[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111566855B - 引入含硅颗粒的制备方法 - Google Patents

引入含硅颗粒的制备方法 Download PDF

Info

Publication number
CN111566855B
CN111566855B CN201880083141.0A CN201880083141A CN111566855B CN 111566855 B CN111566855 B CN 111566855B CN 201880083141 A CN201880083141 A CN 201880083141A CN 111566855 B CN111566855 B CN 111566855B
Authority
CN
China
Prior art keywords
particles
matrix
compacted
powder
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880083141.0A
Other languages
English (en)
Other versions
CN111566855A (zh
Inventor
让-弗朗索瓦·佩兰
约翰·乌达尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanomax
Original Assignee
Nanomax
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanomax filed Critical Nanomax
Publication of CN111566855A publication Critical patent/CN111566855A/zh
Application granted granted Critical
Publication of CN111566855B publication Critical patent/CN111566855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种制备方法,其中将含硅的亚微米颗粒引入基质中,其特征在于,在引入所述颗粒期间,颗粒处于压实状态,其堆积密度大于0.10克/立方厘米,并且压实颗粒的比表面积至少为在彼此之间不接触的情况下单独考虑的颗粒的比表面积的70%。

Description

引入含硅颗粒的制备方法
技术领域
本发明涉及一种引入含硅颗粒的制备方法。其还涉及由该方法获得的产品和装置。
更具体但非限制地,本发明的领域是金属或陶瓷材料、电池或光伏电池的领域。
现有技术
用于制备引入含硅颗粒的电池的方法是已知的。
事实上,硅可以用于增加电池的存储容量。
本发明的目的是提出一种引入含硅颗粒的制备方法,该方法既实用(特别是在安全性和易操作性方面),又获得了良好的质量。
发明内容
该目的是通过一种制备方法实现的,其中将含硅的亚微米颗粒引入基质中,
其特征在于,在引入颗粒期间:
-颗粒处于压实状态,其堆积密度大于0.10克/立方厘米,并且
-压实颗粒的比表面积至少为在彼此不接触的情况下单独考虑的颗粒的比表面积的70%(优选至少90%)。
颗粒在压实状态下的比表面积通常是由Brunauer、Emmett和Teller法确定的比表面积。
处于压实状态的颗粒的比表面积优选对应于根据Brunauer、Emmett和Teller(BET)法测量的比表面积,即将分子氮吸附在处于压实状态的已知质量的颗粒的表面(通常使用BelSorp mini ii型仪器),测量在颗粒表面形成单层该气体所需的分子氮的量(使用Brunauer、Emmett和Teller(BET)理论的原理)。
在引入颗粒期间,压实颗粒优选地彼此之间不具有共价键。
可以将预先引入基质(该基质在引入颗粒后和分散之前能够被修饰或稀释)中的颗粒分散在导电或半导电的载体上,并将颗粒固定至载体。
-可由其上沉积含颗粒的层的载体制备电极。可以制备包含所述电极的电池,和/或
-可由其上分散颗粒的载体制备光伏板。
可通过从处于非压实状态的颗粒开始的压实步骤获得压实颗粒,从而在压实步骤期间颗粒不经受高于400℃的温度。
优选在颗粒不含添加剂的情况下将压实颗粒引入基质中。
颗粒优选包含未经氧化的硅的芯。
基质优选包含碳。
基质可以是金属和/或陶瓷基质。
基质可以是液体和/或固体基质。
根据本发明的另一方面,提出了一种使用根据本发明的方法获得的电池。
根据本发明的另一方面,提出了一种使用根据本发明的方法获得的光伏板。
根据本发明的另一方面,提出了一种使用根据本发明的方法获得的金属或陶瓷材料。
附图和实施方案的描述
在阅读不以任何方式构成限制的实施方式和实施方案的详细描述以及以下附图之后,本发明的其他优点和特征将变得明显:
-图1是根据本发明方法的第一实施方案和第二实施方案的步骤的流程图,以及
-图2示出了根据本发明方法的第一实施方案的不同比较结果。
这些实施方案不以任何方式构成限制,特别可以考虑仅包括与所描述或说明的其他特征相区分的下文描述或说明的特征的选择的本发明的变化方案(即使该选择是在包含这些其他特征的句子中分开的),如果该特征的选择足以提供技术优势或使本发明与现有技术的状态区分开的话。该选择包括至少一个(优选功能性的)无结构细节的特征,和/或仅具有结构细节的一部分,如果仅此部分就足以提供技术优势或使本发明与现有技术状态区分开的话。
首先,将描述根据本发明方法的第一实施方案和第二实施方案之间的共同点。
这些实施方案包括例如根据文献WO2014009265中描述的方法(通常通过激光热解)制备颗粒的步骤1。
这些实施方案包括压实含硅的亚微米颗粒的步骤2,其布置为将亚微米颗粒的堆积密度从初始的颗粒堆积密度Di增加(优选至少100%,更优选至少200%)至最终的颗粒堆积密度Df(即优选地(Df-Di)/Di≥100%或甚至200%)。
每个颗粒都可以由共价键连接的一系列球体构成。
压实步骤例如通过以下方式实现:
-通过压机或压延系统(穿过两个辊之间)进行的压缩使得可以对粉末施加至少20巴的压力。如此压实的粉末具有与松散粉末相同的比表面积,但密度大于150g/L。例如,在以下文章中描述了这种方法:R.Vaβen和D.Powder Technology,72(1992)223-226;和/或
-旋转造粒:这包括将粉末引入圆柱形容器(直径为5cm至500cm,优选直径为10cm至200cm)并将其旋转数小时,以获得密度超过100g/L的造粒粉末;旋转时间越长,密度越大。必须根据圆柱形容器的最长轴围绕容器中心轴进行旋转。该轴线可以以较大幅度或较小幅度倾斜。此类装置在专利US 2013/0330557 A1、US 4980106、US 6231624 B1中描述。
颗粒不会因为从密度Di(压实前)压实到密度Df(压实后)而被显著改性;不产生颗粒,不破坏颗粒,颗粒不会融合在一起,颗粒之间不会产生新的共价键,一个颗粒不会分离成几片。在压实前的堆积密度Di和压实后的堆积密度Df下它们是相同的颗粒。
通过该压实步骤从处于非压实状态的颗粒开始获得压实颗粒,使得在压实步骤中颗粒不会经受高于400℃的温度。事实上,超过这个温度,颗粒可以在彼此之间形成新的共价键(烧结),从而失去其性质及其纳米特性。
这些实施方案包括将含硅的亚微米颗粒引入基质中的步骤3。
在压实颗粒和将其引入基质之间,颗粒不会经受高于400℃的温度。因此避免了在颗粒之间产生共价键。
在本说明书中,“亚微米颗粒”是指其中连接该颗粒圆周两点的最小尺寸小于1000nm、优选小于300nm、优选小于150nm的颗粒。
在本说明书中,“含硅”是指包含含有至少90质量%的氧化或未经氧化的硅或两者混合物的芯的颗粒。
“基质”是指其中引入亚微米颗粒的材料(优选固体和/或液体)。
基质是液体或固体(例如粉末)基体或两者(例如凝胶或糊状物),含碳(用于制备电池、电极、光伏板)或不含碳(例如用于制备具有目标特性的新材料的金属或陶瓷)。
优选地,每个含硅颗粒包含至少80质量%的氧化或未经氧化的硅或二者混合物,即由该颗粒的芯和围绕该颗粒的芯的任何上层形成的整体。
根据不同的实例,每个亚微米颗粒的芯可以包括例如(对于所使用的所有亚微米颗粒而言,优选均匀地):
-Si,优选100质量%的Si或在与其他元素或掺杂剂混合的情况下至少80质量%的Si,
-SiO2,优选100质量%的SiO2或在与其他元素或掺杂剂混合的情况下至少80质量%的SiO2
-SiO2和Si的混合物,优选20摩尔%至60摩尔%的SiO2和40摩尔%至80摩尔%的Si,优选Si和SiO2的总质量为100%或在与其他元素或掺杂剂混合的情况下为至少80%。
每个亚微米颗粒的芯可以在其周围涂有至少一个层,例如,含碳层或纯碳层,或聚合物层。
通常,每个颗粒包含一个未经氧化的硅的芯。
通常,每个颗粒的芯围绕有碳层。
在将压实颗粒引入基质(即,在颗粒与基质接触之前),颗粒不含添加剂。换言之,在引入颗粒期间,这些颗粒在与基质接触之前不与任何其他东西(其他类型的颗粒、或溶剂等)混合。
在根据本发明方法的这些实施方案中,在引入颗粒期间(即当颗粒与基质接触时),颗粒处于压实状态,其堆积密度Df大于0.10克/立方厘米,优选大于0.15克/立方厘米。
在根据本发明方法的这些实施方案中,在引入颗粒期间,压实颗粒彼此之间不具有共价键,即与压实之前的状态相比,没有新的共价键。
在根据本发明方法的这些实施方案中,在引入颗粒期间,压实到堆积密度Df的颗粒的比表面积为在彼此不接触或在堆积密度Di的情况下单独考虑的颗粒的比表面积的至少70%(甚至至少90%)。
“表观”密度或“堆积”密度(也称为体积密度)是指本领域技术人员所熟知和清楚的值。它是与粉末或颗粒形式的物质一起使用以概述给定总体积Vtot中所含材料的质量M的值,该总体积包括粉末细粒或颗粒或晶粒之间的间隙空气体积。从这个角度看,同一粒状或粉状材料的体积密度ρ可根据其是否被或多或少地填充,或相反地充气而变化:
使用说明:该体积密度通常用克/立方厘米(g.cm-3)或克/升表示。
堆积密度是基于2017年12月22日生效的最新版方案ISO 3923-2(ISO 3923-2:1981)测量的。
在堆积密度Di和Df之间,颗粒的比表面积(其表示颗粒实际表面(相对于其表观表面)的表面积和颗粒的材料量(即其质量)的比)没有变化或没有明显变化。
在本说明书中,比表面积是通过气体(更准确地说是分子氮)在已知质量的材料(例如处于其压实状态的已知质量的颗粒)表面上的吸附来测量的。其原理是测量使这种气体在表面形成单层所需的分子氮的量。它使用Brunauer、Emmett和Teller(BET)理论的原理。所使用的仪器是BelSorp mini II型。在下文中,比表面积或BET表面积可以互换地使用。
该仪器采用分子氮作为测量气体,考虑了所吸附气体的体积和样品的质量。
比表面积是基于2017年12月22日生效的最新版标准ISO 9277:2010(E)中的静态体积法测量的。
这样,将压实至密度Df的颗粒布置成简单地分散在基质中(优选地在溶液中,优选地在20℃的水中,小于10小时),可借助于超声波或搅拌或混合器以加速该分散。
然而,值得注意的是,压实至密度Df的颗粒不可溶于基质。
它们在压实到密度Df后和分散在基质中之后是相同的颗粒:不产生颗粒,不破坏颗粒,颗粒不会融合在一起,颗粒不会被分离成几片(因此这与烧结的技术状态非常不同,其产生新的共价键,然后进行研磨)。
然后可将基质进行改性和/或干燥和/或稀释和/或在另一种基质中混合或与另一种基体和/或与添加剂和/或与溶剂混合。
第一实施方案包括在引入基质中之前将颗粒分散4在导电载体或半导电载体上,并且以这种方式将颗粒固定至载体。
当任选地对基质进行改性(例如干燥或浓缩)和/或再次稀释或在另一种基质中混合或与另一种基质和/或与添加剂和/或与溶剂混合时,可实现颗粒的分散。
“导电”是指与分散在载体上的基质层接触的载体材料的电阻小于0.01Ω.m。
“半导电”是指与分散在载体上的基质层接触的载体材料的电阻小于10000Ω.m且优选大于0.01Ω.m。
对于电池,基质包含碳,例如:它包含碳,例如石墨和/或“Super P”和/或羧甲基纤维素,优选至少包含石墨。例如,可以引入12质量%的亚微米颗粒,其具有由68质量%的石墨和10质量%的Timcal Super P覆盖的未经氧化的硅芯。在将颗粒引入基质和在载体上分散之间,进行本领域技术人员已知的调整步骤:
-调整引入基质的颗粒的黏度,例如用水,和/或
-将颗粒在基质中混合,例如在700rpm下混合20分钟。
例如,载体是10μm厚的铜板。
通常使用以每秒5厘米的速度移动的分散刀片来实现分散,并设置为在基质中沉积100μm厚的颗粒层。
在将颗粒分散在载体上之后,进行本领域技术人员已知的调整步骤:
-将分散在载体上的颗粒进行干燥,例如在80℃的空气炉中干燥12小时,沉积在载体上的干燥后的最终干物质量为约2mg.cm-2,和/或
-切割载体。
然后选择性地:
-由其上沉积有含颗粒的层的载体制备电极(步骤5),更确切地说是阳极。然后(步骤6)制备电池,其包括所述电极、隔离器和阴极,所述电极、隔离器和阴极与液体或固体电解质接触,
-由其上分散有颗粒(例如随后进行热处理)的载体制备光伏板(步骤7)。
下面的电池A至G的不同实例举例说明了根据本发明方法(即电池C至G)的技术优势。
A电池:非亚微米颗粒
将18份微米硅(325目,粉末A)与35份纳米碳(Super P)和35份碳纤维(VGCF)干混。然后将该混合物与含有12份CMC(羧甲基纤维素)的水溶液接触。
将由此获得的油墨分散在铜板(厚度17.5μm)上。在露天干燥铜板。在90℃的真空下切割球团并干燥。然后将其保存在中性氩气氛中的手套箱中。
然后制备半电池:使含硅电极在惰性气氛中与膜、锂金属阳极和电解质接触,所述电解质包含一体积碳酸乙烯酯(EC)、一体积碳酸丙烯酯(PC)、三体积的3-碳酸二甲酯(DMC)以及5%氟代碳酸乙烯酯(FEC)和1%碳酸乙烯酯(VC)。
最后得到电池A。
电池B(堆积密度<0.1g.cm-3)和C至G(堆积密度>0.1g.cm-3)
具有以下堆积密度(表观密度)Df:
-45g/L或0.045g.cm-3(电池B用粉末B),或
-108g/L 0.108g.cm-3(电池C用粉末C),或
-148g/L 0.148g.cm-3(电池D用粉末D),或
-180g/L 0.180g.cm-3(电池E用粉末E),或
-208g/L 0.208g.cm-3(电池F用粉末F),或
-320g/L 0.320g.cm-3(电池G用粉末G)
(参见图2的X轴)
以及BET表面积分别如下值:
-43.6m2/g(电池B用粉末B),或
-43.7m2/g(电池C用粉末C),或
-43.2m2/g(电池D用粉末D),或
-43.4m2/g(电池E用粉末E),或
-43.1m2/g(电池F用粉末F),或
-43.3m2/g(电池G用粉末G)的18份根据其最小轴的直径为40nm的硅纳米颗粒与35份纳米碳(Super P)和35份碳纤维(VGCF)干混。然后将该混合物与含有12份CMC(羧甲基纤维素)的水溶液接触。
值得注意的是,对于粉末B至G,未压实粉末(对应于粉末B)的堆积密度Di=45g/L或0.045g.cm-3,BET表面积为43.6m2/g。
由此获得的油墨被分散在铜板(厚度17.5μm)上。在露天干燥铜板。在90℃的真空下切割球团并干燥。然后将其保存在中性氩气氛的手套箱中。
然后制备半电池:使含硅电极在惰性气氛中与膜、锂金属阳极和电解质接触,所述电解质由一体积碳酸乙烯酯(EC)、一体积碳酸丙烯酯(PC)、三体积3-碳酸二甲酯(DMC)以及5%氟代碳酸乙烯酯(FEC)和1%碳酸乙烯酯(VC)组成。
在以下条件下对获得的电池A至G进行测试:
初始循环包括:
2小时的OCV(“开路电压”)
C20放电,其限制在1mA和1.5mA
然后进行绝对值相同的C20充电,然后进行第2、第3、第4、……、第100个循环,每个循环包括:
C5放电,其限制在1mA和1.5mA
然后是绝对值相同的C5充电。
电压限制为0.01V至1.5V。
下表1显示了电池A至G的循环结果。
表1
值得注意的是,与电池A的情况相比,根据本发明使用亚微米粉末是非常有利的。观察到了出人意料的技术效果。尽管致密粉末的团聚体大小不同,但电池的性能仍与疏松粉末相似。事实上,致密粉末中含有微米级团聚体,但团聚体的性能仍然是疏松的纳米颗粒的性能,而不是微米级粉末的性能。
将注入直径71.8mm的容器顶部的406毫升粉末A、B、C、D、E、F或G全部立即倒入烧瓶上方直径为119.48mm(顶部)和底部直径为29.8mm的漏斗中。测量流动时间,并与漏斗排空的结束时间相对应。结果以单位时间内的质量转移给出。参比是非颗粒状粉末B,其值固定为1,其堆积密度为Di=45g/L。与流动有关的指数用下式计算:
(Si的转移质量/转移时间)粉末A、B、C、D、E、F或G/(Si的转移质量/转移时间)非压实纳米Si产品
结果如下表2所示:
表2
在低堆积密度下,亚微米粉末B的流动性比微米粉末差得多。根据本发明,当粉末的堆积密度较高(粉末C至G)时,与流动有关的指数显著增加并接近微米粉末。
将注入直径71.8mm的容器顶部的406毫升粉末A、B、C、D、E、F或G全部立即倒入烧瓶上方直径为119.48mm(顶部)和底部直径为29.8mm的漏斗中。测量漏斗上方粉末云的高度。参比是未压实粉末B,其值固定为10,其堆积密度为Di=45g/L。与粉状有关的指数使用下式计算:
10×(转移的Si的云高度)粉末A、B、C、D、E、F或G/(转移的Si的云高度)非压实纳米Si产品
结果在下表3中列出:
表3
根据本发明使用的粉末C、D、E、F或G比松散的亚微米粉末B粉末明显更少,并且甚至比得自150G/L(粉末D)造粒密度的微米粉末A的粉末明显更少。
值得注意的是,根据本发明使用的Df>0.1g.cm-3的粉末C、D、E、F和G是唯一累积良好电池质量(第100次循环充电/第2次循环充电≥75%)且同时具有令人满意的流动性和粉末性(甚至更优选Df>0.15g.cm-3)而因此具有令人满意的操作和安全条件的粉末。
在第二实施方案中,基质为:
-金属基质,即具有金属键的基质;例如铜、铝、铁、镍、铬、钴、钛、锰、锂、钪和/或这些元素的混合物
-陶瓷(即具有玻璃化或非玻璃化本体、晶体或部分晶体结构或玻璃状非晶体,其本体由基本无机和非金属的物质形成,由冷却时凝固的熔融物质形成,或同时或随后在热作用下形成并成熟);例如以碳化物、氮化物或氧化物的形式含有硅、铝、硼、钨、锆的陶瓷。
在粉末性和流动性方面的技术优势与第一实施方案相同。
当基质处于固态(例如粉末形式的基质,随后通过烧结或熔融将颗粒和基质连接)或液态(例如熔融金属)时,实现颗粒的引入。
当然,本发明不限于之前描述的实例,并且可以在不脱离本发明的范围的情况下对这些实例进行许多调整。
当然,本发明的不同特性、形式、变体和实施方案可以以不同的组合彼此组合,除非它们不相容或相互排斥。

Claims (12)

1.一种制备方法,其中将含硅的亚微米颗粒引入基质中,
其特征在于,在引入颗粒期间:
-所述颗粒处于压实状态,其堆积密度大于0.10克/立方厘米,并且
-压实颗粒的比表面积至少为在彼此之间不接触的情况下单独考虑的颗粒的比表面积的70%。
2.根据权利要求1所述的方法,其特征在于,在引入所述颗粒期间,压实颗粒彼此之间不具有共价键。
3.根据权利要求1或2所述的方法,其特征在于,将预先引入所述基质中的所述颗粒分散在导电或半导电的载体上,并且将所述颗粒固定至所述载体。
4.根据权利要求3所述的方法,其特征在于,由其上沉积有含所述颗粒的层的载体制备电极。
5.根据权利要求4所述的方法,其特征在于,制备包括所述电极的电池。
6.根据权利要求3所述的方法,其特征在于,由其上分散有所述颗粒的载体制备光伏板。
7.根据权利要求1或2所述的方法,其特征在于,通过从处于非压实状态的所述颗粒开始进行压实的步骤来获得压实颗粒,使得在所述压实步骤期间所述颗粒不经受高于400℃的温度。
8.根据权利要求1或2所述的方法,其特征在于,在所述颗粒没有添加剂的情况下将所述压实颗粒引入所述基质中。
9.根据权利要求1或2所述的方法,其特征在于,所述颗粒包含未经氧化的硅的芯。
10.根据权利要求1或2所述的方法,其特征在于,所述基质包含碳。
11.根据权利要求1或2所述的方法,其特征在于,所述基质是金属基质和/或陶瓷基质。
12.根据权利要求1或2所述的方法,其特征在于,所述基质是液体基质和/或固体基质。
CN201880083141.0A 2017-12-22 2018-12-12 引入含硅颗粒的制备方法 Active CN111566855B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1762931A FR3075826B1 (fr) 2017-12-22 2017-12-22 Procede de fabrication incorporant des particules a base de silicium
FR1762931 2017-12-22
PCT/EP2018/084624 WO2019121261A1 (fr) 2017-12-22 2018-12-12 Procede de fabrication incorporant des particules a base de silicium

Publications (2)

Publication Number Publication Date
CN111566855A CN111566855A (zh) 2020-08-21
CN111566855B true CN111566855B (zh) 2023-08-01

Family

ID=62143286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880083141.0A Active CN111566855B (zh) 2017-12-22 2018-12-12 引入含硅颗粒的制备方法

Country Status (6)

Country Link
US (1) US11554989B2 (zh)
EP (1) EP3729545A1 (zh)
JP (1) JP7312752B2 (zh)
CN (1) CN111566855B (zh)
FR (1) FR3075826B1 (zh)
WO (1) WO2019121261A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044565A1 (de) * 2007-09-07 2009-04-02 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung eines Metallmatrix-Nanoverbundwerkstoffes, Metallmatrix-Nanoverbundwerkstoff und seine Anwendung
JP2013203626A (ja) * 2012-03-29 2013-10-07 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及びその製造方法
CN106067547A (zh) * 2016-08-10 2016-11-02 深圳市贝特瑞新能源材料股份有限公司 碳包覆纳米硅‑石墨烯‑裂解碳层复合材料、制备方法及包含该复合材料的锂离子电池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3908022C1 (zh) 1988-09-23 1990-03-29 Degussa Ag, 6000 Frankfurt, De
DE19623198A1 (de) 1996-06-11 1997-12-18 Degussa Verfahren zur kontinuierlichen Trockengranulation von Pulverruß
JP2000164220A (ja) * 1998-11-26 2000-06-16 Mitsubishi Materials Corp 酸化銀電池用電極材料
JP2004212496A (ja) * 2002-12-27 2004-07-29 Nippon Aerosil Co Ltd 混合粒子
JP3699103B2 (ja) * 2004-01-30 2005-09-28 日本製紙株式会社 インクジェット記録媒体
DE102004014704A1 (de) * 2004-03-25 2005-10-13 Wacker-Chemie Gmbh Partikelstabilisierte Emulsionen
GB2414231A (en) * 2004-05-21 2005-11-23 Psimedica Ltd Porous silicon
WO2009104571A1 (ja) * 2008-02-22 2009-08-27 富士電機デバイステクノロジー株式会社 電子写真感光体およびその製造方法、それを使用した電子写真装置
EP2483956B1 (en) * 2009-09-29 2018-12-19 Georgia Tech Research Corporation Electrodes, lithium-ion batteries, and methods of making and using same
FR2968577B1 (fr) 2010-12-10 2013-01-11 Commissariat Energie Atomique Procede de granulation en voie seche de particules de tailles nanometriques
CN102903954B (zh) * 2011-07-25 2015-06-03 微宏动力系统(湖州)有限公司 含有离子液体电解质的锂离子二次电池
CN102332571B (zh) * 2011-09-21 2012-12-19 深圳丹邦投资集团有限公司 一种硅碳复合负极材料及制造方法、锂离子电池及负极片
JP5898572B2 (ja) * 2012-06-13 2016-04-06 信越化学工業株式会社 非水電解質二次電池用負極材の製造方法及び非水電解質二次電池の製造方法
FR2993262B1 (fr) 2012-07-12 2017-08-25 Nanomakers Procede de fabrication par pyrolyse laser de particules submicroniques multicouches
JP6625647B2 (ja) * 2014-12-23 2019-12-25 ユミコア 粉末、このような粉末を含む電極及び電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044565A1 (de) * 2007-09-07 2009-04-02 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Verfahren zur Herstellung eines Metallmatrix-Nanoverbundwerkstoffes, Metallmatrix-Nanoverbundwerkstoff und seine Anwendung
JP2013203626A (ja) * 2012-03-29 2013-10-07 Furukawa Electric Co Ltd:The 多孔質シリコン粒子及びその製造方法
CN106067547A (zh) * 2016-08-10 2016-11-02 深圳市贝特瑞新能源材料股份有限公司 碳包覆纳米硅‑石墨烯‑裂解碳层复合材料、制备方法及包含该复合材料的锂离子电池

Also Published As

Publication number Publication date
FR3075826B1 (fr) 2019-12-20
CN111566855A (zh) 2020-08-21
WO2019121261A1 (fr) 2019-06-27
US20210078911A1 (en) 2021-03-18
EP3729545A1 (fr) 2020-10-28
US11554989B2 (en) 2023-01-17
JP2021506722A (ja) 2021-02-22
KR20200101938A (ko) 2020-08-28
FR3075826A1 (fr) 2019-06-28
JP7312752B2 (ja) 2023-07-21

Similar Documents

Publication Publication Date Title
CN105981206B (zh) 用于锂离子电池的Si/G/C复合物
Zhang et al. Comprehensive design of the high-sulfur-loading Li–S battery based on MXene nanosheets
Wang et al. Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries
Chen et al. Densification by compaction as an effective low‐cost method to attain a high areal lithium storage capacity in a CNT@ Co3O4 sponge
Chu et al. Mesoporous and nanostructured TiO2 layer with ultra‐high loading on nitrogen‐doped carbon foams as flexible and free‐standing electrodes for lithium‐ion batteries
Park et al. Three-dimensional porous pitch-derived carbon coated Si nanoparticles-CNT composite microsphere with superior electrochemical performance for lithium ion batteries
Wang et al. Reticulate Dual‐Nanowire Aerogel for Multifunctional Applications: a High‐Performance Strain Sensor and a High Areal Capacity Rechargeable Anode
TWI636610B (zh) 粉末、包含此種粉末之電極及電池組
KR101167744B1 (ko) 산화루테늄 내포 나노카본 복합구조체
KR20210118087A (ko) 금속-이온 배터리용 전기활성 물질을 제조하기 위한 방법
CN104541392B (zh) 用于生产复合粉末以及用于使用该复合粉末产生的用于电化学电极的多孔复合材料的方法
CN105789576B (zh) 一种硅基负极材料的制备方法、负极材料和电池
Ren et al. Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries
US20060115732A1 (en) Particles comprising a non-conducting or semi-conducting core, which are coated with a hybrid conducting layer, production methods thereof and uses of same in electrochemical devices
TWI619294B (zh) 粉末、包含此種粉末之電極及電池組
CN105280904A (zh) 电池用电极组合物
KR20060111588A (ko) 리튬 이온 배터리용 음극 물질로 사용되는 탄소-코팅된실리콘 입자 파우더 및 그 제조 방법
Wang et al. Electrolytic silicon/graphite composite from SiO2/graphite porous electrode in molten salts as a negative electrode material for lithium-ion batteries
KR102461423B1 (ko) Cnt 펄프 네트워크에 의해 한정되는 구조체를 제조하기 위한 시스템 및 방법
KR102551245B1 (ko) 나노구조 물질 및 그 제조 방법
CN115275176B (zh) 硅碳复合材料的制备方法、锂电池
Jiang et al. Hollow triple-layer puff-like HCs@ Si@ C composites with high structural stability for high-performance lithium-ion battery
KR101075028B1 (ko) 리튬 이차전지용 탄소 음극재 및 그 제조방법과 이를 이용한 리튬 이차전지
Jo et al. Spinodal Decomposition Method for Structuring Germanium–Carbon Li-Ion Battery Anodes
CN111566855B (zh) 引入含硅颗粒的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant