[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN115558292B - 一种高导热聚酰亚胺薄膜及其应用 - Google Patents

一种高导热聚酰亚胺薄膜及其应用 Download PDF

Info

Publication number
CN115558292B
CN115558292B CN202211150094.1A CN202211150094A CN115558292B CN 115558292 B CN115558292 B CN 115558292B CN 202211150094 A CN202211150094 A CN 202211150094A CN 115558292 B CN115558292 B CN 115558292B
Authority
CN
China
Prior art keywords
polyimide film
fullerene
carboxylated
polyimide
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211150094.1A
Other languages
English (en)
Other versions
CN115558292A (zh
Inventor
孙善卫
梅亚平
潘成
胡程鹏
杨景红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guofeng New Material Technology Co ltd
Anhui Guofeng New Material Co ltd
Original Assignee
Anhui Guofeng New Material Technology Co ltd
Anhui Guofeng New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Guofeng New Material Technology Co ltd, Anhui Guofeng New Material Co ltd filed Critical Anhui Guofeng New Material Technology Co ltd
Priority to CN202211150094.1A priority Critical patent/CN115558292B/zh
Publication of CN115558292A publication Critical patent/CN115558292A/zh
Application granted granted Critical
Publication of CN115558292B publication Critical patent/CN115558292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种高导热聚酰亚胺薄膜及其应用,涉及聚酰亚胺薄膜技术领域,是将质子化石墨相氮化碳与羧基化富勒烯自组装形成有序空间结构的g‑C3N4/富勒烯复合填料,再将其加入聚酰胺酸树脂溶液中,混合,然后经流延成膜、亚胺化处理得到聚酰亚胺薄膜。本发明通过将g‑C3N4与富勒烯自组装结合,形成有序空间结构体,避免层状g‑C3N4无规堆叠,缓解纳米片层材料易团聚、分散性差的问题,使得聚酰亚胺复合膜的导热率提高1‑2倍,同时还具有优异的绝缘强度。

Description

一种高导热聚酰亚胺薄膜及其应用
技术领域
本发明涉及聚酰亚胺薄膜技术领域,尤其涉及一种高导热聚酰亚胺薄膜及其应用。
背景技术
小型化集成化的电子元器件容易造成热积累,引起元器件老化失效,因而对散热性能提出很高要求。聚酰亚胺具有低膨胀系数、良好的介电性能和耐化学腐蚀性能等优点,常用作封装材料,但其本体热导率较低(仅0.2W/(m·K)左右),需要添加各种高导热助剂来提高其散热性能,常见的有添加碳纳米管、氮化硼等填料。
石墨相氮化碳(g-C3N4)作为一种类石墨烯片层结构,具有优异的导热绝缘性能,已经开始用于导热领域。CN 111471300 A提出将氮化碳纳米片作为填料加入聚酰亚胺,提高了聚酰亚胺膜的导热性能,但纳米氮化碳表面能大,易团聚堆叠,对聚酰亚胺膜的导热性能提升效果有限;CN 111471299 A提出将氮化碳与石墨烯以相互搭接方式形成复合物层,聚酰亚胺膜的导热性能大幅提高,但由于氮化碳和石墨烯均属于片层结构,形成的复合物层混乱无序,与单一氮化碳填料相比,导热性能虽有提升,但是绝缘性能有明显下降。
发明内容
基于背景技术存在的技术问题,本发明提出了一种高导热聚酰亚胺薄膜及其应用,利用表面改性将g-C3N4与富勒烯自组装结合,形成有序空间结构体,其作为复合导热填料加入聚酰胺酸溶液中,制得的聚酰亚胺薄膜的导热性高且保持较好的绝缘性能。
本发明提出的一种高导热聚酰亚胺薄膜,是将质子化石墨相氮化碳与羧基化富勒烯自组装形成有序空间结构的g-C3N4/富勒烯复合填料,再将其加入聚酰胺酸树脂溶液中,混合,然后经流延成膜、亚胺化处理得到聚酰亚胺薄膜。
优选地,g-C3N4/富勒烯复合填料加入到聚酰胺酸树脂溶液中后,g-C3N4/富勒烯复合填料占体系总固含量质量的5~20%。
优选地,所述自组装是将质子化石墨相氮化碳与羧基化富勒烯加入乙醇溶液中,于回流温度下搅拌反应,再经洗涤干燥得到的;优选地,回流温度为80~100℃,搅拌反应10~12h。
优选地,所述质子化石墨相氮化碳与羧基化富勒烯的质量百分比为90~95:5~10;优选地,羧基化富勒烯为羧基化C60、羧基化C70中的一种或其混合。
优选地,所述质子化石墨相氮化碳的制备如下:将三聚氰胺在500~600℃下煅烧1~3h,然后加入到浓盐酸搅拌反应,经洗涤、干燥得到的。
优选地,将所述聚酰胺酸树脂溶液是二酐单体和二胺单体在非质子极性溶剂中缩聚得到的;其中,二酐单体选自均苯四甲酸二酐、3,3′,4,4′-联苯四甲酸二酐、3,3′,4,4′-二苯甲酮四酸二酐中的一种或两种;二胺单体选自对苯二胺、4,4′-二氨基二苯醚、间苯二胺、3,4′-二氨基二苯醚、4,4′-二氨基二苯砜中的一种或两种;非质子极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮中的一种。
优选地,控制聚酰胺酸树脂溶液的黏度在50~150Pa·s。
优选地,流延成膜操作中,控制流延速度为3~6m/min,成膜厚度为30~50μm。
优选地,将流延成膜得到的凝胶膜先进行纵向拉伸、再横向拉伸处理,纵向拉伸的比例为1:1.1,横向拉伸的比例为1:1.1~1.3;然后110~350℃下梯度升温进行亚胺化处理,得到聚酰亚胺薄膜。
本发明还提出了上述高导热聚酰亚胺薄膜在挠性覆铜板中的应用。
有益效果:本发明利用表面改性将g-C3N4与富勒烯自组装结合,形成有序空间结构体,避免层状g-C3N4无规堆叠,缓解纳米片层材料易团聚,分散性差的问题。将该g-C3N4/富勒烯复合导热填料加入聚酰胺酸溶液中,制得的聚酰亚胺薄膜的导热性高且保持较好的绝缘性能;相较于只添加g-C3N4填料,本发明中聚酰亚胺薄膜的导热率提高1-2倍,该聚酰亚胺薄膜在电子封装薄膜领域具有较好的应用。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种高导热聚酰亚胺复合膜的制备方法,包括如下步骤:
步骤一:将三聚氰胺在550℃煅烧2h得到g-C3N4,将g-C3N4在20mL浓盐酸中搅拌6h,经去离子水超声清洗,离心分离上清液,在烘箱中干燥10h,得到质子化g-C3N4
步骤二:取3.8g的质子化g-C3N4和0.2g的羧基化C60在乙醇溶液中80℃回流搅拌12h,洗涤干燥得到4g的g-C3N4/C60复合填料;
步骤三:将1.94g的对苯二胺和14.4g的4,4′-二氨基二苯醚溶解在155mL的N,N-二甲基乙酰胺中,分批加入总量20g的均苯四甲酸二酐,反应8h得到聚酰胺酸树脂溶液;
步骤四:将上述制备的g-C3N4/C60复合填料加入聚酰胺酸树脂溶液混合均匀后,经过真空消泡处理;
步骤五:用涂布机将聚酰胺酸混合液在玻璃板上涂成50μm膜,经过80℃烘烤去溶剂1h得到凝胶膜,再将凝胶膜先进行纵向拉伸、再横向拉伸处理,纵向拉伸的比例为1:1.1,横向拉伸的比例为1:1.2,然后放置在烘箱中分阶段缓慢升温至350℃,得到最终聚酰亚胺膜。
实施例2
一种高导热聚酰亚胺复合膜的制备方法,与实施例1相比,区别仅在于步骤二存在不同,具体如下:
步骤二:取8.55g的质子化g-C3N4和0.45g的羧基化C60在乙醇溶液中80℃回流搅拌12h,洗涤干燥得到9g的g-C3N4/C60复合填料;
实施例3
一种高导热聚酰亚胺复合膜的制备方法,与实施例1相比,区别仅在于步骤二存在不同,具体如下:
步骤二:取3.6g的质子化g-C3N4和0.4g的羧基化C60在乙醇溶液中80℃回流搅拌12h,洗涤干燥得到4g的g-C3N4/C60复合填料;
对比例1
一种高导热聚酰亚胺复合膜的制备方法,与实施例1相比,区别仅在于步骤二存在不同,具体如下:
步骤二:取4g的质子化g-C3N4作为导热填料;
对比例2
一种高导热聚酰亚胺复合膜的制备方法,与实施例1相比,区别在于不含有步骤一和步骤二,不添加任何导热填料。
将实施例1-3和对比例1-2制备的导热聚酰亚胺复合膜进行性能测试,结果分别如表1所示。
表1为实施例1-3和对比例1-2制备的聚酰亚胺膜性能对比
由表一测试结果可知:不添加导热助剂制备得到的聚酰亚胺膜导热率较低,仅为0.2W/(m·K),仅添加g-C3N4制备得到的聚酰亚胺复合膜导热率得到大幅提升,且同时保持较高的绝缘强度和体积电阻率,实施例1和3可以得知,随着羧基化C60添加量增加,导热率不断增加,且比仅添加g-C3N4制备的聚酰亚胺复合膜导热率提高一倍,同时保持较高的绝缘强度和体积电阻率,这可能与g-C3N4与C60自组装形成有序导热通路有关。值得注意的是,对比实施例1和2知,当g-C3N4/C60复合填料添加量较大时,虽然聚酰亚胺膜的导热率继续提升,但是同时也造成绝缘强度和体积电阻率大幅降低。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种高导热聚酰亚胺薄膜,其特征在于,是将质子化石墨相氮化碳与羧基化富勒烯自组装形成有序空间结构的g-C3N4/富勒烯复合填料,再将其加入聚酰胺酸树脂溶液中,混合,然后经流延成膜、亚胺化处理得到聚酰亚胺薄膜;
所述自组装是将质子化石墨相氮化碳与羧基化富勒烯加入乙醇溶液中,于回流温度下搅拌反应,再经洗涤干燥得到的,回流温度为80~100℃,搅拌反应10~12h;
所述g-C3N4/富勒烯复合填料加入到聚酰胺酸树脂溶液中后,g-C3N4/富勒烯复合填料占体系总固含量质量的5~20%;
所述质子化石墨相氮化碳与羧基化富勒烯的质量比为90~95:5~10。
2.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,羧基化富勒烯为羧基化C60、羧基化C70中的一种或其混合。
3.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,所述质子化石墨相氮化碳的制备如下:将三聚氰胺在500~600℃下煅烧1~3h,然后加入到浓盐酸搅拌反应,经洗涤、干燥得到的。
4.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,将所述聚酰胺酸树脂溶液是二酐单体和二胺单体在非质子极性溶剂中缩聚得到的;其中,二酐单体选自均苯四甲酸二酐、3,3′,4,4′-联苯四甲酸二酐、3,3′,4,4′-二苯甲酮四酸二酐中的一种或两种;二胺单体选自对苯二胺、4,4′-二氨基二苯醚、间苯二胺、3,4′-二氨基二苯醚、4,4′-二氨基二苯砜中的一种或两种;非质子极性溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮中的一种。
5.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,控制聚酰胺酸树脂溶液的黏度在50~150Pa·s。
6.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,流延成膜操作中,控制流延速度为3~6m/min,成膜厚度为30~50μm。
7.根据权利要求1所述的高导热聚酰亚胺薄膜,其特征在于,将流延成膜得到的凝胶膜先进行纵向拉伸、再横向拉伸处理,纵向拉伸的比例为1:1.1,横向拉伸的比例为1:1.1~1.3;然后110~350℃下梯度升温进行亚胺化处理,得到聚酰亚胺薄膜。
8.如权利要求1所述的高导热聚酰亚胺薄膜在柔性显示、半导体封装、挠性覆铜板、集成电路覆盖膜中的应用。
CN202211150094.1A 2022-09-21 2022-09-21 一种高导热聚酰亚胺薄膜及其应用 Active CN115558292B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211150094.1A CN115558292B (zh) 2022-09-21 2022-09-21 一种高导热聚酰亚胺薄膜及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211150094.1A CN115558292B (zh) 2022-09-21 2022-09-21 一种高导热聚酰亚胺薄膜及其应用

Publications (2)

Publication Number Publication Date
CN115558292A CN115558292A (zh) 2023-01-03
CN115558292B true CN115558292B (zh) 2024-01-09

Family

ID=84740642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211150094.1A Active CN115558292B (zh) 2022-09-21 2022-09-21 一种高导热聚酰亚胺薄膜及其应用

Country Status (1)

Country Link
CN (1) CN115558292B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117567742B (zh) * 2024-01-17 2024-03-29 株洲时代新材料科技股份有限公司 一种耐黄变透明聚酰亚胺基板材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739840A (zh) * 2013-12-12 2014-04-23 青岛海洋新材料科技有限公司 一种富勒烯-聚酰亚胺导电薄膜的制备方法
CN109830724A (zh) * 2019-02-26 2019-05-31 青岛科技大学 一种质子化氮化碳增强的复合质子交换膜及其制备方法
CN111471299A (zh) * 2020-06-01 2020-07-31 中国科学院合肥物质科学研究院 一种导热绝缘的聚酰亚胺纳米复合膜及其制备方法
CN111471300A (zh) * 2020-06-01 2020-07-31 中国科学院合肥物质科学研究院 一种导热聚酰亚胺绝缘膜及其制备方法
CN112876846A (zh) * 2020-12-30 2021-06-01 北京市理化分析测试中心 一种含有纳米富勒烯的聚合物薄膜制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739840A (zh) * 2013-12-12 2014-04-23 青岛海洋新材料科技有限公司 一种富勒烯-聚酰亚胺导电薄膜的制备方法
CN109830724A (zh) * 2019-02-26 2019-05-31 青岛科技大学 一种质子化氮化碳增强的复合质子交换膜及其制备方法
CN111471299A (zh) * 2020-06-01 2020-07-31 中国科学院合肥物质科学研究院 一种导热绝缘的聚酰亚胺纳米复合膜及其制备方法
CN111471300A (zh) * 2020-06-01 2020-07-31 中国科学院合肥物质科学研究院 一种导热聚酰亚胺绝缘膜及其制备方法
CN112876846A (zh) * 2020-12-30 2021-06-01 北京市理化分析测试中心 一种含有纳米富勒烯的聚合物薄膜制备方法

Also Published As

Publication number Publication date
CN115558292A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN101168598B (zh) 高导热性、低热膨胀系数的超厚聚酰亚胺薄膜的制备方法
CN103524767B (zh) 一种低线胀系数的新型电子级聚酰亚胺薄膜及其制造方法
CN111793206A (zh) 聚酰亚胺薄膜的制备方法及聚酰亚胺薄膜
CN114854087B (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
CN115044205B (zh) 一种高机械强度导热聚酰亚胺薄膜及其制备方法
WO2022012076A1 (zh) 一种低介电聚酰亚胺复合薄膜材料及其制备方法
CN111269571A (zh) 一种高强度高导热聚酰亚胺复合薄膜及其制备方法
CN106478950A (zh) 一种高粘结性聚酰亚胺薄膜的制备方法
CN108192136B (zh) 导热填料组合物、高导热绝缘复合材料及其制备方法
Zhang et al. Cyanate ester composites containing surface functionalized BN particles with grafted hyperpolyarylamide exhibiting desirable thermal conductivities and a low dielectric constant
CN115558292B (zh) 一种高导热聚酰亚胺薄膜及其应用
CN113337116A (zh) 一种高电导率的柔性聚酰亚胺复合薄膜及其制备方法
CN111471300A (zh) 一种导热聚酰亚胺绝缘膜及其制备方法
CN111607227B (zh) 三维纳米碳/聚酰亚胺复合气凝胶材料及其制备方法和用途
CN114836004B (zh) 一种导热绝缘的环氧树脂复合材料及其制备方法和应用
CN111704798B (zh) 一种耐高温聚酰亚胺薄膜及其制备方法
CN111793208B (zh) 一种三维石墨烯空心球改性的聚酰亚胺材料、其制备方法及改性聚酰亚胺胶黏剂
CN117430848B (zh) 一种添加无机助剂的导热型聚酰亚胺薄膜及其制备方法和应用
Zhang et al. Polyhedral oligosilsesquioxane-modified boron nitride enhances the mechanical properties of polyimide nanocomposites
CN115637045A (zh) 一种导热电绝缘聚酰亚胺薄膜
CN115960375A (zh) 一种高导热的聚酰亚胺基无胶挠性覆铜板及制备方法
CN114479455A (zh) 一种成膜性良好的高导热聚酰亚胺薄膜及其制备方法
CN113501984A (zh) 一种石墨烯原位改性聚酰亚胺薄膜及其制备方法
CN113493573A (zh) 一种高导热聚酰亚胺薄膜及其制备方法
JP3270378B2 (ja) 金属・樹脂複合体、その製造方法及びフレキシブル回路配線板用基板

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant