距比和第二离轴抛物面反射镜的直径焦距比均在0.5~1之间。The diameter to focal length ratio of the first off-axis parabolic mirror and the diameter to focal length ratio of the second off-axis parabolic mirror are both between 0.5 and 1.
所述第一离轴抛物面反射镜和第二离轴抛物面反射镜的反射角度均为90度,反射面均为镀金反射面。The reflection angles of the first off-axis parabolic mirror and the second off-axis parabolic mirror are both 90 degrees, and the reflection surfaces are both gold-plated reflection surfaces.
所述热沉为表面镀金纯铜材料。The heat sink is made of gold-plated pure copper material.
所述导热样品架为表面镀金纯铜材料。The thermally conductive sample holder is made of gold-plated pure copper material.
本发明解决其技术问题所采用的技术方案是:提供一种太赫兹量子级联激光器的耦合输出结构的封装方法,包括以下步骤:The technical solution adopted by the present invention to solve the technical problem is to provide a packaging method for the coupling-out structure of the terahertz quantum cascade laser, which includes the following steps:
(1)将所述太赫兹量子级联激光器通过封装在热沉上;(1) encapsulating the terahertz quantum cascade laser on a heat sink;
(2)将热沉安装于导热样品架上;(2) Install the heat sink on the thermally conductive sample holder;
(3)确定所述第一离轴抛物面反射镜和第二离轴抛物面反射镜的直径、焦点高度和焦距参数,采用固定材料将第一离轴抛物面反射镜和第二离轴抛物面反射镜分别封装于导热样品架上,使得太赫兹量子级联激光器的前端面中心的高度与第一离轴抛物面反射镜焦点的高度相同,太赫兹量子级联激光器的后端面中心的高度与第二离轴抛物面反射镜焦点的高度相同。(3) Determine the diameter, focus height and focal length parameters of the first off-axis parabolic mirror and the second off-axis parabolic mirror, and use a fixed material to separate the first off-axis parabolic mirror and the second off-axis parabolic mirror respectively. It is packaged in a thermally conductive sample holder, so that the height of the center of the front face of the terahertz quantum cascade laser is the same as the height of the focus of the first off-axis parabolic mirror, and the height of the center of the rear face of the terahertz quantum cascade laser is the same as the height of the second off-axis The height of the focal point of the parabolic mirror is the same.
(4)在固定材料凝固前,采用显微镜标线对准的方法将所述太赫兹量子级联激光器的前端面中心和后端面的中心分别与第一离轴抛物面反射镜的光轴中心线和第二离轴抛物面反射镜的光轴中心线对齐,确保前端面的中心与第一离轴抛物面反射镜的焦点重合,后端面中心与第二离轴抛物面反射镜的焦点重合,并将上述对准过程保持至固定材料凝固成形。(4) Before the solidification of the fixed material, the center of the front end surface and the center of the rear end surface of the terahertz quantum cascade laser are respectively aligned with the center line of the optical axis of the first off-axis parabolic mirror and The center lines of the optical axis of the second off-axis parabolic mirror are aligned to ensure that the center of the front surface coincides with the focus of the first off-axis parabolic mirror, and the center of the rear surface coincides with the focus of the second off-axis parabolic mirror. The quasi-process is maintained until the fixing material solidifies and takes shape.
有益效果beneficial effect
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:Due to adopting the above-mentioned technical scheme, the present invention has the following advantages and positive effects compared with the prior art:
(1)本发明的太赫兹量子级联激光器的耦合输出结构采用了镀金反射面,其对太赫兹激光反射损耗小,耦合效率高;(1) The coupling output structure of the terahertz quantum cascade laser of the present invention adopts a gold-plated reflection surface, which has small reflection loss to the terahertz laser and high coupling efficiency;
(2)本发明的太赫兹量子级联激光器的耦合输出结构采用双反射镜耦合结构,能将激光器前、后两个端面的输出激光同时耦合输出,与现有外部耦合输出结构相比,大大提高了激光器的有效输出功率;(2) The coupling output structure of the terahertz quantum cascade laser of the present invention adopts a double mirror coupling structure, which can simultaneously couple the output lasers of the front and rear end faces of the laser. Compared with the existing external coupling output structure, it is greatly improved. Improve the effective output power of the laser;
(3)本发明的太赫兹量子级联激光器的耦合输出结构可同时输出具有相同性质的两束准平行太赫兹激光,不需要分束,就能同时作用于目标系统,减小了系统的光学元件,提高了激光利用效率,同时便于对两束激光分别作用的系统进行有效对比。(3) The coupling output structure of the terahertz quantum cascade laser of the present invention can output two quasi-parallel terahertz laser beams with the same properties at the same time, and can act on the target system at the same time without beam splitting, reducing the optical system of the system. It improves the efficiency of laser utilization and facilitates the effective comparison of the systems in which the two laser beams act respectively.
(4)本发明的太赫兹量子级联激光器的耦合输出结构具有结构紧凑,稳定可靠,无真空移动部件进行校准,大大降低了激光器使用过程中真空漏气的风险。(4) The coupling output structure of the terahertz quantum cascade laser of the present invention has a compact structure, is stable and reliable, and has no vacuum moving parts for calibration, which greatly reduces the risk of vacuum leakage during the use of the laser.
(5)本发明的太赫兹量子级联激光器的耦合输出结构的封装过程中,采用了显微镜观测对准的辅助封装方法,大大提高了器件封装的精度,为实现太赫兹激光的准平行输出提供了很好的技术手段。(5) In the packaging process of the coupling-out structure of the terahertz quantum cascade laser of the present invention, the auxiliary packaging method of microscope observation and alignment is adopted, which greatly improves the precision of the device packaging and provides the quasi-parallel output of the terahertz laser. good technical means.
附图说明Description of drawings
图1是本发明的太赫兹量子级联激光器的耦合输出结构的结构示意图;Fig. 1 is the structural representation of the coupling-out structure of the terahertz quantum cascade laser of the present invention;
图2是本发明的优选实施方式的太赫兹量子级联激光器在6K温度下有效的脉冲峰值输出功率曲线,其中,实线对应两个端面总的输出功率,点划线对应前端面的输出功率。2 is the effective pulse peak output power curve of the terahertz quantum cascade laser according to the preferred embodiment of the present invention at a temperature of 6K, wherein the solid line corresponds to the total output power of the two end faces, and the dotted line corresponds to the output power of the front end face. .
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the present invention and not to limit the scope of the present invention. In addition, it should be understood that after reading the content taught by the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of the present application.
本发明的实施方式涉及一种太赫兹量子级联激光器的耦合输出结构,其能够实现双端面的激光高效耦合输出。The embodiments of the present invention relate to a coupling-out structure of a terahertz quantum cascade laser, which can realize high-efficiency coupling-out of the laser with double-end faces.
图1示出了根据本发明的一个优选实施方式的太赫兹量子级联激光器耦合输出结构的实现装置,包括:太赫兹量子级联激光器1、热沉2、第一离轴抛物面反射镜3、第二离轴抛物面反射镜4和导热样品架5Fig. 1 shows an implementation device of a terahertz quantum cascade laser coupling-out structure according to a preferred embodiment of the present invention, including: a terahertz quantum cascade laser 1, a
如图1所示,所述第一离轴抛物面反射镜3的焦点与太赫兹量子级联激光器1前端面11中心重合,对前端面11输出激光耦合后形成第一准平行光束6,所述第二离轴抛物面反射镜4的焦点与太赫兹量子级联激光器1后端面12中心重合,对后端面12输出激光耦合后形成第二准平行光束7。As shown in FIG. 1 , the focus of the first off-axis
在本实施方式中,所述第一离轴抛物面反射镜3的直径焦距比和第二离轴抛物面反射镜4的直径焦距比均在0.5~1之间,作为优选,上述直径焦距比设置为0.52。In this embodiment, the diameter to focal length ratio of the first off-axis
进一步的,所述第一离轴抛物面反射镜3和第二离轴抛物面反射镜4的反射面均为90度离轴镀金反射面。Further, the reflective surfaces of the first off-axis
在本实施方式中,所述太赫兹量子级联激光器1为单面金属波导结构或半绝缘表面等离子体结构。In this embodiment, the terahertz quantum cascade laser 1 is a single-sided metal waveguide structure or a semi-insulating surface plasmon structure.
进一步的,所述太赫兹量子级联激光器1的长度为4mm,宽度为300μm,厚度为200μm。Further, the length of the terahertz quantum cascade laser 1 is 4 mm, the width is 300 μm, and the thickness is 200 μm.
进一步的,所述太赫兹量子级联激光器1的激射频率为4.3THz。Further, the excitation frequency of the terahertz quantum cascade laser 1 is 4.3 THz.
作为优选实施方式,如图2所示,所述太赫兹量子级联激光器1的两个端面总的脉冲峰值输出功率为1.05mW,前端面的脉冲峰值输出功率为0.53mW,测量功率所用的功率计为TK 100,功率计敏感面区域直径30mm,脉冲峰值输出功率对应的激光器驱动电流密度为1230A·cm-2,从而说明两个端面总的输出功率接近为单面输出功率的2倍。As a preferred embodiment, as shown in FIG. 2 , the total pulse peak output power of the two end faces of the terahertz quantum cascade laser 1 is 1.05mW, the pulse peak output power of the front end face is 0.53mW, and the power used for measuring the power is Calculated as TK 100, the diameter of the sensitive surface area of the power meter is 30mm, and the laser driving current density corresponding to the pulse peak output power is 1230A·cm -2 , which indicates that the total output power of the two end faces is nearly twice that of the single-sided output power.
在本实施方式中,热沉2为表面镀金纯铜材料,其尺寸为宽4mm,长26mm,厚4mm。导热样品架5为表面镀金纯铜材料。In this embodiment, the
本说明书的另一个实施方式还提供一种太赫兹量子级联激光器耦合输出结构的封装方法,用于制作上述所述的激光耦合输出。Another embodiment of the present specification also provides a packaging method for the coupling-out structure of a terahertz quantum cascade laser, which is used to fabricate the above-mentioned laser coupling-out.
具体地包括以下步骤:Specifically include the following steps:
S01:将太赫兹量子级联激光器1通过纯度为99.99%的高纯铟材料封装在热沉2的正中心位置,封装后其前端面11和后端面12均与热沉2的长度边对齐;S01: The terahertz quantum cascade laser 1 is encapsulated in the center of the
S02:将热沉2按照设计的位置安装于导热样品架5上,安装后,热沉2的中心点位于导热样品架5的正中心;S02: Install the
S03:设计第一离轴抛物面反射镜3和第二离轴抛物面反射镜4的直径为10mm,焦距为5.2mm,焦点距离镜体底面高度为4mm,采用低温胶材料将第一离轴抛物面反射镜3和第二离轴抛物面反射镜4分别封装于导热样品架5上,其中低温胶粘合后的厚度为0.1mm,此时第一离轴抛物面反射镜3的焦点高度为4.1mm,使得太赫兹量子级联激光器1前端面11中心的高度为器件厚度的一半,为100μm,加上热沉厚度4mm,为4.1mm,第一离轴抛物面反射镜3焦点的高度相同,同理,太赫兹量子级联激光器1后端面12中心的高度与第二离轴抛物面反射镜4焦点的高度相同,也是4.1mm;S03: Design the diameter of the first off-axis
S05:在低温胶材料凝固之前,采用显微镜标线对准的方法将太赫兹量子级联激光器1前端面11中心和后端面12的中心分别与第一离轴抛物面反射镜3的光轴中心线和第二离轴抛物面反射镜4的光轴中心线对齐,确保前端面11中心与第一离轴抛物面反射镜3焦点重合,后端面12中心与第二离轴抛物面反射镜4焦点重合,并将上述对准过程保持至低温胶材料凝固成形,保持时间为30分钟。S05: Before the low-temperature glue material solidifies, use the method of microscope reticle alignment to align the center of the
本发明提出一种太赫兹量子级联激光器的耦合输出结构及其封装方法,采用了镀金反射面,其对太赫兹激光反射损耗小,耦合效率高;采用双反射镜耦合结构,能将激光器前、后两个端面的输出激光同时耦合输出,与现有外部耦合输出结构相比,大大提高了激光器的有效输出功率;该结构可同时输出具有相同性质的两束准平行太赫兹激光,不需要分束,就能同时作用于目标系统,减小了系统的光学元件,提高了激光利用效率,同时便于对两束激光分别作用的系统进行有效对比;该结构具有结构紧凑,稳定可靠,无真空移动部件进行校准,大大降低了激光器使用过程中真空漏气的风险;结构的封装过程中,采用了显微镜观测对准的辅助封装方法,大大提高了器件封装的精度,为实现太赫兹激光的准平行输出提供了很好的技术手段。The invention provides a coupling output structure of a terahertz quantum cascade laser and a packaging method thereof, which adopts a gold-plated reflective surface, which has low reflection loss to the terahertz laser and high coupling efficiency; , The output lasers of the latter two end faces are simultaneously coupled and output, compared with the existing external coupling output structure, the effective output power of the laser is greatly improved; this structure can output two quasi-parallel terahertz laser beams with the same properties at the same time, no need By splitting the beam, it can act on the target system at the same time, reducing the optical components of the system, improving the efficiency of laser utilization, and at the same time facilitating the effective comparison of the systems in which the two laser beams act respectively; the structure is compact, stable and reliable, and has no vacuum. The moving parts are calibrated, which greatly reduces the risk of vacuum leakage during the use of the laser; during the packaging process of the structure, the auxiliary packaging method of microscope observation and alignment is adopted, which greatly improves the precision of device packaging. Parallel output provides a good technical means.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010800920.7A CN111952837B (en) | 2020-08-11 | 2020-08-11 | A coupling output structure of a terahertz quantum cascade laser and a packaging method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010800920.7A CN111952837B (en) | 2020-08-11 | 2020-08-11 | A coupling output structure of a terahertz quantum cascade laser and a packaging method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111952837A true CN111952837A (en) | 2020-11-17 |
CN111952837B CN111952837B (en) | 2024-12-31 |
Family
ID=73332160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010800920.7A Active CN111952837B (en) | 2020-08-11 | 2020-08-11 | A coupling output structure of a terahertz quantum cascade laser and a packaging method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111952837B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113381289A (en) * | 2021-06-10 | 2021-09-10 | 中国科学院半导体研究所 | Optical feedback structure and packaging method thereof |
CN114660017A (en) * | 2022-03-15 | 2022-06-24 | 中国科学院上海微系统与信息技术研究所 | Imaging device and method for material phase change process |
WO2025015585A1 (en) * | 2023-07-14 | 2025-01-23 | 广东感芯激光科技有限公司 | Lens-free beam shaping apparatus and method based on parabolic concave reflecting mirror, and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008055390A1 (en) * | 2006-11-09 | 2008-05-15 | Shenzhen Han's Laser Technology Co., Limited | Third harmonic ultraviolet laser of semiconductor double end face pumping |
CN102136670A (en) * | 2011-01-27 | 2011-07-27 | 山西大学 | Double-end end-pumped solid laser based on polarization coupling |
CN107807454A (en) * | 2017-12-04 | 2018-03-16 | 中国科学院上海微系统与信息技术研究所 | A kind of realization device and implementation method of the quasi- Gauss collimated laser beam of Terahertz |
CN212462338U (en) * | 2020-08-11 | 2021-02-02 | 中国科学院上海微系统与信息技术研究所 | A coupling-out structure of a terahertz quantum cascade laser |
-
2020
- 2020-08-11 CN CN202010800920.7A patent/CN111952837B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008055390A1 (en) * | 2006-11-09 | 2008-05-15 | Shenzhen Han's Laser Technology Co., Limited | Third harmonic ultraviolet laser of semiconductor double end face pumping |
CN102136670A (en) * | 2011-01-27 | 2011-07-27 | 山西大学 | Double-end end-pumped solid laser based on polarization coupling |
CN107807454A (en) * | 2017-12-04 | 2018-03-16 | 中国科学院上海微系统与信息技术研究所 | A kind of realization device and implementation method of the quasi- Gauss collimated laser beam of Terahertz |
CN212462338U (en) * | 2020-08-11 | 2021-02-02 | 中国科学院上海微系统与信息技术研究所 | A coupling-out structure of a terahertz quantum cascade laser |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113381289A (en) * | 2021-06-10 | 2021-09-10 | 中国科学院半导体研究所 | Optical feedback structure and packaging method thereof |
CN113381289B (en) * | 2021-06-10 | 2022-05-17 | 中国科学院半导体研究所 | Optical feedback structure and packaging method thereof |
CN114660017A (en) * | 2022-03-15 | 2022-06-24 | 中国科学院上海微系统与信息技术研究所 | Imaging device and method for material phase change process |
WO2025015585A1 (en) * | 2023-07-14 | 2025-01-23 | 广东感芯激光科技有限公司 | Lens-free beam shaping apparatus and method based on parabolic concave reflecting mirror, and application |
Also Published As
Publication number | Publication date |
---|---|
CN111952837B (en) | 2024-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111952837A (en) | A coupling output structure of a terahertz quantum cascade laser and its packaging method | |
US20180331486A1 (en) | A packaging structure of laser and grating coupler and its method | |
CN102931585A (en) | External-cavity-beam-combination semiconductor laser fiber coupling module | |
US12027816B2 (en) | Method of manufacturing laser light source | |
CN102324686A (en) | Diode Pumped Alkali Metal Vapor Laser MOPA System | |
CN111580216B (en) | A planar optical waveguide chip and waveguide type single-mode fiber laser | |
CN212462338U (en) | A coupling-out structure of a terahertz quantum cascade laser | |
CN107196181A (en) | A kind of C mount encapsulation semiconductor laser pumping Low threshold micro-slice lasers and its control method without coupled system | |
CN102868088A (en) | Device and method for enhancing feedback of external cavity feedback spectrum beam combination semiconductor laser | |
CN101567520A (en) | Hollow beam pumping emission semiconductor laser of vertical external chamber surface | |
CN102544995A (en) | Green laser | |
JP6130427B2 (en) | Laser module | |
CN213184956U (en) | Butterfly-shaped packaging pump laser | |
CN107910745A (en) | A kind of emission semiconductor laser of vertical external chamber surface | |
CN1286229C (en) | Vertical laser with external cavity of transmitting semiconductor with telescopic resonant cavity | |
US3532417A (en) | Noninverting optical reflecting device | |
EP4084239A1 (en) | Laser light source | |
CN115275781B (en) | Surface emitting laser based on polymer material and preparation method thereof | |
CN101651286B (en) | Optical pumping vertical external cavity emitting laser with gradient band gap barrier absorption layer | |
CN112448263A (en) | Laser chip device and laser | |
CN221633086U (en) | High-stability butterfly-shaped packaging pumping laser | |
CN210430412U (en) | a laser | |
CN119154072B (en) | Back-to-back heat absorption laser device and output method | |
CN117220122B (en) | Plane waveguide laser gain module and laser amplifying device for 1.3um | |
CN115347443B (en) | Laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |