[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN117476855A - 硅碳负极片的制备方法 - Google Patents

硅碳负极片的制备方法 Download PDF

Info

Publication number
CN117476855A
CN117476855A CN202311237558.7A CN202311237558A CN117476855A CN 117476855 A CN117476855 A CN 117476855A CN 202311237558 A CN202311237558 A CN 202311237558A CN 117476855 A CN117476855 A CN 117476855A
Authority
CN
China
Prior art keywords
silicon
carbon negative
carrier
deposition
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311237558.7A
Other languages
English (en)
Inventor
白宇
宋宏芳
邱兴煌
赵东辉
周鹏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Xfh New Energy Materials Co ltd
Sichuan Xiangfenghua New Energy Materials Co ltd
Shanghai Xiangfenghua Technology Development Co ltd
Original Assignee
Fujian Xfh New Energy Materials Co ltd
Sichuan Xiangfenghua New Energy Materials Co ltd
Shanghai Xiangfenghua Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Xfh New Energy Materials Co ltd, Sichuan Xiangfenghua New Energy Materials Co ltd, Shanghai Xiangfenghua Technology Development Co ltd filed Critical Fujian Xfh New Energy Materials Co ltd
Priority to CN202311237558.7A priority Critical patent/CN117476855A/zh
Publication of CN117476855A publication Critical patent/CN117476855A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种硅碳负极片的制备方法,其采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中通入载气、硅源气体和碳源气体后进行化学沉积,而制得沉积产物,后经洗涤、烘干、裁片得到硅碳负极片。本发明选用对合成纳米结构有催化作用的箔材作为载体,通过化学气相沉积的方法把硅碳负极活性物质一步沉积在箔材集流体上,且对箔材进行表面处理,可增加硅碳在箔材上的附着力,沉积后,经洗涤、烘干、裁片可得硅碳负极片,省去了传统锂离子电池用负极极片制备的配料、匀浆、涂布等流程,且不需要添加导电剂、粘合剂及增稠剂,简化了制备流程和节约了物料成本,降低硅碳负极片的制备成本。

Description

硅碳负极片的制备方法
技术领域
本发明涉及负极材料领域技术,尤其是指一种硅碳负极片的制备方法。
背景技术
锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。
但是,传统锂离子电池用硅碳负极极片制备流程复杂,成本和不良率较高,且为适配不同的硅碳负极材料,其选用的导电剂和粘合剂都需要重新摸索,开发周期长、成本高。因此,有必要提出一种新的方案对上述问题进行改进。
发明内容
有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种硅碳负极片的制备方法,其能有效解决现有硅碳负极材料需要重新摸索与其相适配的导电剂和粘合剂,开发周期长、开发成本高的问题。
为实现上述目的,本发明采用如下之技术方案:
一种硅碳负极片的制备方法,包括有以下步骤:
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为500-1000℃;
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为(1-10):(1-5),保温沉积,沉积时间为2-10h,得到沉积产物;
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片。
作为一种优选方案,所述载体为铜箔、镍箔、银箔、金箔、铂箔中的一种。
作为一种优选方案,所述载气为氦气、氩气、氮气中的一种或两种的混合气体。
作为一种优选方案,所述匀速升温速率为3-20℃/min。
作为一种优选方案,所述硅源气体为硅烷、乙硅烷、二氯甲硅烷、三氯甲硅烷中的一种或两种的混合气体。
作为一种优选方案,所述碳源气体为乙炔、甲烷、丙烯、丙烷的任一种或两种的混合气体。
作为一种优选方案,所述步骤(4)中的洗涤所使用的洗涤剂为有机溶剂,其为乙醇、甲苯、己烷、松节油中的一种或两种的混合物
作为一种优选方案,所述步骤(4)中烘干所用的烘干温度为60-120℃。
作为一种优选方案,所述含镧系元素的化合物为含镧系元素的氧化物、含镧系元素的氯化物、含镧系元素的碳酸化合物中的一种或两种的混合物。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知:
本发明选用对合成纳米结构有催化作用的箔材作为载体,通过化学气相沉积的方法把硅碳负极活性物质一步沉积在箔材集流体上,并且,采用含镧系元素的化合物对箔材进行表面处理,增加硅碳在箔材上的附着力,沉积后箔材经洗涤、烘干、裁片可得硅碳负极片,省去了传统锂离子电池用负极极片制备的配料、匀浆、涂布等流程,且不需要添加导电剂、粘合剂及增稠剂,简化了制备流程和节约了物料成本,从而大大降低硅碳负极片的制备成本。
为更清楚地阐述本发明的结构特征和功效,下面结合具体实施例来对本发明进行详细说明:
具体实施方式
本发明揭示一种硅碳负极片的制备方法,包括有以下步骤:
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氧化物、含镧系元素的氯化物、含镧系元素的碳酸化合物中的一种或两种的混合物;该载体为对合成纳米结构有催化作用的箔材,具体而言,该载体为铜箔、镍箔、银箔、金箔、铂箔中的一种。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为500-1000℃,该载气为氦气、氩气、氮气中的一种或两种的混合气体,该匀速升温速率为3-20℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为(1-10):(1-5),保温沉积,沉积时间为2-10h,得到沉积产物;该硅源气体为硅烷、乙硅烷、二氯甲硅烷、三氯甲硅烷中的一种或两种的混合气体;该碳源气体为乙炔、甲烷、丙烯、丙烷的任一种或两种的混合气体。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为乙醇、甲苯、己烷、松节油中的一种或两种的混合物;烘干所用的烘干温度为60-120℃。
下面结合具体实施例进行进一步详细说明。
实施例1
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氧化物;该载体为铜箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为500℃,该载气为氮气,该匀速升温速率为10℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为1:5,保温沉积,沉积时间为8h,得到沉积产物;该硅源气体为三氯甲硅烷;该碳源气体为甲烷。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为乙醇;烘干所用的烘干温度为100℃。
实施例2
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氯化物;该载体为铂箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为800℃,该载气为氦气,该匀速升温速率为3℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为10:1,保温沉积,沉积时间为6h,得到沉积产物;该硅源气体为硅烷;该碳源气体为乙炔。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为松节油;烘干所用的烘干温度为60℃。
实施例3
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的碳酸化合物;该载体为镍箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为700℃,该载气为氩气,该匀速升温速率为20℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为8:3,保温沉积,沉积时间为2h,得到沉积产物;该硅源气体为乙硅烷;该碳源气体为丙烯。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为甲苯;烘干所用的烘干温度为120℃。
实施例4
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氧化物和含镧系元素的碳酸化合物中的混合物;该载体为银箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为1000℃,该载气为氦气和氩气的混合气体,该匀速升温速率为14℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为7:2,保温沉积,沉积时间为5h,得到沉积产物;该硅源气体为三氯甲硅烷;该碳源气体为丙烷。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为己烷;烘干所用的烘干温度为100℃。
实施例5
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氯化物和含镧系元素的碳酸化合物的混合物;该载体为金箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为750℃,该载气为氦气和氮气的混合气体,该匀速升温速率为8℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为8:5,保温沉积,沉积时间为10h,得到沉积产物;该硅源气体为硅烷和三氯甲硅烷中的混合气体;该碳源气体为乙炔和丙烷的混合气体。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为松节油;烘干所用的烘干温度为80℃。
实施例6
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;该含镧系元素的化合物为含镧系元素的氧化物;该载体为铜箔。
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为850℃,该载气为氦气,该匀速升温速率为18℃/min。
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为6:1,保温沉积,沉积时间为8.5h,得到沉积产物;该硅源气体为硅烷;该碳源气体为乙炔。
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片;其中,洗涤所使用的洗涤剂为有机溶剂,其为乙醇;烘干所用的烘干温度为105℃。
对上述实施例所制得的硅碳负极片进行性能测试,其测试结果如表1所示。
表1
从表1可以明显得出,通过本发明的制备方法所制备的硅碳负极片具备粒度小,比表面积大的特点,且电化学性能优异。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种硅碳负极片的制备方法,其特征在于:包括有以下步骤:
(1)采用含镧系元素的化合物对载体进行表面处理,经过清洗后,放置在管式炉内的加热区中;
(2)往管式炉内通入载气,排尽管式炉内的空气,后保持载气的持续通入,匀速升温至沉积温度,沉积温度为500-1000℃;
(3)通过载气将硅源气体和碳源气体带入管式炉内,硅源气体和碳源气体的流量比为(1-10):(1-5),保温沉积,沉积时间为2-10h,得到沉积产物;
(4)待沉积结束后,冷却至室温,取出沉积产物,经洗涤、烘干、裁片得到硅碳负极片。
2.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述载体为铜箔、镍箔、银箔、金箔、铂箔中的一种。
3.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述载气为氦气、氩气、氮气中的一种或两种的混合气体。
4.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述匀速升温速率为3-20℃/min。
5.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述硅源气体为硅烷、乙硅烷、二氯甲硅烷、三氯甲硅烷中的一种或两种的混合气体。
6.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述碳源气体为乙炔、甲烷、丙烯、丙烷的任一种或两种的混合气体。
7.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述步骤(4)中的洗涤所使用的洗涤剂为有机溶剂,其为乙醇、甲苯、己烷、松节油中的一种或两种的混合物。
8.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述步骤(4)中烘干所用的烘干温度为60-120℃。
9.根据权利要求1所述的硅碳负极片的制备方法,其特征在于:所述含镧系元素的化合物为含镧系元素的氧化物、含镧系元素的氯化物、含镧系元素的碳酸化合物中的一种或两种的混合物。
CN202311237558.7A 2023-09-25 2023-09-25 硅碳负极片的制备方法 Pending CN117476855A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311237558.7A CN117476855A (zh) 2023-09-25 2023-09-25 硅碳负极片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311237558.7A CN117476855A (zh) 2023-09-25 2023-09-25 硅碳负极片的制备方法

Publications (1)

Publication Number Publication Date
CN117476855A true CN117476855A (zh) 2024-01-30

Family

ID=89628281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311237558.7A Pending CN117476855A (zh) 2023-09-25 2023-09-25 硅碳负极片的制备方法

Country Status (1)

Country Link
CN (1) CN117476855A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936793A (zh) * 2024-03-21 2024-04-26 深圳中芯能科技有限公司 一种钠电负极改性粘结剂、制备方法、负极片及钠电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117936793A (zh) * 2024-03-21 2024-04-26 深圳中芯能科技有限公司 一种钠电负极改性粘结剂、制备方法、负极片及钠电池

Similar Documents

Publication Publication Date Title
CN106654215B (zh) 生物小分子与石墨烯复合材料功能膜及其制备方法
CN109546100B (zh) 一种硅碳复合薄膜电极及锂离子电池
CN108923037A (zh) 一种富硅SiOx-C材料及其制备方法和应用
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
CN116314722A (zh) 一种氟氮掺杂无定形碳包覆硅碳复合材料及其制备方法
CN112875680B (zh) 一种片状Fe基合金催化生长碳纳米管阵列的制备方法
CN113735108A (zh) 一种多孔石墨硅碳复合材料及其制备方法、应用
CN117476855A (zh) 硅碳负极片的制备方法
CN114314564B (zh) 一种碳纳米管导电网络包覆SiO@C复合材料及其制备方法和应用
CN111916680A (zh) 氟化聚合物修饰的电池电极的制备方法及在电池领域中的应用
CN108493406B (zh) 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN112467137B (zh) 一种硅基石墨烯复合材料
CN106920961B (zh) 一种锂离子电池所用三元材料的改性方法
CN116854095A (zh) 硅碳复合材料的等离子改性制备方法、硅碳复合材料及应用
CN114105149A (zh) 一种碳包覆氮磷双掺杂氧化亚硅复合材料及其制备方法和在锂离子电池中的应用
CN114864915B (zh) 一种多孔硅/碳纳米管复合材料的制备方法
CN111634918A (zh) 锂离子电池负极材料及其低成本制备方法
CN118645608B (zh) 一种复合硅碳材料及其制备方法
CN115621461B (zh) 一种正极补锂剂及其制备方法、正极极片和电池
CN116154141B (zh) 一种类西瓜状结构的硅碳负极材料及其制备方法
CN118380571B (zh) 一种锂电池的低膨胀硅碳复合材料及其制备方法
CN108075119B (zh) 一种锂离子电池Si/Li4Ti5O12/C复合材料膜电极的制备方法
CN116053453A (zh) 改性预锂化硅氧材料及其制备方法、应用和锂离子电池
CN117476926A (zh) 一种正极材料及制备方法
CN116093284A (zh) 一种硅碳材料掺杂多孔金属的复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination