CN117707119A - Fault monitoring system and method based on autopilot controller - Google Patents
Fault monitoring system and method based on autopilot controller Download PDFInfo
- Publication number
- CN117707119A CN117707119A CN202410004057.2A CN202410004057A CN117707119A CN 117707119 A CN117707119 A CN 117707119A CN 202410004057 A CN202410004057 A CN 202410004057A CN 117707119 A CN117707119 A CN 117707119A
- Authority
- CN
- China
- Prior art keywords
- fault
- information
- microcontroller
- domain controller
- fault diagnosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000003745 diagnosis Methods 0.000 claims abstract description 119
- 238000004891 communication Methods 0.000 claims abstract description 68
- 230000008569 process Effects 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 9
- 230000004044 response Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 25
- 238000010586 diagram Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
- G05B23/0213—Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
本申请提供一种基于自动驾驶域控制器的故障监测系统与方法,应用于自动驾驶技术领域,系统包括:微控制器,用于接收并处理自动驾驶中的故障诊断信息,基于故障诊断信息生成故障指示信息,将故障指示信息和/或故障诊断信息发送给存储模块和通信模块;辅助控制芯片,用于辅助微控制器执行自动驾驶中的环境感知功能、数据处理功能和驾驶决策功能;存储模块,用于接收微控制器发送的故障诊断信息和故障指示信息以进行存储;通信模块,用于支持域控制器各模块之间进行数据通信、域控制器与自动驾驶车辆上的其他外部设备、其他控制器和/或传感器之间进行数据通信。本申请提供的方法能够提高自动驾驶域控制器鲁棒性,使自动驾驶更加安全可靠。
This application provides a fault monitoring system and method based on an autonomous driving domain controller, which is applied in the field of autonomous driving technology. The system includes: a microcontroller, used to receive and process fault diagnosis information in autonomous driving, and generate a fault based on the fault diagnosis information. Fault indication information, which sends fault indication information and/or fault diagnosis information to the storage module and communication module; auxiliary control chip, used to assist the microcontroller in executing the environment sensing function, data processing function and driving decision-making function in autonomous driving; storage The module is used to receive fault diagnosis information and fault indication information sent by the microcontroller for storage; the communication module is used to support data communication between the modules of the domain controller, and between the domain controller and other external devices on the autonomous vehicle. , other controllers and/or sensors for data communication. The method provided by this application can improve the robustness of the autonomous driving domain controller and make autonomous driving safer and more reliable.
Description
技术领域Technical field
本申请涉及自动驾驶技术领域,具体涉及一种基于自动驾驶域控制器的故障监测系统及方法。This application relates to the field of autonomous driving technology, and specifically to a fault monitoring system and method based on an autonomous driving domain controller.
背景技术Background technique
随着自动驾驶行业发展,高级辅助驾驶需求也随之增多,自动驾驶车辆使用单个ECU(电子控制单元,Electronic Control Unit)的配置已无法覆盖多种辅助驾驶需求,因此现有技术中自动驾驶汽车常常集成多个ECU,通过CAN(Controller Area Network,控制器局域网总线)和LIN(Local Interconnect Network,局域互联网络)等总线将多个ECU连接在一起,如此一来,也无形中提高了整个自动驾驶控制系统的复杂度,由此,现阶段自动驾驶领域推行域控制器的设计理念,将多个ECU集成在一块硬件主板上。With the development of the autonomous driving industry, the demand for advanced assisted driving has also increased. The configuration of autonomous vehicles using a single ECU (Electronic Control Unit, Electronic Control Unit) can no longer cover multiple assisted driving needs. Therefore, in the existing technology, autonomous vehicles Multiple ECUs are often integrated and connected together through buses such as CAN (Controller Area Network, Controller Area Network) and LIN (Local Interconnect Network, LAN). This also virtually improves the overall efficiency of the system. Due to the complexity of the automatic driving control system, the field of automatic driving currently implements the design concept of domain controllers, integrating multiple ECUs on a hardware motherboard.
然而,在智能驾驶场景中,自动驾驶系统的多样化功能造成系统芯片在复杂工况下高度持续运行,大大增加了系统芯片运算误报率及故障率,容易导致自动驾驶控制系统鲁棒性降低,进而影响自动驾驶的安全性和稳定性。However, in smart driving scenarios, the diverse functions of the autonomous driving system cause the system chip to operate continuously under complex working conditions, which greatly increases the false alarm rate and failure rate of the system chip operation and easily leads to a reduction in the robustness of the autonomous driving control system. , thereby affecting the safety and stability of autonomous driving.
发明内容Contents of the invention
有鉴于此,本申请实施例提供了一种基于自动驾驶域控制器的故障监测系统及方法,能够提高自动驾驶系统的鲁棒性,进而提高自动驾驶的安全性和可靠性。所述技术方案如下:In view of this, embodiments of the present application provide a fault monitoring system and method based on an autonomous driving domain controller, which can improve the robustness of the autonomous driving system and thereby improve the safety and reliability of autonomous driving. The technical solutions are as follows:
一方面,本申请实施例提供了一种一种基于自动驾驶域控制器的故障监测系统,所述系统包括:On the one hand, embodiments of the present application provide a fault monitoring system based on an autonomous driving domain controller. The system includes:
微控制器,所述微控制器包含于自动驾驶域控制器,所述微控制器用于接收并处理自动驾驶中的故障诊断信息,基于所述故障诊断信息生成故障指示信息,并将所述故障指示信息和/或所述故障诊断信息发送给存储模块和通信模块,所述故障诊断信息包括所述微控制器的故障诊断信息,以及与所述微控制器相连的辅助控制芯片的故障诊断信息,所述故障指示信息为对自动驾驶车辆进行控制的指示信息;Microcontroller, the microcontroller is included in the automatic driving domain controller, the microcontroller is used to receive and process fault diagnosis information in automatic driving, generate fault indication information based on the fault diagnosis information, and report the fault The indication information and/or the fault diagnosis information is sent to the storage module and the communication module. The fault diagnosis information includes the fault diagnosis information of the microcontroller and the fault diagnosis information of the auxiliary control chip connected to the microcontroller. , the fault indication information is indication information for controlling the autonomous vehicle;
辅助控制芯片,用于辅助所述微控制器执行自动驾驶中的环境感知功能、数据处理功能和驾驶决策功能;An auxiliary control chip, used to assist the microcontroller in performing the environment sensing function, data processing function and driving decision-making function in autonomous driving;
存储模块,用于接收所述微控制器发送的所述故障诊断信息和所述故障指示信息以进行存储;A storage module configured to receive the fault diagnosis information and the fault indication information sent by the microcontroller for storage;
通信模块,用于支持所述域控制器各模块之间进行数据通信,及支持所述域控制器与自动驾驶车辆上的其他外部设备、其他控制器和/或传感器之间进行数据通信。A communication module is used to support data communication between modules of the domain controller, and to support data communication between the domain controller and other external devices, other controllers and/or sensors on the autonomous vehicle.
进一步的,所述微控制器包括:Further, the microcontroller includes:
故障信息收集单元,用于收集所述微处理器的其他单元在运行过程中上报的故障诊断信息;A fault information collection unit is used to collect fault diagnosis information reported by other units of the microprocessor during operation;
故障信息识别单元,用于接收所述故障收集单元发送的故障诊断信息,对所述故障诊断信息进行识别,生成故障识别信息;A fault information identification unit, configured to receive fault diagnosis information sent by the fault collection unit, identify the fault diagnosis information, and generate fault identification information;
辅助监测单元,用于监测所述故障收集单元是否处于正常工作状态,生成所述故障收集单元的收集单元状态信息;An auxiliary monitoring unit, used to monitor whether the fault collection unit is in a normal working state and generate collection unit status information of the fault collection unit;
故障信息管理单元,用于接收所述故障信息识别单元发送的故障识别信息、所述辅助监测单元发送的所述收集单元状态信息、以及所述辅助控制芯片上报的故障诊断信息,生成故障指示信息;所述故障信息管理单元可以将所述故障识别信息、所述故障诊断信息及所述收集单元状态信息、所述故障指示信息中的至少一种信息发送给所述存储模块和所述通信模块。A fault information management unit, configured to receive the fault identification information sent by the fault information identification unit, the collection unit status information sent by the auxiliary monitoring unit, and the fault diagnosis information reported by the auxiliary control chip, and generate fault indication information. ; The fault information management unit may send at least one of the fault identification information, the fault diagnosis information, the collection unit status information, and the fault indication information to the storage module and the communication module .
进一步的,所述系统还包括:Further, the system also includes:
系统基础芯片,用于诊断所述微控制器的供电单元是否正常运行,以判断所述微控制器的运行状态,生成相应的故障诊断信息。A system basic chip is used to diagnose whether the power supply unit of the microcontroller is operating normally, to determine the operating status of the microcontroller, and to generate corresponding fault diagnosis information.
更进一步的,所述微处理器还包括:Furthermore, the microprocessor also includes:
供电单元,其输出电压为所述微控制器其他单元供电;A power supply unit whose output voltage supplies power to other units of the microcontroller;
供电监测单元,用于监测所述供电单元是否处于正常工作状态,向所述系统基础芯片发送所述供电单元的工作状态信息。A power supply monitoring unit is used to monitor whether the power supply unit is in a normal working state, and send working status information of the power supply unit to the system basic chip.
其由两路独立电源供电,电压是否正常工作,其根据安全MCU输出控制信号和预设时序输出使能信号使能多路电源芯片输出并监控自动驾驶芯片的所需的电源轨;It is powered by two independent power supplies, and whether the voltage is working properly, it enables the output of multiple power supply chips according to the safety MCU output control signal and the preset timing output enable signal and monitors the required power rails of the autonomous driving chip;
进一步的,所述通信模块包括:Further, the communication module includes:
第一通信单元,用于支持所述域控制器各模块之间进行数据通信,及支持所述微控制器各单元之间进行数据通信。The first communication unit is used to support data communication between the modules of the domain controller and to support data communication between the units of the microcontroller.
第二通信单元,用于接收所述微控制器发送的故障指示信息,以进行所述微控制器与自动驾驶车辆外部设备之间的数据传输,及所述微控制器与自动驾驶车辆外部其他控制器之间的数据传输。The second communication unit is used to receive the fault indication information sent by the microcontroller to perform data transmission between the microcontroller and external equipment of the autonomous driving vehicle, and between the microcontroller and other external devices of the autonomous driving vehicle. Data transfer between controllers.
进一步的,所述系统还包括:Further, the system also includes:
时间同步模块,用于对所述微控制器各单元及所述域控制器其他模块及自动驾驶车辆其他外设设备进行时间同步。A time synchronization module is used to time synchronize each unit of the microcontroller, other modules of the domain controller, and other peripheral equipment of the autonomous vehicle.
另一方面,本申请实施例提供了一种基于自动驾驶域控制器的故障监测方法,所述方法包括:On the other hand, embodiments of the present application provide a fault monitoring method based on an autonomous driving domain controller. The method includes:
S1、域控制器中的微控制器生成第一故障诊断信息,所述第一故障诊断信息用于反映所述微控制器自身的故障;S1. The microcontroller in the domain controller generates first fault diagnosis information, and the first fault diagnosis information is used to reflect the fault of the microcontroller itself;
S2、所述微控制器接收辅助控制芯片向微控制器上报第二故障诊断信息,所述第二故障诊断信息用于反映所述辅助控制芯片上的故障;S2. The microcontroller receives the auxiliary control chip and reports second fault diagnosis information to the microcontroller. The second fault diagnosis information is used to reflect the fault on the auxiliary control chip;
S3、所述微控制器对所述第一故障诊断信息和第二故障诊断信息进行处理,生成第一故障指示信息,所述第一故障指示信息为对自动驾驶车辆进行控制的指示信息;S3. The microcontroller processes the first fault diagnosis information and the second fault diagnosis information to generate first fault indication information, where the first fault indication information is indication information for controlling the autonomous driving vehicle;
S4、所述微控制器将所述第一故障指示信息和/或所述第一故障诊断信息和/或所述第二故障诊断信息发送给域控制器中的存储模块,以使所述存储模块对所述第一故障指示信息和/或所述第一故障诊断信息和/或所述第二故障诊断信息进行存储;S4. The microcontroller sends the first fault indication information and/or the first fault diagnosis information and/or the second fault diagnosis information to the storage module in the domain controller, so that the storage module The module stores the first fault indication information and/or the first fault diagnosis information and/or the second fault diagnosis information;
S5、所述微控制器将所述第一故障指示信息发送给域控制器中的通信模块,以使所述通信模块将所述第一故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,以对自动驾驶车辆进行控制。S5. The microcontroller sends the first fault indication information to the communication module in the domain controller, so that the communication module forwards the first fault indication information to the auxiliary control chip and the domain controller. /or other external devices, other controllers and/or sensors on the autonomous vehicle to control the autonomous vehicle.
进一步的,步骤S1中,所述第一故障诊断信息包括:故障识别信息和收集单元状态信息,所述故障识别信息用于反映所述微控制器中除故障信息收集单元外的其他单元在运行过程中的故障,所述收集单元状态信息用于反映所述故障信息收集单元的工作状态,所述域控制器中的微控制器生成第一故障诊断信息,包括:Further, in step S1, the first fault diagnosis information includes: fault identification information and collection unit status information. The fault identification information is used to reflect the operation of other units in the microcontroller except the fault information collection unit. Faults in the process, the collection unit status information is used to reflect the working status of the fault information collection unit, and the microcontroller in the domain controller generates first fault diagnosis information, including:
所述故障信息收集单元获取所述其他单元的故障信息;The fault information collection unit obtains fault information of the other units;
所述故障信息收集单元向所述微控制器中的故障信息识别单元发送所述其他单元的故障信息;The fault information collection unit sends the fault information of the other units to the fault information identification unit in the microcontroller;
所述故障信息识别单元接收所述其他单元故障信息,并对所述故障诊断信息进行识别,生成故障识别信息;The fault information identification unit receives the fault information of the other units, identifies the fault diagnosis information, and generates fault identification information;
所述微控制器中的辅助监测单元监测所述故障信息收集单元,生成所述收集单元状态信息。The auxiliary monitoring unit in the microcontroller monitors the fault information collection unit and generates status information of the collection unit.
在所述第一工作状态信息指示所述故障信息收集单元处于异常工作状态的情况下,所述辅助监测单元向所述故障信息管理单元发送异常提示信息;When the first working status information indicates that the fault information collection unit is in an abnormal working status, the auxiliary monitoring unit sends abnormal prompt information to the fault information management unit;
进一步的,所述方法还包括:Further, the method also includes:
所述微控制器中的供电监测单元监测所述微控制器中的供电单元是否处于正常工作状态,并向域控制器中的系统基础芯片发送所述供电单元的工作状态信息;The power supply monitoring unit in the microcontroller monitors whether the power supply unit in the microcontroller is in a normal working state, and sends the working status information of the power supply unit to the system basic chip in the domain controller;
域控制器中的系统基础芯片基于所述供电单元的工作状态信息,生成相应的第三故障诊断信息,所述第三故障诊断信息用于反映所述微控制器的运行状态;The system basic chip in the domain controller generates corresponding third fault diagnosis information based on the working status information of the power supply unit, and the third fault diagnosis information is used to reflect the running status of the microcontroller;
所述微控制器接收所述系统基础芯片上报的所述第三故障诊断信息,并对所述第三故障诊断信息进行处理,生成第二故障指示信息,所述第二故障指示信息为对自动驾驶车辆进行控制的指示信息,且自动驾驶车辆对所述第二故障指示信息的响应优先级高于所述第一故障指示信息;The microcontroller receives the third fault diagnosis information reported by the system basic chip, processes the third fault diagnosis information, and generates second fault indication information. The second fault indication information is for automatic Instruction information for driving the vehicle to control, and the response priority of the autonomous vehicle to the second fault indication information is higher than the first fault indication information;
所述微控制器将所述第二故障指示信息和/或所述第三故障诊断信息发送给域控制器中的存储模块,以使所述存储模块对所述第二故障指示信息和/或所述第三故障诊断信息进行存储;The microcontroller sends the second fault indication information and/or the third fault diagnosis information to the storage module in the domain controller, so that the storage module The third fault diagnosis information is stored;
所述微控制器将所述第二故障指示信息发送给域控制器中的通信模块,以使所述通信模块将所述第二故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,以对自动驾驶车辆进行控制。The microcontroller sends the second fault indication information to the communication module in the domain controller, so that the communication module forwards the second fault indication information to the auxiliary control chip and/or in the domain controller. Other external devices, other controllers and/or sensors on the autonomous vehicle to control the autonomous vehicle.
与现有技术相比,本说明书实施例采用的上述至少一个技术方案能够达到的有益效果至少包括:Compared with the existing technology, the beneficial effects achieved by at least one of the above technical solutions adopted in the embodiments of this specification at least include:
1、基于域控制器的故障监测系统通过微控制器及时接收并处理自动驾驶中的故障诊断信息,基于故障诊断信息生成故障指示信息,将上述信息发送给存储模块和通信模块,存储模块对上述信息进行存储以备故障监测系统外的其他设备查看或调用故障相关信息,同时,通过通信模块使得域控制器各模块之间、域控制器与自动驾驶车辆上的其他外部设备、其他控制器和/或传感器之间可以传递故障相关信息,并通过数据通信基于故障相关信息进行自动驾驶控制,此外,故障监测系统中的辅助控制芯片,用于辅助微控制器执行自动驾驶中的环境感知功能、数据处理功能和驾驶决策功能,可以分担微控制器运算压力,使微控制器更好的监控自动驾驶系统的安全故障,以提高自动驾驶域控制器鲁棒性,进而使自动驾驶更加安全可靠。1. The domain controller-based fault monitoring system receives and processes fault diagnosis information in autonomous driving in a timely manner through the microcontroller, generates fault indication information based on the fault diagnosis information, and sends the above information to the storage module and communication module. The storage module The information is stored so that other devices outside the fault monitoring system can view or call fault-related information. At the same time, through the communication module, the domain controller can be connected between various modules, between the domain controller and other external devices on the autonomous vehicle, other controllers and / Or fault-related information can be transmitted between sensors, and automatic driving control can be performed based on fault-related information through data communication. In addition, the auxiliary control chip in the fault monitoring system is used to assist the microcontroller in performing the environment sensing function in automatic driving. The data processing function and driving decision-making function can share the computing pressure of the microcontroller, allowing the microcontroller to better monitor safety failures of the autonomous driving system, thereby improving the robustness of the autonomous driving domain controller, thereby making autonomous driving safer and more reliable.
2、域控制器中的微控制器生成第一故障诊断信息,完成微控制器对自身故障的监测,并接收辅助控制芯片上报的第二故障诊断信息,完成对辅助控制芯片的故障监测,然后对第一故障诊断信息和第二故障诊断信息进行处理,根据不同的故障信息所反映出的故障情况生成第一故障指示信息,微控制器将第一故障指示信息和/或第一故障诊断信息和/或第二故障诊断信息发送给域控制器中的存储模块,使存储模块对上述信息进行存储以备之后监测系统外的设备对其查看或调用,同时,微控制器将第一故障指示信息发送给域控制器中的通信模块,使通信模块将第一故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,从而根据自动驾驶系统当前的故障情况完成对自动驾驶车辆的控制。2. The microcontroller in the domain controller generates the first fault diagnosis information, completes the microcontroller's monitoring of its own faults, receives the second fault diagnosis information reported by the auxiliary control chip, completes the fault monitoring of the auxiliary control chip, and then The first fault diagnosis information and the second fault diagnosis information are processed, and the first fault indication information is generated according to the fault conditions reflected by the different fault information. The microcontroller converts the first fault indication information and/or the first fault diagnosis information into And/or the second fault diagnosis information is sent to the storage module in the domain controller, so that the storage module stores the above information for later viewing or calling by devices outside the monitoring system. At the same time, the microcontroller sends the first fault indication. The information is sent to the communication module in the domain controller, so that the communication module forwards the first fault indication information to the auxiliary control chip in the domain controller and/or other external devices, other controllers and/or sensors on the autonomous vehicle, Thus, the control of the autonomous vehicle is completed based on the current fault situation of the autonomous driving system.
附图说明Description of the drawings
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required to be used in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. Those skilled in the art can also obtain other drawings based on these drawings without exerting creative efforts.
图1示出了本申请一个示例性实施例提供的基于域控制器的故障监测系统的示意图;Figure 1 shows a schematic diagram of a domain controller-based fault monitoring system provided by an exemplary embodiment of the present application;
图2示出了本申请一个示例性实施例提供的微处理器的示意图;Figure 2 shows a schematic diagram of a microprocessor provided by an exemplary embodiment of the present application;
图3示出了本申请另一个示例性实施例提供的基于域控制器的故障监测系统的示意图;Figure 3 shows a schematic diagram of a domain controller-based fault monitoring system provided by another exemplary embodiment of the present application;
图4示出了本申请一个示例性实施例提供的基于域控制器的故障监测方法的流程示意图;Figure 4 shows a schematic flowchart of a domain controller-based fault monitoring method provided by an exemplary embodiment of the present application;
图5示出了本申请另一个示例性实施例提供的基于域控制器的故障监测方法的流程示意图。Figure 5 shows a schematic flowchart of a domain controller-based fault monitoring method provided by another exemplary embodiment of the present application.
具体实施方式Detailed ways
下面结合附图对本申请实施例进行详细描述。The embodiments of the present application will be described in detail below with reference to the accompanying drawings.
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following describes the implementation of the present application through specific examples. Those skilled in the art can easily understand other advantages and effects of the present application from the content disclosed in this specification. Obviously, the described embodiments are only some of the embodiments of the present application, but not all of the embodiments. This application can also be implemented or applied through other different specific embodiments. Various details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of this application. It should be noted that, as long as there is no conflict, the following embodiments and the features in the embodiments can be combined with each other. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
需要说明的是,本发明的说明书和权利要求书及附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。It should be noted that the terms "first", "second", etc. in the description, claims and drawings of the present invention are used to distinguish similar objects and are not necessarily used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the invention described herein are capable of being practiced in sequences other than those illustrated or described herein. Furthermore, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusion.
图1是本申请一个示例性实施例提供的基于域控制器的故障监测系统的示意图,如图所示,该系统包括微控制器、辅助控制芯片、存储模块和通信模块,其中各模块间连接线为通信模块的连接线,通信模块未示出。Figure 1 is a schematic diagram of a domain controller-based fault monitoring system provided by an exemplary embodiment of the present application. As shown in the figure, the system includes a microcontroller, an auxiliary control chip, a storage module and a communication module, where the modules are connected The line is the connection line of the communication module, and the communication module is not shown.
在一些实施例中,微控制器包含于自动驾驶域控制器,微控制器用于接收并处理自动驾驶中的故障诊断信息,基于故障诊断信息生成故障指示信息,并将故障指示信息和/或故障诊断信息发送给存储模块和通信模块,具体的,故障诊断信息包括微控制器的故障诊断信息,以及与微控制器相连的辅助控制芯片的故障诊断信息,故障指示信息为对自动驾驶车辆进行控制的指示信息。In some embodiments, the microcontroller is included in the autonomous driving domain controller, and the microcontroller is used to receive and process fault diagnosis information in autonomous driving, generate fault indication information based on the fault diagnosis information, and combine the fault indication information and/or fault The diagnostic information is sent to the storage module and communication module. Specifically, the fault diagnosis information includes the fault diagnosis information of the microcontroller and the fault diagnosis information of the auxiliary control chip connected to the microcontroller. The fault indication information is used to control the autonomous vehicle. instructions.
在一种具体的实施方式中,微控制器指的是微控制器芯片(MCU,MicroController Unit,或称微控制单元),可以采用安全功能等级较高的芯片,安全功能等级分类标准参照ASIL(Automotive Safety Integration Level,汽车安全完整性等级),ASIL通过功能故障分析(软/硬件故障)、情景分析(如超车、停车)、路面情况和车辆状态(如转向、超车、制动)和环境条件等几个方面考虑总结危害事件,基于严重度(Severity)、暴露率(Exposure)和可控性(Controllability)评估危害事件的风险级别,例如在本实施例中微控制器可以采用高性能多核MCU的E3640。In a specific implementation, the microcontroller refers to a microcontroller chip (MCU, MicroController Unit, or micro control unit). A chip with a higher safety function level can be used. The safety function level classification standard refers to ASIL ( Automotive Safety Integration Level (Automotive Safety Integration Level), ASIL passes functional failure analysis (software/hardware failure), scenario analysis (such as overtaking, parking), road conditions and vehicle status (such as steering, overtaking, braking) and environmental conditions Consider summarizing hazardous events from several aspects, and evaluate the risk level of hazardous events based on severity, exposure, and controllability. For example, in this embodiment, the microcontroller can use a high-performance multi-core MCU. E3640.
在一些实施例中,辅助控制芯片为智能驾驶芯片,用于辅助微控制器执行自动驾驶中的环境感知功能、数据处理功能和驾驶决策功能,具体的,感知功能包括获取自动驾驶车辆的传感器的数据,例如:获取自动驾驶车辆摄像头的数据、用于车辆感测的雷达数据(毫米波雷达、激光雷达、超声波雷达等)、车辆内外温度传感器数据、车辆胎压传感器数据、加速度计数据等等;数据处理功能包括图像数据处理,通过深度学习算法识别传感器传回的图像数据中的物体(障碍物等),以及驾驶策略运算,根据传感器数据等推算当前适配的驾驶策略(例如:跟车行驶或变道超车)等等;驾驶决策功能为根据驾驶策略做出决策控制自动驾驶车辆行驶,例如控制车辆航线及转向角,或改变车辆行驶速度和加速度。In some embodiments, the auxiliary control chip is an intelligent driving chip, which is used to assist the microcontroller in performing the environment sensing function, data processing function and driving decision-making function in autonomous driving. Specifically, the sensing function includes obtaining the information of the sensor of the autonomous driving vehicle. Data, such as: obtaining data from autonomous vehicle cameras, radar data for vehicle sensing (millimeter wave radar, lidar, ultrasonic radar, etc.), vehicle interior and exterior temperature sensor data, vehicle tire pressure sensor data, accelerometer data, etc. ; Data processing functions include image data processing, using deep learning algorithms to identify objects (obstacles, etc.) in the image data returned by the sensor, and driving strategy calculations to calculate the currently adapted driving strategy (such as car following) based on sensor data, etc. Driving or changing lanes to overtake), etc.; the driving decision function is to make decisions based on the driving strategy to control the driving of the autonomous vehicle, such as controlling the vehicle route and steering angle, or changing the vehicle's driving speed and acceleration.
存储模块,在一些实施例中,存储模块可以为与微控制器相连的计算机设备上的寄存器,用于接收微控制器发送的故障诊断信息和故障指示信息以进行存储,以备微控制器以外的外部设备对存储模块中的故障诊断信息和故障指示信息进行查看和调用。Storage module. In some embodiments, the storage module can be a register on a computer device connected to a microcontroller, and is used to receive fault diagnosis information and fault indication information sent by the microcontroller for storage for use outside the microcontroller. The external device can view and call the fault diagnosis information and fault indication information in the storage module.
通信模块,在一些实施例中,通信模块可以包括CAN网络、以太网和SPI总线,用于支持域控制器各模块之间进行数据通信,及支持域控制器与自动驾驶车辆上的其他外部设备、其他控制器和/或传感器之间进行数据通信。Communication module. In some embodiments, the communication module may include CAN network, Ethernet and SPI bus to support data communication between modules of the domain controller and to support the domain controller and other external devices on the autonomous vehicle. , other controllers and/or sensors for data communication.
在一些实施例中,微控制器内部架构至少包含三层内部芯片的硬件层(Hardware)、基础软件层(BSW,Basic Software Layer)和应用层(ASW,ApplicationSoftware Layer),需要对这三层架构分别监测故障并做进一步处理,因此,图2是本申请一个示例性实施例提供的微控制器的示意图,如图所示,微控制器可以包括:故障信息收集单元、故障信息识别单元、辅助监测单元和故障信息管理单元。In some embodiments, the internal architecture of the microcontroller includes at least three layers of internal chip hardware layer (Hardware), basic software layer (BSW, Basic Software Layer) and application layer (ASW, Application Software Layer). It is necessary to understand the three-layer architecture. Faults are monitored separately and further processed. Therefore, Figure 2 is a schematic diagram of a microcontroller provided by an exemplary embodiment of the present application. As shown in the figure, the microcontroller may include: a fault information collection unit, a fault information identification unit, an auxiliary Monitoring unit and fault information management unit.
在一些实施例中,故障信息收集单元用于收集微处理器的其他单元在运行过程中上报的故障诊断信息,具体的,故障诊断信息反映微控制器硬件故障。In some embodiments, the fault information collection unit is used to collect fault diagnosis information reported by other units of the microprocessor during operation. Specifically, the fault diagnosis information reflects microcontroller hardware faults.
故障信息识别单元,在实际应用中,故障信息识别单元可以为功能安全库(FuSaLib,Functional Safety Library),其位于硬件层之上的抽象层(MCAL,Microcontroller Abstraction Layer),用于接收故障收集单元发送的故障诊断信息,对故障诊断信息进行识别,判断故障(或错误)模式,生成故障识别信息。Fault information identification unit. In practical applications, the fault information identification unit can be a functional safety library (FuSaLib, Functional Safety Library), which is located in the abstraction layer (MCAL, Microcontroller Abstraction Layer) above the hardware layer and is used to receive the fault collection unit The fault diagnosis information is sent, the fault diagnosis information is identified, the fault (or error) mode is determined, and the fault identification information is generated.
辅助监测单元,被设计用于监测故障收集单元是否处于正常工作状态,生成故障收集单元的工作状态信息,具体的,可以通过在硬件层设置看门狗功能来实现,微控制器的抽象层相应设置看门狗驱动,通过接口与基础软件层设置的看门狗管理器交互,最终向故障信息管理单元上报监测到的故障信息;。The auxiliary monitoring unit is designed to monitor whether the fault collection unit is in normal working status and generate working status information of the fault collection unit. Specifically, this can be achieved by setting the watchdog function at the hardware layer, and the abstraction layer of the microcontroller accordingly Set up a watchdog driver, interact with the watchdog manager set up in the basic software layer through the interface, and finally report the monitored fault information to the fault information management unit;
故障信息管理单元,用于接收故障信息识别单元发送的故障识别信息、接收辅助监测单元发送的故障收集单元的工作状态信息(收集单元状态信息)、以及接收辅助控制芯片上报的故障诊断信息,从而生成故障指示信息,其中故障指示信息用以对自动驾驶车辆进行控制(例如驾驶功能降级);并且,故障信息管理单元可以将故障识别信息、故障诊断信息及收集单元状态信息、故障指示信息中的至少一种信息发送给存储模块和通信模块。The fault information management unit is used to receive fault identification information sent by the fault information identification unit, receive working status information (collection unit status information) of the fault collection unit sent by the auxiliary monitoring unit, and receive fault diagnosis information reported by the auxiliary control chip, thereby Generate fault indication information, where the fault indication information is used to control the autonomous vehicle (for example, the driving function is degraded); and the fault information management unit can convert the fault identification information, fault diagnosis information, collection unit status information, and fault indication information into At least one kind of information is sent to the storage module and the communication module.
在一种具体的实施方式中,故障信息管理单元为微处理器中具备一定安全功能等级的错误处理模块(Error handler),例如在选用微控制芯片E3640作为微处理器的情况下,其中安全功能等级为ASIL-B的Error handler模块可以作为故障信息管理单元。In a specific implementation, the fault information management unit is an error handling module (Error handler) in a microprocessor with a certain level of security functions. For example, when the microcontroller chip E3640 is selected as the microprocessor, the security function The Error handler module with ASIL-B level can be used as a fault information management unit.
图3是本申请另一个示例性实施例提供的基于域控制器的故障监测系统的示意图,如图所示,该系统包括微控制器、辅助控制芯片、存储模块、通信模块和系统基础芯片,其中,微控制器还包括供电单元和供电监测单元。Figure 3 is a schematic diagram of a domain controller-based fault monitoring system provided by another exemplary embodiment of the present application. As shown in the figure, the system includes a microcontroller, an auxiliary control chip, a storage module, a communication module and a system basic chip. Among them, the microcontroller also includes a power supply unit and a power supply monitoring unit.
在一些实施例中,系统基础芯片(SBC,System Basis Chip)用于诊断微控制器的供电单元是否正常运行,以判断微控制器的运行状态,生成相应的故障诊断信息,在一种具体的实施方式中,系统基础芯片是包含电源、通信、监控诊断、安全监控等特性以及GPIO的独立芯片,本实施例中采用相较微处理器功能安全等级相同或更高的系统基础芯片,例如微处理器为ASIL-B,则选用ASIL-D的系统基础芯片,如此一来,可以保证系统基础芯片的安全性和稳定性,在系统基础芯片可靠的情况下,其可以对微处理器的工作状态进行诊断。In some embodiments, the System Basis Chip (SBC) is used to diagnose whether the power supply unit of the microcontroller is operating normally, to determine the operating status of the microcontroller, and to generate corresponding fault diagnosis information. In a specific In the implementation, the system basic chip is an independent chip that includes features such as power supply, communication, monitoring and diagnosis, safety monitoring, and GPIO. In this embodiment, a system basic chip with the same or higher functional safety level than the microprocessor is used, such as a microprocessor. If the processor is ASIL-B, use ASIL-D system basic chip. In this way, the safety and stability of the system basic chip can be ensured. When the system basic chip is reliable, it can control the work of the microprocessor. status to diagnose.
微处理器包括的供电单元,其输出电压为微控制器其他单元供电,供电监测单元,其用于监测供电单元是否处于正常工作状态,向系统基础芯片发送供电单元的工作状态信息,而系统基础芯片基于供电单元的工作状态信息从而对对微处理器的工作状态进行诊断。The microprocessor includes a power supply unit, whose output voltage supplies power to other units of the microcontroller, and a power supply monitoring unit, which is used to monitor whether the power supply unit is in normal working condition and send working status information of the power supply unit to the system basic chip, and the system basic The chip diagnoses the working status of the microprocessor based on the working status information of the power supply unit.
在一个可能的实施例中,基于域控制器的故障检测系统还包括时间同步模块,具体的,时间同步模块用于对微控制器各单元及域控制器其他模块及自动驾驶车辆其他外设设备进行时间同步。In a possible embodiment, the domain controller-based fault detection system also includes a time synchronization module. Specifically, the time synchronization module is used to synchronize each unit of the microcontroller and other modules of the domain controller and other peripheral equipment of the autonomous vehicle. Perform time synchronization.
在一个可能的实施例中,基于域控制器的故障检测系统中,通信模块可以包括,第一通信单元和第二通信单元,其中,第一通信单元用于支持域控制器各模块之间进行数据通信,及支持微控制器各单元之间进行数据通信;第二通信单元用于接收微控制器发送的故障指示信息,以进行微控制器与自动驾驶车辆外部设备之间的数据传输,及微控制器与自动驾驶车辆外部其他控制器之间的数据传输。In a possible embodiment, in a domain controller-based fault detection system, the communication module may include a first communication unit and a second communication unit, where the first communication unit is used to support communication between modules of the domain controller. data communication, and supports data communication between each unit of the microcontroller; the second communication unit is used to receive fault indication information sent by the microcontroller for data transmission between the microcontroller and external equipment of the autonomous vehicle, and Data transfer between the microcontroller and other controllers external to the autonomous vehicle.
综上所述,本申请实施例中,基于域控制器的故障监测系统通过微控制器及时接收并处理自动驾驶中的故障诊断信息,基于故障诊断信息生成故障指示信息,将上述信息发送给存储模块和通信模块,存储模块对上述信息进行存储以备故障监测系统外的其他设备查看或调用故障相关信息,同时,通过通信模块使得域控制器各模块之间、域控制器与自动驾驶车辆上的其他外部设备、其他控制器和/或传感器之间可以传递故障相关信息,并通过数据通信基于故障相关信息进行自动驾驶控制,此外,故障监测系统中的辅助控制芯片,用于辅助微控制器执行自动驾驶中的环境感知功能、数据处理功能和驾驶决策功能,可以分担微控制器运算压力,使微控制器更好的监控自动驾驶系统的安全故障,以提高自动驾驶域控制器鲁棒性,进而使自动驾驶更加安全可靠。To sum up, in the embodiments of this application, the fault monitoring system based on the domain controller receives and processes the fault diagnosis information in autonomous driving in a timely manner through the microcontroller, generates fault indication information based on the fault diagnosis information, and sends the above information to the storage module and communication module. The storage module stores the above information so that other devices outside the fault monitoring system can view or call fault-related information. At the same time, through the communication module, the communication module enables communication between the modules of the domain controller and between the domain controller and the autonomous vehicle. Fault-related information can be transferred between other external devices, other controllers and/or sensors, and automatic driving control can be performed based on fault-related information through data communication. In addition, the auxiliary control chip in the fault monitoring system is used to assist the microcontroller. Executing the environment sensing function, data processing function and driving decision-making function in autonomous driving can share the computing pressure of the microcontroller, allowing the microcontroller to better monitor the safety faults of the autonomous driving system to improve the robustness of the autonomous driving domain controller. , thereby making autonomous driving safer and more reliable.
需要说明的是:上述实施例提供的系统,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将系统的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的系统与方法实施例属于同一构思,其实现过程详见方法实施例,这里不再赘述。It should be noted that the system provided by the above embodiments is only illustrated by the division of the above functional modules. In practical applications, the above function allocation can be completed by different functional modules as needed, that is, the internal structure of the system is divided into Different functional modules to complete all or part of the functions described above. In addition, the system and method embodiments provided in the above embodiments belong to the same concept. Please refer to the method embodiments for details of the implementation process, which will not be described again here.
以下介绍本发明的基于域控制器的故障监测方法,图4是本发明实施例提供的一种于域控制器的故障监测方法的流程示意图,本说明书提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际的装置产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体如图2所示,上述方法可以包括:The following describes the domain controller-based fault monitoring method of the present invention. Figure 4 is a schematic flowchart of a domain controller-based fault monitoring method provided by an embodiment of the present invention. This specification provides a method as described in the embodiment or flowchart. Method operation steps, but may include more or fewer operation steps based on routine or non-creative work. The sequence of steps listed in the embodiment is only one way of executing the sequence of many steps, and does not represent the only execution sequence. When the actual device product is executed, it may be executed sequentially or in parallel (for example, in a parallel processor or multi-thread processing environment) according to the methods shown in the embodiments or drawings. As shown in Figure 2, the above method may include:
S1、域控制器中的微控制器生成第一故障诊断信息。S1. The microcontroller in the domain controller generates first fault diagnosis information.
在一种可能的实施例中,上述第一故障诊断信息用于反映微控制器自身的故障,可以通过如下方式生成:In a possible embodiment, the above-mentioned first fault diagnosis information is used to reflect the fault of the microcontroller itself, and can be generated in the following manner:
1、故障信息收集单元获取其他单元的故障信息;1. The fault information collection unit obtains fault information from other units;
2、故障信息收集单元向微控制器中的故障信息识别单元发送其他单元的故障信息;2. The fault information collection unit sends fault information of other units to the fault information identification unit in the microcontroller;
3、故障信息识别单元接收其他单元故障信息,并对故障诊断信息进行识别,生成故障识别信息;3. The fault information identification unit receives fault information from other units, identifies fault diagnosis information, and generates fault identification information;
4、微控制器中的辅助监测单元监测故障信息收集单元,生成收集单元状态信息。4. The auxiliary monitoring unit in the microcontroller monitors the fault information collection unit and generates collection unit status information.
S2、微控制器接收辅助控制芯片向微控制器上报第二故障诊断信息。S2. The microcontroller receives the auxiliary control chip and reports the second fault diagnosis information to the microcontroller.
在一些实施例中,上述第二故障诊断信息用于反映辅助控制芯片上的故障。In some embodiments, the above-mentioned second fault diagnosis information is used to reflect faults on the auxiliary control chip.
S3、微控制器对第一故障诊断信息和第二故障诊断信息进行处理,生成第一故障指示信息。S3. The microcontroller processes the first fault diagnosis information and the second fault diagnosis information, and generates the first fault indication information.
在一些实施例中,第一故障指示信息为对自动驾驶车辆进行控制的指示信息;In some embodiments, the first fault indication information is indication information for controlling the autonomous vehicle;
S4、微控制器将第一故障指示信息和/或第一故障诊断信息和/或第二故障诊断信息发送给域控制器中的存储模块,以使存储模块对第一故障指示信息和/或第一故障诊断信息和/或第二故障诊断信息进行存储。S4. The microcontroller sends the first fault indication information and/or the first fault diagnosis information and/or the second fault diagnosis information to the storage module in the domain controller, so that the storage module responds to the first fault indication information and/or The first fault diagnosis information and/or the second fault diagnosis information are stored.
S5、微控制器将第一故障指示信息发送给域控制器中的通信模块,以使通信模块将第一故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,以对自动驾驶车辆进行控制。S5. The microcontroller sends the first fault indication information to the communication module in the domain controller, so that the communication module forwards the first fault indication information to the auxiliary control chip in the domain controller and/or other devices on the autonomous vehicle. External devices, other controllers and/or sensors to control autonomous vehicles.
在一些实施例中,自动驾驶车辆上的其他外部设备可以包括:自动驾驶车辆座舱,其他控制器可以包括:驱动执行单元、制动执行单元和转向执行单元等车辆执行单元,传感器例如TAS(Thermal Anemometry System,热传导气体流速)传感器等。In some embodiments, other external devices on the autonomous vehicle may include: an autonomous vehicle cabin; other controllers may include: vehicle execution units such as drive execution units, brake execution units, and steering execution units; sensors such as TAS (Thermal Anemometry System, thermal conduction gas flow rate) sensor, etc.
上述实施例中,域控制器中的微控制器生成第一故障诊断信息,完成微控制器对自身故障的监测,并接收辅助控制芯片上报的第二故障诊断信息,完成对辅助控制芯片的故障监测,然后对第一故障诊断信息和第二故障诊断信息进行处理,根据不同的故障信息所反映出的故障情况生成第一故障指示信息,微控制器将第一故障指示信息和/或第一故障诊断信息和/或第二故障诊断信息发送给域控制器中的存储模块,使存储模块对上述信息进行存储以备之后监测系统外的设备对其查看或调用,同时,微控制器将第一故障指示信息发送给域控制器中的通信模块,使通信模块将第一故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,从而根据自动驾驶系统当前的故障情况完成对自动驾驶车辆的控制In the above embodiment, the microcontroller in the domain controller generates the first fault diagnosis information, completes the microcontroller's monitoring of its own faults, and receives the second fault diagnosis information reported by the auxiliary control chip to complete the fault diagnosis of the auxiliary control chip. Monitor, then process the first fault diagnosis information and the second fault diagnosis information, generate the first fault indication information according to the fault conditions reflected by the different fault information, and the microcontroller converts the first fault indication information and/or the first The fault diagnosis information and/or the second fault diagnosis information are sent to the storage module in the domain controller, so that the storage module stores the above information for later viewing or calling by devices outside the monitoring system. At the same time, the microcontroller will A fault indication information is sent to the communication module in the domain controller, so that the communication module forwards the first fault indication information to the auxiliary control chip in the domain controller and/or other external devices on the autonomous vehicle, other controllers and/or or sensors to complete the control of the autonomous vehicle based on the current fault conditions of the autonomous driving system
图5是本发明实施例提供的另一种于域控制器的故障监测方法的流程示意图,本实施例以该方法用于计算机设备为例进行说明,该方法包括如下步骤。FIG. 5 is a schematic flowchart of another method for fault monitoring on a domain controller provided by an embodiment of the present invention. This embodiment uses the example of applying this method to a computer device as an example. The method includes the following steps.
S501、微控制器中的供电监测单元监测微控制器中的供电单元是否处于正常工作状态,并向域控制器中的系统基础芯片发送供电单元的工作状态信息。S501. The power supply monitoring unit in the microcontroller monitors whether the power supply unit in the microcontroller is in a normal working state, and sends the working status information of the power supply unit to the system basic chip in the domain controller.
在一些实施例中,供电检测单元监测微控制器中的供电单元可以通过看门狗功能实现,此外,在实际应用中供电单元可以选用适配微控制器的供电芯片,例如在微处理器选用E3640微控制芯片的情况下,供电单元选用FS8530供电芯片。In some embodiments, the power supply detection unit monitors the power supply unit in the microcontroller through a watchdog function. In addition, in practical applications, the power supply unit can select a power supply chip adapted to the microcontroller. For example, when the microprocessor selects In the case of the E3640 microcontroller chip, the power supply unit uses the FS8530 power supply chip.
S501、域控制器中的系统基础芯片基于供电单元的工作状态信息,生成相应的第三故障诊断信息。S501. The system basic chip in the domain controller generates corresponding third fault diagnosis information based on the working status information of the power supply unit.
在一些实施例中,第三故障诊断信息用于反映微控制器的运行状态,由于通过供电单元判断微控制器的运行状态,因此当第三故障诊断信息指示微控制器运行异常时,证明此时微控制器有很大可能处于整体不工作状态(因为芯片掉电或其他故障)。In some embodiments, the third fault diagnosis information is used to reflect the operating status of the microcontroller. Since the operating status of the microcontroller is determined through the power supply unit, when the third fault diagnosis information indicates that the microcontroller is operating abnormally, it is proved that this At this time, the microcontroller is very likely to be in an overall non-working state (because of chip power outage or other failures).
S502、微控制器接收系统基础芯片上报的第三故障诊断信息,并对第三故障诊断信息进行处理,生成第二故障指示信息。S502. The microcontroller receives the third fault diagnosis information reported by the system basic chip, processes the third fault diagnosis information, and generates the second fault indication information.
在一些实施例中,上述第二故障指示信息为对自动驾驶车辆进行控制的指示信息,且由于第二故障指示信息对应第三故障诊断信息,第三故障诊断信息的异常,属于自动驾驶中出现的重要异常,需要及时处理,因此第二故障指示信息应对应设置较高的响应优先级自动驾驶车辆对第二故障指示信息的响应优先级高于第一故障指示信息。In some embodiments, the above-mentioned second fault indication information is the indication information for controlling the autonomous driving vehicle, and since the second fault indication information corresponds to the third fault diagnosis information, the abnormality of the third fault diagnosis information belongs to the category that occurs in autonomous driving. Important exceptions need to be handled in time, so the second fault indication information should be set with a higher response priority. The autonomous vehicle's response priority to the second fault indication information is higher than the first fault indication information.
在一种具体的实施方式中,微控制器可以通过SPI总线与系统基础芯片相连接。In a specific implementation, the microcontroller can be connected to the system basis chip through an SPI bus.
S503、微控制器将第二故障指示信息和/或第三故障诊断信息发送给域控制器中的存储模块,以使存储模块对第二故障指示信息和/或第三故障诊断信息进行存储。S503. The microcontroller sends the second fault indication information and/or the third fault diagnosis information to the storage module in the domain controller, so that the storage module stores the second fault indication information and/or the third fault diagnosis information.
S504、微控制器将第二故障指示信息发送给域控制器中的通信模块,以使通信模块将第二故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,以对自动驾驶车辆进行控制。S504. The microcontroller sends the second fault indication information to the communication module in the domain controller, so that the communication module forwards the second fault indication information to the auxiliary control chip in the domain controller and/or other devices on the autonomous vehicle. External devices, other controllers and/or sensors to control autonomous vehicles.
在一些实施例中,自动驾驶车辆上的其他外部设备可以包括:自动驾驶车辆座舱,其他控制器可以包括:驱动执行单元、制动执行单元和转向执行单元等车辆执行单元,传感器例如TAS(Thermal Anemometry System,热传导气体流速)传感器等。In some embodiments, other external devices on the autonomous vehicle may include: an autonomous vehicle cabin; other controllers may include: vehicle execution units such as drive execution units, brake execution units, and steering execution units; sensors such as TAS (Thermal Anemometry System, thermal conduction gas flow rate) sensor, etc.
在上述实施例中,通过设置功能安全等级更高的系统基础芯片,对微控制器进行工作状态监控,结合供电单元与供电监测单元及时检测出微处理器的故障信息,由于故障信息反映了微控制器的上电情况,因此相应的故障信息属于较为重要的故障信息需要优先处理,通信模块将第二故障指示信息转发给域控制器中的辅助控制芯片和/或自动驾驶车辆上的其他外部设备、其他控制器和/或传感器,以对自动驾驶车辆进行控制,及时对微处理器的故障做出响应。In the above embodiment, by setting up a system basic chip with a higher functional safety level, the working status of the microcontroller is monitored, and the fault information of the microprocessor is detected in a timely manner by combining the power supply unit and the power supply monitoring unit. The power-on status of the controller, so the corresponding fault information is a relatively important fault information that needs to be processed with priority. The communication module forwards the second fault indication information to the auxiliary control chip in the domain controller and/or other external devices on the autonomous vehicle. devices, other controllers and/or sensors to control autonomous vehicles and respond promptly to microprocessor failures.
本申请实施例还提供一种计算机可读存储介质,该可读存储介质中存储有至少一条指令,至少一条指令由处理器加载并执行以实现上述实施例所述的基于域控制器的故障监测方法。Embodiments of the present application also provide a computer-readable storage medium, which stores at least one instruction. The at least one instruction is loaded and executed by the processor to implement the domain controller-based fault monitoring described in the above embodiments. method.
可选地,该计算机可读存储介质可以包括:ROM、RAM、固态硬盘(SSD,Solid StateDrives)或光盘等。其中,RAM可以包括电阻式随机存取记忆体(ReRAM,Resistance RandomAccess Memory)和动态随机存取存储器(DRAM,Dynamic Random Access Memory)。Optionally, the computer-readable storage medium may include: ROM, RAM, Solid State Drives (SSD, Solid State Drives) or optical disks, etc. Among them, RAM may include Resistance Random Access Memory (ReRAM, Resistance Random Access Memory) and Dynamic Random Access Memory (DRAM, Dynamic Random Access Memory).
本申请实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述实施例所述的基于域控制器的故障监测方法。Embodiments of the present application provide a computer program product or computer program. The computer program product or computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the domain controller-based fault monitoring method described in the above embodiment.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps to implement the above embodiments can be completed by hardware, or can be completed by instructing relevant hardware through a program. The program can be stored in a computer-readable storage medium. The above-mentioned The storage media mentioned can be read-only memory, magnetic disks or optical disks, etc.
本说明书中,各个实施例之间相同相似的部分互相参见即可,每个实施例侧重说明的都是与其他实施例的不同之处。尤其,对于后面说明的实施例而言,描述比较简单,相关之处参见前述实施例的部分说明即可。In this specification, the same and similar parts between various embodiments may be referred to each other, and each embodiment focuses on its differences from other embodiments. In particular, for the embodiments described later, the description is relatively simple. For relevant details, please refer to the partial description of the foregoing embodiments.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present application. All are covered by the protection scope of this application. Therefore, the protection scope of this application should be subject to the protection scope of the claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410004057.2A CN117707119A (en) | 2024-01-02 | 2024-01-02 | Fault monitoring system and method based on autopilot controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410004057.2A CN117707119A (en) | 2024-01-02 | 2024-01-02 | Fault monitoring system and method based on autopilot controller |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117707119A true CN117707119A (en) | 2024-03-15 |
Family
ID=90149906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410004057.2A Pending CN117707119A (en) | 2024-01-02 | 2024-01-02 | Fault monitoring system and method based on autopilot controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117707119A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210295620A1 (en) * | 2020-03-20 | 2021-09-23 | Beijing Idriverplus Information Technology Co., Ltd. | Method and system for real-time and reliable autonomous vehicle fault diagnosis and protection |
CN114460919A (en) * | 2021-12-31 | 2022-05-10 | 杭州宏景智驾科技有限公司 | Modularized unmanned fault diagnosis system based on domain controller |
CN115392186A (en) * | 2022-08-20 | 2022-11-25 | 西安翔腾微电子科技有限公司 | Fault collection management system and method in system on chip |
CN115384532A (en) * | 2022-09-02 | 2022-11-25 | 智道网联科技(北京)有限公司 | Method and device for diagnosing fault of automatic driving area controller, electronic equipment and storage medium |
-
2024
- 2024-01-02 CN CN202410004057.2A patent/CN117707119A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210295620A1 (en) * | 2020-03-20 | 2021-09-23 | Beijing Idriverplus Information Technology Co., Ltd. | Method and system for real-time and reliable autonomous vehicle fault diagnosis and protection |
CN114460919A (en) * | 2021-12-31 | 2022-05-10 | 杭州宏景智驾科技有限公司 | Modularized unmanned fault diagnosis system based on domain controller |
CN115392186A (en) * | 2022-08-20 | 2022-11-25 | 西安翔腾微电子科技有限公司 | Fault collection management system and method in system on chip |
CN115384532A (en) * | 2022-09-02 | 2022-11-25 | 智道网联科技(北京)有限公司 | Method and device for diagnosing fault of automatic driving area controller, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10991177B2 (en) | Method for processing vehicle fault, apparatus, device, and storage medium | |
US4881227A (en) | Arrangement for monitoring a computer system having two processors in a motor vehicle | |
US11398944B2 (en) | Vehicle fault handling method, apparatus, device and storage medium | |
Kim et al. | Towards dependable autonomous driving vehicles: a system-level approach | |
EP4318144A1 (en) | Vehicle trouble diagnosis method and on-board diagnosis apparatus | |
WO2021018062A1 (en) | Pedal fault diagnosis method and device | |
US12091052B2 (en) | Method and system for addressing failure in an autonomous agent | |
CN105703991B (en) | Local interconnect network system and method | |
CN111891134A (en) | Automatic driving processing system, system on chip and method for monitoring processing module | |
CN114620056A (en) | Vehicle sensor fault diagnosis method, device, vehicle and storage medium | |
EP3869338A1 (en) | A vehicle safety electronic control system | |
JPH11250029A (en) | Monitoring method and device for computer device consisting of at least two processors | |
US10839619B2 (en) | Electronic control unit and method for connection authentication | |
CN110533947A (en) | Control system, method, electronic equipment and the computer storage medium of the vehicles | |
CN113682323A (en) | Binocular vision-based safety redundancy architecture and method for low-speed unmanned vehicle | |
EP4257453A1 (en) | Control method, monitoring method, electronic control units, controller and control system | |
CN112918459A (en) | System for avoiding unexpected steering and control method | |
CN114237104B (en) | A kind of automatic driving domain controller and vehicle | |
CN117707119A (en) | Fault monitoring system and method based on autopilot controller | |
WO2024187819A1 (en) | Traveling control system, and traveling control method and apparatus | |
WO2024138960A1 (en) | Vehicle fault processing method and vehicle chip | |
CN114153189B (en) | Automatic driving controller safety diagnosis and protection method, system and storage device | |
JP5223512B2 (en) | Vehicle abnormality analysis system, vehicle abnormality analysis method, and vehicle failure analysis device | |
JP2007034910A (en) | Multi-cpu system and scheduler | |
Suwatthikul | Fault detection and diagnosis for in-vehicle networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20240807 Address after: No. 188, Wutaishan Road, High tech Zone, Suzhou City, Jiangsu Province, 215153 Applicant after: Suzhou Tianzhun Xingzhi Technology Co.,Ltd. Country or region after: China Address before: No. 188, Wutaishan Road, High tech Zone, Suzhou City, Jiangsu Province, 215153 Applicant before: TZTEK TECHNOLOGY Co.,Ltd. Country or region before: China |
|
TA01 | Transfer of patent application right |