[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN111092242A - 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法 - Google Patents

一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法 Download PDF

Info

Publication number
CN111092242A
CN111092242A CN201911364754.4A CN201911364754A CN111092242A CN 111092242 A CN111092242 A CN 111092242A CN 201911364754 A CN201911364754 A CN 201911364754A CN 111092242 A CN111092242 A CN 111092242A
Authority
CN
China
Prior art keywords
metal
layer
functional layer
thickness
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911364754.4A
Other languages
English (en)
Other versions
CN111092242B (zh
Inventor
黎微明
马树全
许所昌
窦凤祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Leadmicro Nano Technology Co Ltd
Original Assignee
Jiangsu Leadmicro Nano Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Leadmicro Nano Technology Co Ltd filed Critical Jiangsu Leadmicro Nano Technology Co Ltd
Priority to CN201911364754.4A priority Critical patent/CN111092242B/zh
Publication of CN111092242A publication Critical patent/CN111092242A/zh
Application granted granted Critical
Publication of CN111092242B publication Critical patent/CN111092242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法,属于质子交换膜燃料电池技术领域,该方法包含如下步骤:在清洗处理后的不锈钢或钛合金上利用PVD、CVD、ALD或电沉积中的任一种工艺,制备籽晶层;再利用PVD、CVD、ALD或电沉积工艺中的任一种制备第一功能层;进一步,利用ALD工艺制备分别制备第二功能层,其中籽晶层和催化层至少包含一种。本发明的结构在燃料电池工作的酸性环境下耐腐蚀性更强,同时第二功能层对第一功能层的缺陷也起到了修补、进一步保护的作用,催化层起到到加快反应速率的作用。与传统的涂层方式相比,能大大提高双极板的使用寿命,满足商业化需求。

Description

一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备 方法
技术领域
本发明属于质子交换膜燃料电池技术领域,具体涉及一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法。
背景技术
质子交换膜燃料电池是一种新型能源装置,具有启动快,无污染,效率高,变载响应快等特点,在汽车,固定电站,便携式电源等方面具有广泛的应用前景。典型的质子交换膜燃料电池主要由膜电极(MEA)和双极板构成,其中膜电极是燃料电池的核心,双极板是电池的重要组成部份,在燃料电池中起到收集电流、气体分配以及水管理、热管理的作用。传统的石墨极板由于加工困难,抗振动性能差,逐渐被金属极板所取代。但金属极板在燃料电池酸性环境中运行表面发生钝化,造成接触电阻增加,同时析出的金属离子污染催化剂,降低质子交换膜传导率。因此对金属双极板表面改性,增强其防腐性能非常必要,在金属表面制备导电性好、抗腐蚀能力强的涂层是提高金属极板性能促进燃料电池商业化的重要研究方向。
目前对于金属双极板涂层主要是碳基涂层、金属基涂层(包括贵金属涂层、金属碳化物涂层、金属氮化物涂层、金属氧化物涂层),目前涂层制备工艺已发展至数种,广泛采用的表面技术有化学镀,电沉积,热喷涂,PVD和CVD,但是以上方式制备的涂层致密性及涂层均匀性比较差,所以目前金属双极板寿命比较短,一般在4000小时左右,完全不满足燃料电池的使用寿命要求,不适合质子交换膜燃料电池未来的实际使用及商业化需求,因此制备一种耐腐蚀、长寿命的金属双极板涂层变得非常重要。
发明内容
为解决现有技术中的燃料电池金属极板导电性能、抗腐蚀性能不佳,涂层在燃料电池酸性环境下耐久性能不高的技术问题,一种质子交换膜燃料电池的金属双极板多纳米涂层结构及其制备方法,从而制备一种新型的金属双极板多纳米涂层结构,实现提高金属电极板抗腐蚀性,延长双极板的使用寿命,满足商业化需求。
本发明提供一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法,包含如下步骤:
(1)在清洗处理后的不锈钢或钛合金上利用PVD、CVD、ALD或电沉积中的任一种工艺,制备籽晶层;
(2)在所述的籽晶层上,利用PVD、CVD、ALD或电沉积工艺中的任一种制备第一功能层;
(3)在所述的第一功能层上,利用ALD工艺制备分别制备第二功能层;
(4)在所述的第二功能层上,利用ALD工艺制备分别制备催化层;
所述方法至少包括步骤(1)和步骤(4)中的一个步骤。
进一步的,所述的步骤(4)中的ALD工艺具体为在温度300-400℃,压力250-400Pa的条件下,真空腔体内,依次循环通入第二功能层金属源—吹扫气体—反应气体—吹扫气体,通过循环次数控制薄膜的厚度;
所述的金属源的脉冲时间0.5-5s;
所述的吹扫气体为N2、He、Ar中的一种,所述吹扫时间为5-15s,所述吹扫气体流量为350-420sccm;
所述的反应气体为O2、O3、H2O、H2O2、H2、NH3,反应物气体脉冲时间3-10s;反应气体流量100-300sccm。
进一步的,所述的步骤(4)中的ALD具体的为PEALD,所述的反应气体为O2、O3、H2O、H2O2、H2或NH3的等离子体,等离子体的射频为13.56MHz,功率400-500W。
所述的第二功能层的金属源为TiCl4、Ti[N(CH3)2]4、Ti[N(CH2CH3)2]4、CrCl3·6H2O中的任一种或多种;
所述的催化层的金属源为MeCpPtMe3、Pd(hfac)2、Rh(acac)3、Ir(acac)3、[CH3COCH=C(O-)CH3]3Ir中的任一种或多种。
进一步的,所述的籽晶层的厚度为0-9nm;所述的第一功能层的厚度为1-100nm;所述的第二功能层的厚度为1-500nm;所述的催化层的厚度为3-50nm。
进一步的,所述的籽晶层的厚度为1-9nm;所述的第一功能层的厚度为1-100nm;所述的第二功能层的厚度为1-500nm;所述的催化层的厚度为0-50nm。
所述的籽晶层为贵金属、金属氮化物或金属氧化物中的任一种或多种;所述的第一功能层为金属碳化物;所述的第二功能层为金属氮化物;所述的催化层为贵金属或金属氧化物中的一种或多种。
进一步的,所述的籽晶层中的贵金属为Pt、Pd、Rh、Ru、Au、Ag;金属氮化物为TaN、TiN、CrN;金属氧化物为SnO、PbO2
进一步的,所述的第一功能层为TiC、TaC、VC、WC中的任一种或多种。
进一步的,所述的第二功能层TiN、TaN、Cr2N中的一种或复合叠层。
进一步的,所述的催化层的贵金属为Pt、Pd、Rh、Ir、Ru、Au、Ag;金属氧化物为TiO2、ZnO。
本发明还提供一种质子交换膜燃料电池金属双极板多纳米涂层结构,通过以上任一所述方法制备。
其中籽晶层功能主要为提高基板黏着性,第一功能层实现防腐、保护等功能属性,第二功能层实现导电、修补第一功能层缺陷、进一步保护双极板涂层、提高耐腐蚀性等功能属性,催化层实现加快反应速率的功能属性。
本发明的有益效果:
本发明提出的一种用于金属双极板的多层涂层,第二功能层和催化层由原子层沉积方法制作,由于原子层沉积具有百分百保形性及薄膜致密无针孔的特点,其在燃料电池工作的酸性环境下耐腐蚀性更强,同时第二功能层对第一功能层的缺陷也起到了修补、进一步保护的作用,催化层起到到加快反应速率的作用。与传统的涂层方式相比,能大大提高双极板的使用寿命,满足商业化需求。
附图说明
图1为本发明金属双极板多纳米涂层结构示意图;
其中1为金属极板;2为籽晶层;3为功能层;4为保护层;5催化层
图2为本发明的金属双极板多纳米涂层结构的制备流程示意图;
图3为原子层沉积脉冲方式流程图;
图4为本发明的金属双极板多纳米涂层结构的恒电位极化曲线;
图5为本发明金属双极板多纳米涂层结构的腐蚀前后接触电阻。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
如图1所述,本发明提供一种质子交换膜燃料电池的金属双极板多纳米涂层结构,所述的金属双极板多纳米涂层结构从下向上依次包括金属双极板、籽晶层、第一功能层、第二功能层、催化层。
所述的金属双极板多纳米涂层结构的制备方法,如图2所示,包括如下步骤:
(1)清理金属双极板;
(2)在清洗处理后的金属极板上利用PVD(物理气相沉积)/CVD(化学气相沉积)/ALD(原子层沉积)/电沉积中的任一种工艺,先制备籽晶层;
(3)再利用PVD(物理气相沉积)/CVD(化学气相沉积)/ALD(原子层沉积)/电沉积工艺中的任一种制备第一功能层;
(4)利用ALD(原子层沉积)工艺在第一功能层上制备第二功能层;
(5)最后利用ALD(原子层沉积)工艺在第二功能层上沉积催化层。
实施例1
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备7nm的Pt籽晶层;
(2)采用PEALD方法制备第一功能层,如图3所示,将制备好籽晶层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列PDMAT(0.5s)-N2吹扫(5s)-NH3(3s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,NH3流量为100sccm,循环次数为600,得到30nm厚的TaN薄膜第一功能层。
其中,等离子体发生器的射频为13.56MHz,功率400W;MeCpPtMe3源瓶加热至80℃以获得足够的饱和蒸气压。
(3)采用ALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在450℃,压力300pa的条件下,按照下述循环序列TiCl4(1s)-N2吹扫(5s)-NH3(1s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,O2流量为300sccm,循环次数为200,得到5nm厚度的TiN薄膜第二功能层。
(4)采用PEALD方法制备催化层,如图3所示,将制备好第二功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列MeCpPtMe3(0.5s)-N2吹扫(5s)-O2plasma(3s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,O2流量为100sccm,循环次数为60,得到3nm厚的Pt薄膜催化层。
其中,等离子体发生器的射频为13.56MHz,功率500W;MeCpPtMe3源瓶加热至80℃以获得足够的饱和蒸气压。
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的实例1的金属极板涂层的腐蚀电流密度远低于传统金属极板涂层的腐蚀电流密度,抗腐蚀能力更好。
从图5中可以看出,在PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF恶化条件下,传统的使用PVD在不锈钢极板上镀碳基涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而实例1中本发明制备的涂层结构腐蚀前的接触电阻为2mΩ.cm2,腐蚀后的接触电阻为2.3mΩ.cm2。由此可以看出,实例1中本发明的涂层接触电阻无论腐蚀前后均小于传统金属极板涂层,并且本发明的样品涂层腐蚀前与腐蚀后接触电阻变化更小。
实施例2
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的钛合金上通过CVD方法制备100nm厚的TiC第一功能层;
(2)采用PEALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在400℃,压力250pa的条件下,按照下述循环序列TiCl4(1s)-He吹扫(10s)-NH3(1s)-He吹扫(10s),作为载气及吹扫气体的N2流量均为350sccm,NH3流量为300sccm,循环次数为10000,得到500nm厚度的TiN薄膜第二功能层。
其中,等离子体发生器的射频为13.56MHz,功率400W。
(3)采用ALD方法制备催化层,如图3所示,将制备好第二功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列TiCl4(0.5s)-N2吹扫(5s)-H2O(1s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,O2流量为100sccm,循环次数为300,得到25nm厚的ZnO薄膜催化层
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的实例2金属极板涂层腐蚀电流密度介于传统极板涂层和实例1涂层之间,更接近于实例1涂层的腐蚀电流密度。
从图5中可以看出,在长时间的加速试验条件,传统的金属极板涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而本发明制备的涂层结构腐蚀前的接触电阻为4mΩ.cm2,腐蚀后的接触电阻为6mΩ.cm2。由此可以看出,本发明的实例2的涂层接触电阻无论腐蚀前后均小于传统金属极板涂层,并且本发明的样品涂层腐蚀前与腐蚀后接触电阻变化更小。
实施例3
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备1nm厚的TiC第一功能层;;
(2)采用PEALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列TiCl4(1s)-N2吹扫(10s)-NH3(1s)-N2吹扫(10s),作为载气及吹扫气体的N2流量均为400sccm,NH3流量为300sccm,循环次数为20,得到1nm厚度的TiN薄膜第二功能层。
其中,等离子体发生器的射频为13.56MHz,功率400W。
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的金属极板涂层与传统金属极板涂层相比,腐蚀电流密度更高,抗腐蚀能力变差。
从图5中可以看出,在长时间的加速试验后,传统的金属极板涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而本发明制备的涂层结构腐蚀前的接触电阻为3mΩ.cm2,腐蚀后的接触电阻为22mΩ.cm2。归因于虽使用本发明涂层,但各涂层厚度太薄无法起到很好的抗腐蚀性能,经过加速试验后,腐蚀电流密度变的更高。
实施例4
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备1nm厚的TiC第一功能层;
(2)采用PEALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在300℃,压力400pa的条件下,按照下述循环序列TiCl4(1s)-Ar吹扫(15s)-NH3(1s)-Ar吹扫(15s),作为载气及吹扫气体的N2流量均为420sccm,NH3流量为300sccm,循环次数为20,得到1nm厚度的TiN薄膜第二功能层。
其中,等离子体发生器的射频为13.56MHz,功率400W。
(3)采用ALD方法制备催化层,如图3所示,将制备好第二功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列TiCl4(0.5s)-N2吹扫(5s)-H2O(1s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,O2流量为100sccm,循环次数为600,得到50nm厚的TiO2薄膜催化层。
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的金属极板涂层与传统金属极板涂层相比,腐蚀电流密度更低,抗腐蚀能力更好。
从图5中可以看出,在长时间的加速试验后,传统的金属极板涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而本发明制备的涂层结构腐蚀前的接触电阻为3mΩ.cm2,腐蚀后的接触电阻为8mΩ.cm2。由此可以看出,本发明的实例4的涂层接触电阻无论腐蚀前后均小于传统金属极板涂层,并且本发明的样品涂层腐蚀前与腐蚀后接触电阻变化更小,但与实例1的性能相比要差一些。
实施例5
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备1nm的TaN籽晶层;
(2)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备10nm厚的TiC第一功能层;
(3)采用PEALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列PDMAT(0.5s)-N2吹扫(5s)-NH3(3s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,NH3流量为100sccm,循环次数为600,得到30nm厚的TaN薄膜第二功能层。
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的金属极板涂层与传统金属极板涂层相比,腐蚀电流密度更低,抗腐蚀能力更好。
从图5中可以看出,在长时间的加速试验后,传统的金属极板涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而本发明制备的涂层结构腐蚀前的接触电阻为2.2mΩ.cm2,腐蚀后的接触电阻为4mΩ.cm2。由此可以看出,本发明的实例5的涂层接触电阻无论腐蚀前后均小于传统金属极板涂层,并且本发明的样品涂层腐蚀前与腐蚀后接触电阻变化更小。同时可以看出采用原子层沉积技术生成第二功能层可以有效的填补第一功能层的孔洞缺陷、增强涂层对溶液的阻挡作用,增加了抗腐蚀能力,提高了燃料电池性能。
实施例6
一种制备质子交换膜燃料电池的金属双极板多纳米涂层结构的方法,包括如下步骤:
(1)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备9nm的TiO2籽晶层;
(2)在清洗处理后的不锈钢极板上通过磁控溅射方法(PVD的一种)制备10nm厚的TiC第一功能层;
(3)采用PEALD方法制备第二功能层,如图3所示,将制备好第一功能层的金属极板,在300℃,压力300pa的条件下,按照下述循环序列PDMAT(0.5s)-N2吹扫(5s)-NH3(3s)-N2吹扫(5s),作为载气及吹扫气体的N2流量均为400sccm,NH3流量为100sccm,循环次数为600,得到30nm厚的TaN薄膜第二功能层。
将制备好的金属极板涂层和传统的金属极板涂层在燃料电池模拟环境中进行接触电阻测量和电化学腐蚀性能评价实验。
从图4恒电位极化曲线(PH3H2SO4溶液+80OC,1.6VvsSHE,1h,1ppmHF)中可以看出,采用本发明方法制备的金属极板涂层与传统金属极板涂层相比,腐蚀电流密度更低,抗腐蚀能力更好。
从图5中可以看出,在长时间的加速试验后,传统的金属极板涂层结构的腐蚀前接触电阻为4.8mΩ.cm2,腐蚀后的接触电阻为20mΩ.cm2,而本发明制备的涂层结构腐蚀前的接触电阻为2.5mΩ.cm2,腐蚀后的接触电阻为4.5mΩ.cm2。由此可以看出,本发明的实例6的涂层接触电阻无论腐蚀前后均小于传统金属极板涂层,并且本发明的样品涂层腐蚀前与腐蚀后接触电阻变化更小。本实例也体现了采用原子层沉积技术生成第二功能层可以有效的填补第一功能层的孔洞缺陷、增强涂层对溶液的阻挡作用,增加了抗腐蚀能力,提高了燃料电池性能的效果。

Claims (13)

1.一种制备质子交换膜燃料电池金属双极板多纳米涂层结构的方法,其特征在于,包含如下步骤:
(1)在清洗处理后的金属双极板上利用PVD、CVD、ALD或电沉积中的任一种工艺,制备籽晶层;
(2)在所述的籽晶层上,利用PVD、CVD、ALD或电沉积工艺中的任一种制备第一功能层;
(3)在所述的第一功能层上,利用ALD工艺制备分别制备第二功能层;
(4)在所述的第二功能层上,利用ALD工艺制备分别制备催化层;
所述方法至少包括步骤(1)和步骤(4)中的一个步骤。
2.根据权利要求1所述的方法,其特征在于,所述的步骤(4)中的ALD工艺具体为在温度300-400℃,压力250-400Pa的条件下,真空腔体内,依次循环通入第二功能层金属源—吹扫气体—反应气体—吹扫气体,通过循环次数控制薄膜的厚度;
所述的金属源的脉冲时间0.5-5s;
所述的吹扫气体为N2、He、Ar中的一种,所述吹扫时间为5-15s,所述吹扫气体流量为350-420sccm;
所述的反应气体为O2、O3、H2O、H2O2、H2、NH3,反应物气体脉冲时间3-10s;反应气体流量100-300sccm。
3.根据权利要求2所述的方法,其特征在于,所述的步骤(4)中的ALD具体的为PEALD,所述的反应气体为O2、O3、H2O、H2O2、H2或NH3的等离子体,等离子体的射频为13.56MHz,功率400-500W。
4.根据权利要求2所述的方法,其特征在于,所述的第二功能层的金属源为TiCl4、Ti[N(CH3)2]4、Ti[N(CH2CH3)2]4、CrCl3·6H2O中的任一种或多种;
5.根据权利要求2所述的方法,其特征在于,所述的催化层的金属源为MeCpPtMe3、Pd(hfac)2、Rh(acac)3、Ir(acac)3、[CH3COCH=C(O-)CH3]3Ir中的任一种或多种。
6.根据权利要求1所述的方法,其特征在于,所述的籽晶层的厚度为0-9nm;所述的第一功能层的厚度为1-100nm;所述的第二功能层的厚度为1-500nm;所述的催化层的厚度为3-50nm。
7.根据权利要求1所述的方法,其特征在于,所述的籽晶层的厚度为1-9nm;所述的第一功能层的厚度为1-100nm;所述的第二功能层的厚度为1-500nm;所述的催化层的厚度为0-50nm。
8.根据权利要求6或7任一所述的方法,其特征在于,所述的籽晶层为贵金属、金属氮化物或金属氧化物中的任一种或多种;所述的第一功能层为金属碳化物;所述的第二功能层为金属氮化物;所述的催化层为贵金属或金属氧化物中的一种或多种。
9.根据权利要求8所述的方法,其特征在于,所述的籽晶层中的贵金属为Pt、Pd、Rh、Ru、Au、Ag;金属氮化物为TaN、TiN、CrN;金属氧化物为SnO、PbO2
10.根据权利要求8所述的方法,其特征在于,所述的第一功能层为TiC、TaC、VC、WC中的任一种或多种。
11.根据权利要求8所述的方法,其特征在于,所述的第二功能层TiN、TaN、Cr2N中的一种或复合叠层。
12.根据权利要求8所述的方法,其特征在于,所述的催化层的贵金属为Pt、Pd、Rh、Ir、Ru、Au、Ag;金属氧化物为TiO2、ZnO。
13.一种质子交换膜燃料电池金属双极板多纳米涂层结构,其特征在于,通过权利要求1-12任一所述方法制备。
CN201911364754.4A 2020-02-27 2020-02-27 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法 Active CN111092242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911364754.4A CN111092242B (zh) 2020-02-27 2020-02-27 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911364754.4A CN111092242B (zh) 2020-02-27 2020-02-27 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法

Publications (2)

Publication Number Publication Date
CN111092242A true CN111092242A (zh) 2020-05-01
CN111092242B CN111092242B (zh) 2021-11-09

Family

ID=70397373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911364754.4A Active CN111092242B (zh) 2020-02-27 2020-02-27 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法

Country Status (1)

Country Link
CN (1) CN111092242B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676361A (zh) * 2020-07-20 2020-09-18 安徽省巢湖市共力链条有限公司 一种高强度耐腐蚀链条热处理工艺
CN112553600A (zh) * 2020-11-24 2021-03-26 江南大学 一种原子层沉积技术生长VxC纳米材料的方法
CN115663224A (zh) * 2022-11-16 2023-01-31 上海治臻新能源股份有限公司 质子交换膜燃料电池双极板金属复合涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013916A1 (en) * 2002-07-18 2004-01-22 Rao Arvind M. Environment neutralization of pem bipolar plate fuel cell effluent in situ
CN101330015A (zh) * 2007-06-22 2008-12-24 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
CN102931421A (zh) * 2012-11-06 2013-02-13 上海交通大学 带有导电耐腐蚀镀层的燃料电池金属双极板及其制备方法
CN104204274A (zh) * 2012-02-24 2014-12-10 梯尔镀层有限公司 具有导电和耐腐蚀特性的涂层
CN108574107A (zh) * 2018-03-16 2018-09-25 上海交通大学 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013916A1 (en) * 2002-07-18 2004-01-22 Rao Arvind M. Environment neutralization of pem bipolar plate fuel cell effluent in situ
CN101330015A (zh) * 2007-06-22 2008-12-24 中芯国际集成电路制造(上海)有限公司 原子层沉积方法以及形成的半导体器件
CN104204274A (zh) * 2012-02-24 2014-12-10 梯尔镀层有限公司 具有导电和耐腐蚀特性的涂层
CN102931421A (zh) * 2012-11-06 2013-02-13 上海交通大学 带有导电耐腐蚀镀层的燃料电池金属双极板及其制备方法
CN108574107A (zh) * 2018-03-16 2018-09-25 上海交通大学 改善燃料电池双极板碳化物涂层导电及耐蚀性的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111676361A (zh) * 2020-07-20 2020-09-18 安徽省巢湖市共力链条有限公司 一种高强度耐腐蚀链条热处理工艺
CN112553600A (zh) * 2020-11-24 2021-03-26 江南大学 一种原子层沉积技术生长VxC纳米材料的方法
CN112553600B (zh) * 2020-11-24 2021-10-22 江南大学 一种原子层沉积技术生长VxC纳米材料的方法
CN115663224A (zh) * 2022-11-16 2023-01-31 上海治臻新能源股份有限公司 质子交换膜燃料电池双极板金属复合涂层及其制备方法
CN115663224B (zh) * 2022-11-16 2023-05-02 上海治臻新能源股份有限公司 质子交换膜燃料电池双极板金属复合涂层及其制备方法

Also Published As

Publication number Publication date
CN111092242B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN109346743B (zh) 一种燃料电池金属双极板用导电耐蚀涂层
US11799094B2 (en) Graphite micro-crystalline carbon coating for metal bipolar plates of fuel cells and application thereof
CN111092242B (zh) 一种质子交换膜燃料电池金属双极板多纳米涂层结构的制备方法
CN104204274B (zh) 具有导电和耐腐蚀特性的涂层
CN110137525A (zh) 一种燃料电池金属双极板涂层及制备技术
CN113265638B (zh) 高导电耐蚀类石墨碳防护多层复合涂层及其制法与应用
CN112111716B (zh) 一种用于氢燃料电池金属双极板的超低电阻耐腐蚀涂层的制备工艺
CN111218656A (zh) 一种高耐腐蚀高电导率的燃料电池金属双极板保护膜及制备方法
WO2023284596A1 (zh) 高导电耐蚀长寿命max相固溶复合涂层、其制法与应用
KR101172163B1 (ko) 연료전지용 분리판 및 그 제조 방법
CN114665114A (zh) 一种多层复合碳涂层及其制备方法和应用
CN114335579A (zh) 一种耐长期腐蚀的氢燃料电池金属双极板
CN113584441A (zh) 一种金属双极板涂层及其制备方法
CN115928017A (zh) 一种高导电耐蚀防护复合涂层及其制备方法与应用
CN110880608B (zh) 一种用于氢燃料电池金属双极板复合膜层及制备方法
CN115029663A (zh) 金属极板复合涂层、金属极板及其制备方法和燃料电池
CN112820890B (zh) 一种防腐导电涂层制备方法、结构以及燃料电池极板
CN116103625A (zh) 一种Cr掺杂的MAX相涂层的其制备方法及双极板和燃料电池
CN108914060B (zh) 一种燃料电池双极板表面防护涂层的制备方法
CN110265668B (zh) 氢燃料电池金属双极板及其制备方法
CN114976089A (zh) 一种含涂层的金属双极板及其制备方法
CN114023986A (zh) 一种用于燃料电池钛基材双极板的复合涂层及其制备方法
CN113025980A (zh) 一种燃料电池双极板用耐腐蚀膜层及其制备方法
CN111933965A (zh) 一种高温燃料电池双极板抗氧化镀层
CN112993293A (zh) 一种燃料电池金属双极板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 27 Changjiang South Road, Xinwu District, Wuxi City, Jiangsu Province, China

Patentee after: Jiangsu micro nano technology Co.,Ltd.

Country or region after: Zhong Guo

Address before: No. 9-6-2, Xinshuo Road, Xinwu District, Wuxi City, Jiangsu Province, 214028

Patentee before: Jiangsu micro nano technology Co.,Ltd.

Country or region before: Zhong Guo

CP03 Change of name, title or address