[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111437857B - 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法 - Google Patents

一种基于氮化钛和氧化钛的光催化薄膜及其制备方法 Download PDF

Info

Publication number
CN111437857B
CN111437857B CN201911405504.0A CN201911405504A CN111437857B CN 111437857 B CN111437857 B CN 111437857B CN 201911405504 A CN201911405504 A CN 201911405504A CN 111437857 B CN111437857 B CN 111437857B
Authority
CN
China
Prior art keywords
tio
titanium
film
dimensional
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911405504.0A
Other languages
English (en)
Other versions
CN111437857A (zh
Inventor
顾伊杰
吴进明
高文炜
孟琥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201911405504.0A priority Critical patent/CN111437857B/zh
Publication of CN111437857A publication Critical patent/CN111437857A/zh
Application granted granted Critical
Publication of CN111437857B publication Critical patent/CN111437857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种基于氮化钛和氧化钛的光催化薄膜及其制备方法。该薄膜生长于钛金属衬底上,由TiN0.3/TiO0.89纳米线阵列作为主干和包裹于主干上的锐钛矿相TiO2纳米片分支构成三维纳米阵列。主要制备过程为:在一定温度范围内,钛片在含双氧水的反应液中反应一定时间,并在氨气气氛中经过高温热处理,得到TiN0.3/TiO0.89纳米线阵列;将上述纳米线阵列置于溶液燃烧前驱液中反应一定时间,并经后续空气气氛中的高温热处理,最终得到氮化钛/氧化钛三维纳米阵列薄膜。模拟太阳光照射下薄膜具有优异的光催化活性。

Description

一种基于氮化钛和氧化钛的光催化薄膜及其制备方法
技术领域
本发明涉及一种基于氮化钛和氧化钛的光催化薄膜及其制备方法,属于光催化技术领域,可用于空气净化、污水处理等环保领域。
背景技术
半导体光催化技术利用光子激发半导体材料价带中的电子到导带,产生光生载流子。利用分离的光生载流子,可以引发特定氧化还原反应,实现大气或污水中污染物的降解脱除。纳米结构TiO2价格低廉、性能稳定、环境友好,是当前实际应用中最理想的半导体光催化剂。众多提升TiO2光催化效率技术中,担载Au、Ag等纳米颗粒可以产生表面等离子激元效应,增强光的吸收,从而有效提高效率。但是,Au、Ag等昂贵材料限制其规模化应用。
已有一些关于TiN/TiO2复合光催化剂的研究。Chen等将NH4F、TiO2和TiN 为原料,利用球磨技术得到TiN/F-TiO2粉末样品,其光催化活性高于纯TiO2和 F掺杂TiO2(F-TiO2),其中TiN最佳含量为0.2wt%(S.F.Chen,et al.,Journal of Hazardous Materials,2011,186:1560–1567.)。Fakhouri等利用射频磁控溅射技术,在相同的真空环境下连续进行TiN层和TiO2层的交替沉积,生长形成TiN/TiO2叠层结构,TiO2膜中嵌入TiN层明显提高光催化活性(H.Fakhouri,et al.,Applied Catalysis A:General,2015,492:83–92.)。但是,粉末光催化剂在应用中存在分离回收难题,而磁控溅射等技术设备复杂、生产效率低,不利于产业化应用。本发明设计并实现了一种的基于氮化钛和氧化钛的光催化薄膜,其制备技术基于钛-双氧水-三聚氰胺的反应体系,以金属钛基底上制备一维氮化钛/氧化钛纳米线阵列为骨架主干,结合后续液相生长TiO2纳米片分支。
发明内容
本发明的目的是提供一种基于氮化钛和氧化钛的光催化薄膜及其制备方法。
本发明的技术方案如下:
一种基于氮化钛和氧化钛的新型光催化薄膜,是以TiN0.3和TiO0.89混合相组成的TiN0.3/TiO0.89纳米线阵列为主干,在其表面生长包覆锐钛矿相的TiO2纳米片分支,形成三维纳米阵列薄膜。
其制备方法主要步骤如下:
1)将清洗干净的钛片置于质量浓度为6-30%的过氧化氢水溶液中,同时添加质量分数为0.05-5%的硝酸、三聚氰胺,25-80℃反应6-72小时。反应后取出试样清洗、完全干燥,在400-550℃空气中热处理0.5-3小时,得到钛片衬底上生长TiO2纳米线阵列的一维纳米阵列薄膜;
2)将钛片上负载有TiO2纳米线的一维纳米阵列薄膜在氨气气氛中于 750-900℃热处理0.5-3小时,得到TiN0.3/TiO0.89一维纳米线阵列薄膜;
3)洗净的瓷坩埚中加入去离子水、甘氨酸、质量分数为63%硝酸和硫酸氧钛,将坩埚转移至热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末。在15℃的温度中,以质量比为1:100将黑色粉末和质量浓度为30%的过氧化氢溶液进行反应,保存24-72小时,得到橙红色的溶液燃烧前驱液;
4)将TiN0.3/TiO0.89一维纳米线阵列薄膜置于溶液燃烧前驱液中于50-90℃反应10~60分钟,随后在400-550℃空气中热处理0.5-3小时,得到基于氮化钛和氧化钛的三维纳米阵列薄膜。
上述技术方案中,所述的步骤1)中过氧化氢水溶液、硝酸及三聚氰胺的用量比为50mL:1mL:10-100mg。
所述的步骤2)中氨气气氛的流量为100mL/min。
所述的步骤3)中去离子水、甘氨酸、质量分数为63%硝酸和硫酸氧钛的质量比为100:1.75:0.3:1.25。
所述的步骤3)中溶液燃烧反应的温度为400℃。
本发明的有益效果是:
不同于已有的TiN/TiO2粉末或TiN/TiO2叠层薄膜,本发明制备得到的是基于氮化钛和氧化钛的三维纳米阵列薄膜。准定向垂直于衬底排列的三维纳米阵列获得薄膜的纵深空间,提高催化剂暴露面积,增加催化剂的活性位点,确保光子和污染物分子都能够尽可能多地与催化剂活性点位接触;氮化钛和氧化钛的异质结产生内建电场并有利于缩小禁带宽度,叠加两者异质相界面引起的表面等离子激元效应,进一步提升光催化作用效果;同时,形成的三维阵列之间存在强烈的漫反射作用,有利于对光的充分吸收和利用,从而大大提高光催化作用。
附图说明
图1为实施例1制备的TiO2一维纳米线薄膜的场发射扫描电子显微镜照片;
图2为实施例1制备的TiN0.3/TiO0.89一维纳米线薄膜的场发射扫描电子显微镜照片;
图3为实施例1制备的TiN0.3/TiO0.89一维纳米线薄膜的X射线衍射图谱;
图4为实施例1制备的氮化钛/氧化钛三维纳米阵列薄膜的场发射扫描电子显微镜照片;
图5为实施例2制备的氮化钛/氧化钛三维纳米阵列薄膜的场发射扫描电子显微镜照片;
图6为实施例3制备的氮化钛/氧化钛三维纳米阵列薄膜的场发射扫描电子显微镜照片;
图7为实施例3制备的氮化钛/氧化钛三维纳米阵列薄膜的X射线衍射图谱;
图8为实施例1~3制备的三维纳米阵列薄膜的光催化降解罗丹明B曲线;
具体实施方式
以下结合实施例进一步阐述本发明,但本发明不仅仅局限于下述实施例。
实施例1
步骤1、将面积为5×5cm2的清洗干净的钛片浸没于50mL质量浓度为6%的过氧化氢溶液中,同时添加1mL质量分数为0.05%的硝酸和10mg的三聚氰胺,80℃反应72小时,取出清洗后完全干燥,在400℃空气气氛中热处理3 小时,得到钛片衬底上生长TiO2纳米线阵列的薄膜;
步骤2、将钛片上负载有TiO2纳米线的样品在流量为100mL/min的氨气气氛中于750℃热处理3小时,得到TiN0.3/TiO0.89一维纳米线薄膜;
步骤3、瓷坩埚中加入100mL去离子水、1.75g甘氨酸、0.6mL质量分数为63%硝酸和1.25g硫酸氧钛。将坩埚转移至400℃热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末。将0.5g黑色粉末添加入50mL质量浓度为30%的过氧化氢溶液,15℃保存72小时,得到橙红色的溶液燃烧前驱液;
步骤4、将面积为2.5×2.5cm2的TiN0.3/TiO0.89一维纳米线阵列薄膜置于15 mL溶液燃烧前驱液中于50℃反应60分钟,最后在400℃空气气氛中热处理3 小时,得到氮化钛/氧化钛三维纳米阵列薄膜。
图1为步骤1得到TiO2纳米线阵列薄膜的场发射扫描电子显微镜照片,可以看出其具有一维纳米线阵列结构。图2为经步骤2得到的TiN0.3/TiO0.89一维纳米线薄膜的场发射扫描电子显微镜照片,可以看出纳米线阵列结构基本保持不变。图3为经步骤2得到的TiN0.3/TiO0.89一维纳米线薄膜的X射线衍射图谱,经与标准卡片对照可知,所得产物的物相为TiN0.3、TiO0.89以及来自基底的Ti。图4为经步骤4所获得的氮化钛/氧化钛三维纳米阵列薄膜的扫描电子显微镜照片,可以看到产物具有准定向垂直于衬底排列的三维多级阵列结构,由纳米线骨架的表面均匀包覆纳米片组成。
实施例2
步骤1、将面积为5×5cm2的清洗干净的钛片浸没于50mL质量浓度为30%的过氧化氢溶液中,同时添加1mL质量分数为5%的硝酸和100mg的三聚氰胺,80℃反应72小时,取出清洗后完全干燥,在550℃空气气氛中热处理3 小时,得到钛片衬底上生长TiO2纳米线阵列的薄膜;
步骤2、将钛片上负载有TiO2纳米线的样品在流量为100mL/min的氨气气氛中于900℃热处理3小时,得到TiN0.3/TiO0.89一维纳米线薄膜;
步骤3、瓷坩埚中加入100mL去离子水、1.75g甘氨酸、0.6mL质量分数为63%硝酸和1.25g硫酸氧钛。将坩埚转移至400℃热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末。将1g黑色粉末添加入100mL质量浓度为30%的过氧化氢溶液,15℃保存24小时,得到橙红色的溶液燃烧前驱液;
步骤4、将面积为2.5×2.5cm2的TiN0.3/TiO0.89一维纳米线阵列薄膜置于15 mL溶液燃烧前驱液中于90℃反应60分钟,最后在550℃空气气氛中热处理3 小时,得到氮化钛/氧化钛三维纳米阵列薄膜。
图5为本例所获得的氮化钛/氧化钛三维纳米阵列薄膜的扫描电子显微镜照片,可以看到产物同样具有准定向垂直于衬底排列的三维多级阵列结构,与图4 比较,纳米片尺寸更大,形成的分支结构具有明显的三维多级结构。
实施例3
步骤1、将面积为5×5cm2的清洗干净的钛片浸没于50mL质量浓度为20%的过氧化氢溶液中,同时添加1mL质量分数为2.5%的硝酸和100mg的三聚氰胺,80℃反应72小时,取出清洗后完全干燥,在550℃空气气氛中热处理3 小时,得到钛片衬底上生长TiO2纳米线阵列的薄膜;
步骤2、将钛片上负载有TiO2纳米线的样品在流量为100mL/min的氨气气氛中于800℃热处理2小时,得到TiN0.3/TiO0.89一维纳米线薄膜;
步骤3、瓷坩埚中加入100mL去离子水、1.75g甘氨酸、0.6mL质量分数为63%硝酸和1.25g硫酸氧钛。将坩埚转移至400℃热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末。将0.5g黑色粉末添加入50mL质量浓度为30%的过氧化氢溶液,15℃保存48小时,得到橙红色的溶液燃烧前驱液;
步骤4、将面积为2.5×2.5cm2的TiN0.3/TiO0.89一维纳米线阵列薄膜置于15 mL溶液燃烧前驱液中于80℃反应30分钟,最后在450℃空气气氛中热处理1 小时,得到氮化钛/氧化钛三维纳米阵列薄膜。
图6为本例所获得的氮化钛/氧化钛三维纳米阵列薄膜的扫描电子显微镜照片,可以看到产物的形貌与图5接近,表明沉积时间长于30分钟后,主干上包覆的分支结构接近饱和。图7为本例所得氮化钛/氧化钛三维纳米阵列薄膜的X 射线衍射图谱,经与标准卡片对照可知,所得产物的物相为TiN0.3、锐钛矿TiO2以及来自基底的Ti。
对比测试实施例1~3制得的样品光催化降解水中罗丹明B分子的效率,具体方法如下:
(1)紫外光催化性能:用2.5×2.5cm2薄膜在光强为5.0mW/cm2紫外光照射下对25mL0.005mmol/L罗丹明B催化降解速率进行表征。
(2)模拟太阳光光催化性能:用2.5×2.5cm2薄膜在可见光部分光强为 140mW/cm2、紫外部分光强为4.0mW/cm2的氙灯照射下对25mL 0.005mmol/L 罗丹明B的催化降解速率进行表征。
(3)光催化测试包括30分钟暗吸附和120分钟光催化,降解过程中不断进行磁力搅拌,每隔30分钟取样一次。
目标降解物浓度的变化通过UV-1800PC型紫外可见分光光度计在其主吸收波长处对应的吸光度值的变化进行测定,绘制光催化降解曲线,如图8所示。可以看出,与单纯的紫外光照比较,模拟太阳光照射下氮化钛/氧化钛三维纳米阵列薄膜样品光催化降解罗丹明B的效率更高,且显著高于相同光照条件下纯 TiO2和TiN0.3/TiO0.89一维纳米阵列薄膜的光催化活性,这可归因于:1)TiO2复合TiN0.3后引入的可见光照射下的表面等离子激元效应;2)氮化钛/氧化钛三维纳米阵列薄膜的界面异质结结构促进光生载流子的分离。实施例2、3所得氮化钛/氧化钛三维纳米阵列薄膜样品光催化活性接近,高于实施例1所得氮化钛/氧化钛三维纳米阵列薄膜样品,表明本发明中,TiN0.3/TiO0.89一维纳米线阵列骨架表面包覆锐钛矿相TiO2纳米片分支所需的沉积时间优选不低于30分钟。
实施例4
步骤1、将面积为2.5×2.5cm2的清洗干净的钛片浸没于50mL摩尔质量浓度为1.25mol/L的氢氧化钠溶液中,于220℃反应20小时,取出清洗后完全干燥,在0.1mol/L的盐酸溶液中进行90秒酸交换,取出清洗后完全干燥,随即于450℃空气中进行1小时热处理,得到钛片衬底上生长TiO2纳米线阵列的薄膜;
步骤2、将钛片上负载有TiO2纳米线的样品在流量为100mL/min的氨气气氛中于800℃热处理2小时,得到TiN一维纳米线薄膜;
步骤3、瓷坩埚中加入100mL去离子水、1.75g甘氨酸、0.6mL质量分数为63%硝酸和1.25g硫酸氧钛。将坩埚转移至400℃热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末。将0.5g黑色粉末添加入50mL质量浓度为30%的过氧化氢溶液,15℃保存48小时,得到橙红色的溶液燃烧前驱液;
步骤4、将面积为2.5×2.5cm2的TiN一维纳米线阵列薄膜置于15mL溶液燃烧前驱液中于80℃反应30分钟,最后在450℃空气气氛中热处理1小时,得到以氮化钛为主干,二氧化钛纳米线为分支的TiO2/TiN纳米树阵列薄膜。
对比本例步骤1所获得的TiO2的X射线衍射图谱和本例步骤2所获得TiN 的X射线衍射图谱可以看出,不经由本发明的二氧化钛的制备方法是无法得到 TiN0.3/TiO0.89一维纳米线阵列薄膜的。结合本例获得的TiO2/TiN纳米树薄膜的扫描电子显微镜照片和本例获得的TiO2/TiN纳米树薄膜的透射电子显微镜照片照片可以清晰地看到,通过实施例4得到的为纳米树结构的阵列薄膜,同时将本例获得的TiO2/TiN纳米树薄膜的扫描电子显微镜照片与图4、图5、图6进行对比,可以明显看到,本发明制备得到的基于氮化钛/氧化钛三位纳米阵列光催化薄膜的分支为片状,具有相比纳米树的线分支更大的表面积,在与污染物和光子接触中,具备明显的优势。

Claims (5)

1.一种基于氮化钛和氧化钛的光催化薄膜,其特征是:以TiN0.3和TiO0.89混合相组成的TiN0.3/TiO0.89纳米线阵列为主干,在其表面生长包覆锐钛矿相的TiO2纳米片分支,形成三维纳米阵列薄膜;采用如下方法制备:
1)将清洗干净的钛片置于质量浓度为6-30 %的过氧化氢水溶液中,同时添加质量分数为0.05-5 %的硝酸、三聚氰胺,于25-80 ℃反应6-72小时;反应后取出试样清洗、完全干燥,在400-550 ℃空气中热处理0.5-3小时,得到钛片衬底上生长TiO2纳米线阵列的一维纳米阵列薄膜;
2)将钛片上负载有TiO2纳米线的一维纳米阵列薄膜在氨气气氛中于750-900 ℃热处理0.5-3小时,得到TiN0.3/TiO0.89一维纳米线阵列薄膜;
3)洗净的瓷坩埚中加入去离子水、甘氨酸、质量分数为63 %硝酸和硫酸氧钛,将坩埚转移热处理炉中进行溶液燃烧反应,得到蓬松黑色粉末,在15 ℃的温度中,以质量比为1:100将黑色粉末和质量浓度为30 %的过氧化氢溶液进行反应,保存24-72小时,得到橙红色的溶液燃烧前驱液;
4) 将TiN0.3/TiO0.89一维纳米线阵列薄膜置于溶液燃烧前驱液中于50-90 ℃反应10~60 分钟,随后在400-550 ℃空气中热处理0.5-3小时,得到基于氮化钛和氧化钛的三维纳米阵列薄膜。
2.根据权利要求1所述的基于氮化钛和氧化钛的光催化薄膜,其特征在于,步骤1)中过氧化氢水溶液、硝酸及三聚氰胺的用量比为50 mL: 1 mL: 10-100 mg。
3.根据权利要求1所述的基于氮化钛和氧化钛的光催化薄膜,其特征在于,步骤2)中氨气气氛的流量为100 mL/min。
4.根据权利要求1所述的基于氮化钛和氧化钛的光催化薄膜,其特征在于,步骤3)中去离子水、甘氨酸、质量分数为63 %硝酸和硫酸氧钛的质量比为100: 1.75: 0.3: 1.25。
5.根据权利要求1所述的基于氮化钛和氧化钛的光催化薄膜,其特征在于,步骤3)中溶液燃烧反应的温度为400 ℃。
CN201911405504.0A 2019-12-30 2019-12-30 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法 Active CN111437857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911405504.0A CN111437857B (zh) 2019-12-30 2019-12-30 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911405504.0A CN111437857B (zh) 2019-12-30 2019-12-30 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111437857A CN111437857A (zh) 2020-07-24
CN111437857B true CN111437857B (zh) 2021-06-29

Family

ID=71626947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911405504.0A Active CN111437857B (zh) 2019-12-30 2019-12-30 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111437857B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573028B (zh) * 2022-04-28 2022-08-12 华中科技大学 有异质结结构的过渡金属化合物及其制法和复合补锂材料
CN115739063B (zh) * 2022-11-19 2024-02-02 杭州电子科技大学 一种氧化钛多级阵列光催化薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534590A (zh) * 2012-02-22 2012-07-04 浙江大学 一种制备结晶二氧化钛纳米棒阵列薄膜的方法
CN102774883A (zh) * 2012-07-09 2012-11-14 青岛科技大学 一种金红石型二氧化钛纳米线薄膜及其制备方法和用途
CN104030348A (zh) * 2014-05-14 2014-09-10 浙江大学 一种二氧化钛纳米带的制备方法
CN107774289A (zh) * 2016-08-29 2018-03-09 中国科学院福建物质结构研究所 一种光催化裂解水制氢用薄膜催化剂及其制备方法和应用
CN109836050A (zh) * 2019-04-08 2019-06-04 浙江大学 一种串联型TiN/TiO2复合薄膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534590A (zh) * 2012-02-22 2012-07-04 浙江大学 一种制备结晶二氧化钛纳米棒阵列薄膜的方法
CN102774883A (zh) * 2012-07-09 2012-11-14 青岛科技大学 一种金红石型二氧化钛纳米线薄膜及其制备方法和用途
CN104030348A (zh) * 2014-05-14 2014-09-10 浙江大学 一种二氧化钛纳米带的制备方法
CN107774289A (zh) * 2016-08-29 2018-03-09 中国科学院福建物质结构研究所 一种光催化裂解水制氢用薄膜催化剂及其制备方法和应用
CN109836050A (zh) * 2019-04-08 2019-06-04 浙江大学 一种串联型TiN/TiO2复合薄膜及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Miguel Ángel Centeno et al..Deposition–precipitation method to obtain supported gold catalysts: dependence of the acid–base properties of the support exemplified in the system TiO2 –TiOxNy –TiN.《Applied Catalysis A: General》.2003,第246卷 *

Also Published As

Publication number Publication date
CN111437857A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
Pan et al. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination
CN111437867B (zh) 一种含钨氧化物的复合光催化剂及其制备方法和应用
Raj et al. Significance of Ni doping on structure-morphology-photoluminescence, optical and photocatalytic activity of CBD grown ZnO nanowires for opto-photocatalyst applications
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
CN104785259B (zh) 等离子体金/氧化锌复合纳米片阵列器件的制备及其应用
Hassan et al. Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review
CN109364951B (zh) 一种可见光催化复合材料及其制备方法与应用
CN111437857B (zh) 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法
CN111701583A (zh) 一种超薄六边形BiO2-x片晶光催化剂及其制备方法
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
Boateng et al. Synthesis and electrochemical studies of WO3‐based nanomaterials for environmental, energy and gas sensing applications
Zhai et al. Enhanced photocatalytic degradation of tetracycline over magnetic La0. 7Sr0. 3MnO3/g-C3N4 p–n heterojunction arising from the synergistic effects of oxygen vacancy defects and high-potential photogenerated electrons
Luo et al. Facile synthesis of Ag/Zn1-xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag
Tang et al. Growth of W 18 O 49/WO x/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
Hu et al. Enhancement of the photocatalytic activity of N-doped TiO2 nanograss array films by low-temperature sulfur doping
Wang et al. 2D/2D g-C3N4/(001)-TiO2 Z-scheme heterojunction decorated with CQDs for enhanced Photocatalytic activity
Ma et al. Solar-driven WO3· H2O/TiO2 heterojunction films immobilized onto bamboo biotemplate: Relationship between physical color, crystal structure, crystal morphology, and energy storage ability
Nayak et al. Observation of catalytic properties of CdS–ZnO composite nanorods synthesized by aqueous chemical growth technique
CN108187701B (zh) 一种管状AgCl结构的AgCl/BiOCl光催化剂制备方法
Liu et al. Enhanced photocatalytic degradation performance of mono-disperse ZnS nano-flake on biocarbon sheets
CN113634244B (zh) 一种富含硫空位的高指数晶面GO@Cd1-xZnxS多面体材料及其制备方法
Wang et al. Study on photocatalytic activity of Ag2O modified BiOI/g-C3N4 composite photocatalyst for degradation of RhB
CN109078636B (zh) 一种等离子体光催化剂、其制备方法及其在制氢中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant