[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN110016216A - 一种可全降解的聚乙醇酸复合包装材料及其制备方法 - Google Patents

一种可全降解的聚乙醇酸复合包装材料及其制备方法 Download PDF

Info

Publication number
CN110016216A
CN110016216A CN201910351779.4A CN201910351779A CN110016216A CN 110016216 A CN110016216 A CN 110016216A CN 201910351779 A CN201910351779 A CN 201910351779A CN 110016216 A CN110016216 A CN 110016216A
Authority
CN
China
Prior art keywords
polyglycolic acid
acid compound
package material
compound package
degradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910351779.4A
Other languages
English (en)
Other versions
CN110016216B (zh
Inventor
安家成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsud Zhongshan Packaging Co ltd
Original Assignee
Ruipo (china) Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruipo (china) Environmental Protection Technology Co Ltd filed Critical Ruipo (china) Environmental Protection Technology Co Ltd
Priority to CN201910351779.4A priority Critical patent/CN110016216B/zh
Publication of CN110016216A publication Critical patent/CN110016216A/zh
Priority to US16/527,631 priority patent/US20200339804A1/en
Application granted granted Critical
Publication of CN110016216B publication Critical patent/CN110016216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/50Shaping under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • B65D65/466Bio- or photodegradable packaging materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/043PGA, i.e. polyglycolic acid or polyglycolide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0008Anti-static agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • C08J2497/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种可全降解的聚乙醇酸复合包装材料,由包括以下重量份数组分制成:聚乙醇酸、聚己内酯、聚(L‑丙交酯‑ε‑己内酯)、开口剂、爽滑剂、增韧剂、阻水剂、壳聚糖和增强纤维等材料制成。本发明还提供所述可全降解的聚乙醇酸复合包装材料的制备方法。本发明具有以下优点:具有良好的微生物降解性和水解性,完全生物降解材料分解后的最终形态是水和二氧化碳,对环境无污染;安全无毒,对动物及人体不存在潜在健康威胁;具有良好力学性能,充分满足包装材料的各种应用需求;在不影响力学性能的情况下,增加廉价且无环境污染的填料,有效的降低成本;制备工艺简单。

Description

一种可全降解的聚乙醇酸复合包装材料及其制备方法
技术领域
本发明涉及医疗和包装材料领域,具体为一种成本低、韧性好且制备简单的可全降解的聚乙醇酸复合包装材料及其制备方法。
背景技术
据统计,全球每年塑料总消费量4亿吨,中国消费6000万吨以上,占全球总消费量的15%。我们使用后废弃的塑料数量大约是消费总量的60%-70%,这些废弃的塑料对周围环境造成了极大破坏,形成了“白色污染”。“白色污染”不仅给生活造成视觉污染,还危及农业生产以及生态循环等方面。
随着塑料产量不断增长,用途不断扩大,其废弃物也日益增多。由于塑料用后在自然环境中难以降解、腐烂,产生严重的环境污染。由大量的废弃塑料袋、一次性餐具引起的“白色垃圾”问题已成为“百年难题”,严重污染环境,影响人们的生活。难以降解的塑料混入土壤能够影响作物吸收水分和养分,导致农作物减产;就算填埋起来,也占用土地并且上百年才可以完全降解。大量散落的塑料材料还容易造成动物误食致死,曾经北京南苑的麋鹿因误食附近垃圾场飞入的塑料袋而死于非命。废弃的塑料易成团成捆,它甚至能堵塞水流,造成水利设施、引起城市设施故障,酿成灾害。
可降解塑料可以避免了二次污染,作为高科技产品和环保产品正成为当今世界瞩目的研发热点,其发展不仅扩大了塑料的功能,而且一定程度上缓解了环境矛盾,对日益枯竭的石油资源是一个补充,因此可降解塑料的研究开发和推广应用适应了人类可持续发展的要求。
聚乙醇酸,又称聚羟基乙酸,它来源于α一羟基酸,即乙醇酸。乙醇酸是正常人体在新陈代谢过程中产生的,乙醇酸的聚合物就是聚乙醇酸(PolyglycolicAcid,PGA)。聚乙醇酸具有简单规整的线性分子结构,是简单的线性脂肪族聚酯,有较高的结晶度,形成结晶状聚合物,结晶度一般为40%~80%,熔点在225℃左右,不溶于常用的有机溶剂,只溶于像六氟代异丙醇这样的强极性有机溶剂。高分子量的聚乙醇酸是通过开环聚合得到的,分子量达10000以上的聚乙醇酸,其强度完全能满足可吸收缝合线的使用要求,但用在骨折或其它内固定物方面,强度还不够;当聚乙醇酸平均分子量达到20000~145000时,聚合物可以拉成纤维状,并且可以使聚合物的分子排列具有方向性,也增强了聚乙醇酸的强度,这样的聚乙醇酸能做成薄膜或其他不同的形状。聚乙醇酸的生物医学应用主要表现在医用缝合线、药物控释载体、骨折固定材料、组织工程支架、缝合补强材料。聚乙醇酸可以在动物和人体中,在活性酶的作用下分子链产生裂解、解聚、侧基分裂等,被快速降解为水和二氧化碳等无害,并可随体内的循环系统排出体外,对动物和人体无毒副作用。因此,在医学领域常常被用于制造手术缝合线、人造皮肤等,可以大大减少术后并发症的出现。
申请公布号为CN101333330,申请号为200810041435.5的中国专利申请公开一种可完全生物降解的聚乳酸复合材料及其制备方法,该复合材料由经过表面改性的编织或未编织的天然纤维、聚乳酸和硅烷偶联剂组成。虽然该聚乳酸复合材料的力学性能和热性能均有所提高,且使用废弃后可在自然环境中完全降解,但是需要从农作物中提取,取材受到限制,成本也比较高。
发明内容
本发明的目的是针对以上所述现有技术存在的不足,提供一种成本低、韧性好且可以完全生物降解的可全降解的聚乙醇酸复合包装材料。
本发明的另一目的是提供成本低、工序简单的可全降解的聚乙醇酸复合包装材料的制备方法。
为了实现本发明目的,本发明采用的技术方案是:一种可全降解的聚乙醇酸复合包装材料,由包括以下重量份数组分制成:
所述可全降解的聚乙醇酸复合包装材料,还包括以下重量份数组分:
所述聚乙醇酸可以是为平均粒径1-5mm的颗粒,特性粘数[η]为1~5g/dl,分子量为20-30万。
所述聚已内酯的分子量为10-20万,其具有良好的相容性和生物降解性,可以提升本发明复合包装材料的柔韧性和伸展性,有利于低温成型,延缓单一聚乙醇酸材料的生物降解时间,提高材料耐用性。
所述聚(L-丙交酯-ε-己内酯)(poly(L-lactide-co-ε-caprolactone),PLLCA)的重均分子量(Mw)为20-50万,聚(L-丙交酯-ε-己内酯)中ε-己内酯单元摩尔百分比为20%~25%,用于显著提高拉伸率和拉伸强度。
所述开口剂可以是片状石墨、滑石粉、硅藻土或者二氧化硅等一种以上的组合,优选为片状石墨,可以极大的提高材料加工性。
所述增韧剂可以是杜邦公司的DuPont Biomax Strong,用于提高PGA材料的韧性,降低其脆性;另外可以提高PGA材料的冲击强度和熔融稳定性,且对透明性影响最小。
所述增韧剂也可以是复合增韧剂,所述复合增韧剂可以是纳米方解石、纳米滑石粉和亚纳米脂肪酸稀土盐按30~50∶10~20∶1~5重量份组配而成,优选按35~45∶13~18∶2~3重量份组配而成。
所述阻水剂可以是动物类阻水剂或者植物类阻水剂,其中所述动物类阻水剂为蜂蜡、牛油、鲸油、羊毛蜡或者鲸蜡中的一种或两种以上的组合;所述植物类阻水剂为棕榈蜡、花生油、蓖麻蜡、棕榈酸、大豆油、环氧大豆油、杨梅蜡、霍霍巴油或者氢化植物油中的一种或两种以上的组合。原材料来自于常规动物或者是植物,可以生物降解,环保,对环境不产生影响;具有良好的水汽阻隔性和断裂强度,且透明性好。
所述爽滑剂可以是油酸酰胺、硬脂酰胺或者芥酸酰胺,用于减小薄膜表面的摩擦系数,从而确保良好的后续加工性,比如在包装机上的走机性能;爽滑剂由于带有极性基团,与聚乙醇酸不相容的脂肪酸酰胺会迁移到薄膜表层,固化结晶后形成平滑的表面从而降低薄膜的摩擦系数。
所述季戊四醇二亚磷酸酯可以选用山东省临沂市三丰化工有限公司的抗氧剂SONOX 627A,用于提高聚合物稳定性,特别是加工成型的热稳定性,减少产品提前降解状况,提高产品降解前的耐用性。
所述淀粉可以玉米淀粉、大豆淀粉、红薯淀粉、马铃薯淀粉中的一种或两种以上的组合,用于作为有机填料,降低成本,且可以生物降解,安全无毒。
所述壳聚糖具有良好的生物相容性和可生物降解,降解产物无毒,可以提高抗菌性,抗微生物性,延缓聚乙醇酸快速降解,提高产品耐用性。
所述增强纤维可以是木纤维、麻纤维、棉纤维、竹纤维等多种天然高分子植物纤维中的一种或者两种以上的组合,他们强度和刚度比较高并且比重小,且可以在自然环境中降解并且来源比较广泛,没有污染;具有良好抗弯强度低伸长率特性。
一种可全降解的聚乙醇酸复合包装材料的制备方法,其包括的步骤如下:
(1)将聚乙醇酸、聚己内酯和聚(L-丙交酯-ε-己内酯)粉碎得到平均粒径50~100μm的颗粒,并混合均匀,形成混合主料;
(2)加入开口剂、爽滑剂、增韧剂、阻水剂、壳聚糖、淀粉和增强纤维研磨粉碎,并混合均匀,形成混合辅料;
(3)将混合主料和混合辅料混合均匀,然后模压成型,成型温度为160-190℃,时间为1-8分钟,压力为5-20Mpa,制得0.3-4mm薄板,或者通过挤出机挤出,挤出温度为180-220℃,制得薄膜。
所述(3)步骤中,将上述混合料放入模具中,模压成型,成型温度为170-180℃,时间为1-3分钟,压力为8-15Mpa,制得0.3-4mm薄板,或者流延成膜,温度为190-200℃。
在模压成型和挤出机流延成膜处理过程中导入超声波处理,所述超声波的功率为400-800W,频率为50-150KHz。
与现有技术相比,本发明具有以下优点:具有良好的微生物降解性和水解性,在适当和可表明期限的自然环境条件下,能够被微生物(细菌、真菌和藻类等)完全分解变成低分子化合物,最后完全生物降解材料分解后的最终形态是水和二氧化碳,对环境无污染;安全无毒,对动物及人体不存在潜在健康威胁;具有良好力学性能,充分满足包装材料的各种应用需求;在不影响力学性能的情况下,增加廉价且无环境污染的填料,有效的降低成本;制备工艺简单。
具体实施方式
以下结合具体实施例对本发明进行详细的说明。
一种可全降解的聚乙醇酸复合包装材料,优选的,由包括以下重量份数组分制成:
上述可全降解的聚乙醇酸复合包装材料的制备方法,其包括的步骤如下:
(1)将聚乙醇酸、聚己内酯和/或聚(L-丙交酯-ε-己内酯)在低温超微粉碎机下粉碎,得到平均粒径60~80μm的颗粒,并混合均匀,形成混合主料;
(2)加入开口剂、爽滑剂、增韧剂、阻水剂、季戊四醇二亚磷酸酯、壳聚糖、淀粉和增强纤维研磨粉碎得到平均粒径60~80μm的颗粒,并混合均匀,形成混合辅料;
(3)将混合主料和混合辅料混合均匀,然后模压成型,成型温度为170-180℃,时间为1-3分钟,压力为5-12Mpa,制得0.3-4mm薄板,或者通过挤出机挤出流延成膜或者吹胀成膜,温度为190-200℃,制得薄膜,即可完全生物降解的聚乙醇酸材料;在模压成型和挤出机流延成膜处理过程中导入超声波处理,所述超声波的功率为500-700W,频率为60-140KHz,可以有效的将各种组分在超声波的作用下相互迁移,形成紧密结构,提升有韧性和强度,且透明效果更好。
优选的,所述(3)步骤中,将上述混合料放入模具中,模压成型,成型温度为185℃,时间为3分钟,压力为10Mpa;通过挤出机流延成膜或者吹胀成膜,温度为120℃,制得聚乙醇酸薄膜,其中超声波功率为550W,频率为100KHz,可以有效的进行声波震荡搅拌,同时可以避免声波过强导致空化作用而产生气泡。所述超声波可以是超声波产生装置通过贴壁式的固定在挤出机的外侧板内,通过侧壁向腔内物料传递超声波。
本发明可全降解的聚乙醇酸复合包装材料的具体实施例以及其对于的试验检测数据,去下表所示,其中拉伸强度和断裂伸长率力学性能按照GB/T4456-1996的方法测试,其它性能参数均采用相应的现有标准进行测试,其中完全完全降解为所得材料经完全生物及环境降解的天数,可以是在降解促进剂作用下进行,所述降解促进剂可以是低分子量的聚乙醇酸(分子量为5000以下),具体参见下表1和表2所示。
表1为实施例1-6的可全降解的聚乙醇酸复合包装材料
上表中,杜邦为杜邦公司的DuPont Biomax Strong
表2为实施例7-12的可全降解的聚乙醇酸复合包装材料
上表中,杜邦为杜邦公司的DuPont Biomax Strong
所述聚(L-丙交酯-ε-己内酯)可以是L-丙交酯与ε-己内酯按75:25的摩尔比在甲苯中,在辛酸亚锡的催化下,在40℃,133Pa的条件下干燥24h;然后将压强下降到小于0.5Pa恒温融化共聚而成,在本发明工,其少量的加入,在不改变生物降解性能的情况下,可以显著提高聚乙醇酸伸长率和弹性强度等力学性能。
聚乙醇酸主要通过乙醇酸、乙醇酸酯、乙交酯等原料在催化剂作用下缩聚而得。目前可以通过乙二醇项目的中间产品草酸二甲酯,通过加氢水解法,生产成乙醇酸,在煤制乙二醇快速规模化推进中,可以极低成本的得到性能优良的聚乙醇酸。
通过上述实施例我们可以看出,本发明可全降解的聚乙醇酸复合包装材料具有优良的力学性能和具有良好的微生物降解性和水解性,另外材料和制备工艺成本低,可以有效的代替现有塑料包装材料。以上所述者,仅为本发明的较佳实施例而已,当不能以此限定本发明实施的范围,即大凡依本发明申请专利范围及发明说明内容所作的简单等效变化与修饰,皆仍属本发明专利涵盖的范围内。

Claims (10)

1.一种可全降解的聚乙醇酸复合包装材料,其特征在于,由包括以下重量份数组分制成:
2.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,还包括以下重量份数组分:
3.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述聚(L-丙交酯-ε-己内酯)的重均分子量为20-50万,其中ε-己内酯单元摩尔百分比为20%~25%。
4.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述开口剂是片状石墨、滑石粉、硅藻土或者二氧化硅。
5.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述增韧剂是杜邦公司的DuPont Biomax Strong或者复合增韧剂,所述复合增韧剂是纳米方解石、纳米滑石粉和亚纳米脂肪酸稀土盐按30~50∶10~20∶1~5重量份组配而成。
6.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述阻水剂是动物类阻水剂或者植物类阻水剂,所述动物类阻水剂为蜂蜡、牛油、鲸油、羊毛蜡或者鲸蜡中的一种或两种以上的组合;所述植物类阻水剂为棕榈蜡、花生油、蓖麻蜡、棕榈酸、大豆油、环氧大豆油、杨梅蜡、霍霍巴油或者氢化植物油中的一种或两种以上的组合。
7.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述爽滑剂是油酸酰胺、硬脂酰胺或者芥酸酰胺。
8.根据权利要求1所述的一种可全降解的聚乙醇酸复合包装材料,其特征在于,所述增强纤维是木纤维、麻纤维、棉纤维或竹纤维中的一种或者两种以上的组合。
9.根据权利要求1-8任一所述一种可全降解的聚乙醇酸复合包装材料的制备方法,其特征在于,其包括的步骤如下:
(1)将聚乙醇酸、聚己内酯和聚(L-丙交酯-ε-己内酯)粉碎得到平均粒径50~100μm的颗粒,并混合均匀,形成混合主料;
(2)加入开口剂、爽滑剂、增韧剂、阻水剂、季戊四醇二亚磷酸酯、壳聚糖、淀粉和增强纤维研磨粉碎,并混合均匀,形成混合辅料;
(3)将混合主料和混合辅料混合均匀,然后模压成型,成型温度为160-190℃,时间为1-8分钟,压力为5-20Mpa,制得0.3-4mm薄板,或者通过挤出机挤出形成膜,挤出温度为180-220℃。
10.根据权利要求9所述一种可全降解的聚乙醇酸复合包装材料的制备方法,其特征在于,在模压成型和挤出机流延成膜处理过程中导入超声波处理,所述超声波处理的功率为400-800W,频率为50-150KHz。
CN201910351779.4A 2019-04-28 2019-04-28 一种可全降解的聚乙醇酸复合包装材料及其制备方法 Active CN110016216B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910351779.4A CN110016216B (zh) 2019-04-28 2019-04-28 一种可全降解的聚乙醇酸复合包装材料及其制备方法
US16/527,631 US20200339804A1 (en) 2019-04-28 2019-07-31 Preparation method of fully degradable polyglycolic acid composite packaging materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910351779.4A CN110016216B (zh) 2019-04-28 2019-04-28 一种可全降解的聚乙醇酸复合包装材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110016216A true CN110016216A (zh) 2019-07-16
CN110016216B CN110016216B (zh) 2021-08-27

Family

ID=67192775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910351779.4A Active CN110016216B (zh) 2019-04-28 2019-04-28 一种可全降解的聚乙醇酸复合包装材料及其制备方法

Country Status (2)

Country Link
US (1) US20200339804A1 (zh)
CN (1) CN110016216B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712742C1 (ru) * 2019-10-16 2020-01-30 Елена Евгеньевна Зайцева Многоразовая упаковка для твердых пищевых продуктов, открытых контейнеров и емкостей
CN111154245A (zh) * 2020-01-23 2020-05-15 中科信晖(海南)新材料科技有限公司 一种全生物降解牙线棒手柄及其制备方法
CN111923546A (zh) * 2020-08-13 2020-11-13 安庆市芊芊纸业有限公司 一种环保降解防水涂层包装纸及其制备方法
CN111961323A (zh) * 2020-08-28 2020-11-20 上海浦景化工技术股份有限公司 一种适用于低温井的可降解材料及其制备方法与应用
CN111997560A (zh) * 2020-10-28 2020-11-27 山东科兴化工有限责任公司 一种油气井压裂用完全可降解暂堵塞及其制备方法
CN112360388A (zh) * 2020-11-09 2021-02-12 内蒙古浦景聚合材料科技有限公司 一种适用于地下储层暂堵压裂作业的自适应可降解材料
WO2021167826A1 (en) * 2020-02-18 2021-08-26 Closure Systems International Inc. Closure with wood filler
CN113512281A (zh) * 2021-08-11 2021-10-19 海南赛诺实业有限公司 一种改性pga材料及其制备方法,以及改性pga薄膜
CN115821632A (zh) * 2022-12-08 2023-03-21 青阳县凯德超微钙业有限公司 强效复合无机矿物纤维增强剂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004666A (zh) * 2021-03-01 2021-06-22 北京惠林苑生物科技有限公司 全生物降解塑料袋及其制备方法及其应用
CN113845689B (zh) * 2021-11-09 2022-07-26 海南赛诺实业有限公司 一种超临界二氧化碳发泡的可降解材料及其制备方法
CN114410085B (zh) * 2022-01-13 2023-08-15 江苏斯尔邦石化有限公司 一种全生物降解增韧增塑聚乙醇酸材料及其制备方法
CN114410076B (zh) * 2022-01-24 2023-10-03 中国神华煤制油化工有限公司 Pga基改性材料组合物、pga基改性材料及其制备方法和应用
CN115093683B (zh) * 2022-06-08 2023-05-02 青岛普诺恩生物科技有限公司 一种可控降解速率的改性降解材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245437B1 (en) * 1996-07-19 2001-06-12 Kureha Kagaku Kogyo K.K. Gas-barrier composite film
TW440575B (en) * 1996-04-30 2001-06-16 Kureha Chemical Ind Co Ltd Injection-molded product of polyglycolic acid and production process thereof
CN1392187A (zh) * 2002-08-14 2003-01-22 吉步华 一种具有混凝结构可全部生物降解的生态材料及其制造方法
CN102277005A (zh) * 2011-07-07 2011-12-14 宋旭 一种高填充的全生物降解包装材料
CN103059529A (zh) * 2013-01-17 2013-04-24 山东省意可曼科技有限公司 一种可生物降解保鲜膜材料及保鲜膜
CN104797655A (zh) * 2012-11-16 2015-07-22 日产化学工业株式会社 聚乙醇酸树脂组合物
CN104830035A (zh) * 2015-05-18 2015-08-12 夏世勇 一种具有阻隔性的生物降解组合物及其制备方法与应用
JP2015193750A (ja) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 生分解性樹脂組成物
CN105903090A (zh) * 2016-05-11 2016-08-31 山东省药学科学院 一种聚乙醇酸-聚己内酯薄膜及其制备方法和用途
US20160311203A1 (en) * 2013-12-10 2016-10-27 Basf Se Polymer mixture for barrier film
CN107418163A (zh) * 2017-07-27 2017-12-01 上海弘睿生物科技有限公司 水汽阻隔pbat全生物降解树脂组合物及薄膜的制备方法
CN109575536A (zh) * 2018-12-25 2019-04-05 淄博成达塑化有限公司 改性聚乙醇酸生物降解地膜及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW440575B (en) * 1996-04-30 2001-06-16 Kureha Chemical Ind Co Ltd Injection-molded product of polyglycolic acid and production process thereof
US6245437B1 (en) * 1996-07-19 2001-06-12 Kureha Kagaku Kogyo K.K. Gas-barrier composite film
CN1392187A (zh) * 2002-08-14 2003-01-22 吉步华 一种具有混凝结构可全部生物降解的生态材料及其制造方法
CN102277005A (zh) * 2011-07-07 2011-12-14 宋旭 一种高填充的全生物降解包装材料
CN104797655A (zh) * 2012-11-16 2015-07-22 日产化学工业株式会社 聚乙醇酸树脂组合物
CN103059529A (zh) * 2013-01-17 2013-04-24 山东省意可曼科技有限公司 一种可生物降解保鲜膜材料及保鲜膜
US20160311203A1 (en) * 2013-12-10 2016-10-27 Basf Se Polymer mixture for barrier film
JP2015193750A (ja) * 2014-03-31 2015-11-05 大阪瓦斯株式会社 生分解性樹脂組成物
CN104830035A (zh) * 2015-05-18 2015-08-12 夏世勇 一种具有阻隔性的生物降解组合物及其制备方法与应用
CN105903090A (zh) * 2016-05-11 2016-08-31 山东省药学科学院 一种聚乙醇酸-聚己内酯薄膜及其制备方法和用途
CN107418163A (zh) * 2017-07-27 2017-12-01 上海弘睿生物科技有限公司 水汽阻隔pbat全生物降解树脂组合物及薄膜的制备方法
CN109575536A (zh) * 2018-12-25 2019-04-05 淄博成达塑化有限公司 改性聚乙醇酸生物降解地膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
伍秋涛等: "《实用软包装生产技术手册》", 31 August 2015, 北京:文化发展出版社 *
孙君社: "《现代食品加工学》", 28 February 2001, 北京:中国农业出版社 *
许安等: ""生物可降解性PLLA/PGA复合膜的力学性能与热性能研究"", 《生物与降解材料》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712742C1 (ru) * 2019-10-16 2020-01-30 Елена Евгеньевна Зайцева Многоразовая упаковка для твердых пищевых продуктов, открытых контейнеров и емкостей
CN111154245A (zh) * 2020-01-23 2020-05-15 中科信晖(海南)新材料科技有限公司 一种全生物降解牙线棒手柄及其制备方法
WO2021167826A1 (en) * 2020-02-18 2021-08-26 Closure Systems International Inc. Closure with wood filler
CN111923546A (zh) * 2020-08-13 2020-11-13 安庆市芊芊纸业有限公司 一种环保降解防水涂层包装纸及其制备方法
CN111923546B (zh) * 2020-08-13 2022-06-28 安庆市芊芊纸业有限公司 一种环保降解防水涂层包装纸及其制备方法
CN111961323A (zh) * 2020-08-28 2020-11-20 上海浦景化工技术股份有限公司 一种适用于低温井的可降解材料及其制备方法与应用
CN111997560A (zh) * 2020-10-28 2020-11-27 山东科兴化工有限责任公司 一种油气井压裂用完全可降解暂堵塞及其制备方法
CN112360388A (zh) * 2020-11-09 2021-02-12 内蒙古浦景聚合材料科技有限公司 一种适用于地下储层暂堵压裂作业的自适应可降解材料
CN113512281A (zh) * 2021-08-11 2021-10-19 海南赛诺实业有限公司 一种改性pga材料及其制备方法,以及改性pga薄膜
CN115821632A (zh) * 2022-12-08 2023-03-21 青阳县凯德超微钙业有限公司 强效复合无机矿物纤维增强剂

Also Published As

Publication number Publication date
CN110016216B (zh) 2021-08-27
US20200339804A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
CN110016216A (zh) 一种可全降解的聚乙醇酸复合包装材料及其制备方法
Mohamed et al. A review on the recent research of polycaprolactone (PCL)
Thomas et al. Polymer composites, biocomposites
JP3742842B2 (ja) 生分解性ポリ乳酸樹脂組成物
Makhijani et al. Biodegradability of blended polymers: A comparison of various properties
EP2586821B1 (en) Degradable starch-based plastic masterbatch and preparation method thereof
CN111409346B (zh) 一种可降解薄膜及其制备方法
TW200403299A (en) Biodegradable resin composition, filler therefor and molded article thereof
CN101544785B (zh) 淀粉基纳米复合降解材料及其制备方法
CN102321287B (zh) 一种可生物降解聚乙烯薄膜及其制备方法
CN101195694B (zh) 可降解复合塑料及其制备方法
Kushwah et al. RETRACTED ARTICLE: Towards understanding polyhydroxyalkanoates and their use
Visakh et al. Natural polymers: their blends, composites and nanocomposites: state of art, new challenges and opportunities
CN113292865A (zh) 一种植物纤维基复合材料及其制备方法和应用
Asrar et al. Biosynthetic processes for linear polymers
CN102424719A (zh) 含稻草粉的改性聚乳酸复合材料及其制备方法
CN114133712A (zh) 一种可生物全降解的农用地膜
CN110028770A (zh) 一种可全降解的复合膜及其制备方法
CN1995136A (zh) 一种高韧性生物可降解复合材料的制备方法
CN105255128A (zh) 一种聚乳酸/聚己内酯复合材料及其制备方法
Taib Biopolymers and sustainable biopolymer-based composites: fabrication, failure, and repairing
Ariff et al. Advances in Polylactic Acid Composites with Biofiller as 3D Printing Filaments in Biomedical Applications
Rahman et al. Green resins from plant sources and strengthening mechanisms
Tan Development and properties of Mimusops elengi seed shell powder filled polyvinyl alcohol films produced through membrane casting method
Singh et al. Biodegradable polymers–technology and business opportunities

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240829

Address after: 528400, No. 252 Jiefu Road, Minmin Town, Zhongshan City, Guangdong Province

Patentee after: TSUD (ZHONGSHAN) PACKAGING Co.,Ltd.

Country or region after: China

Address before: 528437 room 58, building 12, yugangwan garden, No. 106, Zhongshan port Avenue, Torch Development Zone, Zhongshan City, Guangdong Province

Patentee before: Ruipo (China) Environmental Protection Technology Co.,Ltd.

Country or region before: China