[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110663163A - 用于控制三相维也纳式整流器的方法 - Google Patents

用于控制三相维也纳式整流器的方法 Download PDF

Info

Publication number
CN110663163A
CN110663163A CN201880034037.2A CN201880034037A CN110663163A CN 110663163 A CN110663163 A CN 110663163A CN 201880034037 A CN201880034037 A CN 201880034037A CN 110663163 A CN110663163 A CN 110663163A
Authority
CN
China
Prior art keywords
phase
mod
vienna rectifier
voltages
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880034037.2A
Other languages
English (en)
Other versions
CN110663163B (zh
Inventor
N·鲁哈纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault Stock Co
Original Assignee
Renault Stock Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault Stock Co filed Critical Renault Stock Co
Publication of CN110663163A publication Critical patent/CN110663163A/zh
Application granted granted Critical
Publication of CN110663163B publication Critical patent/CN110663163B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种用于控制三相维也纳式整流器的方法(6),该三相维也纳式整流器包括各自与电相相关联的多个受控功率开关;该方法(6)包括:‑将所提供的三个参考线电压变换(60)成三个相电压的步骤;‑根据这些相电压值的符号以及该三相维也纳式整流器的相电流的平均值来计算(61)要注入的零序分量的步骤;‑根据所计算的要注入的零序分量和这三个相电压来计算针对该三相维也纳式整流器的每个相的“调制”值的步骤;以及‑根据该三相维也纳式整流器的相电流的符号以及所计算的“调制”值来生成(62)用于切换这些受控功率开关的六个信号的步骤。

Description

用于控制三相维也纳式整流器的方法
本发明涉及一种用于控制包括隔离的AC到DC(交流到直流)转换器的三相输入充电设备的三相整流器的方法。这种充电设备尤其适合于用作电动或混合动力机动车辆上车载的设备。
这些车辆装配有高压电池,并且通常包括车载充电器,即,直接安装在车辆上的电池充电设备。这些充电设备的主要功能是根据可从配电网获得的电力对电池进行再充电。因此,其将交流电转换为直流电。针对充电设备,并且更具体地针对车载充电器的期望标准是高效、紧凑、电隔离、可靠性良好、操作安全、电磁干扰发射较低、并且输入电流谐波含量较低。
这涉及三相输入充电设备的类别,这些三相输入充电设备具有与单相输入充电设备相比较更高的充电功率。图1示出了电动或混合动力车辆上车载的用于从三相供电网络30对该车辆的高压电池进行再充电的隔离充电设备10的已知布局,该车载充电设备10借助于该网络的线路阻抗40连接至三相供电网络。
为了实施具有电隔离的AC到DC转换功能,已知充电设备10的使用包括:包含功率因数校正(PFC)电路20以限制输入电流谐波的第一AC到DC转换器、以及用于控制电荷并且还用于为操作安全提供隔离功能的第二DC到DC(直流到直流)转换器12。输入滤波器13常规地相对于三相供电网络30结合在车载充电设备10的输入端处,在PFC电路20的上游。
PFC电路20由集成控制器(未示出)控制,该集成控制器分析并进行对电流相对于电压的比率的实时校正。其借助于与电压的整流正弦波进行比较从中推导出形状误差,并且其通过控制借助于高频分裂的电量和电感器中的电力储存来校正这些形状误差。更具体地,其目的是在充电器的电源的输入端处获得非异相的且尽可能是正弦的电流。
针对PFC电路20,具体地从现有技术文献CN 104811061中已知的做法是,实施具有三个开关的三电平三相整流器、通常被称为三相维也纳式整流器,诸如现有技术文献EP94120245和图2中所描述的。
选择此布局实际上相对于功率因数校正的性能水平尤其有利。
在三相维也纳式整流器20中,三相交流输入电压30的每个相都通过对应的电感器La、Lb、Lc连接至整流器20的分别设有功率开关单元Sa、Sb、Sc的开关臂1、2、3。
这些功率开关单元Sa、Sb、Sc各自被布置在对应的电感器La、Lb、Lc与中点O之间,该中点在整流器20的两个输出电压Vdch与Vdcl之间,这两个输出电压分别与连接在中点O同正供电线路H之间的第一输出电容器C1上的电压、以及连接在中点O同负供电线路L之间的第二输出电容器C2上的电压相对应。
通常,为了控制这种维也纳式整流器20,测量每个开关Sa、Sb、Sc的输入端处的电压和电流以及整流器的输出端处的电压和电流,并且使用控制回路以使得可以生成用于控制这些开关Sa、Sb、Sc的平均导通时间所需的占空比。
将占空比施加到三相维也纳式整流器的每个开关臂的现有技术在于:取决于电流在臂上流动的方向而使用两个开关中的一个或另一个。
然而,现有技术中已知的用于生成维也纳式整流器20的占空比的方法引起输出电容器C1、C2的端子两端的波动电压,这些波动电压使得对DC到DC转换器12的调节相对复杂且不可靠。
因此,寻求一种用于通过使得对DC到DC转换器12的调节更简单且更稳健来改善该调节的解决方案。
本文提出的是一种用于控制三相维也纳式整流器的方法,该三相维也纳式整流器包括各自与一个电相相关联的多个受控功率开关;该方法包括:
-将所提供的三个设定点线电压变换成三个相电压的步骤;
-根据这些相电压的值和符号以及该三相维也纳式整流器的相电流的平均值来计算要注入的零序分量的步骤;
-根据所计算的要注入的零序分量和这三个相电压来计算针对该三相维也纳式整流器的每个相的调制值的步骤;以及
-根据该三相维也纳式整流器的相电流的符号以及所计算的调制值来生成用于切换这些受控功率开关的六个信号的步骤。
因此,通过根据这些生成的信号来切换受控功率开关,使得两个DC到DC转换器的输入电流恒定且平衡,从而允许更简单且更稳健地调节DC到DC转换器。
有利地且非限制性地,计算零序分量(f(3wt))的操作包括应用以下等式:
Figure BDA0002284527830000031
其中,根据来自下表的值,
Figure BDA0002284527830000032
Figure BDA0002284527830000033
因此,可以使用相电压的符号、相电压的值和相电流的平均值来计算要注入的零序分量,从而允许例如使用处理器进行在处理时间方面非常快速且经济的计算。
有利地且非限制性地,通过将零序分量添加到相关联的相电压来计算每个调制值。这允许快速且直接地计算调制值,具体是因为不涉及三角计算或向量计算。
有利地且非限制性地,生成用于切换这些受控功率开关的这六个信号的操作包括将这些调制值与彼此同步且同相的两个高频载波进行比较。
因此,通过以直接的方式将所计算的调制值与高频载波进行比较简化了生成开关信号的操作。
有利地且非限制性地,针对该维也纳式整流器的每个相,如果相电流是正的,则将与该相相关联的调制与在0至+1之间变化的对称三角波信号进行比较。
有利地且非限制性地,针对该维也纳式整流器的每个相,如果相电流是负的,则将与该相相关联的调制与在-1至0之间变化的对称三角波信号进行比较。该对称三角波信号与在0至1之间变化的对称三角波信号同相。
以上两个比较操作提供了同一个优点:即提供使用快速生成的三角波信号来直接进行的逻辑比较。
本发明还涉及一种用于控制三相维也纳式整流器的设备,该设备包括用于实施如以上权利要求中任一项所述的方法的装置。
根据阅读借助于非限制性指示并且参照附图所提供的本发明的一个具体实施例的以下说明,本发明的其他特质和优点将会变得明显,在附图中:
-图1示出了实施根据图3所示的本发明的一个实施例的方法的电压转换器;
-图2示出了现有技术中已知的三相维也纳式整流器;
-图3是本发明的一个实施例的示意性表示;
-图4是根据图3的实施例的生成用于切换维也纳式整流器的受控功率开关的信号的一个步骤的示意性表示;并且
-图5是根据图3的实施例的生成用于切换维也纳式整流器的受控功率开关的信号的另一个步骤的示意性表示。
图2示出了现有技术中已知的本发明中所使用的三相维也纳式整流器20的结构。
三相维也纳式整流器2包括三个并联输入连接,这些输入连接各自借助于串联电感器线圈La、Lb、Lc耦合至三相供电网络30的相,并且各自连接至形成三相维也纳式整流器的第一开关臂、第二开关臂和第三开关臂的一对开关Sa、Sb、Sc。
每一对开关Sa、Sb、Sc包括由当相应输入电流Ia、Ib、Ic为正时被控制的第一相应开关Sah、Sbh、Sch和当该相应输入电流为负时被控制的第二相应开关Sal、Sbl、Scl形成的头尾相接串联组件。换言之,在开关支路上控制的单一开关用于对电流进行斩波。这些开关由闭合和断开受控的半导体部件形成,诸如例如,与二极管反向并联连接的SiC-MOS(碳化硅金属氧化物半导体)晶体管。此类型的半导体适合于非常高的斩波频率。开关Sah、Sbh、Sch也被称为高压开关,并且开关Sal、Sbl、Scl被称为低压开关。
三相维也纳式整流器20还包括三个并联支路1、2和3,每个支路都包括两个二极管Dah和Dal、Dbh和Dbl、以及Dch和Dcl,这些二极管形成了六二极管三相电桥,从而允许对从三相供电网络30取得的电流和电压进行单向功率传递和整流。
三相维也纳式整流器20的每个输入端通过对应的并联输入连接而连接至位于同一支路1、2和3的两个二极管之间的连接点。
支路1、2和3的两个公共端分别形成三相维也纳式整流器20的两个正H输出端子H和负L输出端子L,这些端子旨在耦合至DC到DC设备12。
每个相的开关臂Sa、Sb和Sc也各自分别连接在位于第一支路1、第二支路2和第三支路3的两个二极管之间的连接点a、b、c与三相维也纳式整流器20的输出电压VDCH和VDCL的中点O之间,这些输出电压分别与三相整流器的正输出端子H与中点O之间的输出电容器C1上的电压、以及中点O与三相整流器20的负输出端子L之间的输出电容器C2上的电压相对应。
根据图1中展示的整体布局,输出电容器C1、C2上的电压由连接在三相维也纳式整流器20的输出端处的充电设备的DC到DC转换器独立反馈控制。换言之,三相维也纳式整流器20的输出电压由DC到DC转换器12来控制。
插在充电器电源10的输入端处的三相维也纳式整流器20起到对充电器的功率因数进行校正的作用。这个角色使得可以防止由充电器产生的干扰电流(谐波)流经位于维也纳式整流器20上游的网络的阻抗。
借助于具有固定斩波频率等于140kHz的可变占空比的六个PWM(脉宽调制)控制信号来控制三相网络30的每个相的开关臂Sa、Sb和Sc,这些控制信号由诸如例如针对高采样频率的FPGA(未示出)等处理装置单独地控制。
因此,处理装置适合于确定信号的占空比以控制对整流器的开关臂的开关进行切换,这是对整流器的输入端处的正弦电流进行反馈控制所需的。
本发明涉及一种用于控制处理装置的方法,该处理装置用于施加占空比,这些占空比适用于尽可能地减小两个电容器C1和C2的输入端的电流的纹波并且平衡这些电流以便通过维也纳式整流器20的输出端处的两个DC总线递送相等的功率,从而使得在DC到DC转换器的输入端处的电流的纹波被最小化之后对DC到DC转换器12的调节变得更加稳健。具体地,当维也纳式整流器20下游的功率流恒定时,对DC到DC转换器12的电压反馈控制更简单。
在此寻求在平均值方面分别使顶部电容器C1和底部电容器C2上游的输入电流idch和idcl平衡。
分别由idch和idcl表示的电流作为每个相中的电流的函数以瞬时值用如下方式表示:
Figure BDA0002284527830000061
Figure BDA0002284527830000062
其中,并且
Figure BDA0002284527830000064
使得
Figure BDA0002284527830000065
表示用于切换各个相的高半导体和低半导体的信号。
基于此,等式(1)和(2)表示如下:
Figure BDA0002284527830000072
通过计算等式(3)和(4)的平均值,在一个切换周期内,获得如下内容:
Figure BDA0002284527830000073
Figure BDA0002284527830000074
现在,相电流(由<ia>,<ib>和<ic>表示)的平均值正是电流的基波分量,而没有由于斩波引起的高频分量。
该基波分量是在通过功率因数校正PFC对维也纳桥式整流器20进行调节的情况下从由用户设置的功率设定点获得的电流设定点。然而,由
Figure BDA0002284527830000075
表示的开关信号的平均值正是在切换周期内半导体闭合的持续时间。该持续时间被称为占空比并且由
Figure BDA0002284527830000076
表示。因此,等式(5)和(6)变为:
Figure BDA0002284527830000077
由于目的是获得因此,寻求确定针对每个相要施加的各个占空比的值。现在,可以使用被称为“调制”并且由modx表示的低频信号来确定占空比,使得:
αx=1-modx (9)
因此,等式(7)和(8)变为等于:
Figure BDA00022845278300000710
Figure BDA00022845278300000711
在使用通过注入零序信号的标量方法来制定用于控制功率电子器件的定律的调制策略中,“调制”被表示为所注入的谐波分量与由闭环控制生成的参考电压的函数,如下所示:
Figure BDA0002284527830000081
其中:
·
Figure BDA0002284527830000082
Figure BDA0002284527830000083
是相对于由Vdc表示的DC母线电压而归一化的设定点电压,并且属于区间
Figure BDA0002284527830000084
这些电压是通过将线电压变换成相电压来获得的:
·
Figure BDA0002284527830000085
·其中,
Figure BDA0002284527830000086
是要注入的零序电压。
因此,在根据本发明的方法中,寻求确定零序电压
Figure BDA0002284527830000087
在第一步骤60中,将线电压U*ab、U*ac、U*bc(相之间的设定点电压,分别对应于点a与b、a与c以及b与c之间的电压)变换60成相电压v*a、v*b、v*c(也被称为设定点电压v*a、v*b、v*c)。
本领域技术人员已知,存在用于实现这种变换60的许多解决方案。
在这个实施例中,为简洁起见,在由这三个设定点相电压形成的真实空间中考虑该问题。
具体地,针对给定的调制策略,旋转参考电压向量平均表示为由
Figure BDA0002284527830000088
Figure BDA00022845278300000810
表示的三个相电压(针对三相情况)的函数。
应用等式(1)以从这两个线电压获得这三个相电压(v*a,v*b,v*c):
Figure BDA00022845278300000811
在第二计算步骤61中,计算要注入的零序分量。
作为示例性实施例,考虑如下相电压值:(
Figure BDA0002284527830000091
Figure BDA0002284527830000092
)。
由于通过功率因数校正PFC来调节电压和电流,因此假设这些电流和电压同相并且它们的符号相同。
因此,由于ia≥0,ib<0且ic<0,仅如下二极管D1h、D2l和D3l导通。因此,等式(1)和(2)变为:
Figure BDA0002284527830000093
Figure BDA0002284527830000094
由此:
Figure BDA0002284527830000095
Figure BDA0002284527830000096
通过将等式(16)和(17)表示为等式(12)的函数,获得如下内容:
Figure BDA0002284527830000097
Figure BDA0002284527830000098
通过使这两个等式(18)和(19)平衡,由此推导出针对此特定情景(
Figure BDA00022845278300000910
)要注入的
Figure BDA00022845278300000911
的等式,使得:
通过将该等式推广到一个完整的电周期,从中推导出要注入的零序分量的通用等式(21):
Figure BDA00022845278300000913
其中,
Figure BDA00022845278300000914
使得:
Figure BDA00022845278300000915
接下来,根据等式(12)来计算这三个相mod*a、mod*b、mod*c的“调制”,使得:
Figure BDA0002284527830000101
接下来,根据相电流的符号、并且通过将“调制”mod*a、mod*b、mod*c与两个同步载波进行比较,来生成62用于控制受控功率开关Sa、Sb、Sc的六个PWM控制信号,这些信号将半导体的斩波频率设置为140kHz。
针对高压开关Sah、Sbh、Sch以及每个臂x=a、b、c,参照图7:
如果sign(ix)≥0,则将“调制”
Figure BDA0002284527830000102
与在0至1之间变化的对称三角波信号进行比较,以生成
Figure BDA0002284527830000103
Figure BDA0002284527830000104
关于的生成:
ο如果modx低于在0与1之间变化的三角波信号,则
Figure BDA0002284527830000106
ο如果modx高于或等于在0与1之间变化的三角波信号,则
Figure BDA0002284527830000107
Figure BDA0002284527830000108
针对低压开关Sal、Sbl、Scl以及每个臂x=a、b、c,参照图8:
如果sign(ix)<0,则将“调制”
Figure BDA0002284527830000109
与在-1至0之间变化的对称三角波信号进行比较,以生成
Figure BDA00022845278300001010
Figure BDA00022845278300001011
关于
Figure BDA00022845278300001012
的生成:
ο如果modx低于或等于在-1与0之间变化的三角波信号,则
Figure BDA00022845278300001013
ο如果modx高于在-1与0之间变化的三角波信号,则

Claims (7)

1.一种用于控制三相维也纳式整流器(20)的方法(6),该三相维也纳式整流器包括各自与一个电相相关联的多个受控功率开关(Sa,Sb,Sc);该方法(6)包括:
-将所提供的三个设定点线电压(U*ab,U*bc,U*ac)变换(60)成三个相电压(v*a,v*b,v*c)的步骤;
-根据这些相电压(v*a,v*b,v*c)的值和符号以及该三相维也纳式整流器(20)的相电流(ia,ib,ic)的平均值来计算(61)要注入的零序分量(f(3wt))的步骤;
-根据所计算的要注入的零序分量(f(3wt))和这三个相电压(v*a,v*b,v*c)来计算针对该三相维也纳式整流器(20)的每个相的调制值(mod*a,mod*b,mod*c)的步骤;以及
-根据该三相维也纳式整流器(20)的相电流(ia,ib,ic)的符号以及所计算的调制值(mod*a,mod*b,mod*c)来生成(62)用于切换这些受控功率开关(Sa,Sb,Sc)的六个信号的步骤。
2.如权利要求1所述的方法(6),其特征在于,计算该零序分量(f(3wt))的操作包括应用以下等式:
Figure FDA0002284527820000011
其中,根据来自下表的值,
Figure FDA0002284527820000012
Figure FDA0002284527820000013
3.如以上权利要求中任一项所述的方法(6),其特征在于,通过将该零序分量(f(3wt))添加到相关联的相电压(v*a,v*b,v*c)来计算每个调制值(mod*a,mod*b,mod*c)。
4.如以上权利要求中任一项所述的方法(6),其特征在于,生成用于切换这些受控功率开关(Sa,Sb,Sc)的这六个信号的操作(62)包括将这些调制值(mod*a,mod*b,mod*c)与彼此同步且同相的两个高频载波进行比较。
5.如权利要求4所述的方法(6),其特征在于,针对该维也纳式整流器(20)的每个相,如果相电流是正的,则将与该相相关联的调制与在0至+1之间变化的对称三角波信号进行比较。
6.如权利要求4或5所述的方法(6),其特征在于,针对该维也纳式整流器(20)的每个相,如果相电流是负的,则将与该相相关联的调制与在-1至0之间变化的对称三角波信号进行比较。
7.一种用于控制三相维也纳式整流器的设备,该设备包括用于实施如以上权利要求中任一项所述的方法(6)的装置。
CN201880034037.2A 2017-06-15 2018-05-24 用于控制三相维也纳式整流器的方法 Active CN110663163B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1755421A FR3067886B1 (fr) 2017-06-15 2017-06-15 Procede de commande d'un redresseur de vienne triphase
FR1755421 2017-06-15
PCT/FR2018/051228 WO2018229378A1 (fr) 2017-06-15 2018-05-24 Procédé de commande d'un redresseur de vienne triphasé

Publications (2)

Publication Number Publication Date
CN110663163A true CN110663163A (zh) 2020-01-07
CN110663163B CN110663163B (zh) 2023-10-20

Family

ID=60202090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880034037.2A Active CN110663163B (zh) 2017-06-15 2018-05-24 用于控制三相维也纳式整流器的方法

Country Status (7)

Country Link
US (1) US10819223B2 (zh)
EP (1) EP3639355B1 (zh)
JP (1) JP7145881B2 (zh)
CN (1) CN110663163B (zh)
FR (1) FR3067886B1 (zh)
RU (1) RU2732541C1 (zh)
WO (1) WO2018229378A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327081A (zh) * 2020-02-25 2020-06-23 东莞市峰谷科技有限公司 一种两相三线逆变器的控制方法
WO2022001943A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 纹波电流控制方法和装置、电子设备、计算机可读存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034696A (zh) * 2019-03-27 2019-07-19 南京航空航天大学 一种用于三相三电平vienna整流器的电流采样方法
CN112953270B (zh) * 2021-02-07 2022-09-06 石家庄通合电子科技股份有限公司 三相三电平整流器中点平衡控制方法、装置及终端设备
CN114900031B (zh) * 2021-12-23 2024-06-21 广东泰坦智能动力有限公司 一种用于平衡pfc输出电容电压的鲁棒系统设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753044A (zh) * 2010-01-26 2010-06-23 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
CN103825291A (zh) * 2014-02-24 2014-05-28 国家电网公司 一种模块化三电平储能装置并离网控制方法
CN106169879A (zh) * 2016-09-19 2016-11-30 山东大学 修正注入零序分量的vienna整流器调制方法、控制器及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406434B (de) * 1993-12-23 2000-05-25 Ixys Semiconductor Gmbh Vorrichtung zur umformung eines dreiphasigen spannungssystems in eine vorgebbare, einen verbraucher speisende gleichspannung
BR9907351A (pt) * 1999-12-22 2001-08-07 Ericsson Telecomunicacoees S A Método e circuito de controle para retificador do tipo elevador trifásico de três nìveis
US6459596B1 (en) * 2000-08-18 2002-10-01 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for a Reduced parts-counts multilevel rectifier
JP2008092640A (ja) * 2006-09-29 2008-04-17 Sanken Electric Co Ltd 3相整流装置
FR2921211B1 (fr) * 2007-09-13 2010-12-10 Hamilton Sundstrand Corp Systeme de redressement actif ameliore a correction du facteur de puissance.
CN103036461B (zh) * 2011-09-29 2016-03-30 台达电子企业管理(上海)有限公司 三相整流模组、其适用的系统及谐波抑制方法
CN104811061A (zh) * 2015-04-30 2015-07-29 安徽动力源科技有限公司 新型三相pfc整流器
RU163740U1 (ru) * 2016-02-25 2016-08-10 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации Многофазный выпрямитель с коррекцией коэффициента мощности
RU163741U1 (ru) * 2016-02-25 2016-08-10 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский испытательный институт инженерных войск" Министерства обороны Российской Федерации Многофазный выпрямитель с коррекцией коэффициента мощности
US10063077B2 (en) * 2016-03-28 2018-08-28 The Boeing Company System architecture for battery charger
US9973097B2 (en) * 2016-06-21 2018-05-15 Astronics Advanced Electronic Systems Corp. Regulating transformer rectifier unit with multiple circuits for preventing output overvoltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753044A (zh) * 2010-01-26 2010-06-23 北方工业大学 一种基于零序电压注入的三电平中点电位平衡控制方法
CN103825291A (zh) * 2014-02-24 2014-05-28 国家电网公司 一种模块化三电平储能装置并离网控制方法
CN106169879A (zh) * 2016-09-19 2016-11-30 山东大学 修正注入零序分量的vienna整流器调制方法、控制器及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327081A (zh) * 2020-02-25 2020-06-23 东莞市峰谷科技有限公司 一种两相三线逆变器的控制方法
WO2022001943A1 (zh) * 2020-06-29 2022-01-06 中兴通讯股份有限公司 纹波电流控制方法和装置、电子设备、计算机可读存储介质

Also Published As

Publication number Publication date
EP3639355A1 (fr) 2020-04-22
EP3639355B1 (fr) 2023-11-08
WO2018229378A1 (fr) 2018-12-20
US10819223B2 (en) 2020-10-27
RU2732541C1 (ru) 2020-09-22
JP2020523961A (ja) 2020-08-06
FR3067886A1 (fr) 2018-12-21
US20200169165A1 (en) 2020-05-28
CN110663163B (zh) 2023-10-20
JP7145881B2 (ja) 2022-10-03
FR3067886B1 (fr) 2023-05-26

Similar Documents

Publication Publication Date Title
US9973028B2 (en) Apparatus and method for grid-to-vehicle battery charging
CN110663163B (zh) 用于控制三相维也纳式整流器的方法
KR102226793B1 (ko) 전기 또는 하이브리드 차량의 온보드 충전 디바이스 제어 방법
CN109874384B (zh) 直接型电力转换器用的控制装置
US20140268959A1 (en) Bidirectional power converter
Lenka et al. PV integrated multifunctional off-board EV charger with improved grid power quality
Verma et al. Three phase off-board bi-directional charger for EV with V2G functionality
Kim et al. Asymmetric control algorithm for increasing efficiency of nonisolated on-board battery chargers with a single controller
Sharma et al. Bharat DC001 charging standard Based EV fast charger
Khedekar et al. Bidirectional on-board EV battery charger with V2H application
KR102698112B1 (ko) 멀티레벨 변환기를 위한 전압 밸런스 시스템 및 방법
CN109690929B (zh) 功率因数校正电路的控制方法、控制设备和车辆
CN110199463B (zh) 用于控制电动或混合车辆上车载的充电设备的三相整流器的方法
Gupta et al. A Transformerless Bidirectional Charger for Light Electric Vehicles
Jeong et al. Controller design for a quick charger system suitable for electric vehicles
Laturkar et al. Dual Active Half Bridge Converter with Integrated Active Power Decoupling for On-Board EV Charger
Saxena et al. Wind-PV based microgrid assisted EV charging infrastructure control
CN111903048A (zh) 变换器
CN110326204B (zh) 用于控制电动或混合车辆上车载的充电设备的三相整流器的方法
CN111373627B (zh) 用于控制蓄电器的电池充电器的方法
Patel et al. A novel control method for UPS battery charging using Active Front End (AFE) PWM rectifier
Do et al. A new Interleaved Full-Bridge Converter for AC battery
Hamasaki et al. New Circuit Structure Applying MMC and Its Control for Quick Charger System
Park et al. Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier
Singh et al. A multi-device front-end power factor converter for EV battery charger

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant