[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111627819A - Semiconductor structure and forming method thereof - Google Patents

Semiconductor structure and forming method thereof Download PDF

Info

Publication number
CN111627819A
CN111627819A CN201910153187.1A CN201910153187A CN111627819A CN 111627819 A CN111627819 A CN 111627819A CN 201910153187 A CN201910153187 A CN 201910153187A CN 111627819 A CN111627819 A CN 111627819A
Authority
CN
China
Prior art keywords
layer
semiconductor
forming
semiconductor structure
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910153187.1A
Other languages
Chinese (zh)
Other versions
CN111627819B (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201910153187.1A priority Critical patent/CN111627819B/en
Publication of CN111627819A publication Critical patent/CN111627819A/en
Application granted granted Critical
Publication of CN111627819B publication Critical patent/CN111627819B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6704Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device
    • H10D30/6713Thin-film transistors [TFT] having supplementary regions or layers in the thin films or in the insulated bulk substrates for controlling properties of the device characterised by the properties of the source or drain regions, e.g. compositions or sectional shapes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6728Vertical TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/6737Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
    • H10D30/6739Conductor-insulator-semiconductor electrodes

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体结构及其形成方法,形成方法包括:提供衬底;在衬底上形成源掺杂层;在源掺杂层上形成半导体柱;在半导体柱的顶端形成漏掺杂层;形成包围半导体柱的部分侧壁且露出漏掺杂层的栅极结构,栅极结构包括覆盖半导体柱部分侧壁的功函数层和覆盖功函数层的栅极层;在功函数层中靠近漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。本发明实施例在功函数层中掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。

Figure 201910153187

A semiconductor structure and a method for forming the same, the forming method includes: providing a substrate; forming a source doping layer on the substrate; forming a semiconductor column on the source doping layer; forming a drain doping layer on the top of the semiconductor column; Part of the sidewall of the semiconductor pillar and a gate structure exposing the drain doping layer, the gate structure includes a work function layer covering part of the sidewall of the semiconductor pillar and a gate layer covering the work function layer; in the work function layer close to the drain doping The layers are doped with dopant ions that increase the threshold voltage of the semiconductor structure at locations. In the embodiment of the present invention, ions are doped in the work function layer, so that the voltage at the drain doped layer is reduced, and the longitudinal electric field at the corresponding drain doped layer is reduced, that is, the reliability of the semiconductor structure is improved, and because only the work function is doped Doping is performed at a position close to the drain doped layer in the function layer, and the turn-on voltage at the source doped layer is lower, so that the driving current of the semiconductor structure is higher, and the electrical performance of the semiconductor structure is optimized.

Figure 201910153187

Description

半导体结构及其形成方法Semiconductor structure and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular, to a semiconductor structure and a method for forming the same.

背景技术Background technique

随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高集成度的方向发展,半导体工艺节点遵循摩尔定律的发展趋势不断减小。晶体管作为最基本的半导体器件目前正被广泛应用,因此随着半导体器件的元件密度和集成度的提高,为了适应工艺节点的减小,不得不断缩短晶体管的沟道长度。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing in the direction of higher component density and higher integration, and the development trend of semiconductor process nodes following Moore's Law is decreasing. As the most basic semiconductor device, transistors are currently being widely used. Therefore, with the increase in the component density and integration of semiconductor devices, in order to adapt to the reduction of process nodes, the channel length of transistors must be continuously shortened.

晶体管沟道长度的缩短具有增加芯片的管芯密度,增加开关速度等好处。然而随着沟道长度的缩短,晶体管源极与漏极间的距离也随之缩短,栅极对沟道的控制能力变差,使亚阈值漏电(subthreshold leakage)现象,即所谓的短沟道效应(short-channeleffects,SCE)更容易发生,晶体管的沟道漏电流增大。The shortening of the transistor channel length has the benefit of increasing the die density of the chip, increasing the switching speed, etc. However, with the shortening of the channel length, the distance between the source and the drain of the transistor is also shortened, and the gate's ability to control the channel becomes worse, resulting in the phenomenon of subthreshold leakage, the so-called short channel. Effects (short-channel effects, SCE) are more likely to occur, and the channel leakage current of the transistor increases.

因此,为了更好的适应器件尺寸按比例缩小的要求,半导体工艺逐渐开始从平面晶体管向具有更高功效的三维立体式的晶体管过渡,如全包围栅极(Gate-all-around,GAA)晶体管。全包围栅极晶体管中,栅极从四周包围沟道所在的区域,与平面晶体管相比,全包围栅极晶体管的栅极对沟道的控制能力更强,能够更好的抑制短沟道效应。全包围栅极晶体管包括横向全包围栅极(Lateral Gate-all-around,LGAA)晶体管和垂直全包围栅极(Vertical Gate-all-around,VGAA)晶体管,其中,VGAA的沟道在垂直于衬底表面的方向上延伸,有利于提高半导体结构的面积利用效率,因此有利于实现更进一步的特征尺寸缩小。Therefore, in order to better meet the requirements of device size scaling down, the semiconductor process gradually begins to transition from planar transistors to three-dimensional transistors with higher power efficiency, such as gate-all-around (GAA) transistors . In a fully surrounding gate transistor, the gate surrounds the area where the channel is located. Compared with a planar transistor, the gate of a fully surrounding gate transistor has stronger control over the channel and can better suppress short-channel effects. . All-around gate transistors include lateral gate-all-around (LGAA) transistors and vertical gate-all-around (VGAA) transistors, wherein the channel of VGAA is perpendicular to the lining. Extending in the direction of the bottom surface is beneficial to improve the area utilization efficiency of the semiconductor structure, and thus is beneficial to achieve further feature size reduction.

发明内容SUMMARY OF THE INVENTION

本发明实施例解决的问题是提供一种半导体结构及其形成方法,优化半导体结构的电学性能。The problem solved by the embodiments of the present invention is to provide a semiconductor structure and a method for forming the same, so as to optimize the electrical performance of the semiconductor structure.

为解决上述问题,本发明实施例提供一种半导体结构的形成方法,包括:提供衬底;在所述衬底上形成源掺杂层;在所述源掺杂层上形成半导体柱;在所述半导体柱的顶端形成漏掺杂层;形成包围所述半导体柱的部分侧壁且露出所述漏掺杂层的栅极结构,所述栅极结构包括覆盖所述半导体柱部分侧壁的功函数层和覆盖所述功函数层的栅极层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。To solve the above problems, embodiments of the present invention provide a method for forming a semiconductor structure, including: providing a substrate; forming a source doped layer on the substrate; forming a semiconductor column on the source doped layer; A drain doped layer is formed on the top of the semiconductor pillar; a gate structure is formed that surrounds part of the sidewall of the semiconductor pillar and exposes the drain doped layer, the gate structure includes a function covering the part of the sidewall of the semiconductor pillar a function layer and a gate layer covering the work function layer; doping a dopant ion capable of increasing the threshold voltage of the semiconductor structure at a position in the work function layer close to the drain doping layer.

相应的,本发明实施例还提供一种半导体结构,包括:衬底;源掺杂层,位于所述衬底上;半导体柱,位于所述源掺杂层上;漏掺杂层,位于所述半导体柱顶端;栅极结构,包围所述半导体柱的部分侧壁且露出所述漏掺杂层,所述栅极结构包括覆盖半导体柱部分侧壁的功函数层和覆盖所述功函数层的栅极层;掺杂离子,位于所述功函数层中靠近所述漏掺杂层的位置处,所述掺杂离子能增加半导体结构阈值电压。Correspondingly, an embodiment of the present invention further provides a semiconductor structure, including: a substrate; a source doped layer, located on the substrate; a semiconductor column, located on the source doped layer; and a drain doped layer, located on the the top of the semiconductor pillar; a gate structure, surrounding part of the sidewall of the semiconductor pillar and exposing the drain doping layer, the gate structure comprising a work function layer covering part of the sidewall of the semiconductor pillar and covering the work function layer The gate layer; dopant ions are located in the work function layer at a position close to the drain dopant layer, and the dopant ions can increase the threshold voltage of the semiconductor structure.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例中所述基底包括衬底、位于所述衬底上的源掺杂层以及位于所述源掺杂层上的半导体柱;在所述半导体柱顶端形成漏掺杂层;所述栅极结构包括功函数层和位于所述功函数层上的栅极层,且所述栅极结构露出所述漏掺杂层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。所述源掺杂层与衬底连接,因此,源掺杂层的电压较低,漏掺杂层的电压高于源掺杂层的电压,因此漏掺杂层的电场比较强,相应的漏掺杂层中的热载流子易破坏栅极结构,电场强度的大小与电压强度成正相关,所述漏掺杂层处有纵向电场,漏掺杂层处的纵向电压等于加载在栅极结构上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,提高了漏掺杂层处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近所述漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。In the embodiment of the present invention, the base includes a substrate, a source doped layer on the substrate, and a semiconductor pillar on the source doped layer; a drain doped layer is formed on the top of the semiconductor pillar; the The gate structure includes a work function layer and a gate layer located on the work function layer, and the gate structure exposes the drain doped layer; a position close to the drain doped layer in the work function layer Doping is a dopant ion that increases the threshold voltage of the semiconductor structure. The source doped layer is connected to the substrate, therefore, the voltage of the source doped layer is lower, and the voltage of the drain doped layer is higher than that of the source doped layer, so the electric field of the drain doped layer is relatively strong, and the corresponding drain The hot carriers in the doped layer are easy to damage the gate structure, and the magnitude of the electric field is positively related to the voltage intensity. There is a longitudinal electric field at the drain doped layer, and the longitudinal voltage at the drain doped layer is equal to the load on the gate structure. The threshold voltage of the semiconductor structure is subtracted from the vertical voltage on , the embodiment of the present invention is by doping the work function layer with doping ions that can increase the threshold voltage of the semiconductor structure, so that the voltage at the drain doped layer is reduced, and the corresponding drain The longitudinal electric field at the doped layer is reduced, which improves the reliability at the drain doped layer, that is, the reliability of the semiconductor structure is improved, and because only the position in the work function layer close to the drain doped layer is doped Therefore, the turn-on voltage at the source doped layer is lower, so that the driving current of the semiconductor structure is higher, and the electrical performance of the semiconductor structure is optimized.

附图说明Description of drawings

图1一种半导体结构的结构示意图;1 is a schematic structural diagram of a semiconductor structure;

图2至图14是本发明实施例半导体结构的形成方法第一实施例中各步骤对应的结构示意图;2 to 14 are schematic structural diagrams corresponding to each step in the first embodiment of the method for forming a semiconductor structure according to an embodiment of the present invention;

图15是本发明实施例半导体结构的形成方法第二实施例中的结构示意图。FIG. 15 is a schematic structural diagram of a second embodiment of a method for forming a semiconductor structure according to an embodiment of the present invention.

具体实施方式Detailed ways

由背景技术可知,目前所形成的器件仍有性能不佳的问题。现结合一种半导体结构的形成方法分析器件性能不佳的原因。It can be known from the background art that the devices formed at present still have the problem of poor performance. Now combined with a method of forming a semiconductor structure, the reasons for the poor performance of the device are analyzed.

参考图1,示出了一种半导体结构的结构示意图。Referring to FIG. 1, a schematic structural diagram of a semiconductor structure is shown.

所述半导体结构包括:衬底10;源掺杂层11,位于所述衬底10上;半导体柱13,位于所述源掺杂层11上;漏掺杂层12,位于所述半导体柱13顶端;隔离层14,位于所述半导体柱13露出的所述源掺杂层11上,且所述隔离层14覆盖所述半导体柱12的部分侧壁;栅极结构15,包围所述半导体柱13的部分侧壁,且所述栅极结构15露出所述漏掺杂层12;底部接触孔插塞16,位于所述源掺杂层11上且与源掺杂层11连接;栅极接触孔插塞17,位于所述栅极结构15上且与栅极结构15连接;顶部接触孔插塞18,位于漏掺杂层12上,且与漏掺杂层12连接。The semiconductor structure includes: a substrate 10; a source doped layer 11 located on the substrate 10; a semiconductor column 13 located on the source doped layer 11; a drain doped layer 12 located on the semiconductor column 13 The top; the isolation layer 14 is located on the source doping layer 11 exposed by the semiconductor pillar 13, and the isolation layer 14 covers part of the sidewall of the semiconductor pillar 12; the gate structure 15 surrounds the semiconductor pillar Part of the sidewall of 13, and the gate structure 15 exposes the drain doped layer 12; bottom contact hole plug 16, located on the source doped layer 11 and connected to the source doped layer 11; gate contact The hole plug 17 is located on the gate structure 15 and connected to the gate structure 15 ; the top contact hole plug 18 is located on the drain doped layer 12 and connected to the drain doped layer 12 .

所述源掺杂层11与衬底10连接,在半导体结构工作时,源掺杂层11的电压较低,漏掺杂层12的电压高于源掺杂层11的电压,因此漏掺杂层12的电场比较强,相应的漏掺杂层11中的热载流子易破坏栅极结构15,使得所述半导体结构的电学性能不高。The source doped layer 11 is connected to the substrate 10. When the semiconductor structure works, the voltage of the source doped layer 11 is lower, and the voltage of the drain doped layer 12 is higher than the voltage of the source doped layer 11, so the drain doped layer has a lower voltage. The electric field of the layer 12 is relatively strong, and the hot carriers in the corresponding drain doped layer 11 are likely to damage the gate structure 15 , so that the electrical performance of the semiconductor structure is not high.

为了解决所述技术问题,本发明实施例提供一种半导体结构的形成方法,包括:提供衬底、位于所述衬底上的源掺杂层以及位于所述源掺杂层上的半导体柱;在所述半导体柱顶端形成漏掺杂层;形成包围所述半导体柱的部分侧壁且露出所述漏掺杂层的栅极结构,所述栅极结构包括功函数层和位于所述功函数层上的栅极层,且所述栅极结构露出所述漏掺杂层;在所述功函数层中靠近所述漏掺杂层的位置处掺杂能增加半导体结构阈值电压的掺杂离子。所述源掺杂层与衬底连接,因此,源掺杂层的电压较低,漏掺杂层的电压高于源掺杂层的电压,因此漏掺杂层的电场比较强,相应的漏掺杂层中的热载流子易破坏栅极结构,电场强度的大小与电压强度成正相关,所述漏掺杂层处有纵向电场,漏掺杂层处的纵向电压等于加载在栅极结构上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层处的电压降低,相应的漏掺杂层处的纵向电场降低,提高了漏掺杂层处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层中靠近所述漏掺杂层的位置处进行掺杂,源掺杂层处的开启电压较低,使得半导体结构的驱动电流较高,综上,使得半导体结构的电学性能得到优化。In order to solve the technical problem, an embodiment of the present invention provides a method for forming a semiconductor structure, including: providing a substrate, a source doped layer on the substrate, and a semiconductor column on the source doped layer; A drain doped layer is formed on the top of the semiconductor pillar; a gate structure is formed that surrounds part of the sidewall of the semiconductor pillar and exposes the drain doped layer, the gate structure includes a work function layer and a gate structure located on the work function a gate layer on the layer, and the gate structure exposes the drain doped layer; doping a dopant ion capable of increasing the threshold voltage of the semiconductor structure at a position close to the drain doped layer in the work function layer . The source doped layer is connected to the substrate, therefore, the voltage of the source doped layer is lower, and the voltage of the drain doped layer is higher than that of the source doped layer, so the electric field of the drain doped layer is relatively strong, and the corresponding drain The hot carriers in the doped layer are easy to damage the gate structure, and the magnitude of the electric field is positively related to the voltage intensity. There is a longitudinal electric field at the drain doped layer, and the longitudinal voltage at the drain doped layer is equal to the load on the gate structure. The threshold voltage of the semiconductor structure is subtracted from the vertical voltage on , the embodiment of the present invention is by doping the work function layer with doping ions that can increase the threshold voltage of the semiconductor structure, so that the voltage at the drain doped layer is reduced, and the corresponding drain The longitudinal electric field at the doped layer is reduced, which improves the reliability at the drain doped layer, that is, the reliability of the semiconductor structure is improved, and because only the position in the work function layer close to the drain doped layer is doped Therefore, the turn-on voltage at the source doping layer is lower, so that the driving current of the semiconductor structure is higher. In conclusion, the electrical performance of the semiconductor structure is optimized.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明实施例的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more clearly understood, specific embodiments of the embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图2至图14是本发明实施例半导体结构的形成方法第一实施例中各步骤对应的结构示意图。2 to 14 are schematic structural diagrams corresponding to each step in the first embodiment of the method for forming a semiconductor structure according to the embodiment of the present invention.

参考图2,提供衬底100。所述衬底100为后续形成半导体结构提供工艺平台。Referring to Figure 2, a substrate 100 is provided. The substrate 100 provides a process platform for subsequent formation of semiconductor structures.

本实施例中,所述衬底100为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,所述衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or germanium-on-insulator substrate.

继续参考图2,在所述衬底100上形成源掺杂层101。Continuing to refer to FIG. 2 , a source doped layer 101 is formed on the substrate 100 .

源掺杂层101作为所述半导体结构的源极。所述源掺杂层101与后续形成在半导体柱顶端的漏掺杂层构成所述半导体结构的源漏掺杂层。The source doped layer 101 serves as the source of the semiconductor structure. The source doped layer 101 and the drain doped layer formed on the top of the semiconductor column subsequently constitute the source and drain doped layers of the semiconductor structure.

本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即所述源掺杂层101的材料为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the material of the source doping layer 101 is silicon germanium doped with P-type ions. In this embodiment, the silicon germanium is doped with P-type ions, so that the P-type ions replace the position of the silicon atoms in the crystal lattice. powerful. Specifically, the P-type ions include B, Ga or In.

其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,所述源掺杂层的材料相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, and the material of the source doping layer is correspondingly silicon carbide or silicon phosphide doped with N-type ions. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the position of silicon atoms in the lattice. powerful. Specifically, the N-type ions include P, As or Sb.

本实施例中,采用外延生长法形成第一外延层,在形成第一外延层的过程中采用原位掺杂离子,形成源掺杂层101。其他实施例中,还可以在形成第一外延层的过程中采用原位自掺杂后,通过离子注入的方式继续对第一外延层进行离子掺杂,形成源掺杂层。掺杂离子可达到提高晶体管载流子迁移率的效果。另一些实施例中,还可以只采用离子注入的方式对第一外延层进行离子掺杂。In this embodiment, the epitaxial growth method is used to form the first epitaxial layer, and in-situ doping ions are used in the process of forming the first epitaxial layer to form the source doping layer 101 . In other embodiments, after in-situ self-doping is used in the process of forming the first epitaxial layer, the first epitaxial layer can be continuously ion-doped by means of ion implantation to form the source doping layer. Doping ions can achieve the effect of improving the carrier mobility of transistors. In other embodiments, the first epitaxial layer may also be ion-doped only by ion implantation.

参考图3,在所述源掺杂层101上形成半导体柱102。所述半导体柱102在半导体结构工作时用于形成沟道。Referring to FIG. 3 , semiconductor pillars 102 are formed on the source doped layer 101 . The semiconductor pillar 102 is used to form a channel when the semiconductor structure is in operation.

本实施例中,所述半导体柱102的材料为硅。在其他实施例中,所述半导体柱的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。In this embodiment, the material of the semiconductor column 102 is silicon. In other embodiments, the material of the semiconductor column may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

形成半导体柱102的步骤包括:形成源掺杂层101后,在所述源掺杂层101上形成半导体材料柱(图中未示出);在所述半导体材料柱上形成掩膜层103;以所述掩膜层103为掩膜刻蚀所述半导体材料柱,形成半导体柱102。The steps of forming the semiconductor column 102 include: after forming the source doping layer 101, forming a semiconductor material column (not shown in the figure) on the source doping layer 101; forming a mask layer 103 on the semiconductor material column; Using the mask layer 103 as a mask, the semiconductor material pillars are etched to form semiconductor pillars 102 .

本实施例中,采用选择性外延生长法在源掺杂层101上形成半导体材料柱,使得形成的半导体材料柱为纯净度较高的单晶材料,为后续形成的半导体柱作沟道区做准备。In this embodiment, a semiconductor material column is formed on the source doped layer 101 by a selective epitaxial growth method, so that the formed semiconductor material column is a single crystal material with high purity, and is used as a channel region for the subsequently formed semiconductor column. Prepare.

需要说明的是,所述半导体柱102不易过矮也不宜过高。若所述半导体柱102过矮,会使得后续形成的沟道区过短,易产生短沟道效应,导致半导体结构的电学性能得不到提高;若所述半导体柱102过高,所述半导体柱102易坍塌,形成所述半导体柱102的工艺难度过大。本实施例中,所述半导体柱102的高度为150纳米至800纳米。It should be noted that the semiconductor pillar 102 is neither too short nor too high. If the semiconductor pillar 102 is too short, the subsequently formed channel region will be too short, and short channel effect will easily occur, resulting in that the electrical performance of the semiconductor structure cannot be improved; if the semiconductor pillar 102 is too high, the semiconductor The pillar 102 is easy to collapse, and the process of forming the semiconductor pillar 102 is too difficult. In this embodiment, the height of the semiconductor column 102 is 150 nm to 800 nm.

参考图3和图4,在形成半导体柱102后还包括:在所述半导体柱102露出的所述源掺杂层101上形成隔离层104(如图4所示),所述隔离层104覆盖所述半导体柱102的部分侧壁。Referring to FIG. 3 and FIG. 4 , after forming the semiconductor pillars 102 , the method further includes: forming an isolation layer 104 (as shown in FIG. 4 ) on the source doped layer 101 exposed by the semiconductor pillars 102 , and the isolation layer 104 covers Part of the sidewall of the semiconductor pillar 102 .

所述隔离层104用于将后续形成的栅极结构与源掺杂层101进行电隔离,优化了半导体结构的电学性能。The isolation layer 104 is used to electrically isolate the gate structure to be formed later from the source doping layer 101 , thereby optimizing the electrical performance of the semiconductor structure.

本实施例中,所述隔离层104的材料为绝缘材料。具体的,隔离层104的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,隔离层104的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成隔离层104的工艺难度和工艺成本;此外,氧化硅的介电常数较小,还有利于提高后续隔离层104的用于隔离相邻器件的作用。In this embodiment, the material of the isolation layer 104 is an insulating material. Specifically, the material of the isolation layer 104 includes one or more of silicon oxide, silicon nitride, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. In this embodiment, the material of the isolation layer 104 is silicon oxide. Silicon oxide is a commonly used and low-cost dielectric material, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the isolation layer 104; in addition, the dielectric constant of silicon oxide is small, and there are It is beneficial to improve the function of the subsequent isolation layer 104 for isolating adjacent devices.

形成隔离层104的步骤包括:在所述半导体柱102露出的所述源掺杂层101上形成隔离材料层(图中未示出),所述隔离材料层覆盖所述半导体柱102;对所述隔离材料层进行平坦化处理直至露出所述掩膜层103;以所述掩膜层103为掩膜回刻蚀部分厚度的所述隔离材料层,在所述半导体柱102露出的所述源掺杂层101上形成所述隔离层104。The step of forming the isolation layer 104 includes: forming an isolation material layer (not shown in the figure) on the source doping layer 101 exposed by the semiconductor pillar 102, the isolation material layer covering the semiconductor pillar 102; The isolation material layer is planarized until the mask layer 103 is exposed; using the mask layer 103 as a mask to etch back a partial thickness of the isolation material layer, the source exposed in the semiconductor pillar 102 The isolation layer 104 is formed on the doped layer 101 .

本实施例中,采用流动性化学气相沉积(Flowable Chemical Vapor Deposition,FCVD)工艺形成所述隔离材料层。流动性化学气相沉积工艺具有良好的填充能力,有利于降低所述隔离材料层内形成空洞等缺陷的概率,相应有利于提高隔离材料层的成膜质量。In this embodiment, the isolation material layer is formed by a flowable chemical vapor deposition (FCVD) process. The fluid chemical vapor deposition process has good filling ability, which is beneficial to reduce the probability of forming defects such as voids in the isolation material layer, and is correspondingly beneficial to improve the film-forming quality of the isolation material layer.

需要说明的是,所述隔离层104不宜过厚也不宜过薄。若所述隔离层104过厚,易导致后续形成在所述半导体柱102上的栅极结构过短,易导致栅极结构控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若所述隔离层104过薄,易导致后续形成在所述半导体柱102上的栅极结构与源掺杂层101距离过短,易导致栅极结构和源掺杂层101发生桥接,不利于优化半导体结构的电学性能。本实施例中,所述隔离层104的厚度为5纳米至15纳米。It should be noted that the isolation layer 104 should neither be too thick nor too thin. If the isolation layer 104 is too thick, the gate structure subsequently formed on the semiconductor pillar 102 is likely to be too short, which is likely to cause the gate structure to control the short-channel effect poorly, which is not conducive to improving the electrical performance of the semiconductor structure. . If the isolation layer 104 is too thin, the distance between the gate structure formed on the semiconductor column 102 and the source doping layer 101 will be too short, which is easy to cause bridges between the gate structure and the source doping layer 101, which is not conducive to Optimizing the electrical properties of semiconductor structures. In this embodiment, the thickness of the isolation layer 104 is 5 nm to 15 nm.

继续掺杂图3和图4,所述半导体结构的形成方法还包括:在形成所述半导体柱102后,在形成隔离材料层前,在所述半导体柱102和所述半导体柱102露出的所述源掺杂层101上保形覆盖保护材料层105(如图3所示)。Continuing with doping in FIG. 3 and FIG. 4 , the method for forming the semiconductor structure further includes: after forming the semiconductor pillar 102 and before forming the isolation material layer, in the semiconductor pillar 102 and the exposed part of the semiconductor pillar 102 . The source doped layer 101 is conformally covered with a protective material layer 105 (as shown in FIG. 3 ).

隔离材料层采用流动性化学气相沉积工艺形成,所述隔离材料层富含O和H,所述保护材料层105用于在形成隔离层104的过程中,使得所述半导体柱102表面不易被氧化。The isolation material layer is formed by a fluid chemical vapor deposition process, the isolation material layer is rich in O and H, and the protective material layer 105 is used to prevent the surface of the semiconductor pillar 102 from being easily oxidized during the process of forming the isolation layer 104 .

所述保护材料层105的材料为介电材料。具体的,所述保护材料层105的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,保护材料层105的材料为氧化硅。The material of the protective material layer 105 is a dielectric material. Specifically, the material of the protective material layer 105 includes one or more of silicon oxide, silicon nitride, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. In this embodiment, the material of the protective material layer 105 is silicon oxide.

本实施例中,通过原子层沉积工艺(Atomic Layer Deposition,ALD)形成所述保护材料层105。原子层沉积工艺的沉积均匀性好,有利于提高所述隔离膜的厚度均一性和薄膜质量,相应有利于提高所述保护材料层105的成膜质量,而且采用原子层沉积工艺还有利于精确控制所述保护材料层105的沉积厚度。在其他实施例中,还可以采用化学气相沉积工艺(Chemical Vapor Deposition,CVD)形成侧墙材料层。In this embodiment, the protective material layer 105 is formed by an atomic layer deposition (Atomic Layer Deposition, ALD). The deposition uniformity of the atomic layer deposition process is good, which is conducive to improving the thickness uniformity and film quality of the isolation film, which is correspondingly conducive to improving the film formation quality of the protective material layer 105, and the use of the atomic layer deposition process is also conducive to accurate. The deposition thickness of the protective material layer 105 is controlled. In other embodiments, a chemical vapor deposition process (Chemical Vapor Deposition, CVD) may also be used to form the sidewall material layer.

需要说明的是,所述保护材料层105不宜过厚也不宜过薄。若保护材料层105的过厚,易导致形成保护材料层105的工艺时间过长,相应的后续去除露出隔离层104(如图4所示)的保护材料层105的工艺过长,且易导致后续形成在所述半导体柱102上的栅极结构过短,易导致栅极结构控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若保护材料层105过薄,易导致半导体柱102表面被氧化,导致半导体柱102的均一性较差,不能很好的提高半导体结构的电学性能。本实施例中,所述保护材料层105的厚度为3纳米至8纳米。It should be noted that the protective material layer 105 should not be too thick nor too thin. If the protective material layer 105 is too thick, the process time for forming the protective material layer 105 is likely to be too long, and the corresponding subsequent process of removing the protective material layer 105 that exposes the isolation layer 104 (as shown in FIG. 4 ) is too long, which is easy to cause The gate structure subsequently formed on the semiconductor column 102 is too short, which may easily lead to poor effect of the gate structure in controlling the short channel effect, which is not conducive to improving the electrical performance of the semiconductor structure. If the protective material layer 105 is too thin, the surfaces of the semiconductor pillars 102 are easily oxidized, resulting in poor uniformity of the semiconductor pillars 102, and the electrical performance of the semiconductor structure cannot be well improved. In this embodiment, the thickness of the protective material layer 105 is 3 nanometers to 8 nanometers.

所述半导体结构的形成方法还包括:在形成隔离层104后,去除所述隔离层104露出的保护材料层105,形成保护层106。The method for forming the semiconductor structure further includes: after forming the isolation layer 104 , removing the protection material layer 105 exposed by the isolation layer 104 to form a protection layer 106 .

去除露出所述隔离层104的所述保护材料层105为后续形成包围所述半导体柱部分侧壁的栅极结构做准备。The protective material layer 105 exposing the isolation layer 104 is removed to prepare for the subsequent formation of a gate structure surrounding the sidewall of the semiconductor pillar portion.

本实施例中,所述隔离层104和保护材料层105的材料不同,所述隔离层104和保护材料层105具有刻蚀选择比,采用湿法工艺去除所述隔离层104露出的所述保护材料层105。湿法刻蚀工艺为各向同性刻蚀,湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。In this embodiment, the materials of the isolation layer 104 and the protection material layer 105 are different, the isolation layer 104 and the protection material layer 105 have an etching selectivity ratio, and the protection exposed by the isolation layer 104 is removed by a wet process Material layer 105 . The wet etching process is isotropic etching, and the wet etching process has a high etching rate, simple operation and low process cost.

所述保护层106的材料为介电材料,因此位于所述隔离层104底端以及隔离层104与半导体柱102之间的保护层106可以不用去除。The material of the protective layer 106 is a dielectric material, so the protective layer 106 located at the bottom of the isolation layer 104 and between the isolation layer 104 and the semiconductor pillar 102 may not be removed.

参考图5至图12,形成包围所述半导体柱102部分侧壁的栅极结构109(如图12所示),所述栅极结构109包括覆盖所述半导体柱102部分侧壁的功函数层1091(如图12所示)和覆盖所述功函数层1091栅极层1092(如图12所示)。Referring to FIGS. 5 to 12 , a gate structure 109 (as shown in FIG. 12 ) is formed surrounding a portion of the sidewall of the semiconductor pillar 102 , and the gate structure 109 includes a work function layer covering a portion of the sidewall of the semiconductor pillar 102 1091 (as shown in FIG. 12 ) and a gate layer 1092 (as shown in FIG. 12 ) covering the work function layer 1091 .

所述栅极结构109用于控制半导体柱102中沟道的开启和断开。The gate structure 109 is used to control the opening and disconnection of the channel in the semiconductor pillar 102 .

本实施例中,所述半导体结构用于形成NMOS。具体的,功函数层1091的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种。其他实施例中,所述半导体结构用于形成PMOS。具体的,功函数层的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。In this embodiment, the semiconductor structure is used to form an NMOS. Specifically, the material of the work function layer 1091 includes one or more of titanium aluminide, tantalum carbide, aluminum or titanium carbide. In other embodiments, the semiconductor structure is used to form a PMOS. Specifically, the material of the work function layer includes one or more of titanium nitride, tantalum nitride, titanium carbide, tantalum silicon nitride, titanium silicon nitride and tantalum carbide.

本实施例中,栅极层1092的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the gate layer 1092 is magnesium-tungsten alloy. In other embodiments, the material of the gate layer may also be W, Al, Cu, Ag, Au, Pt, Ni, or Ti, or the like.

形成所述栅极结构109的步骤包括:The steps of forming the gate structure 109 include:

如图6所示,在所述半导体柱102和所述半导体柱102露出的所述源掺杂层101上保形覆盖栅极材料结构107(如图7所示)。As shown in FIG. 6 , a gate material structure 107 (as shown in FIG. 7 ) is conformally covered on the semiconductor pillars 102 and the source doped layer 101 exposed from the semiconductor pillars 102 .

本实施例中,所述栅极材料结构107包括功函数材料层1071和位于所述功函数材料层1071上的栅极材料层1072。In this embodiment, the gate material structure 107 includes a work function material layer 1071 and a gate material layer 1072 located on the work function material layer 1071 .

所述功函数材料层1071为后续形成功函数层做准备,所述栅极材料层1072为后续形成栅极层做准备。The work function material layer 1071 is prepared for the subsequent formation of the work function layer, and the gate material layer 1072 is prepared for the subsequent formation of the gate layer.

本实施例中,采用原子层沉积工艺形成栅极材料结构107,采用原子层沉积工艺的优点在此不再赘述。In this embodiment, the gate material structure 107 is formed by an atomic layer deposition process, and the advantages of using the atomic layer deposition process will not be repeated here.

如图7所示,形成覆盖所述栅极材料结构107的遮挡层(图中未示出),以所述遮挡层为掩膜刻蚀栅极材料结构107;刻蚀所述栅极材料结构107后,去除所述遮挡层。As shown in FIG. 7, a shielding layer (not shown in the figure) covering the gate material structure 107 is formed, and the shielding layer is used as a mask to etch the gate material structure 107; and the gate material structure is etched After 107, the blocking layer is removed.

在去除遮挡层露出的栅极材料结构107的过程中,遮挡层降低了被其覆盖的栅极材料结构107被误刻蚀的概率。In the process of removing the gate material structure 107 exposed by the shielding layer, the shielding layer reduces the probability that the gate material structure 107 covered by the shielding layer is erroneously etched.

具体的,形成遮挡层的步骤包括:形成覆盖所述栅极材料结构107的遮挡材料层(图中未示出);在所述遮挡材料层上形成光刻胶层;以所述光刻胶层为掩膜刻蚀所述遮挡材料层,形成遮挡层。Specifically, the step of forming the shielding layer includes: forming a shielding material layer (not shown in the figure) covering the gate material structure 107; forming a photoresist layer on the shielding material layer; using the photoresist The layer is a mask to etch the shielding material layer to form a shielding layer.

本实施例中,遮挡层的材料为有机材料。有机材料为易于去除的材料,使得在后续去除遮挡层时减少对栅极材料结构107的损伤。In this embodiment, the material of the shielding layer is an organic material. The organic material is a material that is easy to remove, so that damage to the gate material structure 107 is reduced when the blocking layer is subsequently removed.

具体的,遮挡层的材料可以为BARC(bottom anti-reflective coating,底部抗反射涂层)材料、ODL(organic dielectric layer,有机介电层)材料、光刻胶、DARC(dielectric anti-reflective coating,介电抗反射涂层)材料、DUO(Deep UV LightAbsorbing Oxide,深紫外光吸收氧化层)材料或APF(Advanced Patterning Film,先进图膜)材料。Specifically, the material of the blocking layer can be BARC (bottom anti-reflective coating) material, ODL (organic dielectric layer, organic dielectric layer) material, photoresist, DARC (dielectric anti-reflective coating, Dielectric anti-reflection coating) material, DUO (Deep UV LightAbsorbing Oxide, deep ultraviolet light absorbing oxide layer) material or APF (Advanced Patterning Film, advanced drawing film) material.

本实施例中,采用旋涂工艺上形成遮挡材料层。In this embodiment, the shielding material layer is formed by a spin coating process.

本实施例中,刻蚀所述栅极材料结构107后,去除所述遮挡层。通过去除遮挡层,从而为后续形成层间介质层提供空间。In this embodiment, after the gate material structure 107 is etched, the shielding layer is removed. By removing the blocking layer, space is provided for the subsequent formation of the interlayer dielectric layer.

本实施例中,采用灰化工艺或干法刻蚀工艺,去除所述遮挡层。In this embodiment, an ashing process or a dry etching process is used to remove the shielding layer.

如图8至图11所示,去除所述遮挡层后,形成覆盖所述半导体柱102的部分侧壁的层间介质层110(如图11所示)。As shown in FIG. 8 to FIG. 11 , after the blocking layer is removed, an interlayer dielectric layer 110 (as shown in FIG. 11 ) covering part of the sidewall of the semiconductor pillar 102 is formed.

所述层间介质层110为后续去除露出所述层间介质层110的栅极材料结构107做准备。The interlayer dielectric layer 110 is prepared for subsequent removal of the gate material structure 107 exposing the interlayer dielectric layer 110 .

所述层间介质层110用于实现相邻器件之间的电隔离,所述层间介质层110的材料为绝缘材料。本实施例中,所述层间介质层110的材料为氧化硅,其他实施例中,所述层间介质层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。The interlayer dielectric layer 110 is used to achieve electrical isolation between adjacent devices, and the material of the interlayer dielectric layer 110 is an insulating material. In this embodiment, the material of the interlayer dielectric layer 110 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

形成层间介质层110的步骤包括:形成覆盖所述栅极材料结构107的层间介质材料层111(如图8所示),所述层间介质材料层111露出位于所述半导体柱102上的所述栅极材料结构107的顶面;回刻蚀部分厚度的所述层间介质材料层111,形成覆盖所述半导体柱102部分侧壁的层间介质层110。The step of forming the interlayer dielectric layer 110 includes: forming an interlayer dielectric material layer 111 (as shown in FIG. 8 ) covering the gate material structure 107 , and the interlayer dielectric material layer 111 is exposed on the semiconductor pillar 102 The top surface of the gate material structure 107 is etched back to a partial thickness of the interlayer dielectric material layer 111 to form an interlayer dielectric layer 110 covering part of the sidewall of the semiconductor pillar 102 .

如图12所示,去除高于所述层间介质层110的栅极材料结构107,形成覆盖所述半导体柱102部分侧壁的栅极结构109。As shown in FIG. 12 , the gate material structure 107 higher than the interlayer dielectric layer 110 is removed to form a gate structure 109 covering part of the sidewall of the semiconductor pillar 102 .

本实施例中,采用干法工艺去除露出所述层间介质层110的所述栅极材料结构107。干法刻蚀工艺有利于精确控制去除露出所述层间介质层110的所述栅极材料结构107的厚度,降低对其他膜层结构的损伤。其他实施例中,还可以采用湿法刻蚀工艺去除露出所述层间介质层的所述栅极材料结构。In this embodiment, a dry process is used to remove the gate material structure 107 exposing the interlayer dielectric layer 110 . The dry etching process is beneficial to precisely control and remove the thickness of the gate material structure 107 exposed to the interlayer dielectric layer 110 , thereby reducing damage to other film structures. In other embodiments, a wet etching process may also be used to remove the gate material structure exposing the interlayer dielectric layer.

继续参考图5,需要说明的是,所述半导体结构的形成方法还包括:在形成隔离层104后,形成栅极材料结构107前,在所述半导体柱102和所述半导体柱102露出的所述隔离层104上保形覆盖栅介质层108。Continuing to refer to FIG. 5 , it should be noted that the method for forming the semiconductor structure further includes: after the isolation layer 104 is formed and before the gate material structure 107 is formed, the semiconductor pillar 102 and all parts exposed by the semiconductor pillar 102 are formed. The gate dielectric layer 108 is conformally covered on the isolation layer 104 .

所述栅介质层108用于实现栅极材料结构107与半导体柱102实现电隔离。The gate dielectric layer 108 is used to achieve electrical isolation between the gate material structure 107 and the semiconductor pillar 102 .

本实施例中,栅极结构为金属栅极结构,因此栅介质层108的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO和Al2O3中的一种或几种。其他实施例中,所述栅极结构为多晶硅栅极结构时,栅介质层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅和非晶碳中的一种或几种。In this embodiment, the gate structure is a metal gate structure, so the material of the gate dielectric layer 108 includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO and Al 2 O 3 . In other embodiments, when the gate structure is a polysilicon gate structure, the material of the gate dielectric layer includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride and amorphous carbon one or more of them.

本实施例中,采用原子层沉积工艺形成栅介质层108,采用原子层沉积工艺的优点在此不再赘述。其他实施例中,还可以采用化学气相沉积工艺形成栅介质层。In this embodiment, the gate dielectric layer 108 is formed by an atomic layer deposition process, and the advantages of using the atomic layer deposition process will not be repeated here. In other embodiments, a chemical vapor deposition process may also be used to form the gate dielectric layer.

继续参考图8至图10,在所述半导体柱102的顶端形成漏掺杂层112(如图10所示)。Continuing to refer to FIGS. 8 to 10 , a drain doped layer 112 is formed on the top of the semiconductor pillar 102 (as shown in FIG. 10 ).

漏掺杂层112与源掺杂层101在半导体结构工作时,为沟道提供应力,增加载流子的迁移速率。The drain doping layer 112 and the source doping layer 101 provide stress to the channel when the semiconductor structure is working, increasing the mobility of carriers.

所述漏掺杂层112的形成步骤包括:在形成层间介质材料层111后,形成层间介质层110之前,采用平坦化工艺去除高于所述掩膜层103的所述层间介质材料层111和栅极材料结构107;露出所述掩膜层103后,去除所述掩膜层103,形成由半导体柱102和栅介质层108围成的凹槽(图中未示出);在所述凹槽中形成漏掺杂层112。The forming step of the drain doped layer 112 includes: after the interlayer dielectric material layer 111 is formed and before the interlayer dielectric layer 110 is formed, a planarization process is used to remove the interlayer dielectric material higher than the mask layer 103 layer 111 and gate material structure 107; after exposing the mask layer 103, remove the mask layer 103 to form a groove (not shown in the figure) surrounded by the semiconductor pillar 102 and the gate dielectric layer 108; A drain doped layer 112 is formed in the groove.

本实施例中,本实施例中,采用化学机械平坦化处理(Chemical-MechanicalPlanarization,CMP)对层间介质材料层111进行平坦化处理。In this embodiment, in this embodiment, chemical-mechanical planarization (Chemical-Mechanical Planarization, CMP) is used to planarize the interlayer dielectric material layer 111 .

本实施例中,采用湿法刻蚀工艺去除所述掩膜层103。采用湿法工艺去除露出所述层间介质层110的所述栅极材料结构107。湿法刻蚀工艺为各向同性刻蚀,湿法刻蚀工艺具有较高的刻蚀速率,且操作简单,工艺成本低。其他实施例中,还可以采用干法刻蚀工艺去除露出掩膜层。In this embodiment, the mask layer 103 is removed by a wet etching process. The gate material structure 107 exposing the interlayer dielectric layer 110 is removed by a wet process. The wet etching process is isotropic etching, and the wet etching process has a high etching rate, simple operation and low process cost. In other embodiments, a dry etching process may also be used to remove the exposed mask layer.

具体的,采用磷酸溶液去除露出所述掩膜层103。Specifically, phosphoric acid solution is used to remove and expose the mask layer 103 .

本实施例中,采用外延生长法形成第二外延层,在形成第二外延层的过程中采用原位掺杂离子,形成漏掺杂层112。其他实施例中,还可以在形成第二外延层的过程中采用原位自掺杂后,通过离子注入的方式继续对第二外延层进行离子掺杂,形成漏掺杂层112。掺杂离子可达到提高沟道中载流子迁移率的效果。另一些实施例中,还可以只采用离子注入的方式对第二外延层进行离子掺杂。In this embodiment, an epitaxial growth method is used to form the second epitaxial layer, and in-situ doping ions are used in the process of forming the second epitaxial layer to form the drain doped layer 112 . In other embodiments, after in-situ self-doping is used in the process of forming the second epitaxial layer, the second epitaxial layer can be continuously ion-doped by means of ion implantation to form the drain doped layer 112 . Doping ions can achieve the effect of improving the mobility of carriers in the channel. In other embodiments, the second epitaxial layer may also be ion-doped only by ion implantation.

本实施例中,所述半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor),即所述第二外延层的材料为锗化硅。本实施例通过在第二外延层中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor), that is, the material of the second epitaxial layer is silicon germanium. In this embodiment, by doping P-type ions in the second epitaxial layer, the P-type ions replace the positions of silicon atoms in the crystal lattice. the stronger. Specifically, the P-type ions include B, Ga or In.

其他实施例中,所述半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)时,即所述第二外延层的材料相应为碳化硅或磷化硅。通过在第二外延层中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, when the semiconductor structure is used to form NMOS (Negative channel Metal Oxide Semiconductor), that is, the material of the second epitaxial layer is correspondingly silicon carbide or silicon phosphide. By doping N-type ions in the second epitaxial layer, the N-type ions are substituted for the positions of silicon atoms in the crystal lattice. Specifically, the N-type ions include P, As or Sb.

其他实施例中,形成所述漏掺杂层的步骤还可以包括:采用平坦化工艺去除高于所述半导体柱的所述层间介质材料层;对所述半导体柱进行离子掺杂,形成漏掺杂层。In other embodiments, the step of forming the drain doped layer may further include: using a planarization process to remove the interlayer dielectric material layer higher than the semiconductor pillar; ion doping the semiconductor pillar to form a drain doped layer.

需要说明的是,在另一些实施例中,形成所述漏掺杂层的步骤包括:在形成所述隔离材料层后,形成隔离层前,采用平坦化工艺去除高于所述掩膜层的隔离材料层;去除所述隔离材料层露出的所述掩膜层,形成由所述隔离材料层和半导体柱围成的隔离层凹槽;在所述隔离层凹槽中,形成所述漏掺杂层。It should be noted that, in some other embodiments, the step of forming the drain doped layer includes: after forming the isolation material layer and before forming the isolation layer, using a planarization process to remove a surface area higher than that of the mask layer. isolation material layer; removing the mask layer exposed by the isolation material layer to form an isolation layer groove surrounded by the isolation material layer and the semiconductor column; in the isolation layer groove, form the drain dopant Miscellaneous layers.

或者,在形成所述隔离材料层后,形成隔离层前,采用平坦化工艺去除高于所述半导体柱的隔离材料层;对所述半导体柱进行离子掺杂,形成所述漏掺杂层。Alternatively, after the isolation material layer is formed and before the isolation layer is formed, a planarization process is used to remove the isolation material layer higher than the semiconductor column; ion doping is performed on the semiconductor column to form the drain doped layer.

在形成栅极材料结构之前形成漏掺杂层,可以避免形成漏掺杂层的过程中,掺杂离子误入栅极材料结构中,导致后续形成的栅极结构不能很好的控制沟道的开启和断开。Forming the drain doping layer before forming the gate material structure can avoid that doping ions stray into the gate material structure during the process of forming the drain doping layer, so that the gate structure formed subsequently cannot control the channel well. On and off.

继续参考图12,所述栅极结构109露出所述漏掺杂层112。Continuing to refer to FIG. 12 , the gate structure 109 exposes the drain doped layer 112 .

需要说明的是,所述栅极结构109距离所述漏掺杂层112底部的距离不宜过大也不宜过小。若距离过大,易导致所述半导体柱102上的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若距离过短,易导致栅极结构109和漏掺杂层112发生桥接,不利于优化半导体结构的电学性能。本实施例中,所述栅极结构109距离所述漏掺杂层112底部的距离为6纳米至10纳米。It should be noted that, the distance between the gate structure 109 and the bottom of the drain doped layer 112 should not be too large nor too small. If the distance is too large, the gate structure 109 on the semiconductor column 102 is likely to be too short, and the effect of the gate structure 109 in controlling the short channel effect is poor, which is not conducive to improving the electrical performance of the semiconductor structure. If the distance is too short, the gate structure 109 and the drain doped layer 112 are easily bridged, which is not conducive to optimizing the electrical performance of the semiconductor structure. In this embodiment, the distance between the gate structure 109 and the bottom of the drain doped layer 112 is 6 nanometers to 10 nanometers.

参考图13,在所述功函数层1091中靠近所述漏掺杂层112的位置处掺杂能增加半导体结构阈值电压的掺杂离子。Referring to FIG. 13 , dopant ions capable of increasing the threshold voltage of the semiconductor structure are doped at a position in the work function layer 1091 close to the drain doped layer 112 .

所述源掺杂层101与衬底100连接,因此,源掺杂层101的电压较低,漏掺杂层112的电压高于源掺杂层101的电压,因此漏掺杂层112的电场比较强,相应的漏掺杂层112中的热载流子易破坏栅极结构109,电场强度的大小与电压强度成正相关,所述漏掺杂层112处有纵向电场,漏掺杂层112处的纵向电压等于加载在栅极结构109上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在所述功函数层1091中掺杂能增加半导体结构阈值电压的掺杂离子,使得漏掺杂层112处的电压降低,相应的漏掺杂层112处的纵向电场降低,提高了漏掺杂层112处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层1091中靠近所述漏掺杂层112的位置处进行掺杂,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。The source doped layer 101 is connected to the substrate 100, therefore, the voltage of the source doped layer 101 is lower, and the voltage of the drain doped layer 112 is higher than the voltage of the source doped layer 101, so the electric field of the drain doped layer 112 It is relatively strong, the hot carriers in the corresponding drain doped layer 112 are easy to damage the gate structure 109, the magnitude of the electric field strength is positively correlated with the voltage strength, the drain doped layer 112 has a longitudinal electric field, and the drain doped layer 112 The vertical voltage at the gate structure 109 is equal to the vertical voltage loaded on the gate structure 109 minus the threshold voltage of the semiconductor structure. In the embodiment of the present invention, the work function layer 1091 is doped with doping ions that can increase the threshold voltage of the semiconductor structure, so that The voltage at the drain doped layer 112 is reduced, and the longitudinal electric field at the corresponding drain doped layer 112 is reduced, which improves the reliability at the drain doped layer 112, that is, improves the reliability of the semiconductor structure, and because only the power The function layer 1091 is doped at a position close to the drain doping layer 112, and the turn-on voltage at the source doping layer 101 is low, so that the driving current of the semiconductor structure is high, and the electrical performance of the semiconductor structure is optimized. .

本实施例中,在形成所述栅极结构109后,通过离子注入的方式在所述功函数层1091中掺杂能增加半导体结构阈值电压的掺杂离子。其他实施例中,还可以通过离子扩散的方式所述功函数层中掺杂离子。In this embodiment, after the gate structure 109 is formed, the work function layer 1091 is doped with doping ions capable of increasing the threshold voltage of the semiconductor structure by means of ion implantation. In other embodiments, the work function layer may also be doped with ions by means of ion diffusion.

在所述功函数层1091中掺杂离子,使得功函数层1091的费米能级趋向于价带顶变化,或者趋向于导带底变化,则功函数层1091的费米势增大,使得半导体结构的反型层更难产生,提高所述半导体结构的阈值电压,使得在加载在漏掺杂层112上的纵向电压下降,相应的漏掺杂层112处的纵向电场降低,漏掺杂层112中的热载流子不易破坏栅极结构109,优化了半导体结构的电学性能。The work function layer 1091 is doped with ions, so that the Fermi level of the work function layer 1091 tends to change to the top of the valence band, or tends to change to the bottom of the conduction band, then the Fermi potential of the work function layer 1091 increases, so that The inversion layer of the semiconductor structure is more difficult to generate, and the threshold voltage of the semiconductor structure is increased, so that the vertical voltage loaded on the drain doping layer 112 decreases, the longitudinal electric field at the corresponding drain doping layer 112 decreases, and the drain doping layer 112 decreases. Hot carriers in the layer 112 are less likely to damage the gate structure 109, optimizing the electrical performance of the semiconductor structure.

在所述功函数层1091中靠近所述漏掺杂层112的位置处掺杂能增加半导体结构阈值电压的掺杂离子,也就是说所述漏掺杂层112处的离子掺杂浓度高于所述源掺杂层101处的离子掺杂浓度,因此,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高。Doping the work function layer 1091 near the drain doping layer 112 with doping ions capable of increasing the threshold voltage of the semiconductor structure, that is to say, the ion doping concentration at the drain doping layer 112 is higher than The ion doping concentration at the source doped layer 101, therefore, the turn-on voltage at the source doped layer 101 is lower, so that the driving current of the semiconductor structure is higher.

本实施例中,所述半导体结构用于形成PMOS时,所述离子掺杂的工艺参数包括:所述掺杂离子包括Al、Ti和Ta中的一种或多种;注入剂量为1.0E16原子每平方厘米至1.0E19原子每平方厘米,注入能量为0.8Kev至12Kev,离子注入的方向与所述衬底法线的夹角为7度至25度。In this embodiment, when the semiconductor structure is used to form a PMOS, the ion doping process parameters include: the doping ions include one or more of Al, Ti and Ta; the implantation dose is 1.0E16 atoms The implantation energy ranges from 0.8Kev to 12Kev per square centimeter to 1.0E19 atoms per square centimeter, and the angle between the direction of ion implantation and the normal line of the substrate ranges from 7 degrees to 25 degrees.

需要说明的是,注入剂量不宜过多也不宜过少。若所述注入剂量过多,若所述注入剂量过大,会导致半导体结构的反型层更难产生,半导体结构阈值电压过高,导致半导体结构更难开启;若所述注入剂量过小,半导体结构阈值电压提高不明显,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。本实施例中,注入剂量为1.0E16原子每平方厘米至1.0E19原子每平方厘米。It should be noted that the injection dose should not be too much nor too little. If the implantation dose is too large, if the implantation dose is too large, the inversion layer of the semiconductor structure will be more difficult to generate, and the threshold voltage of the semiconductor structure will be too high, making it more difficult to turn on the semiconductor structure; if the implantation dose is too small, the semiconductor structure will be more difficult to turn on. The threshold voltage of the semiconductor structure is not significantly increased, and the electric field at the drain doped layer 112 cannot be reduced, so that the gate structure 109 is easily damaged under the action of hot carriers. In this embodiment, the implantation dose is 1.0E16 atoms per square centimeter to 1.0E19 atoms per square centimeter.

需要说明的是,注入能量不宜过大也不宜过小。若注入能量过大会导致掺杂离子进入靠近源掺杂层101处的功函数层1091中,使得源掺杂层101处的离子掺杂浓度较高,使得半导体结构的驱动电流较低;另外若所述注入能量较高,还会使得掺杂离子进入半导体柱102中,也就是说进入沟道区中,不易起到提高半导体结构阈值电压的作用;若所述注入能量过少,会导致掺杂离子过于集中在所述功函数层1091的顶面,使得所述掺杂离子不能起到调节功函数层1091费米能级的作用,导致所述半导体结构的阈值电压提高不显著。本实施例中,注入能量为0.8Kev至12Kev。It should be noted that the injection energy should not be too large nor too small. If the implantation energy is too high, the doping ions will enter the work function layer 1091 close to the source doping layer 101, so that the ion doping concentration at the source doping layer 101 is higher, so that the driving current of the semiconductor structure is lower; The high implantation energy will also cause the doping ions to enter the semiconductor pillar 102, that is to say, into the channel region, which is not easy to increase the threshold voltage of the semiconductor structure; if the implantation energy is too low, it will lead to doping Impurity ions are too concentrated on the top surface of the work function layer 1091 , so that the dopant ions cannot play the role of adjusting the Fermi level of the work function layer 1091 , resulting in an insignificant increase in the threshold voltage of the semiconductor structure. In this embodiment, the implantation energy is 0.8Kev to 12Kev.

需要说明的是,离子注入的方向与衬底100法线的夹角不宜过大,也不宜过小。若所述注入角度过大,会导致过多的掺杂离子注入栅极层1092中,进而导致过少的掺杂离子注入在功函数层1191中,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。若所述注入角度过小,易导致掺杂离子进入靠近所述源掺杂层101的位置处的所述功函数层1091中,导致所述源掺杂层101处的开启电压提高,导致半导体结构的驱动电流较低。本实施例中,离子注入的方向与衬底100法线的夹角为7度至25度。It should be noted that the angle between the direction of ion implantation and the normal line of the substrate 100 should not be too large or too small. If the implantation angle is too large, too many dopant ions will be implanted into the gate layer 1092, and then too few dopant ions will be implanted into the work function layer 1191, and the electric field at the drain dopant layer 112 cannot be reduced. As a result, the gate structure 109 is easily damaged under the action of hot carriers. If the implantation angle is too small, it is easy to cause doping ions to enter the work function layer 1091 at a position close to the source doping layer 101, resulting in an increase in the turn-on voltage at the source doping layer 101, resulting in semiconductor The drive current of the structure is low. In this embodiment, the included angle between the direction of ion implantation and the normal line of the substrate 100 is 7 degrees to 25 degrees.

其他实施例中,半导体结构用于形成NMOS晶体管,所述离子掺杂的工艺参数包括:所述掺杂离子包括F、N、H、C和O中的一种或多种;注入剂量为1.0E14原子每平方厘米至9.0E16原子每平方厘米,注入能量为0.5Kev至10Kev,离子注入的方向与所述衬底法线的夹角为7度至25度。In other embodiments, the semiconductor structure is used to form an NMOS transistor, and the process parameters of the ion doping include: the doping ions include one or more of F, N, H, C, and O; the implantation dose is 1.0 E14 atoms per square centimeter to 9.0E16 atoms per square centimeter, the implantation energy is 0.5Kev to 10Kev, and the angle between the direction of ion implantation and the normal line of the substrate is 7 degrees to 25 degrees.

参考图14,在所述掺杂离子后,形成覆盖层间介质层110和漏掺杂层112的介电层113;形成介电层113后,形成与源掺杂层101连接的底部接触孔插塞114;形成与栅极结构109连接的栅极接触孔插塞115;形成与漏掺杂层112连接的顶部接触孔插塞116。Referring to FIG. 14 , after the doping of ions, a dielectric layer 113 covering the interlayer dielectric layer 110 and the drain doping layer 112 is formed; after the dielectric layer 113 is formed, a bottom contact hole connected to the source doping layer 101 is formed Plug 114 ; form gate contact hole plug 115 connected to gate structure 109 ; form top contact hole plug 116 connected to drain doped layer 112 .

所述介电层113用于实现相邻器件之间的电隔离,所述介电层113的材料为绝缘材料。The dielectric layer 113 is used to achieve electrical isolation between adjacent devices, and the material of the dielectric layer 113 is an insulating material.

本实施例中,所述介电层113的材料为氧化硅。其他实施例中,所述介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the dielectric layer 113 is silicon oxide. In other embodiments, the material of the dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

所述底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。The bottom contact hole plug 114 , the gate contact hole plug 115 , and the top contact hole plug 116 are used not only to realize the electrical connection within the semiconductor structure, but also to realize the electrical connection between the semiconductor structure and the semiconductor structure.

形成所述底部接触孔插塞114的步骤包括:刻蚀所述介电层113、层间介质层110、隔离层104以及保护层106直至形成露出所述源掺杂层101的第一通孔,向所述第一通孔内填充导电材料,所述第一通孔内的导电材料作为底部接触孔插塞114。The step of forming the bottom contact hole plug 114 includes: etching the dielectric layer 113 , the interlayer dielectric layer 110 , the isolation layer 104 and the protective layer 106 until a first through hole exposing the source doping layer 101 is formed , the first through hole is filled with conductive material, and the conductive material in the first through hole is used as the bottom contact hole plug 114 .

本实施例中,所述导电材料的材料为W。在其他实施例中,所述导电材料的材料还可以是Al、Cu、Ag或Au等。In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag, Au, or the like.

所述栅极接触孔插塞115以及顶部接触孔插塞116的形成方法与底部接触孔插塞114的形成方法类似,在此不再赘述。The formation method of the gate contact hole plug 115 and the top contact hole plug 116 is similar to the formation method of the bottom contact hole plug 114 , and details are not repeated here.

如图15所示,本发明还提供第二种半导体结构的形成方法,具体内容如下:As shown in FIG. 15 , the present invention also provides a method for forming a second semiconductor structure, the details of which are as follows:

本发明实施例与第一实施例的相同之处,在此不再赘述。本实施例与第一实施例的不同之处在于:在形成所述栅极层2092后,通过退火的方式在所述功函数层2091中靠近所述漏掺杂层212的位置处掺杂离子。The similarities between the embodiment of the present invention and the first embodiment will not be repeated here. The difference between this embodiment and the first embodiment is that after the gate layer 2092 is formed, ions are doped in the work function layer 2091 at a position close to the drain doping layer 212 by means of annealing .

所述掺杂离子通过退火的方式进入所述功函数层2091中,降低了功函数层2091中离子的活性,使得功函数层2091的费米能级趋向于价带顶变化,则功函数层2091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层212上的纵向电压下降,相应的,漏掺杂层212处的纵向电场降低,漏掺杂层212中的热载流子不易破坏栅极结构209,且因为通过退火方式掺杂的离子主要集中在功函数层2091中靠近所述漏掺杂层212的位置处,源掺杂层201处的开启电压较低,使得半导体结构的驱动电流较高,综上优化了半导体结构的电学性能。The doping ions enter the work function layer 2091 by annealing, which reduces the activity of the ions in the work function layer 2091, so that the Fermi level of the work function layer 2091 tends to change to the top of the valence band, then the work function layer The Fermi potential of 2091 increases, making the inversion layer of the semiconductor structure more difficult to generate, increasing the threshold voltage of the semiconductor structure, so that the vertical voltage loaded on the drain doped layer 212 decreases, correspondingly, at the drain doped layer 212 The vertical electric field of the doped layer 212 is reduced, the hot carriers in the drain doped layer 212 are not easy to damage the gate structure 209, and because the ions doped by annealing are mainly concentrated in the work function layer 2091 near the drain doped layer 212 , the turn-on voltage at the source doping layer 201 is lower, so that the driving current of the semiconductor structure is higher, and the electrical performance of the semiconductor structure is optimized in conclusion.

例如当所述功函数层2091的材料为TiAl,通过在所述功函数层2091中掺杂F和H中的一种或两种,使得功函数层2091中的费米能级趋向于价带顶变化,则功函数层2091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压。For example, when the material of the work function layer 2091 is TiAl, by doping one or both of F and H in the work function layer 2091, the Fermi level in the work function layer 2091 tends to the valence band If the top changes, the Fermi potential of the work function layer 2091 increases, making it more difficult to generate an inversion layer of the semiconductor structure, and increasing the threshold voltage of the semiconductor structure.

退火方式掺杂的离子主要集中在功函数层2091中靠近所述漏掺杂层212的位置处,也就是说所述漏掺杂层212处的离子掺杂浓度高于所述源掺杂层201处的离子掺杂浓度,因此,源掺杂层201处的开启电压较低,使得半导体结构的驱动电流较高。The ions doped by annealing are mainly concentrated in the work function layer 2091 near the drain doping layer 212, that is to say, the ion doping concentration at the drain doping layer 212 is higher than that in the source doping layer The ion doping concentration at 201, therefore, the turn-on voltage at the source doping layer 201 is lower, resulting in a higher drive current for the semiconductor structure.

所述半导体结构用于形成NMOS晶体管,所述离子掺杂的工艺参数包括:所述掺杂离子包括F和H中的一种或多种,所述离子掺杂的反应气体相应包括F2和H2中的一种或多种,其中,F2流量为10sccm至800sccm,或者H2流量为10sccm至800sccm;工艺温度为850摄氏度至1050摄氏度;腔室压强为0.5倍至10倍标准大气压。The semiconductor structure is used to form an NMOS transistor, and the process parameters of the ion doping include: the doping ions include one or more of F and H, and the ion doping reaction gas correspondingly includes F 2 and One or more of H2 , wherein the F2 flow is 10sccm to 800sccm, or the H2 flow is 10sccm to 800sccm ; the process temperature is 850 to 1050 degrees Celsius; the chamber pressure is 0.5 times to 10 times the standard atmospheric pressure.

需要说明的是,所述腔室中的F2或者H2的流量不宜过大也不宜过小。若所述气体流量过小,易导致所述F离子或者H离子,扩散进入所述功函数层2091中的速率,使得所需工艺的时间过长,不利于提高半导体结构的形成效率;若所述气体流量过大,易导致F离子或者H离子扩散进入靠近所述源掺杂层201的位置处的所述功函数层2091中,导致所述源掺杂层201处的开启电压提高,导致半导体结构的驱动电流较低。本实施例中,F2流量为10sccm至800sccm,或者H2流量为10sccm至800sccm。It should be noted that the flow rate of F 2 or H 2 in the chamber should neither be too large nor too small. If the gas flow rate is too small, it is easy to cause the rate of diffusion of the F ions or H ions into the work function layer 2091, which makes the required process time too long, which is not conducive to improving the formation efficiency of the semiconductor structure; If the gas flow rate is too large, it is easy to cause F ions or H ions to diffuse into the work function layer 2091 near the source doping layer 201, resulting in an increase in the turn-on voltage at the source doping layer 201, resulting in The drive current of the semiconductor structure is low. In this embodiment, the F 2 flow rate is 10 sccm to 800 sccm, or the H 2 flow rate is 10 sccm to 800 sccm.

需要说明的是,所述工艺温度不宜过小,也不宜过大。如果所述工艺温度过小,则容易导致离子在所述功函数层2091的扩散速度过慢,使得所需工艺的时间过长,不利于提高半导体结构的形成效率;如果所述工艺温度过大,对增强离子扩散的效果不够显著,还可能导致晶体管的电性参数发生偏差,从而导致晶体管电学性能的下降。为此,本实施例中,所述工艺温度在850摄氏度至1050摄氏度的范围内。It should be noted that the process temperature should not be too small or too high. If the process temperature is too low, the diffusion speed of ions in the work function layer 2091 is likely to be too slow, making the required process time too long, which is not conducive to improving the formation efficiency of the semiconductor structure; if the process temperature is too large , the effect of enhancing ion diffusion is not significant enough, and may also lead to deviations in the electrical parameters of the transistor, thereby leading to a decrease in the electrical performance of the transistor. To this end, in this embodiment, the process temperature is in the range of 850 degrees Celsius to 1050 degrees Celsius.

需要说明的是,腔室压强不宜过大也不宜过小。若所述腔室压强过大,易导致F离子或者H离子扩散进入靠近所述源掺杂层201的位置处的所述功函数层2091中,导致所述源掺杂层201处的开启电压提高,导致半导体结构的驱动电流较低。若所述腔室压强过小,易导致所述F离子或者H离子,扩散进入所述功函数层2091中的速率,使得所需工艺的时间过长,不利于提高半导体结构的形成效率。本实施例中,腔室压强为0.5倍至10倍的标准大气压。It should be noted that the chamber pressure should not be too large or too small. If the chamber pressure is too large, F ions or H ions are likely to diffuse into the work function layer 2091 near the source doping layer 201 , resulting in a turn-on voltage at the source doping layer 201 . increase, resulting in a lower drive current for the semiconductor structure. If the chamber pressure is too low, the rate of diffusion of the F ions or H ions into the work function layer 2091 is likely to cause the required process time to be too long, which is not conducive to improving the formation efficiency of the semiconductor structure. In this embodiment, the chamber pressure is 0.5 times to 10 times the standard atmospheric pressure.

对本实施例所述半导体结构的具体描述,可参考第一实施例中的相应描述,本实施例在此不再赘述。For the specific description of the semiconductor structure in this embodiment, reference may be made to the corresponding description in the first embodiment, which will not be repeated in this embodiment.

相应的,本发明实施例还提供一种半导体结构。参考图14,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, an embodiment of the present invention further provides a semiconductor structure. Referring to FIG. 14, a schematic structural diagram of an embodiment of the semiconductor structure of the present invention is shown.

半导体结构包括:衬底100;源掺杂层101,位于衬底100上;半导体柱102,位于源掺杂层101上;漏掺杂层112,位于半导体柱102顶端;栅极结构109,包围半导体柱102的部分侧壁且露出漏掺杂层112,栅极结构109包括覆盖半导体柱102部分侧壁的功函数层1091和覆盖功函数层1091的栅极层1092;掺杂离子,位于功函数层1091中靠近所述漏掺杂层112的位置处,掺杂离子能增加半导体结构阈值电压。The semiconductor structure includes: a substrate 100; a source doped layer 101 on the substrate 100; a semiconductor pillar 102 on the source doped layer 101; a drain doped layer 112 on the top of the semiconductor pillar 102; a gate structure 109 surrounding the Part of the sidewall of the semiconductor pillar 102 exposes the drain doped layer 112, the gate structure 109 includes a work function layer 1091 covering part of the sidewall of the semiconductor pillar 102 and a gate layer 1092 covering the work function layer 1091; In the functional layer 1091 near the drain doping layer 112, the doping ions can increase the threshold voltage of the semiconductor structure.

漏掺杂层112的电压高于源掺杂层101的电压,因此漏掺杂层112的电场比较强,相应的漏掺杂层112中的热载流子易破坏栅极结构109,电场强度的大小与电压强度成正相关,漏掺杂层112处有纵向电场,漏掺杂层112处的纵向电压等于加载在栅极结构109上的纵向电压减去半导体结构的阈值电压,本发明实施例通过在功函数层1091中掺杂离子提高半导体结构的阈值电压,使得漏掺杂层112处的电压降低,相应的漏掺杂层112处的纵向电场降低,提高了漏掺杂层112处的可靠性,也就是提高了半导体结构的可靠性,且因为只对功函数层1091中靠近所述漏掺杂层112的位置处进行掺杂,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高,综上使得半导体结构的电学性能得到优化。The voltage of the drain doped layer 112 is higher than the voltage of the source doped layer 101, so the electric field of the drain doped layer 112 is relatively strong, and the hot carriers in the corresponding drain doped layer 112 are easy to damage the gate structure 109, and the electric field strength There is a vertical electric field at the drain doped layer 112, and the vertical voltage at the drain doped layer 112 is equal to the vertical voltage loaded on the gate structure 109 minus the threshold voltage of the semiconductor structure, the embodiment of the present invention By doping ions in the work function layer 1091 to increase the threshold voltage of the semiconductor structure, the voltage at the drain doped layer 112 is reduced, the corresponding longitudinal electric field at the drain doped layer 112 is reduced, and the voltage at the drain doped layer 112 is increased. Reliability, that is, the reliability of the semiconductor structure is improved, and because only the position in the work function layer 1091 close to the drain doping layer 112 is doped, the turn-on voltage at the source doping layer 101 is lower, so that the The driving current of the semiconductor structure is relatively high, so that the electrical properties of the semiconductor structure are optimized.

本实施例中,半导体结构用于形成PMOS时,掺杂离子包括:Al、Ti和Ta中的一种或多种。In this embodiment, when the semiconductor structure is used to form a PMOS, the doping ions include: one or more of Al, Ti and Ta.

掺杂离子位于功函数层1091中靠近所述漏掺杂层112的位置处,使得功函数层1091的费米能级趋向于导带底变化,则功函数层1091的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层112上的纵向电压下降,相应的,漏掺杂层112处的纵向电场降低,漏掺杂层112中的热载流子不易破坏栅极结构109,优化了晶体管的电学性能。The doping ions are located in the work function layer 1091 near the drain doping layer 112, so that the Fermi level of the work function layer 1091 tends to change to the bottom of the conduction band, and the Fermi potential of the work function layer 1091 increases, The inversion layer of the semiconductor structure is made more difficult to generate, the threshold voltage of the semiconductor structure is increased, and the vertical voltage loaded on the drain doped layer 112 is decreased. Hot carriers in the layer 112 are less likely to damage the gate structure 109, optimizing the electrical performance of the transistor.

所述掺杂离子位于所述功函数层1091中靠近所述漏掺杂层112的位置处,也就是说所述漏掺杂层112处的离子掺杂浓度高于所述源掺杂层101处的离子掺杂浓度,因此,源掺杂层101处的开启电压较低,使得半导体结构的驱动电流较高。The doping ions are located in the work function layer 1091 near the drain doping layer 112 , that is, the ion doping concentration in the drain doping layer 112 is higher than that in the source doping layer 101 Therefore, the turn-on voltage at the source doped layer 101 is lower, so that the driving current of the semiconductor structure is higher.

需要说明的是,掺杂离子的浓度不宜过高也不宜过低。若掺杂离子浓度过高,会导致半导体结构的反型层更难产生,半导体结构阈值电压过高,导致半导体结构更难开启。若掺杂离子浓度过低,半导体结构阈值电压提高不明显,不能降低漏掺杂层112处的电场,导致栅极结构109在热载流子的作用下易被破坏。本实施例中,掺杂离子的浓度为1.0E21原子每立方厘米至1.0E24原子立平方厘米。It should be noted that the concentration of doping ions should not be too high nor too low. If the doping ion concentration is too high, it will be more difficult to generate an inversion layer of the semiconductor structure, and the threshold voltage of the semiconductor structure will be too high, making it more difficult to turn on the semiconductor structure. If the doping ion concentration is too low, the threshold voltage of the semiconductor structure is not significantly increased, and the electric field at the drain doping layer 112 cannot be reduced, so that the gate structure 109 is easily damaged under the action of hot carriers. In this embodiment, the concentration of the doping ions is 1.0E21 atoms per cubic centimeter to 1.0E24 atoms per cubic centimeter.

其他实施例中,半导体结构用于形成NMOS时,掺杂离子包括:F、N、H、C和O中的一种或多种。In other embodiments, when the semiconductor structure is used to form an NMOS, the dopant ions include one or more of F, N, H, C and O.

掺杂离子位于功函数层中靠近所述漏掺杂层的位置处,使得功函数层的费米能级趋向于价带顶变化,则功函数层的费米势增大,使得半导体结构的反型层更难产生,提高半导体结构的阈值电压,使得在加载在漏掺杂层上的纵向电压下降,相应的,漏掺杂层处的纵向电场降低,漏掺杂层中的热载流子不易破坏栅极结构,优化了晶体管的电学性能。The doping ions are located in the work function layer near the drain doping layer, so that the Fermi level of the work function layer tends to change to the top of the valence band, and the Fermi potential of the work function layer increases, making the semiconductor structure more stable. The inversion layer is more difficult to generate, and the threshold voltage of the semiconductor structure is increased, so that the longitudinal voltage loaded on the drain doped layer decreases, correspondingly, the longitudinal electric field at the drain doped layer decreases, and the hot carrier current in the drain doped layer decreases. The gate structure is not easily damaged by the electrons, which optimizes the electrical performance of the transistor.

掺杂离子的浓度为1.0E19原子每立方厘米至9.0E21原子立平方厘米。The concentration of dopant ions ranges from 1.0E19 atoms per cubic centimeter to 9.0E21 atoms per cubic centimeter.

衬底100为形成半导体结构提供工艺平台。Substrate 100 provides a process platform for forming semiconductor structures.

本实施例中,衬底100为硅衬底。在其他实施例中,衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟,衬底还能够为绝缘体上的硅衬底或者绝缘体上的锗衬底。In this embodiment, the substrate 100 is a silicon substrate. In other embodiments, the material of the substrate can also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate can also be a silicon-on-insulator substrate or a germanium-on-insulator substrate.

半导体柱102在半导体结构工作时用于形成沟道。本实施例中,半导体柱102为纯净度较高的单晶材料。半导体柱102的材料为硅。在其他实施例中,半导体柱的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟。The semiconductor pillars 102 are used to form channels during operation of the semiconductor structure. In this embodiment, the semiconductor column 102 is a single crystal material with high purity. The material of the semiconductor pillar 102 is silicon. In other embodiments, the material of the semiconductor pillars may also be germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium.

需要说明的是,半导体柱102不易过矮也不宜过高。若半导体柱102过矮,会使得后续形成的沟道区过短,易产生短沟道效应,导致半导体结构的电学性能得不到提高;若半导体柱102过高,半导体柱102易坍塌,形成半导体柱102的工艺难度过大。本实施例中,半导体柱102的高度为150纳米至800纳米。It should be noted that the semiconductor pillar 102 is neither too short nor too high. If the semiconductor pillar 102 is too short, the subsequently formed channel region will be too short, and short channel effect will easily occur, resulting in that the electrical performance of the semiconductor structure cannot be improved; The process difficulty of the semiconductor pillar 102 is too great. In this embodiment, the height of the semiconductor pillar 102 is 150 nm to 800 nm.

漏掺杂层112与源掺杂层101在半导体结构工作时,为沟道提供应力,增加载流子的迁移速率。源掺杂层101作为半导体结构的源极,漏掺杂层112作为半导体结构的漏极。The drain doping layer 112 and the source doping layer 101 provide stress to the channel when the semiconductor structure is working, increasing the mobility of carriers. The source doped layer 101 serves as the source of the semiconductor structure, and the drain doped layer 112 serves as the drain of the semiconductor structure.

本实施例中,半导体结构用于形成PMOS(Positive Channel Metal OxideSemiconductor)晶体管,即源掺杂层101和漏掺杂层112为掺杂P型离子的锗化硅。本实施例通过在锗化硅中掺杂P型离子,使P型离子取代晶格中硅原子的位置,掺入的P型离子越多,多子的浓度就越高,导电性能也就越强。具体的,P型离子包括B、Ga或In。In this embodiment, the semiconductor structure is used to form a PMOS (Positive Channel Metal Oxide Semiconductor) transistor, that is, the source doping layer 101 and the drain doping layer 112 are silicon germanium doped with P-type ions. In this embodiment, the silicon germanium is doped with P-type ions, so that the P-type ions replace the position of the silicon atoms in the crystal lattice. powerful. Specifically, the P-type ions include B, Ga or In.

其他实施例中,半导体结构用于形成NMOS(Negative channel Metal OxideSemiconductor)晶体管,即源掺杂层和漏掺杂层相应为掺杂N型离子的碳化硅或磷化硅。通过在碳化硅或磷化硅中掺杂N型离子,使N型离子取代晶格中硅原子的位置,掺入的N型离子越多,多子的浓度就越高,导电性能也就越强。具体的,N型离子包括P、As或Sb。In other embodiments, the semiconductor structure is used to form an NMOS (Negative channel Metal Oxide Semiconductor) transistor, that is, the source doped layer and the drain doped layer are respectively N-type ion doped silicon carbide or silicon phosphide. By doping N-type ions in silicon carbide or silicon phosphide, N-type ions replace the position of silicon atoms in the lattice. powerful. Specifically, the N-type ions include P, As or Sb.

栅极结构109用于控制半导体柱102中沟道的开启和断开。The gate structure 109 is used to control the opening and opening of the channel in the semiconductor pillar 102 .

本实施例中,半导体结构用于形成PMOS。In this embodiment, the semiconductor structure is used to form a PMOS.

具体的,功函数层1091的材料包括氮化钛、氮化钽、碳化钛、氮化硅钽、氮化硅钛和碳化钽中的一种或多种。其他实施例中,半导体结构用于形成NMOS。具体的,功函数层的材料包括铝化钛、碳化钽、铝或者碳化钛中的一种或多种。Specifically, the material of the work function layer 1091 includes one or more of titanium nitride, tantalum nitride, titanium carbide, tantalum silicon nitride, titanium silicon nitride and tantalum carbide. In other embodiments, the semiconductor structure is used to form an NMOS. Specifically, the material of the work function layer includes one or more of titanium aluminide, tantalum carbide, aluminum or titanium carbide.

本实施例中,栅极层1092的材料为镁钨合金。其他实施例中,栅极层的材料还可以为W、Al、Cu、Ag、Au、Pt、Ni或Ti等。In this embodiment, the material of the gate layer 1092 is magnesium-tungsten alloy. In other embodiments, the material of the gate layer may also be W, Al, Cu, Ag, Au, Pt, Ni, or Ti, or the like.

需要说明的是,栅极结构109距离漏掺杂层112底部的距离不宜过大也不宜过小。若距离过大,易导致半导体柱102上的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若距离过短,易导致栅极结构109和漏掺杂层112发生桥接,不利于优化半导体结构的电学性能。本实施例中,栅极结构109距离漏掺杂层112底部的距离为6纳米至10纳米。It should be noted that, the distance between the gate structure 109 and the bottom of the drain doping layer 112 should not be too large nor too small. If the distance is too large, the gate structure 109 on the semiconductor pillar 102 is likely to be too short, and the effect of the gate structure 109 in controlling the short channel effect is poor, which is not conducive to improving the electrical performance of the semiconductor structure. If the distance is too short, the gate structure 109 and the drain doped layer 112 are easily bridged, which is not conducive to optimizing the electrical performance of the semiconductor structure. In this embodiment, the distance between the gate structure 109 and the bottom of the drain doped layer 112 is 6 nm to 10 nm.

半导体结构还包括:层间介质层110,覆盖栅极结构109的侧壁,且露出栅极结构109的顶面。The semiconductor structure further includes: an interlayer dielectric layer 110 covering the sidewalls of the gate structure 109 and exposing the top surface of the gate structure 109 .

层间介质层110用于实现相邻器件之间的电隔离,层间介质层110的材料为绝缘材料。The interlayer dielectric layer 110 is used to achieve electrical isolation between adjacent devices, and the material of the interlayer dielectric layer 110 is an insulating material.

本实施例中,层间介质层110的材料为氧化硅,其他实施例中,层间介质层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。In this embodiment, the material of the interlayer dielectric layer 110 is silicon oxide. In other embodiments, the material of the interlayer dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

半导体结构还包括:介电层113,位于层间介质层110上,且介电层113覆盖底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116的侧壁。The semiconductor structure further includes: a dielectric layer 113 on the interlayer dielectric layer 110 , and the dielectric layer 113 covers the sidewalls of the bottom contact hole plug 114 , the gate contact hole plug 115 and the top contact hole plug 116 .

介电层113用于实现相邻器件之间的电隔离,介电层113的材料为绝缘材料。本实施例中,介电层113的材料为氧化硅。其他实施例中,介电层的材料还可以为氮化硅或氮氧化硅等其他的绝缘材料。The dielectric layer 113 is used to achieve electrical isolation between adjacent devices, and the material of the dielectric layer 113 is an insulating material. In this embodiment, the material of the dielectric layer 113 is silicon oxide. In other embodiments, the material of the dielectric layer may also be other insulating materials such as silicon nitride or silicon oxynitride.

半导体结构还包括:隔离层104,位于栅极结构109和源掺杂层101之间,且隔离层104覆盖半导体柱102的部分侧壁。The semiconductor structure further includes: an isolation layer 104 located between the gate structure 109 and the source doping layer 101 , and the isolation layer 104 covers part of the sidewall of the semiconductor pillar 102 .

隔离层104用于将栅极结构109与源掺杂层101进行电隔离,优化了半导体结构的电学性能。本实施例中,隔离层104的材料为绝缘材料。The isolation layer 104 is used to electrically isolate the gate structure 109 from the source doping layer 101, thereby optimizing the electrical performance of the semiconductor structure. In this embodiment, the material of the isolation layer 104 is an insulating material.

具体的,隔离层104的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,隔离层104的材料为氧化硅。氧化硅是工艺常用、成本较低的介电材料,且具有较高的工艺兼容性,有利于降低形成隔离层104的工艺难度和工艺成本;此外,氧化硅的介电常数较小,还有利于提高后续隔离层104的用于隔离相邻器件的作用。Specifically, the material of the isolation layer 104 includes one or more of silicon oxide, silicon nitride, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. In this embodiment, the material of the isolation layer 104 is silicon oxide. Silicon oxide is a commonly used and low-cost dielectric material, and has high process compatibility, which is beneficial to reduce the process difficulty and process cost of forming the isolation layer 104; in addition, the dielectric constant of silicon oxide is small, and there are It is beneficial to improve the function of the subsequent isolation layer 104 for isolating adjacent devices.

需要说明的是,隔离层104的不宜过厚也不宜过薄。若隔离层104过厚,易导致包围半导体柱102的部分侧壁的栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若隔离层104过薄,易导致包围半导体柱102的部分侧壁的栅极结构109与源掺杂层101距离过短,易导致栅极结构109和源掺杂层101发生桥接,不利于优化半导体结构的电学性能。本实施例中,隔离层104的厚度为5纳米至15纳米。It should be noted that, the isolation layer 104 should not be too thick nor too thin. If the isolation layer 104 is too thick, the gate structure 109 surrounding part of the sidewalls of the semiconductor pillar 102 is likely to be too short, which is likely to cause the gate structure 109 to control the short channel effect poorly, which is not conducive to improving the electrical performance of the semiconductor structure. If the isolation layer 104 is too thin, the distance between the gate structure 109 surrounding part of the sidewall of the semiconductor column 102 and the source doping layer 101 is likely to be too short, which is likely to cause bridges between the gate structure 109 and the source doping layer 101, which is not conducive to optimization Electrical properties of semiconductor structures. In this embodiment, the thickness of the isolation layer 104 is 5 nm to 15 nm.

半导体结构还包括,位于栅极结构109与半导体柱102之间以及栅极结构109和隔离层104之间的栅介质层108。The semiconductor structure further includes a gate dielectric layer 108 located between the gate structure 109 and the semiconductor pillar 102 and between the gate structure 109 and the isolation layer 104 .

栅介质层108用于实现栅极结构109与半导体柱102实现电隔离。The gate dielectric layer 108 is used to achieve electrical isolation between the gate structure 109 and the semiconductor pillar 102 .

本实施例中,栅极结构109为金属栅极结构,因此栅介质层108的材料包括HfO2、ZrO2、HfSiO、HfSiON、HfTaO、HfTiO、HfZrO和Al2O3中的一种或几种。其他实施例中,栅极结构为多晶硅栅极结构时,栅介质层的材料包括氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氮氧化硅和非晶碳中的一种或几种。In this embodiment, the gate structure 109 is a metal gate structure, so the material of the gate dielectric layer 108 includes one or more of HfO 2 , ZrO 2 , HfSiO, HfSiON, HfTaO, HfTiO, HfZrO and Al 2 O 3 . In other embodiments, when the gate structure is a polysilicon gate structure, the material of the gate dielectric layer includes silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbonitride and amorphous carbon. one or more.

半导体结构还包括保护层106,位于隔离层104与半导体柱102之间以及隔离层104与源掺杂层101之间。The semiconductor structure further includes a protective layer 106 between the isolation layer 104 and the semiconductor pillar 102 and between the isolation layer 104 and the source doped layer 101 .

保护层106的材料为介电材料。且隔离层104和保护层106的材料不同,隔离层104和保护层106具有刻蚀选择比。具体的,保护层106的材料包括氧化硅、氮化硅、碳氮化硅、碳氮氧化硅、氮氧化硅、氮化硼和碳氮化硼中的一种或多种。本实施例中,保护层106的材料为氧化硅。The material of the protective layer 106 is a dielectric material. Moreover, the materials of the isolation layer 104 and the protection layer 106 are different, and the isolation layer 104 and the protection layer 106 have an etching selectivity ratio. Specifically, the material of the protective layer 106 includes one or more of silicon oxide, silicon nitride, silicon carbonitride, silicon oxycarbonitride, silicon oxynitride, boron nitride and boron carbonitride. In this embodiment, the material of the protective layer 106 is silicon oxide.

需要说明的是,保护层106不宜过厚也不宜过薄。若保护层106的过厚,易导致形成保护层106的工艺时间过长,且易栅极结构109过短,易导致栅极结构109控制短沟道效应的效果欠佳,不利于提高半导体结构的电学性能。若保护层106过薄,易导致半导体柱102底部表面在形成隔离层104的过程中被氧化,导致半导体柱102的均一性较差,不能很好的提高半导体结构的电学性能。本实施例中,保护层106的厚度为3纳米至8纳米。It should be noted that the protective layer 106 should not be too thick nor too thin. If the protective layer 106 is too thick, the process time for forming the protective layer 106 is too long, and the easy gate structure 109 is too short, which is easy to cause the gate structure 109 to control the short channel effect poorly, which is not conducive to improving the semiconductor structure. electrical properties. If the protective layer 106 is too thin, the bottom surface of the semiconductor pillar 102 is easily oxidized during the process of forming the isolation layer 104 , resulting in poor uniformity of the semiconductor pillar 102 , and the electrical performance of the semiconductor structure cannot be well improved. In this embodiment, the thickness of the protective layer 106 is 3 nm to 8 nm.

半导体结构还包括:底部接触孔插塞114,贯穿保护层106、隔离层104、栅介质层108、层间介质层110以及介电层113,且与源掺杂层101连接;栅极接触孔插塞115,贯穿层间介质层110以及介电层113,且与栅极结构109连接;顶部接触孔插塞116,贯穿介电层113,且与漏掺杂层112连接。The semiconductor structure further includes: a bottom contact hole plug 114, penetrating the protective layer 106, the isolation layer 104, the gate dielectric layer 108, the interlayer dielectric layer 110 and the dielectric layer 113, and connected to the source doped layer 101; the gate contact hole The plug 115 penetrates the interlayer dielectric layer 110 and the dielectric layer 113 and is connected to the gate structure 109 ; the top contact hole plug 116 penetrates the dielectric layer 113 and is connected to the drain doped layer 112 .

底部接触孔插塞114、栅极接触孔插塞115以及顶部接触孔插塞116除了用于实现半导体结构内的电连接,还用于实现半导体结构与半导体结构之间的电连接。本实施例中,导电材料的材料为W。在其他实施例中,导电材料的材料还可以是Al、Cu、Ag或Au等。The bottom contact hole plugs 114 , the gate contact hole plugs 115 and the top contact hole plugs 116 are used to implement electrical connections between semiconductor structures and semiconductor structures in addition to being used to implement electrical connections within the semiconductor structures. In this embodiment, the material of the conductive material is W. In other embodiments, the material of the conductive material may also be Al, Cu, Ag, Au, or the like.

所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed by the formation method described in the foregoing embodiments, or may be formed by other formation methods. For the specific description of the semiconductor structure in this embodiment, reference may be made to the corresponding descriptions in the foregoing embodiments, which will not be repeated in this embodiment.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (21)

1. A method of forming a semiconductor structure, comprising:
providing a substrate;
forming a source doping layer on the substrate;
forming a semiconductor pillar on the source doping layer;
forming a drain doping layer at the top end of the semiconductor pillar;
forming a gate structure which surrounds partial side walls of the semiconductor columns and exposes the drain doping layer, wherein the gate structure comprises a work function layer covering partial side walls of the semiconductor columns and a gate layer covering the work function layer;
and doping ions which can increase the threshold voltage of the semiconductor structure at the position, close to the drain doping layer, in the work function layer.
2. The method of claim 1, wherein ions are doped in the work function layer by ion implantation after the gate structure is formed.
3. The method of claim 1 or 2, wherein when the semiconductor structure is used to form an NMOS, the process parameters of the ion doping comprise: the dopant ions include one or more of F, N, H, C and O; the implantation dose is 1.0E14 atoms per square centimeter to 9.0E16 atoms per square centimeter, the implantation energy is 0.5Kev to 10Kev, and the included angle between the ion implantation direction and the normal line of the substrate is 7 degrees to 25 degrees;
or, when the semiconductor structure is used for forming a PMOS, the process parameters of the ion doping include: the doping ions comprise one or more of Al, Ti and Ta; the implantation dose is 1.0E16 atoms per square centimeter to 1.0E19 atoms per square centimeter, the implantation energy is 0.8Kev to 12Kev, and the included angle between the ion implantation direction and the normal line of the substrate is 7 degrees to 25 degrees.
4. The method of claim 1, wherein ions are doped in the work function layer by annealing after the work function layer is formed.
5. The method of forming a semiconductor structure of claim 4, wherein said step of forming said semiconductor structure is performed while said step of forming said semiconductorWhen the semiconductor structure is used for forming an NMOS, the process parameters of the ion doping comprise: the dopant ions include one or more of F and H; f2The flow rate is 10sccm to 800sccm, or H2The flow rate is 10sccm to 800 sccm; the process temperature is 850 ℃ to 1050 ℃; the chamber pressure is 0.5 to 10 times the standard atmospheric pressure.
6. The method of forming a semiconductor structure of claim 1, further comprising, after forming the semiconductor pillar: and forming an isolation layer on the source doping layer exposed out of the semiconductor pillar, wherein the isolation layer covers part of the side wall of the semiconductor pillar.
7. The method of forming a semiconductor structure of claim 6, wherein the spacer layer has a thickness of 5 nm to 15 nm.
8. The method of forming a semiconductor structure of claim 6, wherein the step of forming an isolation layer comprises:
forming an isolation material layer covering the semiconductor pillar;
and etching back the isolation material layer with partial thickness to form the isolation layer on the source doping layer exposed out of the semiconductor column.
9. The method of forming a semiconductor structure according to claim 8, wherein a mask layer is formed over the semiconductor pillar;
the step of forming the drain doping layer includes: after the isolation material layer is formed and before the isolation layer is formed, removing the isolation material layer higher than the mask layer by adopting a planarization process; removing the mask layer exposed by the isolation material layer to form an isolation layer groove surrounded by the isolation material layer and the semiconductor column; and forming the drain doping layer in the isolating layer groove.
10. The method of forming a semiconductor structure of claim 8, wherein the step of forming the drain doping layer comprises: after the isolation material layer is formed and before the isolation layer is formed, removing the isolation material layer higher than the semiconductor column by adopting a planarization process; and carrying out ion doping on the semiconductor column to form the drain doping layer.
11. The method of forming a semiconductor structure of claim 1, wherein the step of forming a gate structure comprises:
conformally covering a gate material structure on the semiconductor pillar and the source doping layer exposed by the semiconductor pillar;
after the grid electrode material structure is formed, forming an interlayer dielectric layer covering partial side walls of the semiconductor columns; and removing the grid electrode material structure higher than the interlayer dielectric layer to form a grid electrode structure covering partial side wall of the semiconductor column.
12. The method of claim 11, wherein a masking layer is formed over the semiconductor pillar, and wherein forming the interlevel dielectric layer comprises: forming an interlayer dielectric material layer covering the gate material structure;
the step of forming the drain doping layer includes: removing the interlayer dielectric material layer and the grid electrode material structure which are higher than the mask layer by adopting a planarization process; removing the mask layer exposed from the interlayer dielectric material layer to form a groove surrounded by the gate material structure and the semiconductor column; and forming a drain doping layer in the groove.
13. The method of forming a semiconductor structure as claimed in claim 11, the step of forming the drain doping layer comprising: removing the interlayer dielectric material layer higher than the semiconductor columns by adopting a planarization process; and carrying out ion doping on the semiconductor column to form a drain doping layer.
14. The method of claim 1, wherein the gate structure is located a distance of 6 nm to 10 nm from the bottom of the drain dopant layer.
15. The method of forming a semiconductor structure of claim 8, further comprising, after forming the semiconductor pillar, prior to forming a layer of isolation material: conformally covering a protective material layer on the semiconductor pillar and the source doping layer exposed by the semiconductor pillar;
the method for forming the semiconductor structure further comprises the following steps: after the isolation layer is formed and before the source doping layer is formed, the protective material layer exposed out of the isolation layer is removed, and protective layers located between the semiconductor column and the isolation layer and between the source doping layer and the isolation layer are formed.
16. A semiconductor structure, comprising:
a substrate;
the source doping layer is positioned on the substrate;
a semiconductor pillar located on the source doping layer;
the drain doping layer is positioned at the top end of the semiconductor column;
the grid structure surrounds partial side walls of the semiconductor columns and exposes the drain doping layer, and comprises a work function layer covering partial side walls of the semiconductor columns and a grid layer covering the work function layer;
and the doped ions are positioned in the work function layer and close to the drain doping layer, and can increase the threshold voltage of the semiconductor structure.
17. The semiconductor structure of claim 16, further comprising an isolation layer between the gate structure and the source doped layer, wherein the isolation layer covers a portion of a sidewall of the semiconductor pillar.
18. The semiconductor structure of claim 17, wherein the spacer layer has a thickness of 5 nm to 15 nm.
19. The semiconductor structure of claim 17, further comprising a protective layer between the isolation layer and the semiconductor pillar and between the isolation layer and the source doping layer.
20. The semiconductor structure of claim 16, wherein the gate structure is located a distance of 6 nm to 10 nm from the bottom of the drain dopant layer.
21. The semiconductor structure of claim 16,
when the semiconductor structure is used to form an NMOS, the dopant ions include: F. n, H, C and O; the concentration of the dopant ions is 1.0E19 atoms per cubic centimeter to 9.0E21 atoms per cubic centimeter;
or, when the semiconductor structure is used to form a PMOS, the dopant ions include: one or more of Al, Ti and Ta; the concentration of the dopant ions is 1.0E21 atoms per cubic centimeter to 1.0E24 atoms per cubic centimeter.
CN201910153187.1A 2019-02-28 2019-02-28 Semiconductor structure and forming method thereof Active CN111627819B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910153187.1A CN111627819B (en) 2019-02-28 2019-02-28 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910153187.1A CN111627819B (en) 2019-02-28 2019-02-28 Semiconductor structure and forming method thereof

Publications (2)

Publication Number Publication Date
CN111627819A true CN111627819A (en) 2020-09-04
CN111627819B CN111627819B (en) 2023-10-17

Family

ID=72259644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910153187.1A Active CN111627819B (en) 2019-02-28 2019-02-28 Semiconductor structure and forming method thereof

Country Status (1)

Country Link
CN (1) CN111627819B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009082A (en) * 2013-02-27 2014-08-27 爱思开海力士有限公司 Transistor, resistance variable memory device including the same, and manufacturing method thereof
CN105826265A (en) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN105870020A (en) * 2015-01-23 2016-08-17 中国科学院微电子研究所 Semiconductor device and forming method thereof
CN108206209A (en) * 2016-12-16 2018-06-26 爱思开海力士有限公司 Semiconductor devices and its manufacturing method with buried gate structure
US20180218913A1 (en) * 2017-01-27 2018-08-02 International Business Machines Corporation Salicide bottom contacts
US20180286869A1 (en) * 2015-03-31 2018-10-04 Stmicroelectronics, Inc. Vertical gate-all-around tfet
US10170577B1 (en) * 2017-12-04 2019-01-01 International Business Machines Corporation Vertical transport FETs having a gradient threshold voltage
CN109148290A (en) * 2017-06-28 2019-01-04 中芯国际集成电路制造(上海)有限公司 The manufacturing method of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009082A (en) * 2013-02-27 2014-08-27 爱思开海力士有限公司 Transistor, resistance variable memory device including the same, and manufacturing method thereof
CN105826265A (en) * 2015-01-09 2016-08-03 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor device
CN105870020A (en) * 2015-01-23 2016-08-17 中国科学院微电子研究所 Semiconductor device and forming method thereof
US20180286869A1 (en) * 2015-03-31 2018-10-04 Stmicroelectronics, Inc. Vertical gate-all-around tfet
CN108206209A (en) * 2016-12-16 2018-06-26 爱思开海力士有限公司 Semiconductor devices and its manufacturing method with buried gate structure
US20180218913A1 (en) * 2017-01-27 2018-08-02 International Business Machines Corporation Salicide bottom contacts
CN109148290A (en) * 2017-06-28 2019-01-04 中芯国际集成电路制造(上海)有限公司 The manufacturing method of semiconductor device
US10170577B1 (en) * 2017-12-04 2019-01-01 International Business Machines Corporation Vertical transport FETs having a gradient threshold voltage

Also Published As

Publication number Publication date
CN111627819B (en) 2023-10-17

Similar Documents

Publication Publication Date Title
CN107039272B (en) Method for forming fin type transistor
CN104517901A (en) Method for forming CMOS transistor
CN111613581B (en) Semiconductor structure and forming method thereof
CN109920733B (en) Semiconductor structure and transistor forming method
TWI762265B (en) Semiconductor device and manufacturing method thereof
CN108573910B (en) Semiconductor structure and forming method thereof
CN106847696B (en) Method for forming fin field effect transistor
TW202443702A (en) Manufacturing method of semiconductor apparatus
CN108807266B (en) Semiconductor structure and forming method thereof
CN106328503A (en) Method of forming semiconductor structure
CN112786451B (en) Semiconductor structures and methods of forming them
CN112713088B (en) Semiconductor structure and forming method thereof
CN111863723B (en) Semiconductor structure and forming method thereof
CN112309845B (en) Semiconductor structures and methods of forming them
CN106409765B (en) Semiconductor structure and forming method thereof
CN112447516B (en) Semiconductor structure and forming method thereof
CN112151605B (en) Semiconductor structure and method of forming the same
CN111627819B (en) Semiconductor structure and forming method thereof
CN113838802A (en) Semiconductor structure and method of forming the same
CN107170685B (en) Method for forming fin type transistor
CN113363321A (en) Semiconductor structure and forming method thereof
CN113871300B (en) Semiconductor structure and forming method thereof
CN112151595B (en) Semiconductor structures and methods of forming them
CN113113307B (en) Semiconductor structures and methods of forming them
CN112310198B (en) Semiconductor structures and methods of forming them

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant