CN111627819A - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN111627819A CN111627819A CN201910153187.1A CN201910153187A CN111627819A CN 111627819 A CN111627819 A CN 111627819A CN 201910153187 A CN201910153187 A CN 201910153187A CN 111627819 A CN111627819 A CN 111627819A
- Authority
- CN
- China
- Prior art keywords
- layer
- semiconductor
- forming
- semiconductor structure
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 317
- 238000000034 method Methods 0.000 title claims abstract description 113
- 150000002500 ions Chemical class 0.000 claims abstract description 109
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 239000002019 doping agent Substances 0.000 claims abstract description 23
- 239000010410 layer Substances 0.000 claims description 567
- 239000000463 material Substances 0.000 claims description 152
- 238000002955 isolation Methods 0.000 claims description 99
- 230000008569 process Effects 0.000 claims description 73
- 239000011229 interlayer Substances 0.000 claims description 39
- 238000002513 implantation Methods 0.000 claims description 18
- 230000001681 protective effect Effects 0.000 claims description 17
- 239000003989 dielectric material Substances 0.000 claims description 16
- 239000011241 protective layer Substances 0.000 claims description 15
- 238000005468 ion implantation Methods 0.000 claims description 12
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000007772 electrode material Substances 0.000 claims 3
- 125000006850 spacer group Chemical group 0.000 claims 2
- 230000000873 masking effect Effects 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 24
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 37
- 229910052710 silicon Inorganic materials 0.000 description 31
- 239000010703 silicon Substances 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 229910052814 silicon oxide Inorganic materials 0.000 description 18
- 230000001965 increasing effect Effects 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 15
- 229910052581 Si3N4 Inorganic materials 0.000 description 14
- 239000000969 carrier Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 229910010271 silicon carbide Inorganic materials 0.000 description 11
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 9
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 238000001039 wet etching Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- 229910052582 BN Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 229910003468 tantalcarbide Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004129 HfSiO Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 description 2
- NTCVORQAIAUAJB-UHFFFAOYSA-N [Mg].[W] Chemical compound [Mg].[W] NTCVORQAIAUAJB-UHFFFAOYSA-N 0.000 description 2
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910021324 titanium aluminide Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6704—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
- H10D30/6713—Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6728—Vertical TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体结构及其形成方法,形成方法包括:提供衬底;在衬底上形成源掺杂层;在源掺杂层上形成半导体柱;在半导体柱的顶端形成漏掺杂层;形成包围半导体柱的部分侧壁且露出漏掺杂层的栅极结构,栅极结构包括覆盖半导体柱部分侧壁的功函数层和覆盖功函数层的栅极层;在功函数层中靠近漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。本发明实施例在功函数层中掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。
A semiconductor structure and a method for forming the same, the forming method includes: providing a substrate; forming a source doping layer on the substrate; forming a semiconductor column on the source doping layer; forming a drain doping layer on the top of the semiconductor column; Part of the sidewall of the semiconductor pillar and a gate structure exposing the drain doping layer, the gate structure includes a work function layer covering part of the sidewall of the semiconductor pillar and a gate layer covering the work function layer; in the work function layer close to the drain doping The layers are doped with dopant ions that increase the threshold voltage of the semiconductor structure at locations. In the embodiment of the present invention, ions are doped in the work function layer, so that the voltage at the drain doped layer is reduced, and the longitudinal electric field at the corresponding drain doped layer is reduced, that is, the reliability of the semiconductor structure is improved, and because only the work function is doped Doping is performed at a position close to the drain doped layer in the function layer, and the turn-on voltage at the source doped layer is lower, so that the driving current of the semiconductor structure is higher, and the electrical performance of the semiconductor structure is optimized.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.
背景技术Background technique
随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高集成度的方向发展,半导体工艺节点遵循摩尔定律的发展趋势不断减小。晶体管作为最基本的半导体器件目前正被广泛应用,因此随着半导体器件的元件密度和集成度的提高,为了适应工艺节点的减小,不得不断缩短晶体管的沟道长度。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing in the direction of higher component density and higher integration, and the development trend of semiconductor process nodes following Moore's Law is decreasing. As the most basic semiconductor device, transistors are currently being widely used. Therefore, with the increase in the component density and integration of semiconductor devices, in order to adapt to the reduction of process nodes, the channel length of transistors must be continuously shortened.
晶体管沟道长度的缩短具有增加芯片的管芯密度,增加开关速度等好处。然而随着沟道长度的缩短,晶体管源极与漏极间的距离也随之缩短,栅极对沟道的控制能力变差,使亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(short-channeleffects,SCE)更容易发生,晶体管的沟道漏电流增大。The shortening of the transistor channel length has the benefit of increasing the die density of the chip, increasing the switching speed, etc. However, with the shortening of the channel length, the distance between the source and the drain of the transistor is also shortened, and the gate's ability to control the channel becomes worse, resulting in the phenomenon of subthreshold leakage, the so-called short channel. Effects (short-channel effects, SCE) are more likely to occur, and the channel leakage current of the transistor increases.
因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面晶体管向具有更高功效的三维立体式的晶体管过渡,如全包围栅极(Gate-all-around,GAA)晶体管。全包围栅极晶体管中,栅极从四周包围沟道所在的区域,与平面晶体管相比,全包围栅极晶体管的栅极对沟道的控制能力更强,能够更好的抑制短沟道效应。全包围栅极晶体管包括横向全包围栅极(Lateral Gate-all-around,LGAA)晶体管和垂直全包围栅极(Vertical Gate-all-around,VGAA)晶体管,其中,VGAA的沟道在垂直于衬底表面的方向上延伸,有利于提高半导体结构的面积利用效率,因此有利于实现更进一步的特征尺寸缩小。Therefore, in order to better meet the requirements of device size scaling down, the semiconductor process gradually begins to transition from planar transistors to three-dimensional transistors with higher power efficiency, such as gate-all-around (GAA) transistors . In a fully surrounding gate transistor, the gate surrounds the area where the channel is located. Compared with a planar transistor, the gate of a fully surrounding gate transistor has stronger control over the channel and can better suppress short-channel effects. . All-around gate transistors include lateral gate-all-around (LGAA) transistors and vertical gate-all-around (VGAA) transistors, wherein the channel of VGAA is perpendicular to the lining. Extending in the direction of the bottom surface is beneficial to improve the area utilization efficiency of the semiconductor structure, and thus is beneficial to achieve further feature size reduction.
发明内容SUMMARY OF THE INVENTION
本发明实施例解决的问题是提供一种半导体结构及其形成方法,优化半导体结构的电学性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to optimize the electrical performance of the semiconductor structure.
为解决上述问题,本发明实施例提供一种半导体结构的形成方法,包括:提供衬底;在所述衬底上形成源掺杂层;在所述源掺杂层上形成半导体柱;在所述半导体柱的顶端形成漏掺杂层;形成包围所述半导体柱的部分侧壁且露出所述漏掺杂层的栅极结构,所述栅极结构包括覆盖所述半导体柱部分侧壁的功函数层和覆盖所述功函数层的栅极层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。To solve the above problems, embodiments of the present invention provide a method for forming a semiconductor structure, including: providing a substrate; forming a source doped layer on the substrate; forming a semiconductor column on the source doped layer; A drain doped layer is formed on the top of the semiconductor pillar; a gate structure is formed that surrounds part of the sidewall of the semiconductor pillar and exposes the drain doped layer, the gate structure includes a function covering the part of the sidewall of the semiconductor pillar a function layer and a gate layer covering the work function layer; doping a dopant ion capable of increasing the threshold voltage of the semiconductor structure at a position in the work function layer close to the drain doping layer.
相应的,本发明实施例还提供一种半导体结构,包括:衬底;源掺杂层,位于所述衬底上;半导体柱,位于所述源掺杂层上;漏掺杂层,位于所述半导体柱顶端;栅极结构,包围所述半导体柱的部分侧壁且露出所述漏掺杂层,所述栅极结构包括覆盖半导体柱部分侧壁的功函数层和覆盖所述功函数层的栅极层;掺杂离子,位于所述功函数层中靠近所述漏掺杂层的位置处,所述掺杂离子能增加半导体结构阈值电压。Correspondingly, an embodiment of the present invention further provides a semiconductor structure, including: a substrate; a source doped layer, located on the substrate; a semiconductor column, located on the source doped layer; and a drain doped layer, located on the the top of the semiconductor pillar; a gate structure, surrounding part of the sidewall of the semiconductor pillar and exposing the drain doping layer, the gate structure comprising a work function layer covering part of the sidewall of the semiconductor pillar and covering the work function layer The gate layer; dopant ions are located in the work function layer at a position close to the drain dopant layer, and the dopant ions can increase the threshold voltage of the semiconductor structure.
与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:
本发明实施例中所述基底包括衬底、位于所述衬底上的源掺杂层以及位于所述源掺杂层上的半导体柱;在所述半导体柱顶端形成漏掺杂层;所述栅极结构包括功函数层和位于所述功函数层上的栅极层,且所述栅极结构露出所述漏掺杂层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。所述源掺杂层与衬底连接,因此,源掺杂层的电压较低,漏掺杂层的电压高于源掺杂层的电压,因此漏掺杂层的电场比较强,相应的漏掺杂层中的热载流子易破坏栅极结构,电场强度的大小与电压强度成正相关,所述漏掺杂层处有纵向电场,漏掺杂层处的纵向电压等于加载在栅极结构上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,提高了漏掺杂层处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近所述漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。In the embodiment of the present invention, the base includes a substrate, a source doped layer on the substrate, and a semiconductor pillar on the source doped layer; a drain doped layer is formed on the top of the semiconductor pillar; the The gate structure includes a work function layer and a gate layer located on the work function layer, and the gate structure exposes the drain doped layer; a position close to the drain doped layer in the work function layer Doping is a dopant ion that increases the threshold voltage of the semiconductor structure. The source doped layer is connected to the substrate, therefore, the voltage of the source doped layer is lower, and the voltage of the drain doped layer is higher than that of the source doped layer, so the electric field of the drain doped layer is relatively strong, and the corresponding drain The hot carriers in the doped layer are easy to damage the gate structure, and the magnitude of the electric field is positively related to the voltage intensity. There is a longitudinal electric field at the drain doped layer, and the longitudinal voltage at the drain doped layer is equal to the load on the gate structure. The threshold voltage of the semiconductor structure is subtracted from the vertical voltage on , the embodiment of the present invention is by doping the work function layer with doping ions that can increase the threshold voltage of the semiconductor structure, so that the voltage at the drain doped layer is reduced, and the corresponding drain The longitudinal electric field at the doped layer is reduced, which improves the reliability at the drain doped layer, that is, the reliability of the semiconductor structure is improved, and because only the position in the work function layer close to the drain doped layer is doped Therefore, the turn-on voltage at the source doped layer is lower, so that the driving current of the semiconductor structure is higher, and the electrical performance of the semiconductor structure is optimized.
附图说明Description of drawings
图1一种半导体结构的结构示意图;1 is a schematic structural diagram of a semiconductor structure;
图2至图14是本发明实施例半导体结构的形成方法第一实施例中各步骤对应的结构示意图;2 to 14 are schematic structural diagrams corresponding to each step in the first embodiment of the method for forming a semiconductor structure according to an embodiment of the present invention;
图15是本发明实施例半导体结构的形成方法第二实施例中的结构示意图。FIG. 15 is a schematic structural diagram of a second embodiment of a method for forming a semiconductor structure according to an embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,目前所形成的器件仍有性能不佳的问题。现结合一种半导体结构的形成方法分析器件性能不佳的原因。It can be known from the background art that the devices formed at present still have the problem of poor performance. Now combined with a method of forming a semiconductor structure, the reasons for the poor performance of the device are analyzed.
参考图1,示出了一种半导体结构的结构示意图。Referring to FIG. 1, a schematic structural diagram of a semiconductor structure is shown.
所述半导体结构包括:衬底10;源掺杂层11,位于所述衬底10上;半导体柱13,位于所述源掺杂层11上;漏掺杂层12,位于所述半导体柱13顶端;隔离层14,位于所述半导体柱13露出的所述源掺杂层11上,且所述隔离层14覆盖所述半导体柱12的部分侧壁;栅极结构15,包围所述半导体柱13的部分侧壁,且所述栅极结构15露出所述漏掺杂层12;底部接触孔插塞16,位于所述源掺杂层11上且与源掺杂层11连接;栅极接触孔插塞17,位于所述栅极结构15上且与栅极结构15连接;顶部接触孔插塞18,位于漏掺杂层12上,且与漏掺杂层12连接。The semiconductor structure includes: a
所述源掺杂层11与衬底10连接,在半导体结构工作时,源掺杂层11的电压较低,漏掺杂层12的电压高于源掺杂层11的电压,因此漏掺杂层12的电场比较强,相应的漏掺杂层11中的热载流子易破坏栅极结构15,使得所述半导体结构的电学性能不高。The source doped
为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供衬底、位于所述衬底上的源掺杂层以及位于所述源掺杂层上的半导体柱;在所述半导体柱顶端形成漏掺杂层;形成包围所述半导体柱的部分侧壁且露出所述漏掺杂层的栅极结构,所述栅极结构包括功函数层和位于所述功函数层上的栅极层,且所述栅极结构露出所述漏掺杂层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。所述源掺杂层与衬底连接,因此,源掺杂层的电压较低,漏掺杂层的电压高于源掺杂层的电压,因此漏掺杂层的电场比较强,相应的漏掺杂层中的热载流子易破坏栅极结构,电场强度的大小与电压强度成正相关,所述漏掺杂层处有纵向电场,漏掺杂层处的纵向电压等于加载在栅极结构上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,提高了漏掺杂层处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近所述漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上,使得半导体结构的电学性能得到优化。In order to solve the technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, a source doped layer on the substrate, and a semiconductor column on the source doped layer; A drain doped layer is formed on the top of the semiconductor pillar; a gate structure is formed that surrounds part of the sidewall of the semiconductor pillar and exposes the drain doped layer, the gate structure includes a work function layer and a gate structure located on the work function a gate layer on the layer, and the gate structure exposes the drain doped layer; doping a dopant ion capable of increasing the threshold voltage of the semiconductor structure at a position close to the drain doped layer in the work function layer . The source doped layer is connected to the substrate, therefore, the voltage of the source doped layer is lower, and the voltage of the drain doped layer is higher than that of the source doped layer, so the electric field of the drain doped layer is relatively strong, and the corresponding drain The hot carriers in the doped layer are easy to damage the gate structure, and the magnitude of the electric field is positively related to the voltage intensity. There is a longitudinal electric field at the drain doped layer, and the longitudinal voltage at the drain doped layer is equal to the load on the gate structure. The threshold voltage of the semiconductor structure is subtracted from the vertical voltage on , the embodiment of the present invention is by doping the work function layer with doping ions that can increase the threshold voltage of the semiconductor structure, so that the voltage at the drain doped layer is reduced, and the corresponding drain The longitudinal electric field at the doped layer is reduced, which improves the reliability at the drain doped layer, that is, the reliability of the semiconductor structure is improved, and because only the position in the work function layer close to the drain doped layer is doped Therefore, the turn-on voltage at the source doping layer is lower, so that the driving current of the semiconductor structure is higher. In conclusion, the electrical performance of the semiconductor structure is optimized.
为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明实施例的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more clearly understood, specific embodiments of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图2至图14是本发明实施例半导体结构的形成方法第一实施例中各步骤对应的结构示意图。2 to 14 are schematic structural diagrams corresponding to each step in the first embodiment of the method for forming a semiconductor structure according to the embodiment of the present invention.
参考图2,提供衬底100。所述衬底100为后续形成半导体结构提供工艺平台。Referring to Figure 2, a
本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the
继续参考图2,在所述衬底100上形成源掺杂层101。Continuing to refer to FIG. 2 , a source doped
源掺杂层101作为所述半导体结构的源极。所述源掺杂层101与后续形成在半导体柱顶端的漏掺杂层构成所述半导体结构的源漏掺杂层。The source doped
本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即所述源掺杂层101的材料为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the material of the
其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,所述源掺杂层的材料相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, and the material of the source doping layer is correspondingly silicon carbide or silicon phosphide doped with N-type ions. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the position of silicon atoms in the lattice. powerful. Specifically, the N-type ions include P, As or Sb.
本实施例中,采用外延生长法形成第一外延层,在形成第一外延层的过程中采用原位掺杂离子,形成源掺杂层101。其他实施例中,还可以在形成第一外延层的过程中采用原位自掺杂后,通过离子注入的方式继续对第一外延层进行离子掺杂,形成源掺杂层。掺杂离子可达到提高晶体管载流子迁移率的效果。另一些实施例中,还可以只采用离子注入的方式对第一外延层进行离子掺杂。In this embodiment, the epitaxial growth method is used to form the first epitaxial layer, and in-situ doping ions are used in the process of forming the first epitaxial layer to form the
参考图3,在所述源掺杂层101上形成半导体柱102。所述半导体柱102在半导体结构工作时用于形成沟道。Referring to FIG. 3 ,
本实施例中,所述半导体柱102的材料为硅。在其他实施例中,所述半导体柱的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。In this embodiment, the material of the
形成半导体柱102的步骤包括:形成源掺杂层101后,在所述源掺杂层101上形成半导体材料柱(图中未示出);在所述半导体材料柱上形成掩膜层103;以所述掩膜层103为掩膜刻蚀所述半导体材料柱,形成半导体柱102。The steps of forming the
本实施例中,采用选择性外延生长法在源掺杂层101上形成半导体材料柱,使得形成的半导体材料柱为纯净度较高的单晶材料,为后续形成的半导体柱作沟道区做准备。In this embodiment, a semiconductor material column is formed on the source doped
需要说明的是,所述半导体柱102不易过矮也不宜过高。若所述半导体柱102过矮,会使得后续形成的沟道区过短,易产生短沟道效应,导致半导体结构的电学性能得不到提高;若所述半导体柱102过高,所述半导体柱102易坍塌,形成所述半导体柱102的工艺难度过大。本实施例中,所述半导体柱102的高度为150纳米至800纳米。It should be noted that the
参考图3和图4,在形成半导体柱102后还包括:在所述半导体柱102露出的所述源掺杂层101上形成隔离层104(如图4所示),所述隔离层104覆盖所述半导体柱102的部分侧壁。Referring to FIG. 3 and FIG. 4 , after forming the
所述隔离层104用于将后续形成的栅极结构与源掺杂层101进行电隔离,优化了半导体结构的电学性能。The
本实施例中,所述隔离层104的材料为绝缘材料。具体的,隔离层104的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,隔离层104的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成隔离层104的工艺难度和工艺成本;此外,氧化硅的介电常数较小,还有利于提高后续隔离层104的用于隔离相邻器件的作用。In this embodiment, the material of the
形成隔离层104的步骤包括:在所述半导体柱102露出的所述源掺杂层101上形成隔离材料层(图中未示出),所述隔离材料层覆盖所述半导体柱102;对所述隔离材料层进行平坦化处理直至露出所述掩膜层103;以所述掩膜层103为掩膜回刻蚀部分厚度的所述隔离材料层,在所述半导体柱102露出的所述源掺杂层101上形成所述隔离层104。The step of forming the
本实施例中,采用流动性化学气相沉积(Flowable Chemical Vapor Deposition,FCVD)工艺形成所述隔离材料层。流动性化学气相沉积工艺具有良好的填充能力,有利于降低所述隔离材料层内形成空洞等缺陷的概率,相应有利于提高隔离材料层的成膜质量。In this embodiment, the isolation material layer is formed by a flowable chemical vapor deposition (FCVD) process. The fluid chemical vapor deposition process has good filling ability, which is beneficial to reduce the probability of forming defects such as voids in the isolation material layer, and is correspondingly beneficial to improve the film-forming quality of the isolation material layer.
需要说明的是,所述隔离层104不宜过厚也不宜过薄。若所述隔离层104过厚,易导致后续形成在所述半导体柱102上的栅极结构过短,易导致栅极结构控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若所述隔离层104过薄,易导致后续形成在所述半导体柱102上的栅极结构与源掺杂层101距离过短,易导致栅极结构和源掺杂层101发生桥接,不利于优化半导体结构的电学性能。本实施例中,所述隔离层104的厚度为5纳米至15纳米。It should be noted that the
继续掺杂图3和图4,所述半导体结构的形成方法还包括:在形成所述半导体柱102后,在形成隔离材料层前,在所述半导体柱102和所述半导体柱102露出的所述源掺杂层101上保形覆盖保护材料层105(如图3所示)。Continuing with doping in FIG. 3 and FIG. 4 , the method for forming the semiconductor structure further includes: after forming the
隔离材料层采用流动性化学气相沉积工艺形成,所述隔离材料层富含O和H,所述保护材料层105用于在形成隔离层104的过程中,使得所述半导体柱102表面不易被氧化。The isolation material layer is formed by a fluid chemical vapor deposition process, the isolation material layer is rich in O and H, and the
所述保护材料层105的材料为介电材料。具体的,所述保护材料层105的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,保护材料层105的材料为氧化硅。The material of the
本实施例中,通过原子层沉积工艺(Atomic Layer Deposition,ALD)形成所述保护材料层105。原子层沉积工艺的沉积均匀性好,有利于提高所述隔离膜的厚度均一性和薄膜质量,相应有利于提高所述保护材料层105的成膜质量,而且采用原子层沉积工艺还有利于精确控制所述保护材料层105的沉积厚度。在其他实施例中,还可以采用化学气相沉积工艺(Chemical Vapor Deposition,CVD)形成侧墙材料层。In this embodiment, the
需要说明的是,所述保护材料层105不宜过厚也不宜过薄。若保护材料层105的过厚,易导致形成保护材料层105的工艺时间过长,相应的后续去除露出隔离层104(如图4所示)的保护材料层105的工艺过长,且易导致后续形成在所述半导体柱102上的栅极结构过短,易导致栅极结构控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若保护材料层105过薄,易导致半导体柱102表面被氧化,导致半导体柱102的均一性较差,不能很好的提高半导体结构的电学性能。本实施例中,所述保护材料层105的厚度为3纳米至8纳米。It should be noted that the
所述半导体结构的形成方法还包括:在形成隔离层104后,去除所述隔离层104露出的保护材料层105,形成保护层106。The method for forming the semiconductor structure further includes: after forming the
去除露出所述隔离层104的所述保护材料层105为后续形成包围所述半导体柱部分侧壁的栅极结构做准备。The
本实施例中,所述隔离层104和保护材料层105的材料不同,所述隔离层104和保护材料层105具有刻蚀选择比,采用湿法工艺去除所述隔离层104露出的所述保护材料层105。湿法刻蚀工艺为各向同性刻蚀,湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。In this embodiment, the materials of the
所述保护层106的材料为介电材料,因此位于所述隔离层104底端以及隔离层104与半导体柱102之间的保护层106可以不用去除。The material of the
参考图5至图12,形成包围所述半导体柱102部分侧壁的栅极结构109(如图12所示),所述栅极结构109包括覆盖所述半导体柱102部分侧壁的功函数层1091(如图12所示)和覆盖所述功函数层1091栅极层1092(如图12所示)。Referring to FIGS. 5 to 12 , a gate structure 109 (as shown in FIG. 12 ) is formed surrounding a portion of the sidewall of the
所述栅极结构109用于控制半导体柱102中沟道的开启和断开。The
本实施例中,所述半导体结构用于形成NMOS。具体的,功函数层1091的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种。其他实施例中,所述半导体结构用于形成PMOS。具体的,功函数层的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。In this embodiment, the semiconductor structure is used to form an NMOS. Specifically, the material of the
本实施例中,栅极层1092的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the
形成所述栅极结构109的步骤包括:The steps of forming the
如图6所示,在所述半导体柱102和所述半导体柱102露出的所述源掺杂层101上保形覆盖栅极材料结构107(如图7所示)。As shown in FIG. 6 , a gate material structure 107 (as shown in FIG. 7 ) is conformally covered on the
本实施例中,所述栅极材料结构107包括功函数材料层1071和位于所述功函数材料层1071上的栅极材料层1072。In this embodiment, the
所述功函数材料层1071为后续形成功函数层做准备,所述栅极材料层1072为后续形成栅极层做准备。The work
本实施例中,采用原子层沉积工艺形成栅极材料结构107,采用原子层沉积工艺的优点在此不再赘述。In this embodiment, the
如图7所示,形成覆盖所述栅极材料结构107的遮挡层(图中未示出),以所述遮挡层为掩膜刻蚀栅极材料结构107;刻蚀所述栅极材料结构107后,去除所述遮挡层。As shown in FIG. 7, a shielding layer (not shown in the figure) covering the
在去除遮挡层露出的栅极材料结构107的过程中,遮挡层降低了被其覆盖的栅极材料结构107被误刻蚀的概率。In the process of removing the
具体的,形成遮挡层的步骤包括:形成覆盖所述栅极材料结构107的遮挡材料层(图中未示出);在所述遮挡材料层上形成光刻胶层;以所述光刻胶层为掩膜刻蚀所述遮挡材料层,形成遮挡层。Specifically, the step of forming the shielding layer includes: forming a shielding material layer (not shown in the figure) covering the
本实施例中,遮挡层的材料为有机材料。有机材料为易于去除的材料,使得在后续去除遮挡层时减少对栅极材料结构107的损伤。In this embodiment, the material of the shielding layer is an organic material. The organic material is a material that is easy to remove, so that damage to the
具体的,遮挡层的材料可以为BARC(bottom anti-reflective coating,底部抗反射涂层)材料、ODL(organic dielectric layer,有机介电层)材料、光刻胶、DARC(dielectric anti-reflective coating,介电抗反射涂层)材料、DUO(Deep UV LightAbsorbing Oxide,深紫外光吸收氧化层)材料或APF(Advanced Patterning Film,先进图膜)材料。Specifically, the material of the blocking layer can be BARC (bottom anti-reflective coating) material, ODL (organic dielectric layer, organic dielectric layer) material, photoresist, DARC (dielectric anti-reflective coating, Dielectric anti-reflection coating) material, DUO (Deep UV LightAbsorbing Oxide, deep ultraviolet light absorbing oxide layer) material or APF (Advanced Patterning Film, advanced drawing film) material.
本实施例中,采用旋涂工艺上形成遮挡材料层。In this embodiment, the shielding material layer is formed by a spin coating process.
本实施例中,刻蚀所述栅极材料结构107后,去除所述遮挡层。通过去除遮挡层,从而为后续形成层间介质层提供空间。In this embodiment, after the
本实施例中,采用灰化工艺或干法刻蚀工艺,去除所述遮挡层。In this embodiment, an ashing process or a dry etching process is used to remove the shielding layer.
如图8至图11所示,去除所述遮挡层后,形成覆盖所述半导体柱102的部分侧壁的层间介质层110(如图11所示)。As shown in FIG. 8 to FIG. 11 , after the blocking layer is removed, an interlayer dielectric layer 110 (as shown in FIG. 11 ) covering part of the sidewall of the
所述层间介质层110为后续去除露出所述层间介质层110的栅极材料结构107做准备。The
所述层间介质层110用于实现相邻器件之间的电隔离,所述层间介质层110的材料为绝缘材料。本实施例中,所述层间介质层110的材料为氧化硅,其他实施例中,所述层间介质层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。The
形成层间介质层110的步骤包括:形成覆盖所述栅极材料结构107的层间介质材料层111(如图8所示),所述层间介质材料层111露出位于所述半导体柱102上的所述栅极材料结构107的顶面;回刻蚀部分厚度的所述层间介质材料层111,形成覆盖所述半导体柱102部分侧壁的层间介质层110。The step of forming the
如图12所示,去除高于所述层间介质层110的栅极材料结构107,形成覆盖所述半导体柱102部分侧壁的栅极结构109。As shown in FIG. 12 , the
本实施例中,采用干法工艺去除露出所述层间介质层110的所述栅极材料结构107。干法刻蚀工艺有利于精确控制去除露出所述层间介质层110的所述栅极材料结构107的厚度,降低对其他膜层结构的损伤。其他实施例中,还可以采用湿法刻蚀工艺去除露出所述层间介质层的所述栅极材料结构。In this embodiment, a dry process is used to remove the
继续参考图5,需要说明的是,所述半导体结构的形成方法还包括:在形成隔离层104后,形成栅极材料结构107前,在所述半导体柱102和所述半导体柱102露出的所述隔离层104上保形覆盖栅介质层108。Continuing to refer to FIG. 5 , it should be noted that the method for forming the semiconductor structure further includes: after the
所述栅介质层108用于实现栅极材料结构107与半导体柱102实现电隔离。The
本实施例中,栅极结构为金属栅极结构,因此栅介质层108的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO和Al2O3中的一种或几种。其他实施例中,所述栅极结构为多晶硅栅极结构时,栅介质层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅和非晶碳中的一种或几种。In this embodiment, the gate structure is a metal gate structure, so the material of the
本实施例中,采用原子层沉积工艺形成栅介质层108,采用原子层沉积工艺的优点在此不再赘述。其他实施例中,还可以采用化学气相沉积工艺形成栅介质层。In this embodiment, the
继续参考图8至图10,在所述半导体柱102的顶端形成漏掺杂层112(如图10所示)。Continuing to refer to FIGS. 8 to 10 , a drain doped
漏掺杂层112与源掺杂层101在半导体结构工作时,为沟道提供应力,增加载流子的迁移速率。The
所述漏掺杂层112的形成步骤包括:在形成层间介质材料层111后,形成层间介质层110之前,采用平坦化工艺去除高于所述掩膜层103的所述层间介质材料层111和栅极材料结构107;露出所述掩膜层103后,去除所述掩膜层103,形成由半导体柱102和栅介质层108围成的凹槽(图中未示出);在所述凹槽中形成漏掺杂层112。The forming step of the drain doped
本实施例中,本实施例中,采用化学机械平坦化处理(Chemical-MechanicalPlanarization,CMP)对层间介质材料层111进行平坦化处理。In this embodiment, in this embodiment, chemical-mechanical planarization (Chemical-Mechanical Planarization, CMP) is used to planarize the interlayer
本实施例中,采用湿法刻蚀工艺去除所述掩膜层103。采用湿法工艺去除露出所述层间介质层110的所述栅极材料结构107。湿法刻蚀工艺为各向同性刻蚀,湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。其他实施例中,还可以采用干法刻蚀工艺去除露出掩膜层。In this embodiment, the
具体的,采用磷酸溶液去除露出所述掩膜层103。Specifically, phosphoric acid solution is used to remove and expose the
本实施例中,采用外延生长法形成第二外延层,在形成第二外延层的过程中采用原位掺杂离子,形成漏掺杂层112。其他实施例中,还可以在形成第二外延层的过程中采用原位自掺杂后,通过离子注入的方式继续对第二外延层进行离子掺杂,形成漏掺杂层112。掺杂离子可达到提高沟道中载流子迁移率的效果。另一些实施例中,还可以只采用离子注入的方式对第二外延层进行离子掺杂。In this embodiment, an epitaxial growth method is used to form the second epitaxial layer, and in-situ doping ions are used in the process of forming the second epitaxial layer to form the drain doped
本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor),即所述第二外延层的材料为锗化硅。本实施例通过在第二外延层中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor), that is, the material of the second epitaxial layer is silicon germanium. In this embodiment, by doping P-type ions in the second epitaxial layer, the P-type ions replace the positions of silicon atoms in the crystal lattice. the stronger. Specifically, the P-type ions include B, Ga or In.
其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)时,即所述第二外延层的材料相应为碳化硅或磷化硅。通过在第二外延层中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, when the semiconductor structure is used to form NMOS (Negative channel Metal Oxide Semiconductor), that is, the material of the second epitaxial layer is correspondingly silicon carbide or silicon phosphide. By doping N-type ions in the second epitaxial layer, the N-type ions are substituted for the positions of silicon atoms in the crystal lattice. Specifically, the N-type ions include P, As or Sb.
其他实施例中,形成所述漏掺杂层的步骤还可以包括:采用平坦化工艺去除高于所述半导体柱的所述层间介质材料层;对所述半导体柱进行离子掺杂,形成漏掺杂层。In other embodiments, the step of forming the drain doped layer may further include: using a planarization process to remove the interlayer dielectric material layer higher than the semiconductor pillar; ion doping the semiconductor pillar to form a drain doped layer.
需要说明的是,在另一些实施例中,形成所述漏掺杂层的步骤包括:在形成所述隔离材料层后,形成隔离层前,采用平坦化工艺去除高于所述掩膜层的隔离材料层;去除所述隔离材料层露出的所述掩膜层,形成由所述隔离材料层和半导体柱围成的隔离层凹槽;在所述隔离层凹槽中,形成所述漏掺杂层。It should be noted that, in some other embodiments, the step of forming the drain doped layer includes: after forming the isolation material layer and before forming the isolation layer, using a planarization process to remove a surface area higher than that of the mask layer. isolation material layer; removing the mask layer exposed by the isolation material layer to form an isolation layer groove surrounded by the isolation material layer and the semiconductor column; in the isolation layer groove, form the drain dopant Miscellaneous layers.
或者,在形成所述隔离材料层后,形成隔离层前,采用平坦化工艺去除高于所述半导体柱的隔离材料层;对所述半导体柱进行离子掺杂,形成所述漏掺杂层。Alternatively, after the isolation material layer is formed and before the isolation layer is formed, a planarization process is used to remove the isolation material layer higher than the semiconductor column; ion doping is performed on the semiconductor column to form the drain doped layer.
在形成栅极材料结构之前形成漏掺杂层,可以避免形成漏掺杂层的过程中,掺杂离子误入栅极材料结构中,导致后续形成的栅极结构不能很好的控制沟道的开启和断开。Forming the drain doping layer before forming the gate material structure can avoid that doping ions stray into the gate material structure during the process of forming the drain doping layer, so that the gate structure formed subsequently cannot control the channel well. On and off.
继续参考图12,所述栅极结构109露出所述漏掺杂层112。Continuing to refer to FIG. 12 , the
需要说明的是,所述栅极结构109距离所述漏掺杂层112底部的距离不宜过大也不宜过小。若距离过大,易导致所述半导体柱102上的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若距离过短,易导致栅极结构109和漏掺杂层112发生桥接,不利于优化半导体结构的电学性能。本实施例中,所述栅极结构109距离所述漏掺杂层112底部的距离为6纳米至10纳米。It should be noted that, the distance between the
参考图13,在所述功函数层1091中靠近所述漏掺杂层112的位置处掺杂能增加半导体结构阈值电压的掺杂离子。Referring to FIG. 13 , dopant ions capable of increasing the threshold voltage of the semiconductor structure are doped at a position in the
所述源掺杂层101与衬底100连接,因此,源掺杂层101的电压较低,漏掺杂层112的电压高于源掺杂层101的电压,因此漏掺杂层112的电场比较强,相应的漏掺杂层112中的热载流子易破坏栅极结构109,电场强度的大小与电压强度成正相关,所述漏掺杂层112处有纵向电场,漏掺杂层112处的纵向电压等于加载在栅极结构109上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层1091中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层112处的电压降低,相应的漏掺杂层112处的纵向电场降低,提高了漏掺杂层112处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层1091中靠近所述漏掺杂层112的位置处进行掺杂,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。The source doped
本实施例中,在形成所述栅极结构109后,通过离子注入的方式在所述功函数层1091中掺杂能增加半导体结构阈值电压的掺杂离子。其他实施例中,还可以通过离子扩散的方式所述功函数层中掺杂离子。In this embodiment, after the
在所述功函数层1091中掺杂离子,使得功函数层1091的费米能级趋向于价带顶变化,或者趋向于导带底变化,则功函数层1091的费米势增大,使得半导体结构的反型层更难产生,提高所述半导体结构的阈值电压,使得在加载在漏掺杂层112上的纵向电压下降,相应的漏掺杂层112处的纵向电场降低,漏掺杂层112中的热载流子不易破坏栅极结构109,优化了半导体结构的电学性能。The
在所述功函数层1091中靠近所述漏掺杂层112的位置处掺杂能增加半导体结构阈值电压的掺杂离子,也就是说所述漏掺杂层112处的离子掺杂浓度高于所述源掺杂层101处的离子掺杂浓度,因此,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高。Doping the
本实施例中,所述半导体结构用于形成PMOS时,所述离子掺杂的工艺参数包括:所述掺杂离子包括Al、Ti和Ta中的一种或多种;注入剂量为1.0E16原子每平方厘米至1.0E19原子每平方厘米,注入能量为0.8Kev至12Kev,离子注入的方向与所述衬底法线的夹角为7度至25度。In this embodiment, when the semiconductor structure is used to form a PMOS, the ion doping process parameters include: the doping ions include one or more of Al, Ti and Ta; the implantation dose is 1.0E16 atoms The implantation energy ranges from 0.8Kev to 12Kev per square centimeter to 1.0E19 atoms per square centimeter, and the angle between the direction of ion implantation and the normal line of the substrate ranges from 7 degrees to 25 degrees.
需要说明的是,注入剂量不宜过多也不宜过少。若所述注入剂量过多,若所述注入剂量过大,会导致半导体结构的反型层更难产生,半导体结构阈值电压过高,导致半导体结构更难开启;若所述注入剂量过小,半导体结构阈值电压提高不明显,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。本实施例中,注入剂量为1.0E16原子每平方厘米至1.0E19原子每平方厘米。It should be noted that the injection dose should not be too much nor too little. If the implantation dose is too large, if the implantation dose is too large, the inversion layer of the semiconductor structure will be more difficult to generate, and the threshold voltage of the semiconductor structure will be too high, making it more difficult to turn on the semiconductor structure; if the implantation dose is too small, the semiconductor structure will be more difficult to turn on. The threshold voltage of the semiconductor structure is not significantly increased, and the electric field at the drain doped
需要说明的是,注入能量不宜过大也不宜过小。若注入能量过大会导致掺杂离子进入靠近源掺杂层101处的功函数层1091中,使得源掺杂层101处的离子掺杂浓度较高,使得半导体结构的驱动电流较低;另外若所述注入能量较高,还会使得掺杂离子进入半导体柱102中,也就是说进入沟道区中,不易起到提高半导体结构阈值电压的作用;若所述注入能量过少,会导致掺杂离子过于集中在所述功函数层1091的顶面,使得所述掺杂离子不能起到调节功函数层1091费米能级的作用,导致所述半导体结构的阈值电压提高不显著。本实施例中,注入能量为0.8Kev至12Kev。It should be noted that the injection energy should not be too large nor too small. If the implantation energy is too high, the doping ions will enter the
需要说明的是,离子注入的方向与衬底100法线的夹角不宜过大,也不宜过小。若所述注入角度过大,会导致过多的掺杂离子注入栅极层1092中,进而导致过少的掺杂离子注入在功函数层1191中,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。若所述注入角度过小,易导致掺杂离子进入靠近所述源掺杂层101的位置处的所述功函数层1091中,导致所述源掺杂层101处的开启电压提高,导致半导体结构的驱动电流较低。本实施例中,离子注入的方向与衬底100法线的夹角为7度至25度。It should be noted that the angle between the direction of ion implantation and the normal line of the
其他实施例中,半导体结构用于形成NMOS晶体管,所述离子掺杂的工艺参数包括:所述掺杂离子包括F、N、H、C和O中的一种或多种;注入剂量为1.0E14原子每平方厘米至9.0E16原子每平方厘米,注入能量为0.5Kev至10Kev,离子注入的方向与所述衬底法线的夹角为7度至25度。In other embodiments, the semiconductor structure is used to form an NMOS transistor, and the process parameters of the ion doping include: the doping ions include one or more of F, N, H, C, and O; the implantation dose is 1.0 E14 atoms per square centimeter to 9.0E16 atoms per square centimeter, the implantation energy is 0.5Kev to 10Kev, and the angle between the direction of ion implantation and the normal line of the substrate is 7 degrees to 25 degrees.
参考图14,在所述掺杂离子后,形成覆盖层间介质层110和漏掺杂层112的介电层113;形成介电层113后,形成与源掺杂层101连接的底部接触孔插塞114;形成与栅极结构109连接的栅极接触孔插塞115;形成与漏掺杂层112连接的顶部接触孔插塞116。Referring to FIG. 14 , after the doping of ions, a
所述介电层113用于实现相邻器件之间的电隔离,所述介电层113的材料为绝缘材料。The
本实施例中,所述介电层113的材料为氧化硅。其他实施例中,所述介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the
所述底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。The bottom
形成所述底部接触孔插塞114的步骤包括:刻蚀所述介电层113、层间介质层110、隔离层104以及保护层106直至形成露出所述源掺杂层101的第一通孔,向所述第一通孔内填充导电材料,所述第一通孔内的导电材料作为底部接触孔插塞114。The step of forming the bottom
本实施例中,所述导电材料的材料为W。在其他实施例中,所述导电材料的材料还可以是Al、Cu、Ag或Au等。In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag, Au, or the like.
所述栅极接触孔插塞115以及顶部接触孔插塞116的形成方法与底部接触孔插塞114的形成方法类似,在此不再赘述。The formation method of the gate
如图15所示,本发明还提供第二种半导体结构的形成方法,具体内容如下:As shown in FIG. 15 , the present invention also provides a method for forming a second semiconductor structure, the details of which are as follows:
本发明实施例与第一实施例的相同之处,在此不再赘述。本实施例与第一实施例的不同之处在于:在形成所述栅极层2092后,通过退火的方式在所述功函数层2091中靠近所述漏掺杂层212的位置处掺杂离子。The similarities between the embodiment of the present invention and the first embodiment will not be repeated here. The difference between this embodiment and the first embodiment is that after the
所述掺杂离子通过退火的方式进入所述功函数层2091中,降低了功函数层2091中离子的活性,使得功函数层2091的费米能级趋向于价带顶变化,则功函数层2091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层212上的纵向电压下降,相应的,漏掺杂层212处的纵向电场降低,漏掺杂层212中的热载流子不易破坏栅极结构209,且因为通过退火方式掺杂的离子主要集中在功函数层2091中靠近所述漏掺杂层212的位置处,源掺杂层201处的开启电压较低,使得半导体结构的驱动电流较高,综上优化了半导体结构的电学性能。The doping ions enter the
例如当所述功函数层2091的材料为TiAl,通过在所述功函数层2091中掺杂F和H中的一种或两种,使得功函数层2091中的费米能级趋向于价带顶变化,则功函数层2091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压。For example, when the material of the
退火方式掺杂的离子主要集中在功函数层2091中靠近所述漏掺杂层212的位置处,也就是说所述漏掺杂层212处的离子掺杂浓度高于所述源掺杂层201处的离子掺杂浓度,因此,源掺杂层201处的开启电压较低,使得半导体结构的驱动电流较高。The ions doped by annealing are mainly concentrated in the
所述半导体结构用于形成NMOS晶体管,所述离子掺杂的工艺参数包括:所述掺杂离子包括F和H中的一种或多种,所述离子掺杂的反应气体相应包括F2和H2中的一种或多种,其中,F2流量为10sccm至800sccm,或者H2流量为10sccm至800sccm;工艺温度为850摄氏度至1050摄氏度;腔室压强为0.5倍至10倍标准大气压。The semiconductor structure is used to form an NMOS transistor, and the process parameters of the ion doping include: the doping ions include one or more of F and H, and the ion doping reaction gas correspondingly includes F 2 and One or more of H2 , wherein the F2 flow is 10sccm to 800sccm, or the H2 flow is 10sccm to 800sccm ; the process temperature is 850 to 1050 degrees Celsius; the chamber pressure is 0.5 times to 10 times the standard atmospheric pressure.
需要说明的是,所述腔室中的F2或者H2的流量不宜过大也不宜过小。若所述气体流量过小,易导致所述F离子或者H离子,扩散进入所述功函数层2091中的速率,使得所需工艺的时间过长,不利于提高半导体结构的形成效率;若所述气体流量过大,易导致F离子或者H离子扩散进入靠近所述源掺杂层201的位置处的所述功函数层2091中,导致所述源掺杂层201处的开启电压提高,导致半导体结构的驱动电流较低。本实施例中,F2流量为10sccm至800sccm,或者H2流量为10sccm至800sccm。It should be noted that the flow rate of F 2 or H 2 in the chamber should neither be too large nor too small. If the gas flow rate is too small, it is easy to cause the rate of diffusion of the F ions or H ions into the
需要说明的是,所述工艺温度不宜过小,也不宜过大。如果所述工艺温度过小,则容易导致离子在所述功函数层2091的扩散速度过慢,使得所需工艺的时间过长,不利于提高半导体结构的形成效率;如果所述工艺温度过大,对增强离子扩散的效果不够显著,还可能导致晶体管的电性参数发生偏差,从而导致晶体管电学性能的下降。为此,本实施例中,所述工艺温度在850摄氏度至1050摄氏度的范围内。It should be noted that the process temperature should not be too small or too high. If the process temperature is too low, the diffusion speed of ions in the
需要说明的是,腔室压强不宜过大也不宜过小。若所述腔室压强过大,易导致F离子或者H离子扩散进入靠近所述源掺杂层201的位置处的所述功函数层2091中,导致所述源掺杂层201处的开启电压提高,导致半导体结构的驱动电流较低。若所述腔室压强过小,易导致所述F离子或者H离子,扩散进入所述功函数层2091中的速率,使得所需工艺的时间过长,不利于提高半导体结构的形成效率。本实施例中,腔室压强为0.5倍至10倍的标准大气压。It should be noted that the chamber pressure should not be too large or too small. If the chamber pressure is too large, F ions or H ions are likely to diffuse into the
对本实施例所述半导体结构的具体描述,可参考第一实施例中的相应描述,本实施例在此不再赘述。For the specific description of the semiconductor structure in this embodiment, reference may be made to the corresponding description in the first embodiment, which will not be repeated in this embodiment.
相应的,本发明实施例还提供一种半导体结构。参考图14,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, an embodiment of the present invention further provides a semiconductor structure. Referring to FIG. 14, a schematic structural diagram of an embodiment of the semiconductor structure of the present invention is shown.
半导体结构包括:衬底100;源掺杂层101,位于衬底100上;半导体柱102,位于源掺杂层101上;漏掺杂层112,位于半导体柱102顶端;栅极结构109,包围半导体柱102的部分侧壁且露出漏掺杂层112,栅极结构109包括覆盖半导体柱102部分侧壁的功函数层1091和覆盖功函数层1091的栅极层1092;掺杂离子,位于功函数层1091中靠近所述漏掺杂层112的位置处,掺杂离子能增加半导体结构阈值电压。The semiconductor structure includes: a
漏掺杂层112的电压高于源掺杂层101的电压,因此漏掺杂层112的电场比较强,相应的漏掺杂层112中的热载流子易破坏栅极结构109,电场强度的大小与电压强度成正相关,漏掺杂层112处有纵向电场,漏掺杂层112处的纵向电压等于加载在栅极结构109上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在功函数层1091中掺杂离子提高半导体结构的阈值电压,使得漏掺杂层112处的电压降低,相应的漏掺杂层112处的纵向电场降低,提高了漏掺杂层112处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层1091中靠近所述漏掺杂层112的位置处进行掺杂,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。The voltage of the drain doped
本实施例中,半导体结构用于形成PMOS时,掺杂离子包括:Al、Ti和Ta中的一种或多种。In this embodiment, when the semiconductor structure is used to form a PMOS, the doping ions include: one or more of Al, Ti and Ta.
掺杂离子位于功函数层1091中靠近所述漏掺杂层112的位置处,使得功函数层1091的费米能级趋向于导带底变化,则功函数层1091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层112上的纵向电压下降,相应的,漏掺杂层112处的纵向电场降低,漏掺杂层112中的热载流子不易破坏栅极结构109,优化了晶体管的电学性能。The doping ions are located in the
所述掺杂离子位于所述功函数层1091中靠近所述漏掺杂层112的位置处,也就是说所述漏掺杂层112处的离子掺杂浓度高于所述源掺杂层101处的离子掺杂浓度,因此,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高。The doping ions are located in the
需要说明的是,掺杂离子的浓度不宜过高也不宜过低。若掺杂离子浓度过高,会导致半导体结构的反型层更难产生,半导体结构阈值电压过高,导致半导体结构更难开启。若掺杂离子浓度过低,半导体结构阈值电压提高不明显,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。本实施例中,掺杂离子的浓度为1.0E21原子每立方厘米至1.0E24原子立平方厘米。It should be noted that the concentration of doping ions should not be too high nor too low. If the doping ion concentration is too high, it will be more difficult to generate an inversion layer of the semiconductor structure, and the threshold voltage of the semiconductor structure will be too high, making it more difficult to turn on the semiconductor structure. If the doping ion concentration is too low, the threshold voltage of the semiconductor structure is not significantly increased, and the electric field at the
其他实施例中,半导体结构用于形成NMOS时,掺杂离子包括:F、N、H、C和O中的一种或多种。In other embodiments, when the semiconductor structure is used to form an NMOS, the dopant ions include one or more of F, N, H, C and O.
掺杂离子位于功函数层中靠近所述漏掺杂层的位置处,使得功函数层的费米能级趋向于价带顶变化,则功函数层的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层上的纵向电压下降,相应的,漏掺杂层处的纵向电场降低,漏掺杂层中的热载流子不易破坏栅极结构,优化了晶体管的电学性能。The doping ions are located in the work function layer near the drain doping layer, so that the Fermi level of the work function layer tends to change to the top of the valence band, and the Fermi potential of the work function layer increases, making the semiconductor structure more stable. The inversion layer is more difficult to generate, and the threshold voltage of the semiconductor structure is increased, so that the longitudinal voltage loaded on the drain doped layer decreases, correspondingly, the longitudinal electric field at the drain doped layer decreases, and the hot carrier current in the drain doped layer decreases. The gate structure is not easily damaged by the electrons, which optimizes the electrical performance of the transistor.
掺杂离子的浓度为1.0E19原子每立方厘米至9.0E21原子立平方厘米。The concentration of dopant ions ranges from 1.0E19 atoms per cubic centimeter to 9.0E21 atoms per cubic centimeter.
衬底100为形成半导体结构提供工艺平台。
本实施例中,衬底100为硅衬底。在其他实施例中,衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the
半导体柱102在半导体结构工作时用于形成沟道。本实施例中,半导体柱102为纯净度较高的单晶材料。半导体柱102的材料为硅。在其他实施例中,半导体柱的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。The
需要说明的是,半导体柱102不易过矮也不宜过高。若半导体柱102过矮,会使得后续形成的沟道区过短,易产生短沟道效应,导致半导体结构的电学性能得不到提高;若半导体柱102过高,半导体柱102易坍塌,形成半导体柱102的工艺难度过大。本实施例中,半导体柱102的高度为150纳米至800纳米。It should be noted that the
漏掺杂层112与源掺杂层101在半导体结构工作时,为沟道提供应力,增加载流子的迁移速率。源掺杂层101作为半导体结构的源极,漏掺杂层112作为半导体结构的漏极。The
本实施例中,半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即源掺杂层101和漏掺杂层112为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the
其他实施例中,半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,即源掺杂层和漏掺杂层相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, that is, the source doped layer and the drain doped layer are respectively N-type ion doped silicon carbide or silicon phosphide. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the position of silicon atoms in the lattice. powerful. Specifically, the N-type ions include P, As or Sb.
栅极结构109用于控制半导体柱102中沟道的开启和断开。The
本实施例中,半导体结构用于形成PMOS。In this embodiment, the semiconductor structure is used to form a PMOS.
具体的,功函数层1091的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。其他实施例中,半导体结构用于形成NMOS。具体的,功函数层的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种。Specifically, the material of the
本实施例中,栅极层1092的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the
需要说明的是,栅极结构109距离漏掺杂层112底部的距离不宜过大也不宜过小。若距离过大,易导致半导体柱102上的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若距离过短,易导致栅极结构109和漏掺杂层112发生桥接,不利于优化半导体结构的电学性能。本实施例中,栅极结构109距离漏掺杂层112底部的距离为6纳米至10纳米。It should be noted that, the distance between the
半导体结构还包括:层间介质层110,覆盖栅极结构109的侧壁,且露出栅极结构109的顶面。The semiconductor structure further includes: an
层间介质层110用于实现相邻器件之间的电隔离,层间介质层110的材料为绝缘材料。The
本实施例中,层间介质层110的材料为氧化硅,其他实施例中,层间介质层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the
半导体结构还包括:介电层113,位于层间介质层110上,且介电层113覆盖底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116的侧壁。The semiconductor structure further includes: a
介电层113用于实现相邻器件之间的电隔离,介电层113的材料为绝缘材料。本实施例中,介电层113的材料为氧化硅。其他实施例中,介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。The
半导体结构还包括:隔离层104,位于栅极结构109和源掺杂层101之间,且隔离层104覆盖半导体柱102的部分侧壁。The semiconductor structure further includes: an
隔离层104用于将栅极结构109与源掺杂层101进行电隔离,优化了半导体结构的电学性能。本实施例中,隔离层104的材料为绝缘材料。The
具体的,隔离层104的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,隔离层104的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成隔离层104的工艺难度和工艺成本;此外,氧化硅的介电常数较小,还有利于提高后续隔离层104的用于隔离相邻器件的作用。Specifically, the material of the
需要说明的是,隔离层104的不宜过厚也不宜过薄。若隔离层104过厚,易导致包围半导体柱102的部分侧壁的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若隔离层104过薄,易导致包围半导体柱102的部分侧壁的栅极结构109与源掺杂层101距离过短,易导致栅极结构109和源掺杂层101发生桥接,不利于优化半导体结构的电学性能。本实施例中,隔离层104的厚度为5纳米至15纳米。It should be noted that, the
半导体结构还包括,位于栅极结构109与半导体柱102之间以及栅极结构109和隔离层104之间的栅介质层108。The semiconductor structure further includes a
栅介质层108用于实现栅极结构109与半导体柱102实现电隔离。The
本实施例中,栅极结构109为金属栅极结构,因此栅介质层108的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO和Al2O3中的一种或几种。其他实施例中,栅极结构为多晶硅栅极结构时,栅介质层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅和非晶碳中的一种或几种。In this embodiment, the
半导体结构还包括保护层106,位于隔离层104与半导体柱102之间以及隔离层104与源掺杂层101之间。The semiconductor structure further includes a
保护层106的材料为介电材料。且隔离层104和保护层106的材料不同,隔离层104和保护层106具有刻蚀选择比。具体的,保护层106的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,保护层106的材料为氧化硅。The material of the
需要说明的是,保护层106不宜过厚也不宜过薄。若保护层106的过厚,易导致形成保护层106的工艺时间过长,且易栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若保护层106过薄,易导致半导体柱102底部表面在形成隔离层104的过程中被氧化,导致半导体柱102的均一性较差,不能很好的提高半导体结构的电学性能。本实施例中,保护层106的厚度为3纳米至8纳米。It should be noted that the
半导体结构还包括:底部接触孔插塞114,贯穿保护层106、隔离层104、栅介质层108、层间介质层110以及介电层113,且与源掺杂层101连接;栅极接触孔插塞115,贯穿层间介质层110以及介电层113,且与栅极结构109连接;顶部接触孔插塞116,贯穿介电层113,且与漏掺杂层112连接。The semiconductor structure further includes: a bottom
底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。本实施例中,导电材料的材料为W。在其他实施例中,导电材料的材料还可以是Al、Cu、Ag或Au等。The bottom contact hole plugs 114 , the gate contact hole plugs 115 and the top contact hole plugs 116 are used to implement electrical connections between semiconductor structures and semiconductor structures in addition to being used to implement electrical connections within the semiconductor structures. In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag, Au, or the like.
所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed by the formation method described in the foregoing embodiments, or may be formed by other formation methods. For the specific description of the semiconductor structure in this embodiment, reference may be made to the corresponding descriptions in the foregoing embodiments, which will not be repeated in this embodiment.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910153187.1A CN111627819B (en) | 2019-02-28 | 2019-02-28 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910153187.1A CN111627819B (en) | 2019-02-28 | 2019-02-28 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111627819A true CN111627819A (en) | 2020-09-04 |
CN111627819B CN111627819B (en) | 2023-10-17 |
Family
ID=72259644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910153187.1A Active CN111627819B (en) | 2019-02-28 | 2019-02-28 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111627819B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104009082A (en) * | 2013-02-27 | 2014-08-27 | 爱思开海力士有限公司 | Transistor, resistance variable memory device including the same, and manufacturing method thereof |
CN105826265A (en) * | 2015-01-09 | 2016-08-03 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
CN105870020A (en) * | 2015-01-23 | 2016-08-17 | 中国科学院微电子研究所 | Semiconductor device and forming method thereof |
CN108206209A (en) * | 2016-12-16 | 2018-06-26 | 爱思开海力士有限公司 | Semiconductor devices and its manufacturing method with buried gate structure |
US20180218913A1 (en) * | 2017-01-27 | 2018-08-02 | International Business Machines Corporation | Salicide bottom contacts |
US20180286869A1 (en) * | 2015-03-31 | 2018-10-04 | Stmicroelectronics, Inc. | Vertical gate-all-around tfet |
US10170577B1 (en) * | 2017-12-04 | 2019-01-01 | International Business Machines Corporation | Vertical transport FETs having a gradient threshold voltage |
CN109148290A (en) * | 2017-06-28 | 2019-01-04 | 中芯国际集成电路制造(上海)有限公司 | The manufacturing method of semiconductor device |
-
2019
- 2019-02-28 CN CN201910153187.1A patent/CN111627819B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104009082A (en) * | 2013-02-27 | 2014-08-27 | 爱思开海力士有限公司 | Transistor, resistance variable memory device including the same, and manufacturing method thereof |
CN105826265A (en) * | 2015-01-09 | 2016-08-03 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
CN105870020A (en) * | 2015-01-23 | 2016-08-17 | 中国科学院微电子研究所 | Semiconductor device and forming method thereof |
US20180286869A1 (en) * | 2015-03-31 | 2018-10-04 | Stmicroelectronics, Inc. | Vertical gate-all-around tfet |
CN108206209A (en) * | 2016-12-16 | 2018-06-26 | 爱思开海力士有限公司 | Semiconductor devices and its manufacturing method with buried gate structure |
US20180218913A1 (en) * | 2017-01-27 | 2018-08-02 | International Business Machines Corporation | Salicide bottom contacts |
CN109148290A (en) * | 2017-06-28 | 2019-01-04 | 中芯国际集成电路制造(上海)有限公司 | The manufacturing method of semiconductor device |
US10170577B1 (en) * | 2017-12-04 | 2019-01-01 | International Business Machines Corporation | Vertical transport FETs having a gradient threshold voltage |
Also Published As
Publication number | Publication date |
---|---|
CN111627819B (en) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107039272B (en) | Method for forming fin type transistor | |
CN104517901A (en) | Method for forming CMOS transistor | |
CN111613581B (en) | Semiconductor structure and forming method thereof | |
CN109920733B (en) | Semiconductor structure and transistor forming method | |
TWI762265B (en) | Semiconductor device and manufacturing method thereof | |
CN108573910B (en) | Semiconductor structure and forming method thereof | |
CN106847696B (en) | Method for forming fin field effect transistor | |
TW202443702A (en) | Manufacturing method of semiconductor apparatus | |
CN108807266B (en) | Semiconductor structure and forming method thereof | |
CN106328503A (en) | Method of forming semiconductor structure | |
CN112786451B (en) | Semiconductor structures and methods of forming them | |
CN112713088B (en) | Semiconductor structure and forming method thereof | |
CN111863723B (en) | Semiconductor structure and forming method thereof | |
CN112309845B (en) | Semiconductor structures and methods of forming them | |
CN106409765B (en) | Semiconductor structure and forming method thereof | |
CN112447516B (en) | Semiconductor structure and forming method thereof | |
CN112151605B (en) | Semiconductor structure and method of forming the same | |
CN111627819B (en) | Semiconductor structure and forming method thereof | |
CN113838802A (en) | Semiconductor structure and method of forming the same | |
CN107170685B (en) | Method for forming fin type transistor | |
CN113363321A (en) | Semiconductor structure and forming method thereof | |
CN113871300B (en) | Semiconductor structure and forming method thereof | |
CN112151595B (en) | Semiconductor structures and methods of forming them | |
CN113113307B (en) | Semiconductor structures and methods of forming them | |
CN112310198B (en) | Semiconductor structures and methods of forming them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |