CN116013987A - A kind of SiC VDMOSFET power device and its preparation method - Google Patents
A kind of SiC VDMOSFET power device and its preparation method Download PDFInfo
- Publication number
- CN116013987A CN116013987A CN202211557686.5A CN202211557686A CN116013987A CN 116013987 A CN116013987 A CN 116013987A CN 202211557686 A CN202211557686 A CN 202211557686A CN 116013987 A CN116013987 A CN 116013987A
- Authority
- CN
- China
- Prior art keywords
- layer
- region
- gate oxide
- oxide layer
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title description 6
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000001312 dry etching Methods 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims abstract 6
- 239000007924 injection Substances 0.000 claims abstract 6
- 238000002513 implantation Methods 0.000 claims description 22
- 229910052698 phosphorus Inorganic materials 0.000 claims description 22
- 239000011574 phosphorus Substances 0.000 claims description 22
- 238000005468 ion implantation Methods 0.000 claims description 19
- -1 phosphorus ions Chemical class 0.000 claims description 17
- 230000003647 oxidation Effects 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 5
- 230000008021 deposition Effects 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 32
- 229910010271 silicon carbide Inorganic materials 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 229910052681 coesite Inorganic materials 0.000 description 15
- 229910052906 cristobalite Inorganic materials 0.000 description 15
- 239000000377 silicon dioxide Substances 0.000 description 15
- 235000012239 silicon dioxide Nutrition 0.000 description 15
- 229910052682 stishovite Inorganic materials 0.000 description 15
- 229910052905 tridymite Inorganic materials 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005224 laser annealing Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域technical field
本发明属于半导体器件技术领域,更具体地,本发明涉及一种SiC VDMOSFET功率器件及其制备方法。The invention belongs to the technical field of semiconductor devices, and more specifically, the invention relates to a SiC VDMOSFET power device and a preparation method thereof.
背景技术Background technique
作为第三代半导体材料的代表,碳化硅(SiC)具有优良的物理和电学特性。相比硅材料,SiC材料禁带宽度大,具有击穿电场高、热导率高、电子饱和速率高、抗辐射能力强等优势,因此采用SiC材料制备的半导体器件不仅能在更高的温度下稳定运行,还适用于高电压、高频率场景。同时,SiC材料是除了Si材料外唯一可以通过热氧化生长SiO2的半导体,这为压控器件MOSFET栅氧的研制提供了参考工艺,使得MOSFET得到了广泛的使用。对于压控功率器件SiC VDMOSFET而言,其通过在栅极氧化层上加压,实现导电沟道的导通。因此,栅极氧化层的质量决定了整个器件是否可以正常工作。As a representative of the third-generation semiconductor material, silicon carbide (SiC) has excellent physical and electrical properties. Compared with silicon materials, SiC materials have a large bandgap width, high breakdown electric field, high thermal conductivity, high electron saturation rate, and strong radiation resistance. Therefore, semiconductor devices made of SiC materials can not only operate at higher temperatures It can run stably under low conditions, and is also suitable for high voltage and high frequency scenarios. At the same time, SiC material is the only semiconductor other than Si material that can grow SiO2 through thermal oxidation, which provides a reference process for the development of voltage-controlled device MOSFET gate oxide, making MOSFET widely used. For the voltage-controlled power device SiC VDMOSFET, it realizes the conduction of the conductive channel by applying pressure on the gate oxide layer. Therefore, the quality of the gate oxide layer determines whether the entire device can work properly.
申请公布号CN 114446785 A,申请公布日2022.05.06,专利名称:一种提高碳化硅VDMOSFET器件阈值电压稳定性的制备工艺,是在氧气环境中,高温热氧化实现栅氧化层的制备;由于SiC的本身性质,在其热氧化后,栅氧化层中存在大量的悬挂键、碳团簇和近界面陷阱等缺陷,具有极高的界面态密度,严重影响栅氧可靠性及SiC VDMOSFET的正常工作。Application publication number CN 114446785 A, application publication date 2022.05.06, patent name: A preparation process for improving the threshold voltage stability of silicon carbide VDMOSFET devices, which is to prepare the gate oxide layer by high-temperature thermal oxidation in an oxygen environment; due to SiC After its thermal oxidation, there are a large number of dangling bonds, carbon clusters and near-interface traps in the gate oxide layer, which has a very high interface state density, which seriously affects the reliability of the gate oxide and the normal operation of SiC VDMOSFET. .
发明内容Contents of the invention
本发明提供一种SiC VDMOSFET功率器件的结构,旨在改善上述问题。The present invention provides a structure of a SiC VDMOSFET power device, aiming to improve the above problems.
本发明是这样实现的,一种SiC VDMOSFET功率器件的结构,所述结构包括:The present invention is achieved like this, a kind of structure of SiC VDMOSFET power device, described structure comprises:
N型SiC衬底2,位于N型SiC衬底2的背面及正面的漏极1、N型外延层3;N-
在N型外延层3的两侧注入形成两个P阱区4,在每个P阱区4内依次形成P+接触区5、N+源区6,P+接触区5远离JFET区设置,N+源区6邻接P+接触区5,且靠近JFET区设置;Two
设于N型外延层上的第一层栅极氧化层9,位于JFET区、沟道及部分N+源区6上方,沟道上方的第一层栅极氧化层9向下凹,在第一层栅极氧化层上形成栅极10,在P+接触区5及部分N+源区6上形成源极。The first layer of
进一步的,所述SiC VDMOSFET功率器件还包括:Further, the SiC VDMOSFET power device also includes:
第二层栅极氧化层8,位于第一层栅极氧化层9与N型外延层3之间,位于JFET区、沟道及部分N+源区6上方。The second
进一步的,对存在磷离子浅注入的N型外延层3进行热氧化形成第二层栅极氧化层8。Further, thermal oxidation is performed on the N-type
进一步的,在P阱区4形成两个轻掺杂N型区7,分别邻接JFET区、N+源区6设置。Further, two lightly doped N-
本发明是这样实现的,一种SiC VDMOSFET功率器件的制备方法,所述方法包括如下步骤:The present invention is achieved like this, a kind of preparation method of SiC VDMOSFET power device, described method comprises the steps:
S1、在所述N型SiC衬底2正面外延生长N型外延层3;S1. Epitaxially growing an N-type
S2、在N型外延层3正面两侧通过离子注入形成两个P阱区4,S2, forming two
S3、在P阱区4远离JEFT区处进行离子注入,形成P+接触区5,在所述P阱区4靠近JFET区且紧临所述P+接触区5处进行离子注入,形成N+源区6;S3. Perform ion implantation at the
S4、在所述N型外延层3顶部形成磷离子浅注入层,进行注入离子的激活;S4, forming a shallow phosphorous ion implantation layer on the top of the N-type
S5、在JFET区、沟道及部分N+源区6上淀积SiO2层,通过热氧化的方式形成SiO2氧化层,并消耗掉磷离子浅注入层,并在NO中进行退火;S5. Deposit a SiO2 layer on the JFET region, channel and part of the
S6、SiO2氧化层进行刻蚀,形成第二层栅极氧化层8,对SiO2层进行干法刻蚀,形成JFET区上方厚度厚,在沟道上方厚度薄的第一层栅极氧化层9;S6. Etching the SiO2 oxide layer to form the second
S7、在所述第一层栅极氧化层9之上形成栅极10,在所述P+接触区5和远离JFET区的部分N+源区6上形成源极11,在所述N型SiC衬底2的背面漏极1。S7, forming a
进一步的,N型外延层3顶部的磷离子浅注入层形成过程如下:Further, the formation process of the phosphorus ion shallow implantation layer on the top of the N-type
在所述N型外延层上淀积SiO2垫层,然后进行磷离子注入,注入结束后,去除全部SiO2垫层,在N型外延层3顶部形成磷离子浅注入层。Deposit a SiO 2 cushion layer on the N-type epitaxial layer, and then perform phosphorus ion implantation. After the implantation, remove all the SiO 2 cushion layer, and form a phosphorus ion shallow implantation layer on the top of the N-type
进一步的,第二层栅极氧化层的厚度20~30nm,第一层栅极氧化层的厚度为60~80nm。Further, the thickness of the second gate oxide layer is 20-30 nm, and the thickness of the first gate oxide layer is 60-80 nm.
进一步的,SiO2层的刻蚀厚度40~60nm,刻蚀宽度略大于沟宽度,形成第一层栅极氧化层。Further, the etching thickness of the SiO 2 layer is 40-60nm, and the etching width is slightly larger than the width of the trench to form the first gate oxide layer.
进一步的,在步骤S3之后在步骤S4之前还包括:在N+源区6与JEFT区之间的沟道两侧进行子注入,形成轻掺杂N型区7。Further, after step S3 and before step S4, the method further includes: performing sub-implantation on both sides of the channel between the
本发明通过凹式栅极氧化层,并在沟道两侧上部额外加入两个轻掺杂N型区,结合磷离子浅注入预处理后热氧化形成薄氧化层及PECVD淀积SiO2层两种方式,高效制备目标厚度的栅极氧化层,在不影响栅极氧化层耐压能力的情况下,实现降低SiC VDMOSFET阈值电压和栅极氧化层缺陷的效果,并防止热电子退化效应,提高器件的性能和可靠性。The present invention uses a recessed gate oxide layer and additionally adds two lightly doped N-type regions on both sides of the channel, combined with phosphorus ion shallow implantation pretreatment to form a thin oxide layer by thermal oxidation and PECVD deposited SiO2 layer In this way, the gate oxide layer with the target thickness can be efficiently prepared, without affecting the withstand voltage capability of the gate oxide layer, the effect of reducing the threshold voltage of SiC VDMOSFET and the defect of the gate oxide layer can be achieved, and the thermal electron degradation effect can be prevented, and the improvement can be achieved. device performance and reliability.
附图说明Description of drawings
图1为本发明实施例提供的SiC VDMOSFET功率器件的结构示意图;Fig. 1 is the structural representation of the SiC VDMOSFET power device that the embodiment of the present invention provides;
图2为本发明实施例提供的SiC VDMOSFET功率器件制备方法流程图;Fig. 2 is the flow chart of the SiC VDMOSFET power device preparation method provided by the embodiment of the present invention;
图3为本发明实施例提供的形成N型外延层后的器件结构示意图;3 is a schematic diagram of the device structure after forming an N-type epitaxial layer provided by an embodiment of the present invention;
图4为本发明实施例提供的形成P阱区后的器件结构示意图;FIG. 4 is a schematic diagram of a device structure after forming a P well region provided by an embodiment of the present invention;
图5为本发明实施例提供的形成P+接触区后的器件结构示意图;FIG. 5 is a schematic diagram of a device structure after forming a P+ contact region provided by an embodiment of the present invention;
图6为本发明实施例提供的形成N+源区后的器件结构示意图;6 is a schematic diagram of a device structure after forming an N+ source region provided by an embodiment of the present invention;
图7为本发明实施例提供的形成轻掺杂N型区后的器件结构示意图;FIG. 7 is a schematic diagram of a device structure after forming a lightly doped N-type region provided by an embodiment of the present invention;
图8为本发明实施例提供的形成磷离子浅注入层后的器件结构示意图;FIG. 8 is a schematic diagram of the device structure after forming a shallow phosphorous ion implantation layer provided by an embodiment of the present invention;
图9为本发明实施例提供的淀积SiO2层后的器件结构示意图;FIG. 9 is a schematic diagram of the device structure after depositing a SiO2 layer provided by an embodiment of the present invention;
图10为本发明实施例提供的热氧化后形成SiO2氧化层后的器件结构示意图;Fig. 10 is a schematic diagram of the device structure after forming an SiO2 oxide layer after thermal oxidation provided by an embodiment of the present invention;
图11为本发明实施例提供的形成第二层栅极氧化层后的器件结构示意图;FIG. 11 is a schematic diagram of a device structure after forming a second gate oxide layer according to an embodiment of the present invention;
图12为本发明实施例提供的形成第一层栅极氧化层后的器件结构示意图;FIG. 12 is a schematic diagram of the device structure after forming the first gate oxide layer provided by the embodiment of the present invention;
图13为本发明实施例提供的形成栅极后的器件结构示意图;FIG. 13 is a schematic diagram of a device structure after forming a gate provided by an embodiment of the present invention;
图14为本发明实施例提供的形成源极后的器件结构示意图;FIG. 14 is a schematic diagram of a device structure after forming a source provided by an embodiment of the present invention;
1.漏极、2.N型SiC衬底、3.N型外延层、4.P阱区、5.P+接触区、6.N+源区、7.轻掺杂N型区、8.第二层栅极氧化层、9.第一层栅极氧化层、10.栅极、11.源极。12.磷离子浅注入层。1. Drain, 2. N-type SiC substrate, 3. N-type epitaxial layer, 4. P well region, 5. P+ contact region, 6. N+ source region, 7. Lightly doped N-type region, 8. The first Two layers of gate oxide layer, 9. first layer of gate oxide layer, 10. gate, 11. source. 12. Phosphorus ion shallow implantation layer.
具体实施方式Detailed ways
下面对照附图,通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。The specific implementation of the present invention will be described in further detail below by describing the embodiments with reference to the accompanying drawings, so as to help those skilled in the art have a more complete, accurate and in-depth understanding of the inventive concepts and technical solutions of the present invention.
图1为本发明实施例提供的SiC VDMOSFET功率器件的结构示意图,为了便于说明,仅示出与本发明实施例相关的部分。FIG. 1 is a schematic structural diagram of a SiC VDMOSFET power device provided by an embodiment of the present invention. For convenience of description, only the parts related to the embodiment of the present invention are shown.
VDMOSFET为垂直导电双扩散的MOSFET功率器,该SiC VDMOSFET功率器件包括:VDMOSFET is a vertical conductive double-diffused MOSFET power device. The SiC VDMOSFET power device includes:
漏极1型SiC衬底2、N型外延层3、P阱区4、P+接触区5、N+源区6、第一层栅极氧化层9、栅极10、源极11;Drain 1-
N型SiC衬底2,N型SiC衬底2的背面及正面分别形成漏极1、N型外延层3;在N型外延层3内的两侧形成两个P阱区4,在P阱区4内依次形成P+接触区5、N+源区6,P+接触区5远离JFET区设置,N+源区6邻接P+接触区5,且靠近JFET区设置;设于N型外延层上的第一层栅极氧化层9,位于JFET区、沟道及部分N+源区6上方;沟道上方的第一层栅极氧化层9向下凹,在第一层栅极氧化层上形成栅极10,在P+接触区5及部分N+源区6上形成源极。N-
本发明通过干法刻蚀形成了凹式栅极氧化层,栅极氧化层在JFET区上方厚度厚,在沟道上方厚度薄,在不影响栅极氧化层所承受的电场强度的情况下,降低了器件阈值电压,提高了器件的性能与可靠性。In the present invention, the recessed gate oxide layer is formed by dry etching, the gate oxide layer is thicker above the JFET region, and thinner above the channel, without affecting the electric field strength of the gate oxide layer, The threshold voltage of the device is reduced, and the performance and reliability of the device are improved.
在本发明实施例中,该SiC VDMOSFET功率器件还包括:In an embodiment of the present invention, the SiC VDMOSFET power device also includes:
第二层栅极氧化层8,位于第一层栅极氧化层9与N型外延层3之间,位于JFET区、沟道及部分N+源区6上方。The second
在本发明实施例中,在每个P阱区4形成两个轻掺杂N型区7,分别邻接JFET区、N+源区6设置;在SiC VDMOSFET沟道两侧上部加入了轻掺杂N型区,在一定程度上降低了沟道的空穴浓度,从而降低了器件的阈值电压,使氧化层的性能得到提升;此外,该轻掺杂N型区的存在,可以防止热电子退化效应。In the embodiment of the present invention, two lightly doped N-
图2为本发明实施例提供的SiC VDMOSFET功率器件制备方法流程图,该方法具体包括如下步骤:Fig. 2 is the flow chart of the SiC VDMOSFET power device preparation method provided by the embodiment of the present invention, the method specifically includes the following steps:
S1、选取N型SiC衬底2基片,掺杂浓度为1e19cm-3;S1. Select an N-
S2、在N型SiC衬底2正面通过外延生长形成N型外延层3,其掺杂浓度为8e15cm-3~1.5e16 cm-3,如图3所示;S2. Forming an N-
S3、在N型外延层3的两侧通过离子注入形成两个P阱区4,注入离子是铝离子,掺杂浓度为1e17cm-3~1e18cm-3,注入深度为0.8um~1um,如图4所示;S3. Two P well
S4、在P阱区4远离JEFT区处进行离子注入,形成P+接触区5,注入离子是铝离子,掺杂浓度为1e19 cm-3,注入深度为0.4~0.5um,如图5所示;S4. Perform ion implantation in the
S5、在P阱区4靠近JFET区且紧临P+接触区5处进行离子注入,形成N+源区6,注入离子是磷离子,掺杂浓度为1e19 cm-3,注入深度为0.4~0.5um,如图6所示;S5. Perform ion implantation in the
S6、在N型外延层3上淀积50~100nm的SiO2垫层,再进行磷离子注入,注入结束后,去除全部SiO2垫层,在N型外延层3顶部形成磷离子浅注入层12,掺杂浓度小于1e19 cm-3,注入深度为0.01~0.02um,如图8所示;S6. Deposit a 50-100nm SiO2 cushion layer on the N-
S7、进行高温退火,激活注入离子,退火温度为1300℃~1600℃,时间为15~30min;S7. Perform high-temperature annealing to activate the implanted ions, the annealing temperature is 1300°C-1600°C, and the time is 15-30min;
S8、在JFET区、沟道及部分N+源区6上通过PECVD淀积60~80nm的SiO2层,如图9所示。S8. Deposit a 60-80 nm SiO 2 layer by PECVD on the JFET region, channel and part of the
S9、采用热氧化的方式形成20~30nm的SiO2氧化层,氧化温度为1250℃~1350℃,氧化时间为10~30min,完全消耗掉磷离子浅注入层,之后在NO中进行退火,退火时长1小时,退火温度1150℃~1350℃,如图10所示;S9. Form a 20-30nm SiO2 oxide layer by thermal oxidation, the oxidation temperature is 1250°C-1350°C, and the oxidation time is 10-30min. The phosphorus ion shallow implantation layer is completely consumed, and then annealed in NO. The duration is 1 hour, and the annealing temperature is 1150°C to 1350°C, as shown in Figure 10;
S10、通过干法刻蚀对热氧化生成的SiO2氧化层进行刻蚀,只保JFET区、后沟及部分N+源区6上的SiO2氧化层,形成第二层栅极氧化层8,如图11所示;S10, by dry etching, the SiO2 oxide layer generated by thermal oxidation is etched, only the SiO2 oxide layer on the JFET region, the rear trench and part of the
S11、对SiO2层进行干法刻蚀,刻蚀掉沟道上方部分SiO2层,刻蚀厚度40~60nm,刻蚀宽度略大于沟道长度,形成第一层栅极氧化层9,如图12所示;S11, perform dry etching on the SiO2 layer, etch away part of the SiO2 layer above the channel, the etching thickness is 40-60nm, the etching width is slightly larger than the channel length, and the first layer of
S12、通过金属溅射的方式在所述第一层栅极氧化层9之上形成栅极10,如图13所示。S12 , forming a
S13、在所述P+接触区5和远离JFET区的部分N+源区6之上,采用金属溅射的方式形成源极11,并经过高温快速热退火形成欧姆接触,如图14所示;S13. On the
S14、在所述N型SiC衬底2的背面,采用金属溅射的方式形成漏极1,并经过激光退火形成欧姆接触,如图1所示。S14. On the back surface of the N-
本发明存在两层栅氧化层,热氧化生成的栅氧化层较薄,PECVD淀积的栅氧化层较厚;在磷离子浅注入预处理时,加入SiO2垫层,该垫层可以帮助减少离子注入对N型外延层表面的损伤,并有助于N型外延层上部的磷离子注入层深度较浅;通过磷离子浅注入预处理后,进行热氧化的方式,将磷离子浅注入层完全消耗掉,在生成的薄栅氧化层中会保留部分注入的P元素,从而起到磷钝化的作用,这样的方式使磷更易与碳硅氧结合,形成稳定化合物,降低了界面态,加之所生成的氧化层较薄,从而降低了栅氧化层的缺陷;热氧化制备较薄的氧化层,PECVD在薄氧化层上淀积制备较厚的氧化层,两种方式结合可以高效制备目标厚度的栅氧。此外,因为SiO2垫层的存在,使得离子注入进外延层的深度减小,实现了浅注入的目的。There are two gate oxide layers in the present invention, the gate oxide layer generated by thermal oxidation is thinner, and the gate oxide layer deposited by PECVD is thicker; during the pretreatment of phosphorus ion shallow implantation, add SiO 2 cushion layer, this cushion layer can help reduce The ion implantation damages the surface of the N-type epitaxial layer, and contributes to the shallow depth of the phosphorus ion implantation layer on the upper part of the N-type epitaxial layer; after the pretreatment of phosphorus ion shallow implantation, thermal oxidation is performed, and the shallow phosphorus ion implantation layer If it is completely consumed, part of the implanted P element will remain in the generated thin gate oxide layer, thereby playing the role of phosphorus passivation. This way makes it easier for phosphorus to combine with carbon, silicon and oxygen to form a stable compound, reducing the interface state. In addition, the generated oxide layer is thinner, thereby reducing the defects of the gate oxide layer; thermal oxidation prepares a thinner oxide layer, and PECVD deposits a thicker oxide layer on the thin oxide layer. The combination of the two methods can efficiently prepare the target thickness of gate oxide. In addition, because of the existence of the SiO 2 cushion layer, the depth of ion implantation into the epitaxial layer is reduced, and the purpose of shallow implantation is realized.
在本发明的另一实施例中,为了以改善热电子退化效应,在步骤S3之后在步骤S4之前还包括:在N+源区6与JEFT区之间的沟道两侧进行子注入,形成轻掺杂N型区7,如图7所示。In another embodiment of the present invention, in order to improve the thermal electron degradation effect, after step S3 and before step S4, sub-implantation is performed on both sides of the channel between the
本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。The present invention has been exemplarily described, and obviously the specific implementation of the present invention is not limited by the above-mentioned manner, as long as various non-substantial improvements are carried out by adopting the method concept and technical scheme of the present invention, or unimproving the present invention Ideas and technical solutions that are directly applied to other occasions are within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211557686.5A CN116013987A (en) | 2022-12-06 | 2022-12-06 | A kind of SiC VDMOSFET power device and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211557686.5A CN116013987A (en) | 2022-12-06 | 2022-12-06 | A kind of SiC VDMOSFET power device and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116013987A true CN116013987A (en) | 2023-04-25 |
Family
ID=86034407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211557686.5A Pending CN116013987A (en) | 2022-12-06 | 2022-12-06 | A kind of SiC VDMOSFET power device and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116013987A (en) |
-
2022
- 2022-12-06 CN CN202211557686.5A patent/CN116013987A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102244099B (en) | SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide -Semiconductor Field Effect Transistor) device with epitaxy channel and manufacturing method of SiC IEMOSFET device | |
CN102227000B (en) | Silicon carbide MOSFET device based on super junction and preparation method | |
CN108346688B (en) | SiC trench junction barrier Schottky diode with CSL transport layer and method of making the same | |
CN101383287A (en) | A method of manufacturing a vertical double-diffused metal oxide semiconductor device | |
CN114823911B (en) | Trench silicon carbide MOSFET with integrated high-speed freewheeling diode and preparation method thereof | |
CN102832248A (en) | Silicon carbide MOSFET (metal-oxide-semiconductor field effect transistor) based on semi-super junction and manufacturing method | |
CN114420761B (en) | A kind of high pressure silicon carbide device and preparation method thereof | |
CN116469923B (en) | High-reliability trench silicon carbide MOSFET device and manufacturing method thereof | |
CN108336133B (en) | A silicon carbide insulated gate bipolar transistor and method of making the same | |
CN113571584A (en) | SiC MOSFET device and preparation method thereof | |
CN109166918A (en) | Insulated gate bipolar transistor and manufacturing method thereof | |
WO2019119959A1 (en) | Preparation method for sic schottky diode and structure thereof | |
CN107658215A (en) | Silicon carbide device and manufacturing method thereof | |
CN104282766A (en) | Novel silicon carbide MOSFET and manufacturing method thereof | |
CN103681256B (en) | A kind of silicon carbide MOSFET device and preparation method thereof | |
US7745273B2 (en) | Semiconductor device and method for forming same | |
CN111739799A (en) | A kind of silicon-based gallium nitride microwave device and preparation method thereof | |
CN111081758A (en) | SiC MPS structure with reduced on-resistance and preparation method | |
CN115410922A (en) | A vertical gallium oxide transistor and its preparation method | |
CN110600366A (en) | (100) Crystal orientation diamond n-channel junction field effect transistor and preparation method thereof | |
CN110534559A (en) | A kind of sic semiconductor device terminal and its manufacturing method | |
CN118448463A (en) | A diamond trench gate VDMOS device and its preparation method | |
CN113363311A (en) | Double-groove SiC power MOS device | |
CN118335778A (en) | Diamond SGT device and preparation method thereof | |
CN116013987A (en) | A kind of SiC VDMOSFET power device and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 82 Limin East Road, Matang Street, Yijiang District, Wuhu City, Anhui Province 241000 Applicant after: Anhui Changfei Advanced Semiconductor Co.,Ltd. Address before: 1803, Building 3, Service Outsourcing Park, High tech Industrial Development Zone, Wuhu City, Anhui Province Applicant before: Anhui Changfei Advanced Semiconductor Co.,Ltd. Country or region before: China |
|
CB02 | Change of applicant information |