CN110212838A - A kind of method for controlling position-less sensor extracting optimal rotor-position - Google Patents
A kind of method for controlling position-less sensor extracting optimal rotor-position Download PDFInfo
- Publication number
- CN110212838A CN110212838A CN201910241923.9A CN201910241923A CN110212838A CN 110212838 A CN110212838 A CN 110212838A CN 201910241923 A CN201910241923 A CN 201910241923A CN 110212838 A CN110212838 A CN 110212838A
- Authority
- CN
- China
- Prior art keywords
- current
- voltage
- rotor position
- coordinate system
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000001360 synchronised effect Effects 0.000 claims abstract description 42
- 239000000243 solution Substances 0.000 claims abstract description 25
- 230000008878 coupling Effects 0.000 claims abstract description 14
- 238000010168 coupling process Methods 0.000 claims abstract description 14
- 238000005859 coupling reaction Methods 0.000 claims abstract description 14
- 238000002347 injection Methods 0.000 claims abstract description 8
- 239000007924 injection Substances 0.000 claims abstract description 8
- 238000011217 control strategy Methods 0.000 claims abstract description 5
- 230000009466 transformation Effects 0.000 claims description 37
- 230000005284 excitation Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 10
- 230000004907 flux Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000003068 static effect Effects 0.000 claims 1
- 230000001131 transforming effect Effects 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
- H02P21/26—Rotor flux based control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2203/00—Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
- H02P2203/03—Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
本发明公开了一种提取最优转子位置的无位置传感器控制方法,该控制方法包括:S1:采用传统的的矢量控制方法,在参考输入电流的基础上注入高频脉振信号,获取参考输入电流在高频电压注入后的叠加信号;S2:根据叠加信号驱动电机后获得含有电机转子位置的耦合信号;S3:根据耦合信号,确定并行设计的控制策略;S4:根据控制策略,将耦合信号经过锁相环与扩展卡尔曼滤波器并行处理后提取出转子位置参考值的最优解。本发明的控制策略可有效的解决永磁同步电机在零低速和高速之间的过渡问题并在全速段范围内提取转子位置参考值最优解。
The invention discloses a position sensorless control method for extracting the optimal rotor position. The control method includes: S1: adopting the traditional of the vector control method, the reference input current Inject the high-frequency pulse vibration signal on the basis of the high-frequency voltage injection to obtain the superimposed signal of the reference input current after the high-frequency voltage injection; S2: Drive the motor according to the superimposed signal to obtain the coupling signal containing the rotor position of the motor; S3: Determine the parallel design according to the coupling signal S4: According to the control strategy, the coupling signal is processed in parallel with the phase-locked loop and the extended Kalman filter to extract the optimal solution of the rotor position reference value. The control strategy of the invention can effectively solve the transition problem between zero low speed and high speed of the permanent magnet synchronous motor and extract the optimal solution of the reference value of the rotor position in the full speed range.
Description
技术领域technical field
本发明属于电机控制领域,尤其涉及一种提取最优转子位置的无位置传感器控制方法。The invention belongs to the field of motor control, in particular to a position sensorless control method for extracting an optimal rotor position.
背景技术Background technique
永磁同步电机由于高效率、高功率密度及高功率因数等得到越来越多的应用,如电动汽车或风力发电变桨距等场合。为了实现高性能的三相永磁同步电机控制系统,需要获取电机的转子位置信息,转子位置信息的获取方法有2种:Due to high efficiency, high power density and high power factor, permanent magnet synchronous motors are used more and more, such as electric vehicles or wind power generation pitch control. In order to realize a high-performance three-phase permanent magnet synchronous motor control system, it is necessary to obtain the rotor position information of the motor. There are two ways to obtain the rotor position information:
一是安装位置传感器。但由于位置传感器在恶劣环境中容易失效或受到外扰等原因导致传感器损坏,维护成本增加。One is to install the position sensor. However, because the position sensor is prone to failure in a harsh environment or is subject to external disturbances, the sensor is damaged, and the maintenance cost increases.
二是无位置传感器,在矢量控制系统设计时由其他物理量估算出转子位置信息。基于永磁同步电机的无位置传感器控制,现有的技术方案主要是在低速与高速情况下分别进行控制来获取转子位置信息。The second is that there is no position sensor, and the rotor position information is estimated from other physical quantities during the design of the vector control system. Based on the position sensorless control of the permanent magnet synchronous motor, the existing technical solutions are mainly to obtain the rotor position information by controlling respectively at low speed and high speed.
高速情况下的控制原理为基于基波数学模型的控制方式,利用基波激励数学模型中与转速有关的量进行转子位置和转速参考,如电机在高速情况下产生的反电势,在反电势中提取出转子位置信息。但这种方法只适用于电机在高转速情况下,当电机转速为零或在极低转速时该方法将失效。The control principle at high speed is the control method based on the fundamental wave mathematical model, using the quantity related to the rotational speed in the fundamental wave excitation mathematical model to refer to the rotor position and rotational speed, such as the back EMF generated by the motor at high speed, in the back EMF Extract the rotor position information. But this method is only suitable for the motor at a high speed, and the method will fail when the motor speed is zero or at a very low speed.
低速情况下的控制原理为基于高频信号注入的控制方式,在电机转速较低无法产生反电势的情况下,将高频电压或电流信号叠加到控制系统的基波输入信号上,合成信号共同施加给永磁同步电机的三相绕组,这样高频信号经过耦合后将会带有相应的转子位置信息,通过带通滤波器将高频信号提取出来,就可以得到转子位置参考值。The control principle at low speed is a control method based on high-frequency signal injection. When the motor speed is too low to generate back electromotive force, the high-frequency voltage or current signal is superimposed on the fundamental wave input signal of the control system, and the combined signal is combined. Applied to the three-phase winding of the permanent magnet synchronous motor, so that the high-frequency signal will have the corresponding rotor position information after coupling, and the high-frequency signal will be extracted through the band-pass filter to obtain the rotor position reference value.
这种方法适用于在电机转速为零速或低速时电机的反电势极小的情况下。当电机运行在零速和低速情况下,如果采用提取反电势的方法来获取电机转子位置信息,由于反电势极小,有用信号的信噪比很低,通常难以提取获得转子位置信息。This method is suitable for the case where the back electromotive force of the motor is extremely small when the motor speed is zero or low speed. When the motor is running at zero speed and low speed, if the method of extracting the back EMF is used to obtain the motor rotor position information, because the back EMF is extremely small and the signal-to-noise ratio of the useful signal is very low, it is usually difficult to extract the rotor position information.
以上两种方法可以在两种特定的情况下获取转子位置信息,但在低速与高速的过渡阶段无法保证是否可有效的获取转子位置信息,所以这两种方法均不能使电机在各个速度范围内有效的进行无位置传感器控制。The above two methods can obtain the rotor position information in two specific situations, but there is no guarantee whether the rotor position information can be effectively obtained during the transition stage between low speed and high speed, so these two methods cannot make the motor operate within each speed range. Effective sensorless control.
发明内容Contents of the invention
发明目的:针对以上问题,本发明提出一种基于锁相环与扩展卡尔曼滤波器并行设计提取最优转子位置的无位置传感器控制方法,用以解决解决永磁同步电机在零低速和高速之间的过渡问题并在全速段范围内提取转子位置参考值最优解。Purpose of the invention: In view of the above problems, the present invention proposes a position sensorless control method based on phase-locked loop and extended Kalman filter parallel design to extract the optimal rotor position, to solve the problem of permanent magnet synchronous motor between zero low speed and high speed. The optimal solution of the rotor position reference value is extracted in the range of the full speed range.
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种提取最优转子位置的无位置传感器控制方法,该方法包括以下步骤:Technical solution: In order to achieve the purpose of the present invention, the technical solution adopted in the present invention is: a position sensorless control method for extracting the optimal rotor position, the method includes the following steps:
S1,采用传统的的矢量控制方法,参考坐标系d*-q*下参考电流指令经过电流控制器处理后得到d*-q*坐标系下参考电压指令在参考电压指令的基础上注入高频脉振信号,获取参考电压指令在高频电压注入后的叠加信号;S1, using traditional The vector control method, the reference current command under the reference coordinate system d * -q * After being processed by the current controller, the reference voltage command in the d * -q * coordinate system is obtained In the reference voltage command Inject high-frequency pulse vibration signals on the basis of high-frequency voltage injection to obtain superimposed signals of reference voltage commands after high-frequency voltage injection;
S2,将叠加信号经过坐标变换经过SVPWM处理后输出含有转子位置信息的驱动耦合信号,此信号用以驱动电机PMSM;S2, after coordinate transformation and SVPWM processing of the superimposed signal, output a drive coupling signal containing rotor position information, which is used to drive the motor PMSM;
S3,根据耦合信号,设计并行控制策略,提取出最优转子位置和角速度ω*;S3, according to the coupling signal, design a parallel control strategy to extract the optimal rotor position and angular velocity ω * ;
S4,将最优角速度ω*反馈到电流控制器,将最优的转子位置代替坐标变换的参数进行循环组成闭环系统。S4, Feedback the optimal angular velocity ω * to the current controller, and the optimal rotor position The parameters that replace the coordinate transformation are circulated to form a closed-loop system.
进一步的,S1的具体方法如下:Further, the specific method of S1 is as follows:
步骤S1.1:已知三相永磁同步电机d-q坐标系下的电流方程为:Step S1.1: The current equation in the d-q coordinate system of the known three-phase permanent magnet synchronous motor is:
其中,id、iq为d-q轴电流;ud、uq为d-q轴电压;Ld、Lq为d-q轴电感分量;R为定子电阻;ψf为永磁体磁链;ωe为电角速度;Among them, i d , i q are dq axis current; u d , u q are dq axis voltage; L d , L q are dq axis inductance components; R is stator resistance; ψ f is flux linkage of permanent magnet; ω e is electric current angular velocity;
若id、iq完全解耦,则上式可变为:If i d and i q are completely decoupled, the above formula can be changed to:
其中,ud0、uq0为电流解耦后输出的d-q轴电压;id、iq为d-q轴电流;Ld、Lq为d-q轴电感分量;R为定子电阻;ψf为永磁体磁链;ωe为电角速度;Among them, u d0 and u q0 are dq-axis voltage output after current decoupling; id and i q are dq-axis currents; L d and L q are dq-axis inductance components; R is stator resistance; ψ f is permanent magnet magnetism chain; ω e is the electrical angular velocity;
对id、iq完全解耦后的电压方程进行拉普拉斯变换后可得:Y(s)=G(s)U(s) After fully decoupling the voltage equation of i d and i q , the Laplace transform can be obtained: Y (s) = G (s) U (s)
其中, in,
其中,ud0(s)、uq0(s)为经过拉普拉斯变换后的复数电压值;id(s)、iq(s)为经过拉普拉斯变换后的复数电流值;Among them, u d0 (s), u q0 (s) are complex voltage values after Laplace transform; i d (s), i q (s) are complex current values after Laplace transform;
采用PI调节器并进行前馈解耦,可得参考坐标系d*-q*下的输出电压为:Using a PI regulator and performing feed-forward decoupling, the output voltage in the reference coordinate system d * -q * can be obtained as:
其中,为参考同步旋转坐标系d*-q*下参考电流指令,id、iq为同步旋转坐标系d-q坐标系下的电流指令;为所述步骤S1中经电流控制器处理后得到的参考坐标系d*-q*下电压;Ld、Lq为d-q轴电感分量;ψf为永磁体磁链;ωe为电角速度;Kpd、Kpq为比例增益,Kid、Kiq为积分增益;in, is the reference current command under the synchronous rotating coordinate system d * -q * , and i d and i q are the current commands under the synchronous rotating coordinate system dq coordinate system; is the voltage under the reference coordinate system d * -q * obtained after being processed by the current controller in the step S1; L d and L q are the inductance components of the dq axis; ψ f is the flux linkage of the permanent magnet; ω e is the electrical angular velocity; K pd and K pq are proportional gains, K id and K iq are integral gains;
步骤S1.2:根据步骤S1.1,在得到d*-q*坐标轴输出电压的基础上,在d*轴中注入高频正弦电压信号 Step S1.2: According to step S1.1, after obtaining the output voltage of the d * -q * coordinate axis On the basis of , a high-frequency sinusoidal voltage signal is injected in the d * axis
其中:为注入的高频正弦电压信号,uin为高频正弦电压信号的幅值,ωin为高频正弦电压信号的频率,从而得到叠加信号。in: is the injected high-frequency sinusoidal voltage signal, u in is the amplitude of the high-frequency sinusoidal voltage signal, ω in is the frequency of the high-frequency sinusoidal voltage signal, and thus the superimposed signal is obtained.
进一步的,S2的具体方法如下:Further, the specific method of S2 is as follows:
步骤S2.1:将叠加信号经过2r/2s坐标变换后获得θe为实际转子位置角;ω为d-q坐标轴角速度;2r/2s坐标转换原理如下:Step S2.1: Obtain the superimposed signal after 2r/2s coordinate transformation θ e is the actual rotor position angle; ω is the angular velocity of the dq coordinate axis; the principle of 2r/2s coordinate conversion is as follows:
将同步旋转坐标系d-q变换到静止坐标系α-β,T2r/2s为坐标变换矩阵,可表示为:Transform the synchronous rotating coordinate system dq to the stationary coordinate system α-β, T 2r/2s is the coordinate transformation matrix, which can be expressed as:
步骤S2.2:经过SVPWM算法处理后输出交流侧相电压ua、ub、uc与互差120°电度角的正弦相电流ia、ib、ic驱动电机PMSM;Step S2.2: After processing by SVPWM algorithm, output AC side phase voltage u a , ub , uc and sinusoidal phase current ia , ib , ic with mutual difference of 120° electric angle to drive motor PMSM;
在自然坐标系ABC中,相电压为ua、ub、uc,互差120°电度角的正弦相电流为ia、ib、ic,经过3s/2r坐标变换后,相电流与相电压在d*-q*坐标轴下的等价表示为故:即为在d*-q*坐标轴下含有电机转子位置的耦合信号;In the natural coordinate system ABC, the phase voltages are u a , u b , uc , and the sinusoidal phase currents with a mutual difference of 120° electrical angle are ia , i b , ic . After 3s/2r coordinate transformation, the phase current The equivalent of the phase voltage on the d * -q * coordinate axis is expressed as Therefore: That is, the coupling signal containing the rotor position of the motor under the d * -q * coordinate axis;
其中:in:
求解具体过程如下:solve The specific process is as follows:
建立参考转子同步坐标系d*-q*与实际转子同步坐标系d-q的关系;Establish the relationship between the reference rotor synchronous coordinate system d * -q * and the actual rotor synchronous coordinate system dq;
其中:α-β为静止坐标系,ω为d-q轴角速度,ω*为d*-q*轴角速度,为参考转子位置角,θe为实际转子位置角,Δθe为转子参考误差角,即:Among them: α-β is the stationary coordinate system, ω is the angular velocity of the dq axis, ω * is the angular velocity of the d * -q * axis, is the reference rotor position angle, θe is the actual rotor position angle, and Δθe is the rotor reference error angle, namely:
把永磁同步电机视为RL电路,在d*-q*坐标轴的d*轴中注入高频电压信号:Treat the permanent magnet synchronous motor as an RL circuit, and inject a high-frequency voltage signal into the d * axis of the d * -q * coordinate axis:
其中:uin为注入高频电压信号幅值,ωin为注入高频电压信号频率;Among them: u in is the amplitude of the injected high-frequency voltage signal, ω in is the frequency of the injected high-frequency voltage signal;
此时高频激励下的三相永磁同步电机在同步旋转坐标系下的电压方程,即耦合后的电压方程,可简化为:At this time, the voltage equation of the three-phase permanent magnet synchronous motor under high-frequency excitation in the synchronous rotating coordinate system, that is, the coupled voltage equation, can be simplified as:
其中:idin、iqin为高频激励下的电机的电流响应;udin、uqin为高频激励下的电机的电压响应;Ld、Lq为d-q轴电感分量;Among them: i din and i qin are the current response of the motor under high-frequency excitation; u din and u qin are the voltage response of the motor under high-frequency excitation; L d and L q are the dq axis inductance components;
在同步旋转坐标系d-q中,电机定子电感可表示为:In the synchronous rotating coordinate system d-q, the stator inductance of the motor can be expressed as:
在静止坐标系α-β下,电机定子电感可表示为:In the stationary coordinate system α-β, the stator inductance of the motor can be expressed as:
其中:平均电感半差电感 where: average inductance half differential inductance
则在参考转子同步旋转坐标系d*-q*下,高频电压和电流的关系为:Then, under the reference rotor synchronously rotating coordinate system d * -q * , the relationship between high-frequency voltage and current is:
其中:为d*-q*下电流分量参考值;为d*-q*下电压分量参考值。in: It is the reference value of the current component under d * -q * ; It is the reference value of the voltage component under d * -q * .
进一步的,S3的具体方法如下:Further, the specific method of S3 is as follows:
步骤S3.1,将ia、ib、ic经过3s/2s坐标变换后转换为α-β坐标系下电流iα、iβ,在2s/2r坐标变换下将iα、iβ转换为d-q坐标系下实际电流id′、iq′,将id′、iq′输入到LPF进行低通滤波后作为负反馈信号输入到电流控制器;Step S3.1, convert i a , i b , and i c into currents i α and i β in the α-β coordinate system after 3s/2s coordinate transformation, and transform i α and i β under 2s/2r coordinate transformation is the actual current i d ′, i q ′ in the dq coordinate system, input i d ′, i q ′ to the LPF for low-pass filtering, and then input it to the current controller as a negative feedback signal;
步骤S3.2,在步骤S3.1中:已知ia、iβ,现将其作为以下两个观测器并联处理环节的输入,具体过程如下:Step S3.2, in step S3.1: i a and i β are known, and now they are used as the input of the following two observer parallel processing links, the specific process is as follows:
步骤S3.2.1,锁相环PLL环节Step S3.2.1, phase-locked loop PLL link
将iα、iβ进行滤波处理,经过带通滤波器BPF提取出iα、iβ中含有转子位置信息的高频部分信号,将高频部分信号经过2s/2r坐标变换后转换为参考转子同步旋转坐标系d*-q*下的 Filter i α and i β , extract the high-frequency part signals containing rotor position information in i α and i β through the band-pass filter BPF, and convert the high-frequency part signals into the reference rotor after 2s/2r coordinate transformation Under the synchronous rotating coordinate system d * -q *
为了获得转子位置,需对q*轴高频电流进行幅值调制,注入调制电流sinωint,其中,ωin为调制电流角频率;In order to obtain the rotor position, the q * axis high frequency current Amplitude modulation is performed, and the modulation current sinω in t is injected, where ω in is the angular frequency of the modulation current;
调制函数可表示为:The modulation function can be expressed as:
其中,uin为高频正弦电压信号的幅值;ωin为调制电流角频率;L为平均电感、ΔL为半差电感;Δθe为转子参考误差角;Among them, u in is the amplitude of the high-frequency sinusoidal voltage signal; ω in is the angular frequency of the modulation current; L is the average inductance, ΔL is the half-difference inductance; Δθ e is the rotor reference error angle;
当转子参考误差角Δθe趋于零时,Δθe=0,cosΔθe=1,sin2Δθe=2sinΔθecosΔθe=2sinΔθe,此时可将误差信号线性化:When the rotor reference error angle Δθ e tends to zero, Δθ e = 0, cosΔθ e = 1, sin2Δθ e = 2sinΔθ e cosΔθ e = 2sinΔθ e , the error signal can be linearized at this time:
其中,kε=uin(Lq-Ld)/4ωinLdLq;Among them, k ε =u in (L q -L d )/4ω in L d L q ;
将调制信号输入到由低通滤波器LPF和PI控制器组成的锁相环PLL,通过锁相环PLL的处理得到参考角速度与参考转子位置角通过调节f(ΔΔe)=0,即 那么转子位置参考值便可收敛到转子位置实际值;Input the modulation signal to the phase-locked loop PLL composed of low-pass filter LPF and PI controller, and obtain the reference angular velocity through the processing of the phase-locked loop PLL Angle with reference rotor position By adjusting f(ΔΔ e )=0, that is Then the rotor position reference value can converge to the rotor position actual value;
步骤S3.2.2,扩展卡尔曼滤波器EKF环节;Step S3.2.2, the extended Kalman filter EKF link;
已知高频电压激励下的电压响应ua、ub、uc,其经过3s/2s坐标变换后得到电压信号uα、uβ,将uα、uβ与步骤S3.1的iα、iβ共同输入到扩展卡尔曼滤波器EKF,经扩展卡尔曼滤波器EKF处理后得到参考角速度和参考转子位置角 The voltage responses u a , u b , u c under high-frequency voltage excitation are known, and the voltage signals u α , u β are obtained after 3s/2s coordinate transformation, and u α , u β are compared with i α in step S3.1 , i β are jointly input to the extended Kalman filter EKF, and the reference angular velocity is obtained after being processed by the extended Kalman filter EKF and the reference rotor position angle
进一步的,S4的具体方法如下:Further, the specific method of S4 is as follows:
步骤S4.1,将观测器PLL输出的和观测器EKF输出的送入最小二乘解算器求出最优解最优解反馈至步骤S2.1的2r/2s坐标变换、步骤S3.1的2s/2r坐标变换与步骤S3.2的2s/2r坐标变换,代替θe作为控制参数参与坐标变换过程中的计算;Step S4.1, the observer PLL output and the observer EKF output of Send it to the least square solver to find the optimal solution Optimal solution Feedback to the 2r/2s coordinate transformation of step S2.1, the 2s/2r coordinate transformation of step S3.1 and the 2s/2r coordinate transformation of step S3.2, replace θ e as a control parameter to participate in the calculation of the coordinate transformation process;
步骤S4.2,通过将观测器PLL输出的和观测器EKF输出的送入最小二乘解算器,在和之间寻找数据的最佳参数匹配ω*;Step S4.2, by converting the observer PLL output and the observer EKF output of Feed into the least squares solver, in and Find the best parameter match ω * between the data;
步骤S4.3,将ω*送入速度控制器经处理后输出参考电流指令在的控制方法下,在电流控制器内对参考电流指令与步骤S3.1中反馈的实际电流指令id′、iq′进行作差运算得到误差值,电流控制器通过控制误差值组成闭环系统。Step S4.3, send ω * into the speed controller and output the reference current command after processing exist Under the control method, the reference current command in the current controller The error value is obtained by performing difference operation with the actual current command i d ′, i q ′ fed back in step S3.1, and the current controller forms a closed-loop system by controlling the error value.
有益效果:与现有技术相比,本发明的技术方案具有以下有益技术效果:Beneficial effects: Compared with the prior art, the technical solution of the present invention has the following beneficial technical effects:
(1)将锁相环PLL与扩展卡尔曼滤波器EKF并行设计,高频脉振电压输入信号可在电机为零速或低速情况下精确的获得电机的转子位置信息;扩展卡尔曼滤波器是一个自适应系统,可在高速等较大的速度范围内工作;故并行设计可在全速段范围内获得转子位置信息,避免了低速段与高速段系统的分别设计;(1) The phase-locked loop PLL and the extended Kalman filter EKF are designed in parallel, and the high-frequency pulse vibration voltage input signal can accurately obtain the rotor position information of the motor when the motor is at zero or low speed; the extended Kalman filter is An adaptive system that can work in a large speed range such as high speed; therefore, the parallel design can obtain rotor position information in the full speed range, avoiding the separate design of the low speed and high speed systems;
(2)由于转子位置角θe是由角速度ω串行积分得到,则角速度ω的微小变化都将导致转子位置角θe的误差被放大,并行设计分开计算转子位置角θe与角速度ω,可有效的避免闭环控制量误差被放大;(2) Since the rotor position angle θ e is obtained by the serial integration of the angular velocity ω, a small change in the angular velocity ω will cause the error of the rotor position angle θ e to be amplified. The parallel design calculates the rotor position angle θ e and the angular velocity ω separately, It can effectively avoid the closed-loop control error from being amplified;
(3)在一定宽度的采样周期内,对参考输入信号和进行最小二乘参数辨识,选取最优解ω*与最大程度的减弱大误差幅值带来的影响;(3) Within a sampling period of a certain width, the reference input signal and Carry out least squares parameter identification, select the optimal solution ω * and Minimize the impact of large error margins;
(4)最优解ω*与能够适应电机在各个速度阶段的无位置传感器控制,使电机在加速或减速过程都能有效的获取转子位置信息,解决永磁同步电机在零低速和高速段之间的良好过渡并提取最优转子位置角的无传感器控制问题。(4) The optimal solution ω * and It can adapt to the position sensorless control of the motor at each speed stage, so that the motor can effectively obtain the rotor position information during the acceleration or deceleration process, solve the good transition between the zero low speed and high speed section of the permanent magnet synchronous motor and extract the optimal rotor The problem of sensorless control of position angle.
附图说明Description of drawings
图1是各坐标系之间转换的结构原理图;Figure 1 is a structural schematic diagram of conversion between coordinate systems;
图2是参考转子同步坐标系d*-q*与实际转子同步坐标系d-q关系图;Figure 2 is a relationship diagram between the reference rotor synchronous coordinate system d * -q * and the actual rotor synchronous coordinate system dq;
图3是改进的PLL与EKF并联获取最优解ω*与的永磁同步电机无位置传感器控制系统结构框图。Figure 3 is the improved PLL and EKF in parallel to obtain the optimal solution ω * and The block diagram of the permanent magnet synchronous motor position sensorless control system.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明的技术方案是基于锁相环与扩展卡尔曼滤波器并联设计以减小闭环反馈控制量误差被放大,同时又能在全速段范围内获取最佳电机转子位置角的控制方案,可分为以下步骤:The technical scheme of the present invention is based on the parallel design of the phase-locked loop and the extended Kalman filter to reduce the amplification of the closed-loop feedback control error, and at the same time, it can obtain the best motor rotor position angle in the full speed range. The control scheme can be divided into for the following steps:
步骤S1:如图3所示,采用传统的的矢量控制方法,参考坐标系d*-q*下参考电流指令经过电流控制器处理后得到d*-q*坐标系下参考电压指令在参考电压指令的基础上注入高频脉振信号,获取参考电压指令在高频电压注入后的叠加信号。具体包括以下:Step S1: As shown in Figure 3, adopt the traditional The vector control method, the reference current command under the reference coordinate system d * -q * After being processed by the current controller, the reference voltage command in the d * -q * coordinate system is obtained In the reference voltage command The high-frequency pulse vibration signal is injected on the basis of the high-frequency voltage to obtain the superimposed signal of the reference voltage command after the high-frequency voltage injection. Specifically include the following:
步骤S1.1:已知三相永磁同步电机d-q坐标系下的电流方程为:Step S1.1: The current equation in the d-q coordinate system of the known three-phase permanent magnet synchronous motor is:
其中,id、iq为d-q轴电流;ud、uq为d-q轴电压;Ld、Lq为d-q轴电感分量;R为定子电阻;ψf为永磁体磁链;ωe为电角速度。Among them, i d , i q are dq axis current; u d , u q are dq axis voltage; L d , L q are dq axis inductance components; R is stator resistance; ψ f is flux linkage of permanent magnet; ω e is electric current angular velocity.
若id、iq完全解耦,则上式可变为:If i d and i q are completely decoupled, the above formula can be changed to:
其中,ud0、uq0为电流解耦后输出的d-q轴电压;id、iq为d-q轴电流;Ld、Lq为d-q轴电感分量;R为定子电阻;ψf为永磁体磁链;ωe为电角速度。Among them, u d0 and u q0 are dq-axis voltage output after current decoupling; id and i q are dq-axis currents; L d and L q are dq-axis inductance components; R is stator resistance; ψ f is permanent magnet magnetism chain; ω e is the electrical angular velocity.
对id、iq完全解耦后的电压方程进行拉普拉斯变换后可得:Y(s)=G(s)U(s) After fully decoupling the voltage equation of i d and i q , the Laplace transform can be obtained: Y (s) = G (s) U (s)
其中: in:
其中:ud0(s)、uq0(s)为经过拉普拉斯变换后的复数电压值;id(s)、iq(s)为经过拉普拉斯变换后的复数电流值。Among them: u d0 (s), u q0 (s) are complex voltage values after Laplace transform; i d (s), i q (s) are complex current values after Laplace transform.
采用PI调节器并进行前馈解耦,可得参考坐标系d*-q*下的输出电压为:Using a PI regulator and performing feed-forward decoupling, the output voltage in the reference coordinate system d * -q * can be obtained as:
其中,为参考同步旋转坐标系d*-q*下参考电流指令,id、iq为同步旋转坐标系d-q坐标系下的电流指令;为所述步骤S1中经电流控制器处理后得到的参考坐标系d*-q*下电压;Ld、Lq为d-q轴电感分量;ψf为永磁体磁链;ωe为电角速度;Kpd、Kpq为比例增益,Kid、Kiq为积分增益。in, is the reference current command under the synchronous rotating coordinate system d * -q * , and i d and i q are the current commands under the synchronous rotating coordinate system dq coordinate system; is the voltage under the reference coordinate system d * -q * obtained after being processed by the current controller in the step S1; L d and L q are the inductance components of the dq axis; ψ f is the flux linkage of the permanent magnet; ω e is the electrical angular velocity; K pd and K pq are proportional gains, and K id and K iq are integral gains.
步骤S1.2:根据步骤S1.1,在得到d*-q*坐标轴输出电压的基础上,在d*轴中注入高频正弦电压信号 Step S1.2: According to step S1.1, after obtaining the output voltage of the d * -q * coordinate axis On the basis of , a high-frequency sinusoidal voltage signal is injected in the d * axis
其中:为注入的高频正弦电压信号,uin为高频正弦电压信号的幅值,ωin为高频正弦电压信号的频率,从而得到叠加信号。in: is the injected high-frequency sinusoidal voltage signal, u in is the amplitude of the high-frequency sinusoidal voltage signal, ω in is the frequency of the high-frequency sinusoidal voltage signal, and thus the superimposed signal is obtained.
步骤S2:将叠加信号经过2r/2s坐标变换与SVPWM处理后输出含有转子位置信息的驱动耦合信号,此信号用以驱动电机PMSM。具体包括以下步骤:Step S2: After the superimposed signal is processed by 2r/2s coordinate transformation and SVPWM, a driving coupling signal containing rotor position information is output, and this signal is used to drive the motor PMSM. Specifically include the following steps:
步骤S2.1:将叠加信号经过2r/2s坐标变换后获得 Step S2.1: Obtain the superimposed signal after 2r/2s coordinate transformation
如图1所示:θe为实际转子位置角;ω为d-q坐标轴角速度;2r/2s坐标转换原理如下:As shown in Figure 1: θe is the actual rotor position angle; ω is the angular velocity of the dq coordinate axis; the principle of 2r/2s coordinate conversion is as follows:
将同步旋转坐标系d-q变换到静止坐标系α-β,T2r/2s为坐标变换矩阵,可表示为:Transform the synchronous rotating coordinate system dq to the stationary coordinate system α-β, T 2r/2s is the coordinate transformation matrix, which can be expressed as:
步骤S2.2:经过SVPWM算法处理后输出交流侧相电压ua、ub、uc与互差120°电度角的正弦相电流ia、ib、ic驱动电机PMSM。Step S2.2: After processing by SVPWM algorithm, it outputs AC side phase voltages u a , ub , uc and sinusoidal phase currents ia , ib , ic with a mutual difference of 120° electrical angle to drive the motor PMSM.
在自然坐标系ABC中,相电压为ua、ub、uc,互差120°电度角的正弦相电流为ia、ib、ic,经过3s/2r坐标变换后,相电流与相电压在d*-q*坐标轴下的等价表示为故:即为在d*-q*坐标轴下含有电机转子位置的耦合信号。In the natural coordinate system ABC, the phase voltages are u a , u b , uc , and the sinusoidal phase currents with a mutual difference of 120° electrical angle are ia , i b , ic . After 3s/2r coordinate transformation, the phase current The equivalent of the phase voltage on the d * -q * coordinate axis is expressed as Therefore: That is, it is the coupling signal containing the rotor position of the motor under the d * -q * coordinate axis.
其中: in:
求解具体过程如下:solve The specific process is as follows:
如图2所示:建立参考转子同步坐标系d*-q*与实际转子同步坐标系d-q的关系。As shown in Figure 2: Establish the relationship between the reference rotor synchronous coordinate system d * -q * and the actual rotor synchronous coordinate system dq.
其中:α-β为静止坐标系,ω为d-q轴角速度,ω*为d*-q*轴角速度,为参考转子位置角,θe为实际转子位置角,Δθe为转子参考误差角,即:Among them: α-β is the stationary coordinate system, ω is the angular velocity of the dq axis, ω * is the angular velocity of the d * -q * axis, is the reference rotor position angle, θe is the actual rotor position angle, and Δθe is the rotor reference error angle, namely:
通常情况下高频注入信号的频率为0.5~2kHz,远高于电机的基波频率,这时便可以把永磁同步电机视为RL电路,在d*-q*坐标轴的d*轴中注入高频电压信号:Usually, the frequency of the high-frequency injection signal is 0.5~2kHz, which is much higher than the fundamental frequency of the motor. At this time, the permanent magnet synchronous motor can be regarded as an RL circuit, in the d * axis of the d * -q * coordinate axis Inject high frequency voltage signal:
其中:uin为注入高频电压信号幅值,ωin为注入高频电压信号频率。Among them: u in is the amplitude of the injected high-frequency voltage signal, ω in is the frequency of the injected high-frequency voltage signal.
此时高频激励下的三相永磁同步电机在同步旋转坐标系下的电压方程,即耦合后的电压方程,可简化为:At this time, the voltage equation of the three-phase permanent magnet synchronous motor under high-frequency excitation in the synchronous rotating coordinate system, that is, the coupled voltage equation, can be simplified as:
其中:idin、iqin为高频激励下的电机的电流响应;udin、uqin为高频激励下的电机的电压响应;Ld、Lq为d-q轴电感分量。Among them: i din and i qin are the current response of the motor under high-frequency excitation; u din and u qin are the voltage response of the motor under high-frequency excitation; L d and L q are the dq-axis inductance components.
在同步旋转坐标系d-q中,电机定子电感可表示为:In the synchronous rotating coordinate system d-q, the stator inductance of the motor can be expressed as:
在静止坐标系α-β下,电机定子电感可表示为:In the stationary coordinate system α-β, the stator inductance of the motor can be expressed as:
其中:平均电感半差电感 where: average inductance half differential inductance
则在参考转子同步旋转坐标系d*-q*下,高频电压和电流的关系为:Then, under the reference rotor synchronously rotating coordinate system d * -q * , the relationship between high-frequency voltage and current is:
其中:为d*-q*下电流分量参考值;为d*-q*下电压分量参考值。in: It is the reference value of the current component under d * -q * ; It is the reference value of the voltage component under d * -q * .
步骤S3:根据耦合信号,设计并行控制策略,提取出最优转子位置。Step S3: According to the coupling signal, a parallel control strategy is designed to extract the optimal rotor position.
根据步骤S2.2,参考转子同步旋转坐标系d*-q*下电流分量的参考值可表示为:According to step S2.2, refer to the reference value of the current component in the rotor synchronously rotating coordinate system d * -q * Can be expressed as:
其中:为d*-q*下电流分量参考值;uin为注入高频电压信号幅值,ωin为注入高频电压信号频率;L为平均电感、ΔL为半差电感;Δθe为转子参考误差角。in: is the reference value of the current component under d * -q * ; u in is the amplitude of the injected high-frequency voltage signal, ω in is the frequency of the injected high-frequency voltage signal; L is the average inductance, ΔL is the half-difference inductance; Δθ e is the rotor reference error horn.
可以看出,当d轴和q轴的电感存在差异,即ΔL≠0时,参考转子同步旋转坐标系d*-q*下电流分量的参考值的幅值大小都与转子位置参考误差角Δθe有关。当Δθe=0时,q*参考的高频电流分量等于零。It can be seen that when there is a difference in the inductance of the d-axis and the q-axis, that is, ΔL≠0, the reference value of the current component in the reference rotor synchronously rotating coordinate system d * -q * The amplitude of is related to the rotor position reference error angle Δθ e . When Δθ e = 0, the high-frequency current component of q * reference is equal to zero.
通过对q*轴高频电流的处理获得转子的位置,具体包括以下步骤:The position of the rotor is obtained by processing the high-frequency current of the q * axis, which specifically includes the following steps:
步骤S3.1:在步骤S2.2中,已知高频电压激励下的电流响应ia、ib、ic。Step S3.1 : In step S2.2 , the current responses ia, ib, and ic under high-frequency voltage excitation are known.
ia、ib、ic经过3s/2s坐标变换后转换为α-β坐标系下电流iα、iβ,在2s/2r坐标变换下将iα、iβ转换为d-q坐标系下实际电流id′、iq′,将id′、iq′输入到LPF进行低通滤波后作为负反馈信号输入到电流控制器。i a , i b , i c are converted into currents i α , i β in the α-β coordinate system after 3s/2s coordinate transformation, and i α , i β are converted into actual currents in the dq coordinate system under 2s/2r coordinate transformation The current i d ′, i q ′, input i d ′, i q ′ to the LPF for low-pass filtering, and then input it to the current controller as a negative feedback signal.
步骤S3.2:在步骤S3.1中:已知iα、iβ,现将其作为以下两个观测器并联处理环节的输入。具体过程如下:Step S3.2: In step S3.1: i α and i β are known, which are now used as the input of the following two observer parallel processing links. The specific process is as follows:
步骤S3.2.1:锁相环PLL环节。Step S3.2.1: phase-locked loop PLL link.
现将iα、iβ进行滤波处理,经过带通滤波器BPF提取出iα、iβ中含有转子位置信息的的高频部分信号,将高频部分信号经过2s/2r坐标变换后转换为参考转子同步旋转坐标系d*-q*下的 Now filter i α and i β , and extract the high-frequency part signals containing rotor position information in i α and i β through the band-pass filter BPF, and convert the high-frequency part signals into Reference to rotor synchronously rotating coordinate system d * -q *
为了获得转子位置,需对q*轴高频电流进行幅值调制,注入调制电流sinωint,其中,ωin为调制电流角频率。In order to obtain the rotor position, the q * axis high frequency current Amplitude modulation is performed, and the modulation current sinω in t is injected, where ω in is the angular frequency of the modulation current.
调制函数可表示为:The modulation function can be expressed as:
其中,uin为高频正弦电压信号的幅值;ωin为调制电流角频率;L为平均电感、ΔL为半差电感;Δθe为转子参考误差角。Among them, u in is the amplitude of the high-frequency sinusoidal voltage signal; ω in is the angular frequency of the modulation current; L is the average inductance, ΔL is the half-difference inductance; Δθ e is the rotor reference error angle.
当转子参考误差角Δθe趋于零时,Δθe=0,cosΔθe=1,sin2Δθe=2sinΔθecosΔθe=2sinΔθe,此时可将误差信号线性化:When the rotor reference error angle Δθ e tends to zero, Δθ e = 0, cosΔθ e = 1, sin2Δθ e = 2sinΔθ e cosΔθ e = 2sinΔθ e , the error signal can be linearized at this time:
其中,kε=uin(Lq-Ld)/4ωinLdLq;Among them, k ε =u in (L q -L d )/4ω in L d L q ;
将调制信号输入到由低通滤波器LPF和PI控制器组成的锁相环PLL,通过锁相环PLL的处理得到参考角速度与参考转子位置角 Input the modulation signal to the phase-locked loop PLL composed of low-pass filter LPF and PI controller, and obtain the reference angular velocity through the processing of the phase-locked loop PLL Angle with reference rotor position
通过调节f(ΔΔe)=0,即那么转子位置参考值便可收敛到转子位置实际值。By adjusting f(ΔΔ e )=0, that is The rotor position reference value can then converge to the rotor position actual value.
步骤S3.2.2:扩展卡尔曼滤波器EKF环节。Step S3.2.2: Extended Kalman filter EKF link.
已知高频电压激励下的电压响应ua、ub、uc,其经过3s/2s坐标变换后得到电压信号uα、uβ,将uα、uβ与步骤S3.2的iα、iβ共同输入到扩展卡尔曼滤波器EKF,经扩展卡尔曼滤波器EKF处理后得到参考角速度和参考转子位置角 Known voltage responses u a , u b , u c under high-frequency voltage excitation, after 3s/2s coordinate transformation, voltage signals u α , u β are obtained, and u α , u β are compared with i α in step S3.2 , i β are jointly input to the extended Kalman filter EKF, and the reference angular velocity is obtained after being processed by the extended Kalman filter EKF and the reference rotor position angle
步骤S3.3:提取最优转子位置,组成闭环控制系统。Step S3.3: Extract the optimal rotor position to form a closed-loop control system.
步骤S3.3.1:在步骤S3.2.1PLL环节中,经过锁相环PLL处理后得到参考角速度与参考转子位置角在步骤S3.2.2EKF环节中,uα、uβ与iα、iβ经EKF处理后得到参考角速度和参考转子位置角 Step S3.3.1: In the step S3.2.1 PLL link, The reference angular velocity is obtained after being processed by the phase-locked loop PLL Angle with reference rotor position In the step S3.2.2EKF link, u α , u β and i α , i β are processed by EKF to obtain the reference angular velocity and the reference rotor position angle
步骤S3.3.2:在一定宽度的采样周期内采用最小二乘法,最小二乘法指一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。Step S3.3.2: The least squares method is used within a sampling period of a certain width. The least squares method refers to a mathematical optimization technique, which finds the best function matching of data by minimizing the sum of squares of errors.
将观测器PLL输出的和观测器EKF输出的送入最小二乘解算器求出最优解 will be the observer PLL output of the and the output of the observer EKF Send it to the least square solver to find the optimal solution
假设在一组采样周期内与各获得了n组采样值,对于输入最小二乘解算器的若干组数据在平面直角坐标系中可视为2n个离散点,得到2n个离散数据序列 Assume that within a set of sampling periods and N sets of sampling values are obtained, for several sets of data input to the least squares solver It can be regarded as 2n discrete points in the plane Cartesian coordinate system, and 2n discrete data sequences can be obtained
将这2n个离散点用一个最匹配的拟合曲线L描述,使这2n个离散点均在此曲线的上方或下方不远处。拟合曲线L既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼近离散数据点的特性。The 2n discrete points are described by a best fitting curve L, so that the 2n discrete points are not far above or below the curve. The fitting curve L can not only reflect the overall distribution of the data, but also avoid large local fluctuations, and can better reflect the characteristics of the approximate discrete data points.
假设2n个离散点坐标为(xi,yi),(i=1,2,…2n),函数f(xi)为通过这2n个离散点的函数表达式,拟合曲线不需要通过所有已知点,但是能反映数据的基本关系,从离散的大量数据中获得最恰当的函数模型。Assuming that the coordinates of 2n discrete points are ( xi , y i ), (i=1, 2, ... 2n), the function f( xi ) is a function expression passing through these 2n discrete points, and the fitting curve It does not need to pass through all known points, but it can reflect the basic relationship of the data and obtain the most appropriate function model from a large number of discrete data.
当拟合函数不要求严格的通过所有的离散数据点(xi,yi),(i=1,2,…2n)时,即拟合函数与f(xi)在xi处存在残差(i=1,2,…2n),且δ(xi)不一定全部为零,为了使拟合曲线能尽量的反映反映所有离散数据的变化趋势,要求δ(xi)取最小值。记向量e=[δ1,δ2…δ2n],根据2-范数理论, 为最小时,可求得最小二乘解。When the fitting function does not require strict passage of all discrete data points ( xi , y i ), (i=1, 2, ... 2n), the fitting function and f( xi ) have residuals at xi (i=1, 2,...2n), and δ( xi ) is not necessarily all zero, in order to make the fitting curve reflect the variation trend of all discrete data as much as possible, δ( xi ) is required to take the minimum value. Note the vector e=[δ 1 , δ 2 ... δ 2n ], according to the 2-norm theory, When is the minimum, the least squares solution can be obtained.
设拟合函数 Let the fitting function
由2-范数理论应使残差函数:By 2-norm theory should make the residual function:
对函数S求偏导并令其为零,即 Take the partial derivative of the function S and make it zero, that is
将其写为矩阵形式为:Write it in matrix form as:
当线性无关时,方程组有唯一解,此唯一解便为最优解,即拟合函数则拟合函数即为所求最优解ω*的函数表达式。when When linearly independent, the equation system has a unique solution, and this unique solution is the optimal solution, that is, the fitting function Then the fitting function That is, the function expression of the optimal solution ω * .
由于观测器PLL主要用于电机在低速状态下的状态观测并输出扩展卡尔曼滤波器EKF具有较大的速度观测范围,通常用于中高速状态下的状态观测并输出在一定的采样宽度内获取若干组参考值并输入最小二乘解算器,在之间寻找数据的最佳参数匹配使电机零低速和中高速之间完成良好过渡。Since the observer PLL is mainly used to observe the state of the motor at low speed and output The extended Kalman filter EKF has a large speed observation range, and is usually used for state observation and output at medium and high speeds Acquire several groups within a certain sampling width Reference value and input to the least squares solver, in Find the best parameter match for the data between Make the motor complete a good transition between zero low speed and medium high speed.
最优解反馈至步骤S2.1的2r/2s坐标变换、步骤S3.1的2s/2r坐标变换与步骤S3.2的2s/2r坐标变换,代替θe作为控制参数参与坐标变换过程中的计算;Optimal solution Feedback to the 2r/2s coordinate transformation of step S2.1, the 2s/2r coordinate transformation of step S3.1 and the 2s/2r coordinate transformation of step S3.2, replace θ e as a control parameter to participate in the calculation of the coordinate transformation process;
在相同的速度背景下,通过将观测器PLL输出的和观测器EKF输出的送入最小二乘解算器,在和之间寻找数据的最佳参数匹配ω*,最大程度的减弱由于和之间存在较大幅值误差带来的影响,使电机零低速和中高速之间完成良好过渡,在加速或减速过程都能有效的获取最优转子位置信息。In the same speed context, by adding the observer PLL output and the observer EKF output of Feed into the least squares solver, in and Find the best parameter match ω * between the data, the greatest degree of attenuation due to and There is a large magnitude error between them, so that the motor can complete a good transition between zero and low speeds and medium and high speeds, and can effectively obtain the optimal rotor position information during acceleration or deceleration.
将ω*送入速度控制器经处理后输出参考电流指令在的控制方法下,电流控制器内对参考电流指令与步骤S3.1中反馈的实际电流指令id′、iq′进行作差运算得到误差值,电流控制器通过控制误差值组成闭环系统,并使误差值减小,使系统逐渐趋于稳定。Send ω * into the speed controller and output the reference current command after processing exist Under the control method, the reference current command in the current controller Perform difference calculation with the actual current command i d ′, i q ′ fed back in step S3.1 to obtain the error value, and the current controller forms a closed-loop system by controlling the error value, and reduces the error value, so that the system gradually tends to be stable .
综上所述:将锁相环PLL与扩展卡尔曼滤波器EKF并行设计,采用高频脉振电压输入信号的方法,分开计算转子位置角θe与角速度ω,有效的避免闭环控制量误差被放大。同时,在一定宽度的采样周期内,对参考输入信号和进行最小二乘参数辨识,选取最优解ω*与最大程度的减弱大误差幅值带来的影响。To sum up: the phase-locked loop PLL and the extended Kalman filter EKF are designed in parallel, and the method of high-frequency pulse vibration voltage input signal is used to calculate the rotor position angle θ e and angular velocity ω separately, effectively avoiding the closed-loop control error from being enlarge. At the same time, within a sampling period of a certain width, the reference input signal and Carry out least squares parameter identification, select the optimal solution ω * and Minimize the impact of large error margins.
最优解ω*与能够适应电机在各个速度阶段的无位置传感器控制,使电机在加速或减速过程都能有效的获取转子位置信息,解决永磁同步电机在零低速和高速段之间的良好过渡并提取最优转子位置角的无传感器控制问题。The optimal solution ω * and It can adapt to the position sensorless control of the motor at each speed stage, so that the motor can effectively obtain the rotor position information during the acceleration or deceleration process, solve the good transition between the zero low speed and high speed section of the permanent magnet synchronous motor and extract the optimal rotor The problem of sensorless control of position angle.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241923.9A CN110212838A (en) | 2019-03-27 | 2019-03-27 | A kind of method for controlling position-less sensor extracting optimal rotor-position |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910241923.9A CN110212838A (en) | 2019-03-27 | 2019-03-27 | A kind of method for controlling position-less sensor extracting optimal rotor-position |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110212838A true CN110212838A (en) | 2019-09-06 |
Family
ID=67785079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910241923.9A Pending CN110212838A (en) | 2019-03-27 | 2019-03-27 | A kind of method for controlling position-less sensor extracting optimal rotor-position |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110212838A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111106766A (en) * | 2019-12-22 | 2020-05-05 | 同济大学 | Control switching transition method, system and control method for reluctance synchronous motor |
CN112600477A (en) * | 2020-12-09 | 2021-04-02 | 青岛大学 | Sensorless control method for absolute position of multi-pole motor rotor |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859147A (en) * | 2010-06-11 | 2010-10-13 | 哈尔滨工程大学 | Intelligent coordination control method for ship heading |
US20160202296A1 (en) * | 2014-11-05 | 2016-07-14 | Stmicroelectronics S.R.L. | Sensorless rotor angle detection circuit and method for a permanent magnet synchronous machine |
DE102015209253A1 (en) * | 2015-05-20 | 2016-11-24 | Zf Friedrichshafen Ag | drive system |
US20180212801A1 (en) * | 2015-12-18 | 2018-07-26 | Collision Communications, Inc. | Wireless Receiver For Multiuser Detection Incorporating Residual Estimation Errors |
CN108768233A (en) * | 2018-06-28 | 2018-11-06 | 中车株洲电力机车有限公司 | The permanent magnet synchronous motor track with zero error system and method for discrete domain complex vector modeling |
CN108880377A (en) * | 2018-06-20 | 2018-11-23 | 泉州装备制造研究所 | A kind of method for estimating rotating speed of the permanent magnet synchronous motor based on novel phaselocked loop |
CN109302111A (en) * | 2018-10-17 | 2019-02-01 | 山东大学 | Hybrid Position Observer and Position Sensorless Servo System of Permanent Magnet Synchronous Motor |
-
2019
- 2019-03-27 CN CN201910241923.9A patent/CN110212838A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101859147A (en) * | 2010-06-11 | 2010-10-13 | 哈尔滨工程大学 | Intelligent coordination control method for ship heading |
US20160202296A1 (en) * | 2014-11-05 | 2016-07-14 | Stmicroelectronics S.R.L. | Sensorless rotor angle detection circuit and method for a permanent magnet synchronous machine |
DE102015209253A1 (en) * | 2015-05-20 | 2016-11-24 | Zf Friedrichshafen Ag | drive system |
US20180212801A1 (en) * | 2015-12-18 | 2018-07-26 | Collision Communications, Inc. | Wireless Receiver For Multiuser Detection Incorporating Residual Estimation Errors |
CN108880377A (en) * | 2018-06-20 | 2018-11-23 | 泉州装备制造研究所 | A kind of method for estimating rotating speed of the permanent magnet synchronous motor based on novel phaselocked loop |
CN108768233A (en) * | 2018-06-28 | 2018-11-06 | 中车株洲电力机车有限公司 | The permanent magnet synchronous motor track with zero error system and method for discrete domain complex vector modeling |
CN109302111A (en) * | 2018-10-17 | 2019-02-01 | 山东大学 | Hybrid Position Observer and Position Sensorless Servo System of Permanent Magnet Synchronous Motor |
Non-Patent Citations (3)
Title |
---|
XIN WEN, YAN ZHANG, YAHONG LIN: "Observability Analysis and EKF-Based Sensorless Control of Permanent Magnet Synchronous Machine", 《PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE》 * |
冯晓彤: "永磁同步电机的无速度传感器控制算法研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技Ⅱ辑》 * |
李跃: "基于扩展卡尔曼滤波无位置传感器永磁同步电机控制系统的研究", 《中国优秀硕士学位论文全文数据库(电子期刊) 工程科技Ⅱ辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111106766A (en) * | 2019-12-22 | 2020-05-05 | 同济大学 | Control switching transition method, system and control method for reluctance synchronous motor |
CN112600477A (en) * | 2020-12-09 | 2021-04-02 | 青岛大学 | Sensorless control method for absolute position of multi-pole motor rotor |
CN114900094A (en) * | 2020-12-09 | 2022-08-12 | 青岛大学 | Sensorless Control Method of Rotor Absolute Position of Multi-pole Motor |
CN114900094B (en) * | 2020-12-09 | 2024-10-15 | 青岛大学 | Sensorless control method for absolute rotor position of multi-pole motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
An et al. | Frequency-adaptive complex-coefficient filter-based enhanced sliding mode observer for sensorless control of permanent magnet synchronous motor drives | |
CN109428525B (en) | Parameter self-correction-based maximum torque current ratio control method for permanent magnet synchronous motor | |
CN107046387B (en) | Variable PID parameter current loop starting method of permanent magnet synchronous motor | |
CN103607155B (en) | Based on the permagnetic synchronous motor method for controlling position-less sensor of rotatory current vector | |
Tang et al. | IPMSMs sensorless MTPA control based on virtual q-axis inductance by using virtual high-frequency signal injection | |
CN112713834B (en) | Permanent magnet synchronous motor position sensorless control method and system | |
CN111262486A (en) | Permanent magnet synchronous motor control method | |
CN110048655A (en) | The New method for sensorless control technique of PMSM of back-emf fundamental extraction | |
Geng et al. | Sensorless fault-tolerant control strategy of six-phase induction machine based on harmonic suppression and sliding mode observer | |
CN103701386A (en) | Flux linkage error observation-based acquisition method of full-order flux linkage observer of asynchronous motor without speed sensor | |
CN104836504A (en) | Adaptive fault tolerant control method with salient pole permanent magnet synchronous motor precise torque output | |
CN111404433A (en) | Method for controlling maximum torque current ratio of built-in permanent magnet synchronous motor | |
CN102647134A (en) | An efficiency optimization control method for permanent magnet synchronous motor without angle sensor | |
CN113422550B (en) | Low carrier ratio control method for high-speed motor based on complex vector decoupling and delay compensation | |
CN109951117A (en) | A position sensorless permanent magnet synchronous motor control system | |
Uzel et al. | Self-sensing control of wound rotor synchronous motor drive for mine hoist | |
CN108880380B (en) | An optimal torque angle control system for a built-in permanent magnet synchronous motor | |
Chi | Position-sensorless control of permanent magnet synchronous machines over wide speed range | |
CN110212838A (en) | A kind of method for controlling position-less sensor extracting optimal rotor-position | |
CN110492806B (en) | Online parameter compensation method of permanent magnet synchronous motor under weak magnetic control | |
CN110649851B (en) | Multi-parameter decoupling online identification method for asynchronous motor | |
CN116345974A (en) | Five-phase induction motor speed sensorless vector control method, system and terminal | |
CN110336504B (en) | Permanent magnet synchronous motor control method based on virtual signal injection and gradient descent method | |
CN104836501B (en) | A kind of method of permasyn morot on-line parameter identification | |
CN113141133B (en) | Parameter identification method and system of modular multi-winding permanent magnet motor based on least squares method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
AD01 | Patent right deemed abandoned |
Effective date of abandoning: 20220311 |
|
AD01 | Patent right deemed abandoned |