CN110121421A - 光学器件的三维打印 - Google Patents
光学器件的三维打印 Download PDFInfo
- Publication number
- CN110121421A CN110121421A CN201780080530.3A CN201780080530A CN110121421A CN 110121421 A CN110121421 A CN 110121421A CN 201780080530 A CN201780080530 A CN 201780080530A CN 110121421 A CN110121421 A CN 110121421A
- Authority
- CN
- China
- Prior art keywords
- polymerizable mixture
- optical element
- substrate
- printing
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/364—Conditioning of environment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00009—Production of simple or compound lenses
- B29D11/00432—Auxiliary operations, e.g. machines for filling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
- B29L2011/0016—Lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Eyeglasses (AREA)
Abstract
本申请公开了用于制造包括眼科装置在内的光学元件的三维沉积打印方法,通过控制聚合混合物中氧气含量和打印环境来实现用于图像质量光学性能的形式精确度和表面光滑度。
Description
发明领域
本发明涉及能够通过三维打印技术制备的聚合物光学元件(特别是眼科器件)的领域。
发明背景
对于通过自由基聚合固化的涂层来说氧气抑制是一个问题(Arcenaux,Jo Ann,Mitigation of oxygen inhibition in UV LED,UVA and low intensity UV cure,Allnex,U.S.A.(2014);Kiyoi,Ed.,The State of UV-LED curing:An Investigation ofChemistry and Applications,Radtech Report,Issue 2(2013),pp.33-34;Odian,G.,Principles of Polymerization,McGraw Hill(1981),p.249;Decker,C.,J.CoatingTechnology(1987),NO.751,pp.59-65;Calo,E.and Khutoryanskiy,V.V.,EuropeanPolymer J.,65(2015),pp.254-255)。
因为氧气以约21%的量存在于空气中,在聚合物材料的能量固化过程中自由基聚合的氧气抑制是需要解决的非常相关的问题。有数种方法被用于减少或克服氧气抑制。US2003/0164571公开了一种模内涂布方法。US2010/0259589A1公开了一种不要求完全抽空环境氧气的惰性UV喷墨打印方法。
接触镜制造(Calo and Khutoryanskiy(2015))在过去几十年中已从车床切削发展到旋转浇铸成型再到浇铸成型(这仍然是最成本有效的工艺)。接触镜的浇铸成型包括将可聚合单体的可固化混合物沉积在由两个模具部分形成的模腔中,固化所述单体混合物,拆卸所述模具组件和移除镜片。一个模具部分形成前透镜表面,另一个模具部分形成后透镜表面。由于光学质量的金属插件的制造和随后的塑料模具的注射成型以及在这些工艺中每一个中相关的浪费,浇铸成型的成本仍然很高。这与管理大量SKU的库存相结合,通过镜片成型工艺制造的接触镜家族只能有有限数量的屈光度变化和/或基本曲线、直径等的选择。
有几篇涵盖材料和浇铸成型工艺的专利。WO 87/04390,US 5,271,875,US 5,843,346,US 6,861,123和US 5,760,100。US 7,860,594 B2公开了利用立体平版打印生产眼科器件的方法。CLIP“连续液体界面生产”方法被公开在WO 2014126837 A2中。
其它方法如透镜的自由形成已经被公开。US 9,180,634和US 9,266,294公开了用于生产眼科透镜前体中的一者或两者的方法,其中一个表面的至少一部分由反应性混合物自由形成。
WO 2016/014563 A1(Chapoy)公开了使用3维打印机生产复曲面透镜和其它特殊透镜的方法,以便在现有透镜上增加特殊特征。EP 2,392,473 B1和US 8,840,235 B2(二者都属于Luxexcel Holding BV)公开了通过喷射透明打印油墨的液滴并通过UV辐射固化所述沉积的液滴来在基材上打印光学结构的方法。
发明目的
鉴于现有技术,显然需要制造光学元件如基于水凝胶的眼科器件的方法,该方法使浪费最小化和降低成本并且具有制造定制和特殊光学元件(例如眼镜镜片、接触镜和人工晶状体)的灵活性。
发明概述
如上面指出的,在单体材料和预聚物的自由基聚合中氧气是关键的变量。这对于眼科器件如含有相对低水平交联剂的水凝胶的那些器件(其在聚合后将被水合并且可能非常容易因聚合物网络的变化而变形)尤其相关。已经发现,在聚合期间,如果在光学器件的一侧(侧面1)的氧气浓度高于另一侧,则侧面1可能比另一侧相对更多地膨胀,并且可能发生光学性能的扭曲。
在3D打印工业中,相对“高”浓度的引发剂、高强度的UV光能量以及氧气清除剂、蜡或涂层常被用于控制氧气的影响。然而,迄今为止,这些都没有被证明能够制造高图像质量的光学器件。
本发明采用了新方法,通过将氧气的存在和浓度控制在低水平并同时在调节的浓度中,使用3D打印来生产光学元件如眼科器件。本发明人已经发现,必须相应于环境气氛中氧气的水平控制可聚合混合物中氧气的水平,以获得光学元件的所需尺寸和所得光学性能。该原则还可以被扩展以包括在其上发生沉积打印的基材。因此,在聚合工艺过程中氧气水平应被保持在预定的水平。
因此,在第一方面,本发明涉及用于光学元件的三维沉积打印的方法,在该方法中将可聚合混合物的多个液滴在受控的气氛下沉积到基材的表面上,由此形成所述可聚合混合物的液滴的连续层,其中所述受控的气氛具有最多5.0体积%的氧气浓度,和其中所述可聚合混合物的氧气平衡浓度最多为8.0体积%。
附图的简要说明
图1是3D打印系统110的一个示意性实例,其显示了用于沉积可聚合混合物的液滴的一个或多个3D打印头101和101A、一个或多个LED紫外光源105和106(其可以含有一个或多个相同或不同发射光波长的UV LED)、基材104(在本例中为曲面)和已经在所述基材上构建的说明性透镜103,所有这些都容纳在外壳114中,该外壳114具有一个或多个用于在外壳114内提供受控气氛109的端口107和108。
图2是一个替代的3D打印系统110的示意图。使用与图1相同的附图标记(3D打印头101和101A,LED UV光源105和106,基材104,具有一个或多个端口107和108的外壳114)。另外,图2的实施方案显示了氧气传感器102、用于将部件移入和移出外壳114的门111、UV阻挡屏112和致动结构113(例如带驱动器或线性驱动器),所述致动结构113被配置为提供所述基材104和所述一个或多个3D打印头101,101A和/或所述一个或多个LED UV光源105,106之间的相对运动。
发明的详细公开
在以下讨论中,眼科透镜将被用于举例说明和讨论的目的,然而所述原则能够被更广泛地用于要求精确尺寸形状和光学性质以及通常类似的均匀聚合物性质的任何光学元件中。
从聚合物合成的观点来看,使用单体或“墨”的液滴三维沉积打印与诸如车床加工、浇铸成型、立体平版印刷和大桶3D打印以及树脂3D打印之类的传统方法非常不同,因为将可聚合混合物输送到基材上的方式和随后的用于构建制品的层状物显著不同。所述可聚合混合物被通过气体气氛在高速下以极小液滴(典型地1-15皮升量)的形式递送,具有相当高的表面与体积比。当考虑形成25毫克透镜所需的液滴数目(估计在一百五十万和九百万之间)时,必须考虑几个因素。这些因素包括但不限于:暴露于环境工艺条件,当材料冲击基材时所得材料层的厚度,基材和所述冲击液滴的相互作用/润湿,后续层和固化/聚合之间的暴露时间。因此,存在暴露于和吸收来自接收基材表面和先前沉积的液滴,特别是来自环境工艺气氛(在此,所述受控的气氛)的氧气的显著机会;如果不考虑和控制这样的因素,则表面和包括光学性质在内的整体性质都将受到不利影响。
当使用水凝胶材料如甲基丙烯酸2-羟乙酯(HEMA)或软性接触镜和软性人工晶状体中使用的其它单体生产透镜时,更容易了解氧气的影响。在这些材料中,在吸收水之后最终固化透镜中的变化更明显。与本体相比,存在更多氧气的表面或表皮区域含有更多的聚合物网络缺陷,允许更多的水在这些区域中被吸收。在这些表皮区域中产生的变形通常对整体机械性能(模量,拉伸强度,伸长率)、光学性质(透光率,折射率等)、形状和部件与部件的可重复性具有负面影响。
通过相应于受控气氛的氧气含量调节可聚合混合物(PM)的氧气含量(如本文所述)的本发明,可以将氧气的影响控制到光学元件的性能没有受到太大影响的程度。在眼科器件,特别是接触镜和人工晶状体的情况下,产生光学处方的能力高度依赖于曲面的精确形状。通过使用本发明中所要求保护的原则,可以在这些和其它非眼科光学元件上产生这些所需的表面,从而能够实现使用3D沉积打印的益处,例如简单、效率、更多的设计自由度、更低的时间要求和成本。
由于氧气在聚合过程中的影响和因此对性能的负面影响已经被消除或显著减少,本发明的另一个实施方案是在聚合物基质形成过程中在层中控制聚合混合物在沉积后的移动。这对于产生弯曲的、任意的或不规则的表面或形状可能是至关重要的,并且在产生要求精确曲面的复杂光学器件时更是如此。因此,在光学产品应用中克服氧气抑制和控制聚合混合物的移动的组合效果将很可能减少和甚至消除光学伪影和变形。
因此,本发明提供了用于光学元件如眼科器件的三维沉积打印的方法,在该方法中将可聚合混合物的多个液滴在受控的气氛下沉积到基材的表面上,由此形成所述可聚合混合物的液滴的连续层。
本发明的一个令人感兴趣的特征是可聚合混合物中氧气浓度被相应于受控气氛的氧气浓度进行调节(并且在某些实施方案中还相应于受控气氛的氧气浓度调节环境的其它部分,特别是在其上沉积液滴的基材中的氧气浓度),使得氧气从一个源向另一个源的迁移被避免或至少被抑制到不显著的程度。
定义
当在本文中使用时,表述““X”的可聚合混合物的氧气平衡浓度”意图指如果假设允许所述混合物在1.0大气压(1013毫巴)下与氧气浓度为X%的气氛平衡所获得的可聚合混合物中氧气浓度。
本文中使用的术语“光学元件”意图包括但不限于眼科器件,在工业应用中使用的透镜,内窥镜用透镜,检查器件,光纤器件,相机镜头,望远镜头等。目前特别感兴趣的光学元件的实施方案是眼科器件。
在一些实施方案中,所述光学元件具有嵌入其中的一个或多个物体,例如选自插入物、电子器件和功能性添加剂释放贮库或贮存器的固体物体。
在其它一些实施方案中,所述光学元件包括一种或多种功能活性物质,包括生物活性物质。
本文中使用的“眼科器件”是位于眼睛前方或驻留在眼睛或眼睛的任何部分中或在眼睛或眼睛的任何部分上的任何器件,所述眼睛的任何部分包括角膜、眼睑和眼腺。这些器件能够提供光学校正、化妆增强(例如用于虹膜颜色)、视力增强、治疗益处(例如作为绷带镜片)或递送治疗剂的器件,所述治疗剂是例如润滑剂、润湿剂、活性药物成分(API)和生物制剂,它们可以具有抗炎、抗过敏、抗菌、抗感染、抗高血压等性能,或递送眼部健康用营养保健品、维生素和抗氧化剂,或上述任何一种的组合。眼科器件的说明性实例包括选自眼镜镜片,接触镜(例如软性接触镜或硬性接触镜),人工晶状体,覆盖透镜,角膜植入物(例如角膜镶嵌植入物)和眼科/眼插入物的那些器件。
特别感兴趣的眼科器件是选自透镜,特别是接触镜和人工晶状体的那些。
在一个实施方案中,所述眼科器件是接触镜,特别是“软的”接触镜,即水凝胶材料的接触镜。
术语“水凝胶”是指已经吸收水(“溶胀”)至其至少10重量%的水含量的交联聚合物。优选地,这样的水凝胶材料具有至少20重量%,例如至少25重量%,最多达70-90重量%的水含量。吸收水的能力可以如实验细节-测量水凝胶器件的水含量的方法部分中所描述的那样来确定。
本文中使用的术语“可聚合混合物”(有时被称为“PM”)是指在暴露于外部能量(例如光化辐射280-450nm(如紫外线或蓝光)或热)时能够经历聚合以形成聚合物或聚合物网络的组分(反应性组分和可能地还有非反应性组分)的液体混合物。典型地,所述混合物包含反应性组分如单体,大分子单体,预聚物,交联剂,和引发剂。而且,所述可聚合混合物可以还包含其它成分如添加剂,例如润湿剂,脱模剂,染料,光吸收化合物如UV吸收剂和光致变色化合物(它们中的任何一种都可以是反应性的或非反应性的但是能够被保留在所得到的眼科器件中),以及药物,维生素,抗氧化剂和营养化合物。应当理解,可以基于被制造的眼科器件及其预期用途添加各种各样的添加剂。
所述混合物是“可聚合的”的事实典型地暗示其一种或多种成分(如单体,大分子单体,预聚物,交联剂等)包含至少一个可聚合的官能团,例如烯属不饱和基团,例如(甲基)丙烯酸酯、(甲基)丙烯酰胺、乙烯基、N-乙烯基内酰胺、N-乙烯基酰胺和苯乙烯基官能团是这样的情况。
在一些实施方案中,所述可聚合混合物含有至少一种亲水组分。在一个实施方案中,所述亲水组分可以选自亲水单体,例如已知可用于制备水凝胶的那些。
本文中使用的“亲水的”意味着在25℃在弱酸性(pH介于5和7之间)或弱碱性条件(pH在7-9的范围内)下至少5克的所述一种或多种化合物可溶于100mL去离子水中,和在一些实施方案中在25℃在弱酸性或弱碱性条件下至少10克的所述一种或多种化合物可溶于100mL去离子水中。与此相反,“疏水的”意味着在25℃在弱酸性或弱碱性条件下5克所述化合物不完全溶解在100mL去离子水中。化合物的溶解性可通过目视观察确认,任何可见的沉淀物或浊度表明该化合物是疏水的。在混合或搅拌约8小时后测定溶解度。
一类合适的亲水单体包括含有丙烯酸型基团或含有乙烯基的单体。这样的亲水单体本身可以被用作交联剂,然而当使用具有超过一个可聚合官能团的亲水单体时,如上所述它们的浓度应被限制,以提供具有所希望的模量的接触镜。
术语“乙烯基型”或“含有乙烯基的”单体是指含有乙烯基基团(-CH=CH2)且能够聚合的单体。亲水的含有乙烯基的单体的实例包括但不限于诸如下列的单体:N-乙烯基酰胺,N-乙烯基内酰胺(例如N-乙烯基吡咯烷酮(“NVP”)),N-乙烯基-N-甲基乙酰胺,N-乙烯基-N-乙基乙酰胺,和N-乙烯基-N-乙基甲酰胺,N-乙烯基甲酰胺。备选的含有乙烯基的单体包括但不限于1-甲基-3-亚甲基-2-吡咯烷酮,1-甲基-5-亚甲基-2-吡咯烷酮,和5-甲基-3-亚甲基-2-吡咯烷酮。
“丙烯酸型”或“含有丙烯酸型基团的”单体是含有丙烯酸型基团的那些单体(CH2=CRCOX,其中R是H或CH3,和X是O或N),它们也被知道是容易聚合的,例如N,N-二甲基丙烯酰胺(“DMA”),甲基丙烯酸2-羟乙酯(“HEMA”),甘油甲基丙烯酸酯,2-羟乙基甲基丙烯酰胺,聚乙二醇单甲基丙烯酸酯,甲基丙烯酸,和它们的混合物。
可以用在本发明中的其它亲水单体包括但不限于聚氧乙烯多元醇,其一个或多个末端羟基被含有可聚合双键的官能团替代。实例包括聚乙二醇,乙氧基化的C1-20烷基葡糖苷,和与一个或多个摩尔当量的封端基团如甲基丙烯酸异氰酸根合乙酯(“IEM”)、甲基丙烯酸酐、甲基丙烯酰氯、乙烯基苯甲酰氯等反应的乙氧基化的双酚A,以产生具有一个或多个末端可聚合烯属基团的聚乙二醇,所述末端可聚合烯属基团通过诸如氨基甲酸酯或酯基的连接部分键合于所述聚乙二醇。其它合适的亲水单体对于本领域技术人员而言是显而易见的。
在一个实施方案中,所述亲水组分包含至少一种亲水单体,例如DMA,HEMA,甘油甲基丙烯酸酯,2-羟乙基甲基丙烯酰胺,NVP,N-乙烯基-N-甲基丙烯酰胺,聚乙二醇单甲基丙烯酸酯,和它们的组合。在另一个实施方案中,所述亲水单体包含下列中至少之一:DMA,HEMA,NVP和N-乙烯基-N-甲基丙烯酰胺以及它们的混合物。在另一个实施方案中,所述亲水单体包含DMA和/或HEMA。
所述一种或多种亲水组分(例如一种或多种亲水单体)可以以宽范围内的量存在,取决于所希望的性能的具体平衡。在一个实施方案中,所述亲水组分的量为最多60重量%,例如为5-40重量%,基于所有反应性组分计。
疏水的含硅氧烷的组分(或者硅氧烷组分)是在单体、大分子单体或预聚物中含有至少一个[—Si—O—Si]基团的那些组分。在一个实施方案中,所述Si和连接的O以大于20重量%,例如大于30重量%的量存在在所述含硅氧烷的组分中,基于所述含硅氧烷的组分的总分子量计。有用的含硅氧烷的组分包括可聚合的官能团,例如丙烯酸酯,甲基丙烯酸酯,丙烯酰胺,甲基丙烯酰胺,N-乙烯基内酰胺,N-乙烯基酰胺,和苯乙烯基官能团。
还有,可以单独或组合使用交联单体,包括二甲基丙烯酸乙二醇酯,三甲基丙烯酸三羟甲基丙烷酯,三甲基丙烯酸甘油酯,聚乙二醇二甲基丙烯酸酯(其中所述聚乙二醇具有最高为例如400的分子量),和其它多丙烯酸酯和多甲基丙烯酸酯。所述交联单体被以常规的量使用,例如0.1-5重量份/100重量份所述可聚合混合物,优选0.2-3重量份/100重量份所述可聚合混合物。
可以使用的其它单体包括甲基丙烯酸,其被使用以影响水凝胶在平衡时吸收的水的量。甲基丙烯酸通常被以0.2-8重量份/100份亲水单体如HEMA的量使用。可以存在在所述聚合混合物中的其它单体包括甲基丙烯酸甲氧基乙酯、丙烯酸等。
如上面提到的,本发明的特征之一是疏水单体可以被包括在所述可聚合混合物中而不会遇到不相容问题至聚合HEMA基共聚物的现有技术方法遇到这样的问题的程度。
在一些实施方案中,所述可聚合混合物包含甲基丙烯酸羟乙酯(HEMA)或丙烯酸羟乙酯(HEA)单体,优选包含甲基丙烯酸羟乙酯(HEMA)单体。
在一些实施方案中,所述可聚合混合物包含不是甲基丙烯酸羟乙酯或丙烯酸羟乙酯单体的甲基丙烯酸酯或丙烯酸酯单体。
在一些实施方案中,所述可聚合混合物包含反应性硅氧烷单体或低聚物。
在另一个实施方案中,所述可聚合混合物在聚合后提供在水中不溶胀(即不能吸收以获得超过2重量%的水含量)的聚合物。
一种或多种聚合引发剂可以被包括所述反应混合物中。聚合引发剂的实例包括但不限于在温和升高的温度下产生自由基的化合物如过氧化月桂酰、过氧化苯甲酰、过碳酸异丙酯、偶氮二异丁腈等,以及光敏引发剂体系如芳族α-羟基酮,烷氧基氧基苯偶姻,苯乙酮类,酰基膦氧化物,双酰基膦氧化物,和叔胺加二酮,它们的混合物等。光敏引发剂的说明性实例是1-羟基环己基苯基酮,2-羟基-2-甲基-1-苯基-丙-1-酮,双(2,6-二甲氧基苯甲酰基)-2,4-4-三甲基戊基膦氧化物(DMBAPO),双(2,4,6-三甲基苯甲酰基)-苯基氧化膦(Irgacure 819),2,4,6-三甲基苄基二苯基氧化膦和2,4,6-三甲基苯甲酰基二苯基氧化膦,苯偶姻甲酯以及樟脑醌和4-(N,N-二甲氨基)苯甲酸乙酯的组合。市售的紫外和可见光敏引发剂体系包括但不限于Irgacure 和Irgacure(得自Ciba SpecialtyChemicals)和Lucirin TPO引发剂(可得自BASF)。市售的UV光敏引发剂包括Irgacure 651,Darocur 1173和Darocur 2959(得自Ciba Specialty Chemicals)。这些和可以使用的其它光敏引发剂被公开在Photoinitiators for Free Radical Cationic&AnionicPhotopolymerization,2nd Edition by J.V.Crivello&K.Dietliker;edited byG.Bradley;John Wiley and Sons;New York;1998,第III卷。
所述聚合引发剂被以有效量如0.1-2重量%用在所述反应混合物中,以引发反应混合物的聚合。可以使用适当选择的热或可见光或紫外光或其他方法引发反应混合物的聚合,取决于所用的聚合引发剂。或者,在没有光敏引发剂的情况下可以使用例如电子束进行引发。然而,当使用光敏引发剂时,优选的引发剂是双酰基膦氧化物,例如双(2,4,6-三甲基苯甲酰基)-苯基氧化膦(Irgacure)或1-羟基环己基苯基酮和DMBAPO的组合,和在另一个实施方案中,聚合引发的方法是通过可见光活化。
在一个实施方案中,所述反应混合物包括一种或多种内润湿剂。内润湿剂可以包括但不限于高分子量的亲水聚合物。内润湿剂的实例包括但不限于聚酰胺如聚(N-乙烯基吡咯烷酮)和聚(N-乙烯基-N-甲基乙酰胺)。
所述一种或多种内润湿剂可以以宽范围内的量存在,取决于所希望的具体参数。在一个实施方案中,所述一种或多种润湿剂的量为最多50重量%,例如5-40重量%,例如6-30重量%,基于所有反应性组分计。
而且,所述可聚合混合物可以含有一种或多种辅助组分,其选自但不限于螯合剂,聚合抑制剂,粘度调节剂,表面张力调节剂,玻璃化转变调节剂,增容组分,紫外吸收化合物,药剂如眼用药物,眼用缓和剂,赋形剂,抗微生物化合物,可共聚和不可聚合的染料,脱模剂,反应性着色剂,颜料和螯合剂,以及它们的组合。在一个实施方案中,这样的辅助组分的总和可以高达20重量%。
所述可聚合混合物典型地通过其组分的简单混合来制备。
在一个实施方案中,反应性组分(例如亲水单体、润湿剂和/或其它组分)被在有或没有惰性稀释剂的情况下混合在一起以形成所述反应混合物。这些稀释剂具有额外的优点,即控制眼科器件在水合后的膨胀,有助于组分的溶解性以及调节玻璃化转变温度。
合适的稀释剂类型包括但不限于具有3-20个碳原子的醇,衍生自伯胺的具有10-20个碳原子的酰胺,具有3-10个碳原子的醚、聚醚、酮,和具有8-20个碳原子的羧酸。随着碳原子数目增加,极性结构部分的数目也可以增加以提供所希望的水混溶性水平。在一些实施方案中,伯醇和叔醇是优选的。优选的类型包括具有4-20个碳原子的醇和具有10-20个碳原子的羧酸。
在一个实施方案中,所述稀释剂选自1,2-辛二醇,叔戊醇,3-甲基-3-戊醇,癸酸,3,7-二甲基-3-辛醇,2-甲基-2-戊醇,2-乙基-1-丁醇,3,3-二甲基-2-丁醇,三聚丙烯甲基醚(TPME),乙酸丁氧基乙基酯,它们的混合物等。
在一个实施方案中,所述稀释剂选自在水中具有一定溶解度的那些。在一些实施方案中,至少约3%的所述稀释剂可与水混溶。可溶于水的稀释剂的实例包括但不限于1-辛醇,1-戊醇,1-己醇,2-己醇,2-辛醇,3-甲基-3-戊醇,2-戊醇,叔戊醇,叔丁醇,2-丁醇,1-丁醇,乙醇,癸酸,辛酸,十二碳酸,1-乙氧基-2-丙醇,1-叔丁氧基-2-丙醇,EH-5(可商购自Ethox Chemicals),2,3,6,7-四羟基-2,3,6,7-四甲基辛烷,9-(1-甲基乙基)-2,5,8,10,13,16-六氧杂十七烷,3,5,7,9,11,13-六甲氧基-1-十四烷醇,它们的混合物等。醇的酯如醇的硼酸酯是稀释剂的其它实施方案。
稀释剂的量典型地为最多60重量%,例如10-60重量%,例如20-50重量%,基于总的可聚合混合物计。
在一些实施方案中,所述可聚合混合物包括量为0.5-5.0重量%的一种或多种交联剂,量为0-60.0重量%的一种或多种非反应性稀释剂(例如多元醇,多元醇的酯或多元醇的醚,例如甘油和甘油酯),和量小于100.0ppm、优选小于50.0ppm的一种或多种聚合抑制剂,基于所述可聚合混合物的重量计。
所述可聚合混合物的粘度也可能有重要影响,并且典型地为1-25cP,例如2-15cP,特别是3-10cP。
如上面提到的,可聚合混合物的氧气平衡浓度优选为0.05-8.0体积%,例如0.2-6.0体积%,例如0.5-6体积%。出于实际原因陈述了所述下限(例如0.05%,0.1%,0.2%等),并且实现甚至更低的浓度是很可能的。
通过将可聚合混合物(先前在环境气氛(1013毫巴,21体积%O2)下混合)暴露于减压P,可以将可聚合混合物的氧含量调节至所需的水平(X),其中P=X*1013/21毫巴。随后,可以释放所述真空,并且可以将所述氧调节过的可聚合混合物在具有一定氧浓度的气氛下储存,该具有一定氧浓度的气氛对应于氧浓度为X的适当气氛。
在一些优选的实施方案中,所述受控气氛中的氧气浓度低于所述可聚合混合物的氧气平衡浓度。
3D-打印器件
通常使用常规喷墨打印头实现多个液滴的沉积。这样的常规打印头能够以一维图案(以线的形式)或以二维图案同时沉积多个液滴。为了速度和精确度的原因,优选所述喷墨打印头能够同时沉积可聚合混合物的二维图案,使得代表了眼科器件的尺寸的一层或多层所述可聚合混合物的液滴可以被打印。
更优选地,如在此公开的工作实施例的情况,可通过所述打印头实现的二维图案代表了至少为眼科器件的尺寸(“面积”)的尺寸(面积)。用于此目的的合适的市售打印头是来自Fujifilm的SambaTM打印头,例如SambaTM G3L打印头,其具有2048个喷嘴/模块,并且能够以1200原始dpi精度沉积大约2.4皮升原始墨滴尺寸至13.2皮升最大墨滴尺寸的液体。
通过3D打印装置沉积的每层液滴的图案是相应于目标光学元件的期望形状确定的。例如(在眼科器件的情况下),从测量患者眼睛收集的数据可以被用于产生输入。数据可包括例如光学特性、表面性能、大小和形状尺寸以及眼疾病状态的观察结果。可以基于计算机辅助设计(CAD)包或患者眼睛的扫描来创建三维(3D)可打印模型。患者眼睛扫描可以包括收集和分析代表患者眼睛的形状和外观的数字数据。基于收集的数据,然后可以产生目标眼科器件的三维模型。可以通过软件处理3D模型以将所述模型转换为一系列薄层并产生包含针对特定类型的3D打印机定制的指令的文档。
基材
将可聚合混合物的多个液滴沉积在基材的表面上。用于基材的合适材料是玻璃、聚烯烃如聚丙烯、聚苯乙烯等。
基材的形式通常应代表(非水合的)眼科器件的一侧的形状,即它通常是弯曲的。可以减小尺寸以便适合成品水合眼科器件的所需尺寸。基材可以通过车床加工,研磨,注塑和/或这些方法中的几种形成。由于这种形成,在部件中存在旋转轴。然而,基材本身也可以通过3D打印制备。因此,可以通过以相对任意的方式沉积液滴来形成基材的表面结构,而不受旋转的限制,这允许获得通过常规手段无法获得的光学表面形状。
为了调节基材表面的润湿性,可以用表面活性剂预处理所述表面,或者对所述表面进行UV、臭氧或等离子体处理,或上述的组合。因此,例如玻璃或聚合物基材可以用吐温80或聚硅氧烷表面活性剂如Dow Corning Additive 67,Additive 14,Additive 57,Xiameter OFX-0193等预处理。有时所述表面活性剂可以被包括在所述可聚合混合物中。
在一些实施方案中,所述基材中的氧气浓度也与所述受控气氛中的氧气浓度平衡。
为了获得与所述受控气氛中的氧气浓度平衡的基材中氧气浓度,可以在沉积液滴之前简单地使所述基材暴露于所述受控气氛(或相应的气氛),例如至少8小时的时间。
在一些实施方案中,基材可能仅能够在其中包含非常有限量的氧气,因此,可能没有必要对基材中的氧气浓度采取任何特定的预防措施。
在一个备选的实施方案中,所述基材本身是光学器件,例如眼科器件(例如常规的商业接触镜),其通过本文所述的方法进行修改,以便形成例如具有不同光学性能的最终眼科器件。
受控的气氛
在其中进行所述沉积打印的受控气氛起着重要作用,因为它应该优选地确保适当低的氧气浓度,利用该氧气浓度可以适当地控制可聚合混合物的氧气含量。
因此,典型地,所述受控的气氛具有最多5.0体积%的氧气浓度。在一些实施方案中,所述受控气氛中氧气浓度为最多2.0体积%,例如0.01-2.0体积%,例如0.03-1.5体积%,例如0.05-1.2体积%,例如0.1-1.1体积%,更优选最多1.0体积%。出于实际原因陈述了所述下限(例如0.01%,0.03%,0.05%等),并且实现甚至更低的浓度是很可能的。
可聚合混合物的沉积在其下发生的受控气氛最方便地处于1.0大气压(1013毫巴)的压力,其对应于21体积%的氧气浓度。通过将环境空气与另外的惰性气体如氮气、氦气、氩气等(优选氮气)混合,或者通过将纯氧气与另一种气体如氮气混合,可以适当地获得比在正常气氛中发现的21体积%低的氧气浓度。获得受控气氛的一种优选方法是使用氮气作为惰性气体来置换环境氧气,以达到所需水平的氧气浓度。
实际的氧气浓度可以通过氧气计监测并在程序开始时调节,并且优选地还在制备光学元件的过程中间歇地或连续地控制。
层的打印和固化
在本发明的方法中,将可聚合混合物的多个液滴在受控的气氛下沉积到基材的表面上,由此形成所述可聚合混合物的液滴的连续层。
可聚合混合物通常使用例如3D打印装置沉积,如上所述。
在一些实施方案中,各个液滴具有0.5-50pL,例如1-40pL或1.5-30pL如2.0-15pL的体积。
在一些实施方案中,将所述可聚合混合物的多个液滴沉积到所述基材的表面上,由此形成所述可聚合混合物的液滴的连续层,并且在用于形成所述眼科器件的液滴的连续层的最后一层沉积之后,所述沉积的连续层随后暴露于光化辐射或热。在其中所述沉积的连续层暴露于光化辐射,特别是UV光的变例中,所述可聚合混合物可以包括光敏引发剂。在其中所述沉积的连续层暴露于热的变例中,所述可聚合混合物可以包括热引发剂。
在其一些变例中,在每个液滴层沉积之后,所述沉积的连续层暴露于光化辐射(例如UV光)。特别地,通过这样的间歇暴露于光化辐射(例如UV光)而获得的聚合度通常仅用于获得可聚合混合物的凝胶化的目的,以确保在沉积后续层时各层的液滴保持在适当位置。
因此,在一些实施方案中,将可聚合混合物的多个液滴沉积到基材的表面上,由此形成所述可聚合混合物的液滴的连续层,所述沉积的连续层可以任选地在每一层的沉积之后暴露于光化辐射和/或在用于形成所述光学元件的液滴的连续层的最后一层沉积之后暴露于光化辐射。
在其一些变例中,在将沉积的层暴露于间歇光化辐射之前,可以沉积一系列连续层如2-20层。
在一些实施方案中,每一层的最大厚度为最多50μm,特别是最多25μm。
在一些实施方案中,所述可聚合混合物含有一种或多种聚合引发剂,例如选自热引发剂和光敏引发剂。
在其一个变例中,所述可聚合混合物含有对不同波长的光化辐射具有响应性的多种光敏引发剂,例如两种光敏引发剂。当希望利用一个波长的UV光进行间歇曝光(凝胶化)和利用另一个波长的UV光进行光学元件的最终固化时,这是特别有意义的。
因此,在一个实施方案中,将第一聚合引发剂用于构建连续层,和将第二聚合引发剂用于完成固化过程。
在包括权利要求书在内的本申请中,术语“光化辐射”应被理解为波长在280-450nm范围内的辐射。在一些实施方案中,适用的辐射具有对应于UVA和蓝光的、在315-450nm范围内的波长。
除了控制可聚合混合物中的氧气含量外,本发明的一些实施方案还通过仔细控制聚合来解决上面讨论的一些挑战,使得在制造光学元件时,在沉积后各个层中的聚合度被限制为凝胶化程度以停止或实质上减缓聚合混合物的运动,同时允许随后的液滴和层融合并形成结构而没有变形。用于这种凝胶化过程或胶凝的另一个所使用的流行术语是“UV钉扎”。这是将一定剂量的紫外(UV)光施加到可UV固化油墨(UV油墨)的过程。光的波长必须与墨的光化学性能正确匹配。结果,墨滴转变到更高的粘度状态,但是没有完全固化。如前所述这也被称为墨的“胶凝”。UV钉扎或凝胶化(或胶凝)提高流动和形状的管理,并提供最高的可能图像质量。
在一些实施方案中,这主要通过光敏引发剂的选择和浓度、交联剂的选择和浓度以及UV光源、光强度和曝光持续时间来实现。光化辐射源的实例可包括发光二极管(“LED”)或灯泡、激光器等。
在一个具体的实施方案中,在两个不同波长处吸收的两种光敏引发剂与相应的UVLED光源(例如365nm和400nm)一起使用。该概念是一种引发剂以能够开始可聚合混合物的凝胶化但不足以完成聚合的浓度存在。这使得在最终固化之前每个单独的层能够达到相同的相对转化度。整个光学元件的最终聚合作为单独的步骤使用第二光敏引发剂/UV LED光组合完成,产生光学功能所需的均匀聚合物网络。作为其替代方案,使用在Tg或高于Tg下有活性的热引发剂代替所述第二光敏引发剂或作为所述第二光敏引发剂的补充,以完成固化。还观察到,在连续层的沉积过程中以及在最终固化步骤期间,如果不控制可聚合混合物的氧含量,则抑制作用将不利地影响聚合物网络的均匀性,甚至可能导致不完全固化和发粘的产品。
在其中所述沉积打印是在曲面上的一些实施方案中,可以将第一层或前几层沉积为在曲面上的点图案,但是其它采用上述方法。所述点图案将具有这样的尺寸,使得表面张力将所述点图案保持在适当位置直到部分固化。随后来自打印头的液滴的沉积将填充第一层或前几层留下的空间,直到建立完整的层作为基础层以在其上构建最终的光学元件。点图案的替代方案是沉积液滴以形成非常薄的层(例如1微米至8微米)并构建具有许多这种薄层的光学元件。
在3D打印中,主要问题之一是打印头中的墨过早凝胶化或聚合。更换打印头、修理时间和生产损失可能是昂贵的。当与反应性单体一起使用低水平抑制剂并实施低氧气水平时,这种担忧要大得多。非常希望最小化或消除这种可能。为了实现材料的同时打印和UV钉扎以在最终固化之前停止或减缓所述墨或可聚合混合物一旦沉积后的移动直到所有层被添加,本发明的一个实施方案是隔离UV光源与所述打印头,基本上消除或实质性减少打印头中凝胶化/聚合的可能。将打印头与UV源隔离并使用本发明的控制氧气水平和聚合混合物移动的原则,允许制造精确的形状和光学器件而不会在基质中产生可能不利地影响最终透镜的光学性能的伪影。
在施加各个连续层之后但在进行最终固化之前,优选不进行用溶剂或水的洗涤,例如为了除去过量的单体。
在一个实施方案中并且参考图1和2,以框图描述了系统110。基材104可以定位在一个或多个3D打印设备附近,例如下方。“下方或下面”的关系源自重力方向。该系统包括具有打印头101的3D打印装置和具有打印头101A的另一3D打印装置,其将可聚合混合物(PM)的液滴分散到基材104上,从而以目标光学元件103的所需形状形成PM的连续层。
在将PM的液滴施加到基材上之后,通过光化辐射源105将光化辐射如紫外线或蓝光供给给所述PM的一个或多个层。最终固化可以在光化辐射源106下方在不同波长下进行。所述最终固化可任选地在升高的温度下进行。
按照一些实施方案,系统110的第一打印头101可以提供第一PM,第二打印头101A可以提供与所述第一PM组成上不同并且可以包括功能添加剂的第二PM或非可聚合混合物(例如功能添加剂或含有功能添加剂的溶剂)。
所述系统110内的环境条件(特别是就所述受控气氛109的氧含量而言,但是可能地还就温度、环境光等而言)典型地被控制。
在其中基材104能够透射光化辐射的情况下,辐射源105和106可以都或单独地或交替地位于基材104下方或与基材104成一定角度以及如图1中所示。
可以控制周围气体环境的性质,例如通过使用通过入口107,108的吹扫氮气。可以进行吹扫以将氧气分压增加或降低至预定水平。
图2显示了类似于图1的系统的3D打印系统110,其包括致动结构113,该致动结构113被配置为提供所述基材104与所述一个或多个3D打印头101,101A和/或所述一个或多个LED UV光源105,106间的相对运动。因此,基材104可相对于所述一个或多个3D打印头101,101A和/或所述一个或多个LED UV源105,106移动;或者所述一个或多个3D打印头101,101A和/或所述一个或多个LED UV源105,106可相对于所述基材104移动。尽管皮带驱动器被例示为所述致动结构113,但是可以使用其他安排。致动结构113被联接到所述一个或多个打印头,使得基材104/打印头101,101A的相对运动可以与来自所述一个或多个打印头的材料的沉积相协调。
利用上面描述的系统,所述光学元件可以通过多个打印头形成,其中第一打印头分散第一可聚合混合物的液滴,并且一个或多个另外的打印头各自分散选自所述第一可聚合混合物、与所述第一可聚合混合物组成不同的第二可聚合混合物和非可聚合混合物的组合物的液滴。
在一些实施方案中,所述第一和/或第二可聚合混合物包含功能活性物质,和/或所述非可聚合混合物包含功能活性物质,例如呈溶解形式的这样的物质。
眼科器件从基材的释放和后处理
在制备光学元件(例如眼科器件)之后,通常将所述器件从所述基材上释放。尽管意图在制备过程中光学器件与基材充分物理结合,但应注意在包括固化在内的其制备过程中在光学元件和基材之间不会形成共价键。
眼科器件可以通过物理手段从基材释放(或移除),从而能够以各种方式操纵所述器件,例如利用洗涤去除副产物、浸泡在缓冲盐水中、着色、标记和包装。而且,特别是当所述眼科器件是水凝胶聚合物时,可以用水或缓冲盐水溶液浸泡所述眼科器件以允许其膨胀并由此使得能够从基材释放。脱模剂是化合物或化合物的混合物,当与水结合时,脱模剂减少了从基材释放接触镜所需的时间,与使用不包含所述脱模剂的水溶液释放这样的镜片所需的时间相比。
尽管通常是优选的,但在从基材释放之前完成所述眼科器件的固化并不是严格必须的。
在一个实施方案中,在固化后,对所述透镜进行萃取以除去未反应的组分。萃取可以使用常规萃取流体如醇等有机溶剂进行,或者可以使用水或水溶液如缓冲盐水或其组合进行萃取。在各种实施方案中,萃取可以例如通过将镜片浸入水溶液中或将镜片暴露于水溶液流来完成。在各种实施方案中,萃取还可以包括例如以下操作中的一种或多种:加热水溶液;搅拌水溶液;将水溶液中的脱模助剂水平提高到足以引起镜片释放的水平;机械或超声波搅动镜片;和在水溶液中加入至少一种浸出助剂至足以促进从镜片中充分除去未反应组分的水平。前述操作可以以间歇或连续工艺进行,加入或不加入热、搅拌或两者。
所述眼科器件还可以通过已知的方法灭菌,例如但不限于高压灭菌和辐射灭菌。灭菌可以在包装之前或之后进行,优选在包装之后进行。
而且,所述光学元件如眼科器件可以被包装。所述眼科器件通常被包装在水溶液中。
对于水凝胶的眼科器件,所述包装可以包括在含有约0.9%氯化钠和合适缓冲剂如磷酸盐或硼酸盐缓冲体系的生理盐水溶液中包装。另外,包装溶液可以包括一种或多种功能活性物质,包括生物活性物质。
水溶液可以还包括另外的水溶性组分,例如脱模剂、润湿剂、润滑剂、活性药物成分(API)、维生素、抗氧化剂和营养组分,它们的组合等。在一个实施方案中水溶液包含小于10重量%的有机溶剂如异丙醇,在其他的一些实施方案中水溶液包含小于5重量%的有机溶剂如异丙醇,在另一个实施方案中水溶液不含有机溶剂。取决于组成,水溶液可能需要或可能不需要特殊处理,例如纯化、再循环或特殊处置程序。
在一个实施方案中,本发明的所述水凝胶器件的水含量包含至少30重量%水,在一些实施方案中至少50重量%水,在一些实施方案中至少70重量%水和在其它实施方案中至少90重量%水。
在一些实施方案中,所述可聚合混合物包含甲基丙烯酸羟乙酯(HEMA)单体,并且所述方法包括在水中溶胀所述光学元件,优选眼科器件的后续步骤,由此所述光学元件获得10-80重量%,优选35-70重量%的水含量。
在一些实施方案中,所述可聚合混合物包含不包括HEMA单体在内的丙烯酸酯单体,并且所述方法包括在水中溶胀所述光学元件,优选眼科器件的后续步骤,由此所述光学元件获得10-80重量%,优选35-70重量%的水含量。
在一些实施方案中,所述可聚合混合物包含反应性硅氧烷前体,并且所述方法包括在水中溶胀所述光学元件,优选眼科器件的后续步骤,由此所述光学元件获得5-70重量%,优选10-50重量%的水含量。
新型眼科器件
已经想到,本发明的方法提供了新型眼科器件,例如下面列出的那些:
根据本发明的方法形成接触镜或人工晶状体,其具有非旋转对称的表面,具有相应的光学校正,包括非常陡的曲率半径和非常高的球形和圆柱形校正部件。
根据本发明的方法形成接触镜或人工晶状体,其在同一透镜内具有多个球形和圆柱形校正,而不是反映眼睛的功率分布图的单一球形校正力(corrective power),并且不仅仅是来自综合屈光检查仪或屈光仪的折光能力的平均校正力。
根据本发明的方法形成接触镜或人工晶状体,其能够(由于非旋转对称性)校正由PRK或LASIK或LASEK手术的不良外科手术结果或由于不寻常角膜表面导致的像差引起的光学像差。
一般说明
尽管本说明书和权利要求书有时提及混合物、引发剂等,应当理解本文中所定义的材料和组合物可以包含一种、两种或更多种类型的各个成分。在这样的实施方案中,相应组分的总量应当对应于上面针对各个成分所定义的量。
在表述一种或多种混合物、一种或多种引发剂等中的“一种或多种”表明可以存在一种、两种或更多种类型的各个成分。另一方面,当使用表述“一种”时,仅一种(1种)相应的成分存在。
应当理解,除非另有说明,否则表述“%”表示相应组分的重量百分比。
实验细节
方法
测定水凝胶器件的水含量的方法
对于水凝胶器件(例如接触镜),水含量如以下文件中所描述的那样测定:ISO/DIS18369-4:2016,4.6节(在4.6.2节中给出的重量法)。
角膜曲率法测量
对角膜曲率法技术进行了修改以用于接触镜测量。角膜曲率计测量角膜的中心半径,并且在本案中测量在PMMA圆顶上形成的非水合水凝胶部件的前部的中心半径(参见关于在PMMA圆顶上的3D打印的实验部分)。使用的仪器是得自Nidek的自动角膜曲率计,型号ARK900S。将支撑物设置在水平平台上并添加楔形物,以使带有水凝胶表面的PMMA圆顶的中心和轴线与角膜曲率计的中心和轴线对准。在所进行的、具有大量像散的第一组测量中,不使用所述楔形物,并且测量的散光是由于测量偏离轴而产生的伪像。
曲率半径测量
接触镜度数取决于由材料的折射率和接触镜厚度调制的接触镜前表面和后表面的光学能力的组合。接触镜的前表面和后表面的光学能力取决于这些表面的半径。
在空气中光学能力与半径之间的关系是:光学能力=(接触镜折射率-1)/半径;所述光学能力的单位是屈光度,半径的单位是米。
对于前表面,半径在ISO18369-1:2006(E)(2.1.2.2.5)中被定义为具有单一折射元件的表面的前光学区的曲率半径。
PMMA圆顶的前部的曲率半径用自动角膜曲率计(也称为屈光计)测量,它是ISODIS18369-3:2016(附录C)中规定的方法之一。所述屈光计方法测量放置在刚性或软的透镜表面前面已知距离处的目标的反射图像尺寸,然后使用曲率和反射图像的放大率之间的关系来确定后光学区半径。然而,该方法用于测量PMMA圆顶的前表面半径。
透光率
透光率被在ISO 18369-1:2006(E)中定义。在下面表格中给出的透光率值代表380nm和780nm间的平均值。测量方法详见ISO DIS18369-3:2106(4.8.2)。
仪器和材料
为了证实本发明的原则,进行了一系列的实验。所述实验使用以下进行:
原材料
甲基丙烯酸2-羟乙酯(HEMA);99.9%HEMA,含有16ppm MEHQ;
乙二醇二甲基丙烯酸酯(EGDMA);化验:98.0%
甲基丙烯酸(MAA);化验:99.0%
三羟甲基丙烷三甲基丙烯酸酯(TMPTMA),工业级
Irgacure 651光敏引发剂,得自BASF Corp,Southfield,Mi
Irgacure 819光敏引发剂,得自BASF Corp,Southfield,Mi
玻璃显微镜载片,得自EMS,Hatfield,PA和AmScope
吐温80(多亚乙基醚80)表面活性剂
试剂级异丙醇
去离子水或蒸馏水
无菌盐水溶液,得自Walgreens或B&L
氮气钢瓶(<0.1%氧气)和/或液氮罐
旋转蒸发仪,手套袋,干燥器,棕色瓶,注射器,5μm过滤器,无绒毛巾,标准烧杯,称重秤(0.001g精度),真空泵
LED源和测量仪器
泛光灯,具有在365nm和400nm处的输出。
Omnicure LM 2011,用于测量强度的光度计。
Honeywell Toxi Pro 544590VD简易气体氧气监测器。
读数低于33毫巴氧气的压力表。
3D打印站
定制的3D打印站,具有a)Fujifilm的Samba打印头和b)用于在打印头下移动基材的传送带,然后是两个不同的UV灯。整个打印站被容纳在带有气体口的外壳中。
实施例系列A-模型样品的制备
在本系列中,均匀厚度的聚合HEMA的方形样品(10mmX10mm)被制备和评价。
基材的准备
将三滴吐温80加入到20ml试剂级异丙醇中并过滤通过3.1μm过滤器。将玻璃载片浸到该溶液中三次并空气干燥。
水合溶液的制备
在100mL去离子水中混合5滴吐温80并加热至80-90℃。
可聚合混合物的制备
PM-1A、PM-1B和PM-1C:
HEMA:97.7%
EGDMA:1.6%
Irgacure 819:0.2%
Irgacure 651:0.5%
PM-2:
HEMA:98.1%
EGDMA:1.2%
Irgacure 819:0.2%
Irgacure 651:0.5%
PM-3A、PM-3B和PM-3C
通过在棕色瓶中混合单体和交联剂并在冰箱中放置过夜,来制备未催化的聚合混合物样品(PM-1A,PM-1B,PM-1C,PM-2,PM-3A,PM-3B和PM-3C;见上面)。在旋转蒸发仪中使用脱气和充氮气的交替循环来处理最终聚合混合物样品以及光敏引发剂。对于PM-1A、PM-1B、PM-1C和PM-2,每一种的样品重量大约为120克。对于PM-3A、PM-3B和PM3C的每一种,相同量为大约34.5克。
相应于聚合物混合物中氧气浓度的所得到的分压如下:
PM-1A:<0.5%O2
PM-1B:2.0%O2
PM-1C:5.0%O2
PM-2:<0.5%O2
PM-3A:<0.5%O2
PM-3B:2.0%O2
PM-3C:8.5%O2
小于0.5%O2的O2浓度:按照以下方案通过旋转蒸发仪处理120g样品:脱气至11.0-12.0托(约14.0毫巴),并在760托下充氮气,交替3-4次。一个脱气周期为5-20分钟,且一个充气周期不超过5分钟。
2.0%O2的O2浓度:按照以下方案通过旋转蒸发仪处理120g样品至2.0%O2:脱气至72托(95毫巴),并在760托下充氮气。脱气周期为49分钟,且充气周期不超过15分钟。
5.0%O2的O2浓度:按照以下方案通过旋转蒸发仪处理120g样品至5.0%O2:脱气至179托(235毫巴)并保持混合45分钟,然后用不超过5分钟的时间充氮气至760托。
8.0%O2的O2浓度:按照以下方案通过旋转蒸发仪处理120g样品至8.5%O2:脱气至300托(400毫巴)并保持混合45分钟,然后用不超过15分钟的时间充氮气至760托。
LED源和打印站的设置
将400nm的泛光灯设置在距离基材22.0mm处,并将强度设定为4.5W/cm2,通过在基材位置的光度计测量。
将365nm的泛光灯设置在距基材123mm处,并将强度设定为0.63W/cm2,通过所述光度计测量。将用于将基材从打印站移动到UV站的带速设定为40英尺/分钟。
打印10mm×10mm见方设计的可聚合混合物。暴露于所述400nm灯的30秒(3个10秒周期)后发生UV钉扎或凝胶化(粘稠的/粘的触感)。测量的层厚度为约24μm。先前在不同的强度设定和曝光时间进行了几个实验以选择上述条件。
3D打印条件:
对于UV钉扎,在2400dpi,打印层状物和暴露于所述400nm灯30秒进行6次。此后,所述钉扎或胶凝的样品在所述365nm灯下曝光120秒以固化所述样品。
通过两个氧气探针测量氧气浓度,一个安装在接近所述打印站处和另一个位于所述UV站附近。通过控制分开的空气和氮气流—它们被在进入所述工艺外壳之前混合—的流量来实现氧气的控制。
结果
通过用两个堆叠的23号手术刀片切过样品的中间,从打印在玻璃显微镜载片上的水合样品制备横截面。然后将所述400微米宽的切割物侧放在具有0.9%盐水溶液的陪替氏培养皿中,允许其平衡1小时并用显微镜监测形状。
然后可以由与预期形状(在本例中是平的)的偏差看出不均匀性或应力。
不均匀性或应力将不利地影响材料的光学性能。
分别通过“目视检查”和“触摸”评价非水合样品的外观和粘性(在365nm固化后)。
如上所述制备的水合水凝胶样品(10mm×10mm)以及作为对照的商业ACUVUE 2接触镜(透射率为96.83%)的透光率值被计算为380nm和780纳米之间的平均值。见下表。
用显微镜在横截面上光学测量所述水合样品的中心厚度。
水合水凝胶样品的评价
“n.d.”表示未进行测量。
工艺气氛中的氧气含量似乎对形成的制品具有非常强的影响。对于光学功能而言重要的水合样品的透光率在低的工艺气氛中氧气含量(0.1%、0.5%和1.0%)下相当高,并且与市售的接触镜相当。在2.0%的工艺气氛中氧气含量时,透光率降低,并且在5.0%的氧气含量时,透光率显著降低。类似地,水合样品的横截面显示,采用低的工艺气氛中氧气含量获得最低水平的变形。
可聚合混合物中氧气含量对光透射具有一些影响,但如果工艺气氛中氧气含量低,则最高达5.0%的氧气是可接受的。在2.0%和5.0%的可聚合混合物中氧气水平以及低的工艺气氛中氧气水平下,水合样品的横截面显示了最低水平的变形。
在所述横截样品上看到的低水平变形表明所述产品是均匀的并且适合于光学应用。
对于用聚合混合物PM-3A、PM-3B和PM-3C制成的样品,在打印6层并钉扎而没有固化后,基于触摸进行观察。
气氛中的氧气浓度保持在<0.5体积%且通过靠近打印站和钉扎站安装的氧气探针测量。氧气浓度的控制通过连接到氮气罐的流量计实现。
结果
具有<0.5%氧气的PM-3A:略微粘的但不粘稠的
具有2.0%氧气的PM-3B:略微粘的但不粘稠的
具有8.5%氧气的PM-3C:粘的和粘稠的
实施例系列B-在PMMA圆顶上制备水凝胶表面
在该系列中,制备并评价了不同厚度的聚合HEMA的圆顶形样品。
可聚合混合物的制备:
HEMA:97.9-98.1%
EGDMA:1.2-1.4%
Irgacure 651:0.5%
Irgacure 819:0.2%
所述可聚合混合物如相应于<0.5体积%的氧气平衡浓度的前面实验如PM-1A和PM-2的制备中所描述的那样制备。
3D打印条件:
将吐温80处理后的PMMA(聚甲基丙烯酸甲酯)圆顶脱气过夜,标记为“D”和“E”,然后用作基材。沉积直径为4mm至11mm的六层,在打印每一层后在400nm下UV钉扎15秒,并且最终固化在365nm下进行120秒。
结果
对在其上打印了水凝胶表面的两个PMMA圆顶的测量进行三次,并且所述测量包括三个值:最平坦的曲率半径、最陡的曲率半径和主轴。
向上和向右倾斜的PMMA圆顶D:
1. 8.09/8.06@180
2. 8.10/7.94@120
3. 8.12/7.95@112
平均:8.10/7.99
向上和非常轻微向左倾斜的PMMA圆顶E:
1. 8.16/7.97@82
2. 8.16/7.97@97
3. 16/7.96@94
平均:8.16/7.97
所述结果证实了以下结论:
i.存在规则的光学表面(这是能够使用自动角膜曲率计进行测量的表面的必要特征);
ii.最平坦和最陡半径二者的高度可重复的测量:圆顶D:平坦范围0.03毫米;陡范围0.12毫米;圆顶E:平坦范围0.00毫米;陡范围0.01毫米。所述轴指明了主方向并且由于在仪器前面设置所述圆顶而变化,没有任何特殊标记,因此这种变化无关紧要。
iii.两个圆顶都表现出少量的散光。使用在“曲率半径测量”下描述的光学能力方程基于两个假设的折射率计算所述散光。
具有水凝胶表面(n=1.49)的PMMA圆顶D:光学能力1=60.49D;光学能力2=61.32D;散光=0.83D;具有水凝胶表面(n=1.42)的PMMA圆顶D:光学能力1=51.85D;光学能力2=52.57D;散光=0.72D。
具有水凝胶表面(n=1.49)的PMMA圆顶E:光学能力1=60.05D;光学能力2=61.48D;散光=1.43D;具有水凝胶表面(n=1.42)的PMMA圆顶E:光学能力1=51.47D;光学能力2=52.69D;散光=1.22D。
上述打印有水凝胶表面的PMMA圆顶的前表面对应于等效前表面复曲面接触镜的前表面,其中圆顶D相当于0.75D复曲面接触镜,圆顶E相当于1.25D复曲面接触镜。
实施例系列C-嵌入的插入物的制备:
可聚合混合物的制备:
与实施例系列B中相同。所述可聚合混合物如相应于<0.5体积%的氧气平衡浓度的前面实验如PM-1A和PM-2的制备中所描述的那样制备。
3D打印条件:
气氛中的氧气浓度保持在<0.5体积%且通过两个氧气探针测量,一个安装在接近所述打印站处和另一个位于所述UV站附近。氧气浓度的控制通过连接到氮气罐的流量计实现。
用吐温80处理过的脱气聚丙烯球被用作基材。沉积直径为4mm至11mm的六层,在打印每一层后在400nm下UV钉扎15秒。将蓝色PMMA插入物(直径6mm,厚50微米)在吐温80处理后脱气过夜,放置在所述钉扎过的层上,并且沉积直径为11mm的另外的两层,在打印每一层后在400nm下UV钉扎15秒。最终固化在365nm下进行120秒。
结果:
能够清楚地观察到所述蓝色的PMMA插入物,并且发现其完全嵌入在所述水凝胶器件中。另外,本方法能够被用于制造具有刚性插入物以遮蔽散光的软的接触镜。
实施例系列D-嵌入式贮库或贮存仓的制备
可聚合混合物的制备:
与PM-2的制备相同。所述可聚合混合物如相应于<0.5体积%的氧气平衡浓度的前面实验如PM-1A和PM-2的制备中所描述的那样制备。
3D打印条件:
气氛中的氧气浓度保持在<0.5体积%且通过两个氧气探针测量,一个安装在接近所述打印站处和另一个位于所述UV站附近。氧气浓度的控制通过连接到氮气罐的流量计实现。
吐温80处理过的、直径为13mm的玻璃半球被用作基材。沉积直径为9.5mm的15层,在打印每一层后在400nm下UV钉扎15秒。然后将一小片装有食用色素晶体的塑料微量移液管放置在所述钉扎过的15层上。沉积直径为9.5mm的另外的三层,在打印每一层后在400nm下UV钉扎15秒。沉积另外几滴可聚合混合物以确保所述微量移液管片的完全包封,并且将所述组件在365nm下固化120秒。
结果:
所述含有食用色素晶体的塑料微量移液管能够被清楚地观察到,并且其完全嵌入所述水凝胶器件中。本方法证明了在眼科器件如接触镜中嵌入功能性添加剂释放贮库或贮存仓。随后在水中水合所述组件显示水合水被着色并且微量移液管中没有食用色素晶体。
实施例系列E-具有不对称设计的眼科器件的制备
可聚合混合物的制备:
与PM-2的制备相同。所述可聚合混合物如相应于<0.5体积%的氧气平衡浓度的前面实验如PM-1A和PM-2的制备中所描述的那样制备。
3D打印条件:
气氛中的氧气浓度保持在<0.5体积%且通过两个氧气探针测量,一个安装在接近所述打印站处和另一个位于所述UV站附近。氧气浓度的控制通过连接到氮气罐的流量计实现。
吐温80处理过的、直径为13mm的玻璃半球被用作基材。在所述基材上沉积约6mm×4mm的尺寸的、具有不对称设计(Atheneum Optical Sciences Logo)的10层,在打印每一层后在400nm下UV钉扎15秒。然后沉积17层,在打印每一层后在400nm下UV钉扎15秒。然后将所述组件在365nm下固化120秒。
结果:
在盐水溶液中水合之前和之后,可以在水凝胶器件内清楚地观察到所述标志的不对称设计。本方法证明了引入不对称结构以校正眼科器件如接触镜中的不对称屈光不正的可行性。
实施例系列F-具有图像质量光学和折射校正的样品的制备
可聚合混合物的制备:
HEMA:95.4%
MAA:2.5%
EGDMA:1.2%
TMPTMA:0.1%
Irgacure 819:0.3%
Irgacure 651:0.5%
所述聚合混合物如相应于<0.5体积%的氧气平衡浓度的前面实验中所描述的那样制备,类似于PM-1A和PM-2的制备。
3D打印条件:
气氛中的氧气浓度保持在<0.5体积%且通过靠近打印站和钉扎站安装的氧气探针测量。氧气浓度的控制通过连接到氮气罐的流量计实现。Samba打印头分辨率设置为1200dpi。
打印10.0mm直径的圆形设计以产生样品。皮带速度设定为每分钟10.0英尺。在暴露于400nm UV灯10秒后发生UV钉扎或凝胶化。固化通过暴露于365nm UV灯进行120秒。采用打印的处方,首先打印、钉扎和固化基础层;然后将每个处方层钉扎和然后固化120秒,之后打印、钉扎和固化顶部或最终的涂层。用于制备所述样品的基材是用吐温80处理过的玻璃显微镜载片,如实施例系列A中所述。以屈光度(D)表示的光学能力用Topcon CL-200透镜计测量。在包括所述载玻片基材的打印样品上测量干光学能力,同时在从水合溶液(如前所述的含有吐温80的加热蒸馏水)中释放样品且然后在盐水溶液中平衡超过20小时之后测量湿光学能力。水合样品的直径测量为13.9±0.1mm。
结果被显示在下表中:
结果:
上表中所显示的干和湿光学能力结果表明,三维沉积打印能够生产具有高图像质量的光学器件如眼科透镜以校正屈光不正。
Claims (34)
1.用于光学元件的三维沉积打印的方法,在该方法中,将可聚合混合物的多个液滴在受控的气氛下沉积到基材的表面上,由此形成所述可聚合混合物的液滴的连续层,其中所述受控的气氛具有最多5.0体积%的氧气浓度,和其中所述可聚合混合物的氧气平衡浓度为最多8.0体积%。
2.根据权利要求1所述的方法,其中在所述受控的气氛中氧气浓度为最多2.0体积%。
3.根据前述权利要求中任一项所述的方法,其中在所述受控的气氛中氧气浓度低于在所述可聚合混合物中氧气平衡浓度。
4.根据前述权利要求中任一项所述的方法,其中将所述可聚合混合物的多个液滴沉积到所述基材的所述表面上,由此形成所述可聚合混合物的液滴的连续层,所述沉积的连续层可以任选地在每一层的沉积之后暴露于光化辐射且在用于形成所述光学元件的液滴的连续层的最后一层沉积之后暴露于光化辐射。
5.根据前述权利要求中任一项所述的方法,其中将连续层暴露于光化辐射以实现部分聚合或凝胶化,以允许随后的液滴和层融合并形成没有变形的结构。
6.根据前述权利要求中任一项所述的方法,其中所述可聚合混合物含有一种或多种聚合引发剂,例如选自热引发剂和光敏引发剂。
7.根据权利要求1所述的方法,其中所述可聚合混合物含有对不同波长的光化辐射具有响应性的多种光敏引发剂。
8.根据权利要求1和6所述的方法,其中将第一聚合引发剂用于部分固化所述连续层,和将第二聚合引发剂用于完成所述固化过程。
9.根据前述权利要求中任一项所述的方法,其中在沉积连续层的第一层之前,所述基材的所述表面被用表面活性剂或通过等离子体处理来预处理。
10.根据前述权利要求中任一项所述的方法,其中所述光学元件随后被从所述基材释放。
11.根据权利要求1所述的方法,其中所述可聚合混合物包含甲基丙烯酸羟乙酯(HEMA)或丙烯酸羟乙酯(HEA)单体。
12.根据权利要求11所述的方法,其中所述方法包括在水中溶胀所述光学元件的后续步骤,由此所述光学元件获得10-80重量%,优选35-70重量%的水含量。
13.根据权利要求1所述的方法,其中所述可聚合混合物包含不是甲基丙烯酸羟乙酯或丙烯酸羟乙酯单体的甲基丙烯酸酯或丙烯酸酯单体。
14.根据权利要求13所述的方法,其中所述方法包括在水中溶胀所述光学元件的后续步骤,由此所述光学元件获得10-80重量%,优选35-70重量%的水含量。
15.根据权利要求1所述的方法,其中所述可聚合混合物包含反应性硅氧烷单体或低聚物。
16.根据权利要求5所述的方法,其中所述方法包括在水中溶胀所述光学元件的后续步骤,由此所述光学元件获得5-70重量%,优选10-50重量%的水含量。
17.根据权利要求1所述的方法,其中所述可聚合混合物在聚合后提供在水中不溶胀的聚合物。
18.根据前述权利要求中任一项所述的方法,其中一个或多个液滴层的可聚合混合物包含颜料。
19.根据前述权利要求中任一项所述的方法,其中所述可聚合混合物包括量为0.5-5.0重量%的一种或多种交联剂,量为0-60.0重量%的一种或多种非反应性稀释剂,和量小于100.0ppm、优选小于50.0ppm的一种或多种聚合抑制剂,基于所述可聚合混合物的重量计。
20.根据前述权利要求中任一项所述的方法,其中所述光学元件是眼科器件,其选自眼镜镜片,接触镜,覆盖透镜,人工晶状体,角膜植入物如角膜镶嵌植入物,和眼科/眼插入物。
21.根据权利要求20所述的方法,其中所述眼科器件具有不对称设计。
22.根据权利要求20所述的方法,其中所述眼科器件是用于矫正圆锥角膜和散光角膜中的屈光不正的接触镜。
23.根据前述权利要求中任一项所述的方法,其中所述光学元件具有嵌入其中的一个或多个物体。
24.根据权利要求23所述的方法,其中所述一个或多个物体包括选自插入物、电子器件和功能性添加剂释放贮库或贮存器的固体物体。
25.根据权利要求23所述的方法,其中所述光学元件是软的接触镜,其具有刚性嵌入式插入物以遮蔽散光。
26.根据前述权利要求中任一项所述的方法,其中所述光学元件包括一种或多种功能活性物质,包括生物活性物质。
27.根据前述权利要求中任一项所述的方法,其中所述光学元件通过多个打印头形成,其中第一打印头分散第一可聚合混合物的液滴,并且一个或多个另外的打印头各自分散选自所述第一可聚合混合物、与所述第一可聚合混合物组成不同的第二可聚合混合物和非可聚合混合物的组合物的液滴。
28.根据权利要求27所述的方法,其中所述第一和/或第二可聚合混合物包含功能活性物质,和/或其中所述非可聚合混合物包含功能活性物质。
29.根据前述权利要求中任一项所述的方法,其中所述基材是光学器件如眼科器件,它的一个或多个表面充当所述基材。
30.根据前述权利要求中任一项所述的方法,其中所述UV光源与所述打印头隔离。
31.3D打印系统,其包含用于沉积可聚合混合物的液滴的一个或多个3D打印头(101,101A)、一个或多个LED UV源(105,106)和基材(104);所有这些都容纳在外壳(114)中,所述外壳(114)包含用于在外壳(114)内提供受控气氛(109)的一个或多个端口(107,108)。
32.根据权利要求31所述的3D打印系统,其中所述一个或多个LED UV源(105,106)含有具有相同或不同发射光波长的一个或多个UV LED。
33.根据权利要求31-32中任一项所述的3D打印系统,其中第一打印头(101)被安排用于提供第一可聚合混合物且第二打印头(101A)被安排用于提供组成上不同于所述第一可聚合混合物的第二可聚合混合物。
34.根据权利要求31-33中任一项所述的3D打印系统,其包含致动结构(113),该致动结构(113)被配置为提供在所述基材(104)与所述一个或多个3D打印头(101,101A)和/或所述一个或多个LED UV源(105,106)之间的相对运动。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662425992P | 2016-11-23 | 2016-11-23 | |
US62/425,992 | 2016-11-23 | ||
PCT/EP2017/079711 WO2018095837A1 (en) | 2016-11-23 | 2017-11-20 | Three-dimensional printing of optical devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110121421A true CN110121421A (zh) | 2019-08-13 |
Family
ID=60450640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780080530.3A Pending CN110121421A (zh) | 2016-11-23 | 2017-11-20 | 光学器件的三维打印 |
Country Status (6)
Country | Link |
---|---|
US (2) | US11370162B2 (zh) |
EP (1) | EP3544816B1 (zh) |
JP (1) | JP7045386B2 (zh) |
CN (1) | CN110121421A (zh) |
ES (1) | ES2948482T3 (zh) |
WO (1) | WO2018095837A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI760824B (zh) * | 2020-08-25 | 2022-04-11 | 光動力有限公司 | 多波長光聚合之方法及其應用 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6880912B2 (ja) * | 2017-03-28 | 2021-06-02 | 株式会社リコー | 立体造形用液体セット、立体造形物の製造方法、及び立体造形装置 |
CN113165291A (zh) * | 2018-12-04 | 2021-07-23 | 依视路国际公司 | 用于制造光学镜片的方法和制造系统 |
JP2020172082A (ja) * | 2019-04-12 | 2020-10-22 | シーメット株式会社 | 光学的立体造形物の後硬化装置および後硬化方法 |
US11667080B2 (en) * | 2019-04-29 | 2023-06-06 | Mighty Buildings, Inc. | System for obtaining a photopolymerized prepolymer |
JP2022541108A (ja) * | 2019-06-29 | 2022-09-22 | 浙江大学 | 複雑曲面の空心構成の3dプリント方法 |
EP4010169A4 (en) * | 2019-08-06 | 2023-05-03 | Hewlett-Packard Development Company, L.P. | THREE-DIMENSIONAL PRINTING WITH POLYELECTROLYTES |
EP3969261B1 (en) * | 2019-08-08 | 2024-01-17 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing with organosilanes |
WO2021058077A1 (en) * | 2019-09-23 | 2021-04-01 | Micro Resist Technology Gesellschaft Für Chemische Materialien Spezieller Photoresistsysteme Mbh | Production process of an isolated monolithic micro optical component |
IT202000009535A1 (it) * | 2020-04-30 | 2021-10-30 | Project42 Srl | Macchina per la stampa tridimensionale di manufatti |
US20230373163A1 (en) * | 2020-10-12 | 2023-11-23 | Stratasys Ltd. | System and method of printing three-dimensional objects having improved surface properties |
US11623371B2 (en) * | 2021-01-07 | 2023-04-11 | Hope Vision Co., Ltd. | UV curing apparatus for contact-lens polymerization process |
US11899289B2 (en) * | 2021-05-04 | 2024-02-13 | Khalifa University of Science and Technology | Contact lens for treating color vision deficiency and method of manufacturing same |
US12042981B1 (en) * | 2023-02-22 | 2024-07-23 | Atheneum Optical Sciences, Llc | Multifocal polymeric lenses and methods of manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1055069A (zh) * | 1990-03-13 | 1991-10-02 | 博士伦有限公司 | 接触透镜的激光固化 |
US20030099783A1 (en) * | 2001-11-27 | 2003-05-29 | Fuji Photo Optical Co. Ltd. | Manufacturing method of compound aspheric lens |
US20050046957A1 (en) * | 2002-07-11 | 2005-03-03 | Lai Shui T. | Optical elements and methods for making thereof |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8601967D0 (en) | 1986-01-28 | 1986-03-05 | Coopervision Optics | Manufacturing contact lenses |
DE69125937T2 (de) | 1990-07-11 | 1997-11-20 | Incre Inc | Herstellungsverfahren gestaltfreier fester objekte aus der flüssigen phase |
US5271875A (en) | 1991-09-12 | 1993-12-21 | Bausch & Lomb Incorporated | Method for molding lenses |
US5843346A (en) | 1994-06-30 | 1998-12-01 | Polymer Technology Corporation | Method of cast molding contact lenses |
US5760100B1 (en) | 1994-09-06 | 2000-11-14 | Ciba Vision Corp | Extended wear ophthalmic lens |
EP0865615A1 (en) * | 1995-12-08 | 1998-09-23 | Novartis AG | Methods of manufacturing contact lenses |
US6861123B2 (en) | 2000-12-01 | 2005-03-01 | Johnson & Johnson Vision Care, Inc. | Silicone hydrogel contact lens |
US20030164571A1 (en) | 2002-01-22 | 2003-09-04 | Crump L. Scott | Inert gas curing process for in-mold coating |
US7235195B2 (en) | 2002-09-06 | 2007-06-26 | Novartis Ag | Method for making opthalmic devices |
US8317505B2 (en) | 2007-08-21 | 2012-11-27 | Johnson & Johnson Vision Care, Inc. | Apparatus for formation of an ophthalmic lens precursor and lens |
US8318055B2 (en) | 2007-08-21 | 2012-11-27 | Johnson & Johnson Vision Care, Inc. | Methods for formation of an ophthalmic lens precursor and lens |
JP2009083326A (ja) * | 2007-09-28 | 2009-04-23 | Fujifilm Corp | 光学部材の製造方法およびこの製造方法により形成された光学部材 |
US20100259589A1 (en) | 2009-04-14 | 2010-10-14 | Jonathan Barry | Inert uv inkjet printing |
EP2636534B1 (en) | 2010-06-07 | 2015-04-29 | LUXeXcel Holding B.V. | Method for printing optical structures |
EP2956822B1 (en) | 2013-02-12 | 2016-06-29 | CARBON3D, Inc. | Method and apparatus for three-dimensional fabrication with feed through carrier |
US20170212277A1 (en) | 2014-07-21 | 2017-07-27 | HPM Company | A novel manufacturing process for toric contact lenses and other specialty lenses utilizing a 3-dimentional printer |
-
2017
- 2017-11-20 CN CN201780080530.3A patent/CN110121421A/zh active Pending
- 2017-11-20 EP EP17803887.3A patent/EP3544816B1/en active Active
- 2017-11-20 ES ES17803887T patent/ES2948482T3/es active Active
- 2017-11-20 US US16/462,585 patent/US11370162B2/en active Active
- 2017-11-20 WO PCT/EP2017/079711 patent/WO2018095837A1/en unknown
- 2017-11-20 JP JP2019547775A patent/JP7045386B2/ja active Active
-
2022
- 2022-05-17 US US17/746,654 patent/US20220274317A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1055069A (zh) * | 1990-03-13 | 1991-10-02 | 博士伦有限公司 | 接触透镜的激光固化 |
US20030099783A1 (en) * | 2001-11-27 | 2003-05-29 | Fuji Photo Optical Co. Ltd. | Manufacturing method of compound aspheric lens |
US20050046957A1 (en) * | 2002-07-11 | 2005-03-03 | Lai Shui T. | Optical elements and methods for making thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI760824B (zh) * | 2020-08-25 | 2022-04-11 | 光動力有限公司 | 多波長光聚合之方法及其應用 |
Also Published As
Publication number | Publication date |
---|---|
US20200079006A1 (en) | 2020-03-12 |
EP3544816C0 (en) | 2023-06-07 |
JP7045386B2 (ja) | 2022-03-31 |
ES2948482T3 (es) | 2023-09-13 |
JP2020501953A (ja) | 2020-01-23 |
WO2018095837A1 (en) | 2018-05-31 |
US11370162B2 (en) | 2022-06-28 |
EP3544816B1 (en) | 2023-06-07 |
EP3544816A1 (en) | 2019-10-02 |
US20220274317A1 (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110121421A (zh) | 光学器件的三维打印 | |
US11874435B1 (en) | Polymeric additive manufacturing of an ophthalmic lens | |
CN104114611B (zh) | 包含n-乙烯基酰胺和(甲基)丙烯酸羟烷基酯或(甲基)丙烯酰胺的有机硅水凝胶 | |
CN103969706B (zh) | 适用于制造硅酮水凝胶接触透镜的透镜形成组合物 | |
CN104114610B (zh) | 具有经由受控的反应动力学形成的结构的有机硅水凝胶 | |
CN104114612B (zh) | 包含所需的水含量和透氧度的有机硅水凝胶 | |
CN102378923A (zh) | 具有折射率变化的自由成形透镜 | |
TW201109766A (en) | Free form ophthalmic lens | |
RU2733094C2 (ru) | Способ включения элемента линзы и линза, имеющая такой элемент | |
JP2013535704A (ja) | ビニルアルコールコポリマー製の型内で成型されたシリコーンヒドロゲル眼科学デバイスおよび関連する方法 | |
CN104647763A (zh) | 利用基于体素的光刻技术形成带有插入件的眼科镜片的方法 | |
TW200924958A (en) | Apparatus for formation of an ophthalmic lens precursor and lens | |
CN103958570A (zh) | 具有改进的固化速度和其他性质的有机硅水凝胶 | |
CN104597528A (zh) | 显示减少的蛋白质摄取量的硅树脂水凝胶隐形镜片 | |
KR20140067155A (ko) | 류코 염료를 이용한 렌즈 상에서의 가시적 마크의 생성 방법 | |
TW202102354A (zh) | 用於製造光吸收隱形眼鏡的方法和藉由該方法製得的光吸收隱形眼鏡 | |
CN101970516A (zh) | 用于形成含有(甲基)丙烯酸酯的无规预聚物的方法 | |
US20170212277A1 (en) | A novel manufacturing process for toric contact lenses and other specialty lenses utilizing a 3-dimentional printer | |
US12042981B1 (en) | Multifocal polymeric lenses and methods of manufacture | |
JP2024542913A (ja) | ポリマー付加製造及びそれにより形成された眼科レンズ | |
KR101981030B1 (ko) | 안과용 렌즈 형성 광학체 | |
CN102803349A (zh) | 由对称羟基官能化硅氧烷形成的有机硅水凝胶 | |
CN105980124A (zh) | 用于制造硅酮水凝胶接触镜片的改进的方法 | |
TW200534982A (en) | Molds for producing contact lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |