CN115390181A - A long-wavelength mid-infrared on-chip integrated optical parameter conversion device - Google Patents
A long-wavelength mid-infrared on-chip integrated optical parameter conversion device Download PDFInfo
- Publication number
- CN115390181A CN115390181A CN202210899250.8A CN202210899250A CN115390181A CN 115390181 A CN115390181 A CN 115390181A CN 202210899250 A CN202210899250 A CN 202210899250A CN 115390181 A CN115390181 A CN 115390181A
- Authority
- CN
- China
- Prior art keywords
- infrared
- waveguide
- long
- oxide crystal
- conversion device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 27
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 239000013078 crystal Substances 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 239000010453 quartz Substances 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003292 glue Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 2
- MRZMQYCKIIJOSW-UHFFFAOYSA-N germanium zinc Chemical compound [Zn].[Ge] MRZMQYCKIIJOSW-UHFFFAOYSA-N 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 6
- MOHPKPMGPNKIKH-UHFFFAOYSA-N [Zn].[Ge].[P] Chemical compound [Zn].[Ge].[P] MOHPKPMGPNKIKH-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000005387 chalcogenide glass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12197—Grinding; Polishing
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种长波长中红外片上集成光参量转换装置:包括基底和在基底上从左到右依次设置的光束聚焦透镜、非氧化物晶体波导、光束收集透镜;在所述非氧化物晶体波导和基底之间设有石英衬底;所述非氧化物晶体波导与石英衬底之间通过紫外胶胶合连接。本发明借助于基于非线性晶体波导的片上中红外光参量转换装置,实现了低阈值、高效率的长波长中红外激光的产生,其简单的构造和易于集成的特质可以进一步推动中红外激光的应用和发展。
The invention discloses a long-wavelength mid-infrared on-chip integrated optical parameter conversion device: it includes a substrate and a beam focusing lens, a non-oxide crystal waveguide, and a beam collecting lens arranged sequentially from left to right on the substrate; A quartz substrate is arranged between the crystal waveguide and the base; the non-oxide crystal waveguide and the quartz substrate are glued and connected by ultraviolet glue. The present invention realizes the generation of low-threshold, high-efficiency long-wavelength mid-infrared laser with the aid of an on-chip mid-infrared optical parameter conversion device based on a nonlinear crystal waveguide. Its simple structure and easy-to-integrate characteristics can further promote the development of mid-infrared lasers. application and development.
Description
技术领域technical field
本发明涉及激光技术领域,具体涉及一种长波长中红外片上集成光参量转换装置。The invention relates to the field of laser technology, in particular to a long-wavelength mid-infrared on-chip integrated optical parameter conversion device.
背景技术Background technique
目前实现4μm以上的长波长中红外激光片上集成装置主要包括以硅锗材料、硫系玻璃、氮化铝等为核心的激光波导结构,然而,由于材料本身的特性,以上述材料为核心的片上集成装置多是基于材料的三阶非线性产生中红外激光,通常情况下效率较低,并且需要必要且耗时的色散管理和相对比较复杂的波导设计。At present, long-wavelength mid-infrared laser on-chip integrated devices with a wavelength of more than 4 μm mainly include laser waveguide structures centered on silicon germanium materials, chalcogenide glass, aluminum nitride, etc. However, due to the characteristics of the materials themselves, the on-chip Most integrated devices are based on the third-order nonlinearity of materials to generate mid-infrared lasers, which are usually inefficient, and require necessary and time-consuming dispersion management and relatively complex waveguide design.
以非线性晶体二阶非线性为核心的参量下转换技术是现阶段产生中红外激光的另外一种技术手段。实现光参量转换需要借助于非线性晶体和一些新型的周期性极化晶体,通常情况下,只需要选择合适的晶体和入射激光的频率就可以实现任意波段的中红外激光输出。然而目前这类光参量转换装置多数利用块状晶体产生中红外激光,并且要求严格、复杂的光路设置,导致其结构冗余,体积庞大;同时泵浦阈值较高,转换效率较低。因此,设计并实现基于非线性晶体二阶非线性的片上集成装置用于产生低阈值高效率的中红外激光一直是研究人员的关注重点,目前仅有基于铌酸锂晶体的片上集成装置面世,然而受限于铌酸锂晶体的透明窗口限制,其输出波长仍被限制在4μm以内。非氧化物晶体的透明窗口可达10μm以上,因此实现该类晶体的片上集成装置用于产生高效率的长波长中红外激光是亟待解决的问题。The parametric down-conversion technology based on the second-order nonlinearity of nonlinear crystals is another technical means to generate mid-infrared lasers at this stage. The realization of optical parameter conversion requires the help of nonlinear crystals and some new types of periodically polarized crystals. Usually, it is only necessary to select the appropriate crystal and the frequency of the incident laser to achieve mid-infrared laser output in any band. However, most of these optical parametric conversion devices currently use bulk crystals to generate mid-infrared lasers, and require strict and complex optical path settings, resulting in redundant structures and bulky volumes; at the same time, the pumping threshold is high and the conversion efficiency is low. Therefore, designing and implementing an on-chip integrated device based on the second-order nonlinearity of nonlinear crystals to generate low-threshold and high-efficiency mid-infrared lasers has always been the focus of researchers. Currently, only on-chip integrated devices based on lithium niobate crystals are available. However, limited by the transparent window of lithium niobate crystal, its output wavelength is still limited within 4 μm. The transparent window of non-oxide crystals can reach more than 10 μm. Therefore, it is an urgent problem to realize the on-chip integrated device of this type of crystals to generate high-efficiency long-wavelength mid-infrared lasers.
另一方面,为了实现高效率10μm以上长波长中红外激光输出,基于非氧化物晶体的波导尺寸一般应在μm量级,应用传统的光刻技术(湿法刻蚀、离子束刻蚀、等离子体刻蚀等)进行该类激光晶体波导的制作耗时将会较长,并且考虑到众多非氧化物晶体的物质结构的特异性,传统光刻技术将无法做到普适性应用。On the other hand, in order to achieve high-efficiency long-wavelength mid-infrared laser output above 10 μm, the waveguide size based on non-oxide crystals should generally be on the order of μm, and traditional photolithography techniques (wet etching, ion beam etching, plasma It will take a long time to manufacture this type of laser crystal waveguide, and considering the specificity of the material structure of many non-oxide crystals, traditional photolithography technology will not be able to achieve universal application.
基于以上所述,探索并实现基于非氧化物晶体的片上集成装置实现长波长中红外激光的输出是当下各国研究人员的关注重点,意义重大。Based on the above, it is of great significance to explore and realize the on-chip integrated device based on non-oxide crystals to realize the output of long-wavelength mid-infrared laser.
发明内容Contents of the invention
针对上述问题,本发明提供一种长波长中红外片上集成光参量转换装置,基于激光直写技术,克服了现有长波长中红外光参量转换装置结构复杂、阈值较高、转换效率较低的缺陷。In view of the above problems, the present invention provides a long-wavelength mid-infrared on-chip integrated optical parameter conversion device, based on laser direct writing technology, which overcomes the complex structure, high threshold value and low conversion efficiency of existing long-wavelength mid-infrared optical parameter conversion devices. defect.
本发明采用下述的技术方案:The present invention adopts following technical scheme:
一种长波长中红外片上集成光参量转换装置,包括基底和在基底上从左到右依次设置的光束聚焦透镜、非氧化物晶体波导、光束收集透镜;在所述非氧化物晶体波导和基底之间设有石英衬底;A long-wavelength mid-infrared on-chip integrated optical parameter conversion device, including a substrate and a beam focusing lens, a non-oxide crystal waveguide, and a beam collecting lens arranged sequentially from left to right on the substrate; the non-oxide crystal waveguide and the substrate A quartz substrate is arranged between;
所述光束聚焦透镜用于对入射光进行会聚,形成聚焦光斑;所述非氧化物晶体波导用于实现基于入射光的光参量转换;所述光束收集透镜用于对产生的长波长中红外信号进行收集;所述石英衬底用于对非氧化物晶体波导进行支撑;所述基底用于对整个装置进行支撑,从而形成高度集成化的片上中红外光参量转换装置。The beam focusing lens is used to converge the incident light to form a focused spot; the non-oxide crystal waveguide is used to realize the optical parameter conversion based on the incident light; the beam collecting lens is used to collect the generated long-wavelength mid-infrared signal collecting; the quartz substrate is used to support the non-oxide crystal waveguide; the base is used to support the entire device, thereby forming a highly integrated on-chip mid-infrared optical parameter conversion device.
所述光束聚焦透镜为焦距40mm的CaF2透镜,未镀膜,其透射范围为0.8-8μm。所述非氧化物晶体波导为磷锗锌晶体波导,两束波长不同的光在满足时间重合的基础上可实现差频。所述光束收集透镜为焦距15mm的ZnSe透镜。The beam focusing lens is a CaF 2 lens with a focal length of 40 mm, without coating, and its transmission range is 0.8-8 μm. The non-oxide crystal waveguide is a phosphorus-germanium-zinc crystal waveguide, and two beams of light with different wavelengths can achieve frequency difference on the basis of time coincidence. The beam collecting lens is a ZnSe lens with a focal length of 15 mm.
进一步的,所述非氧化物晶体波导与石英衬底之间通过紫外胶胶合连接。Further, the non-oxide crystal waveguide and the quartz substrate are glued and connected by ultraviolet glue.
进一步的,所述非氧化物晶体波导为条形波导或者脊形波导。Further, the non-oxide crystal waveguide is a strip waveguide or a ridge waveguide.
进一步的,所述条形波导宽度为20-40μm,高度为30-60μm;所述脊形波导上表面宽度为20-40μm,下表面宽度为30-50μm,高度为30-60μm。Further, the width of the strip waveguide is 20-40 μm, and the height is 30-60 μm; the width of the upper surface of the ridge waveguide is 20-40 μm, the width of the lower surface is 30-50 μm, and the height is 30-60 μm.
进一步的,所述光束收集透镜两面镀有2-13μm的增透膜。Further, both sides of the light beam collecting lens are coated with 2-13 μm anti-reflection coating.
进一步的,所述非氧化物晶体波导的制备方法:Further, the preparation method of the non-oxide crystal waveguide:
S1、将固定好的非氧化物晶体在高速旋转的机械磨盘上经过粗磨和细磨,形成亚百微米非氧化物晶体薄片;S1. Coarsely grind and finely grind the fixed non-oxide crystals on a high-speed rotating mechanical grinding disc to form sub-hundred-micron non-oxide crystal flakes;
S2、通过飞秒激光直写在非氧化物晶体薄片形成特定的波导形状。S2. Form a specific waveguide shape on a non-oxide crystal sheet by direct writing with a femtosecond laser.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明中利用普适性的激光直写技术制作了非氧化物晶体波导,首次实现了低阈值、高效率4μm以上的高度集成化和微型化片上长波长光参量转换装置。本发明采用以飞秒激光直写为主的普适性的非线性波导制备技术,快捷高效制备了亚百微米波导结构,并将该结构用于长波长中红外光参量转换过程,从而实现长波长中红外激光的产生。相较于传统的参量转换装置,该装置易于实现片上集成,结构简单。相比于传统的硅锗材料等为核心的片上装置,该装置得益于晶体本身更强的二阶非线性特性和作用原理,实现了结构设计简单,同时可高效率产生中红外激光。In the present invention, a non-oxide crystal waveguide is produced by using the universal laser direct writing technology, and a highly integrated and miniaturized on-chip long-wavelength optical parameter conversion device with a low threshold and high efficiency above 4 μm is realized for the first time. The invention adopts the universal non-linear waveguide preparation technology based on femtosecond laser direct writing, quickly and efficiently prepares sub-hundred-micron waveguide structure, and uses this structure in the long-wavelength mid-infrared light parametric conversion process, thereby realizing long-term Wavelength mid-infrared laser generation. Compared with traditional parameter conversion devices, the device is easy to realize on-chip integration and has a simple structure. Compared with the traditional on-chip devices with silicon germanium materials as the core, this device benefits from the stronger second-order nonlinear characteristics and action principle of the crystal itself, which realizes a simple structure design and can generate mid-infrared lasers with high efficiency.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present invention, rather than limiting the present invention .
图1为本发明示意图;Fig. 1 is a schematic diagram of the present invention;
图2为本发明实施例2.4μm激光的光谱图;Fig. 2 is the spectrogram of the 2.4 μm laser of the embodiment of the present invention;
图3为本发明实施例3.8μm激光的光谱图;Fig. 3 is the spectrogram of the 3.8 μm laser of the embodiment of the present invention;
图4为本发明实施例非氧化物晶体波导横截面示意图;4 is a schematic cross-sectional view of a non-oxide crystal waveguide according to an embodiment of the present invention;
图5为本发明实施例中磷锗锌波导结构的截面光场分布图;Fig. 5 is a cross-sectional light field distribution diagram of a phosphorus-germanium-zinc waveguide structure in an embodiment of the present invention;
图6为本发明实施例中经过差频作用产生的中红外激光的光谱;Fig. 6 is the spectrum of the mid-infrared laser generated through the difference frequency action in the embodiment of the present invention;
图7为本发明实施例中产生的中红外激光的输入输出曲线;Fig. 7 is the input-output curve of the mid-infrared laser produced in the embodiment of the present invention;
图8为本发明实施例中制作非氧化物晶体波导的过程示意图。FIG. 8 is a schematic diagram of the process of fabricating a non-oxide crystal waveguide in an embodiment of the present invention.
图中:In the picture:
1-光束聚焦透镜、2-非氧化物晶体波导、3-光束收集透镜、4-紫外胶、5-石英衬底、6-基底。1-beam focusing lens, 2-non-oxide crystal waveguide, 3-beam collecting lens, 4-ultraviolet glue, 5-quartz substrate, 6-substrate.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the following will clearly and completely describe the technical solutions of the embodiments of the present invention in conjunction with the drawings of the embodiments of the present invention. Apparently, the described embodiments are some, not all, embodiments of the present invention. Based on the described embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by those skilled in the art to which the present disclosure belongs. The words "comprising" or "comprising" and similar words used in the present disclosure mean that the elements or things appearing before the word include the elements or things listed after the word and their equivalents, without excluding other elements or things. "Up", "Down", "Left", "Right" and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1所示,一种长波长中红外片上集成光参量转换装置:包括基底6和在基底6上从左到右依次设置的光束聚焦透镜1、非氧化物晶体波导2、光束收集透镜3;在所述非氧化物晶体波导2和基底6之间设有石英衬底5;所述非氧化物晶体波导2与石英衬底5之间通过紫外胶4胶合连接。As shown in Figure 1, a long-wavelength mid-infrared on-chip integrated optical parameter conversion device: including a
所述光束聚焦透镜1用于对入射光进行会聚,形成聚焦光斑;所述非氧化物晶体波导2用于实现基于入射光的光参量转换;所述光束收集透镜3用于对产生的长波长中红外信号进行收集;所述石英衬底5用于对非氧化物晶体波导2进行支撑;所述基底6用于对整个装置进行支撑,从而形成高度集成化的片上中红外光参量转换装置。The beam focusing lens 1 is used to converge the incident light to form a focused spot; the
所述光束聚焦透镜1为焦距40mm的CaF2透镜,未镀膜,其透射范围为0.8-8μm,所述非氧化物晶体波导2为磷锗锌晶体波导,两束波长不同的光在满足时间重合的基础上可实现差频。所述光束收集透镜3为焦距15mm的ZnSe透镜。所述光束收集透镜3两面镀有2-13μm的增透膜。The beam focusing lens 1 is a CaF2 lens with a focal length of 40 mm, uncoated, and its transmission range is 0.8-8 μm. The
本实施例选取波长分别为2.4μm和3.8μm的激光作为入射光,脉冲宽度为250fs,重复频率为500kHz,分别如图2、图3所示:2.4μm激光的光谱图,其中心波长为2410nm,3dB带宽为100nm;3.8μm激光的光谱图,其中心波长为3750nm,3dB带宽为476nm。In this embodiment, lasers with wavelengths of 2.4 μm and 3.8 μm are selected as the incident light, the pulse width is 250 fs, and the repetition frequency is 500 kHz, as shown in Figure 2 and Figure 3 respectively: the spectrum diagram of the 2.4 μm laser, and its center wavelength is 2410 nm , the 3dB bandwidth is 100nm; the spectrum of the 3.8μm laser has a central wavelength of 3750nm and a 3dB bandwidth of 476nm.
所述非氧化物晶体波导2为条形波导或者脊形波导。The
所述条形波导宽度为20-40μm,高度为30-60μm;所述脊形波导上表面宽度为20-40μm,下表面宽度为30-50μm,高度为30-60μm。The width of the strip waveguide is 20-40 μm, and the height is 30-60 μm; the width of the upper surface of the ridge waveguide is 20-40 μm, the width of the lower surface is 30-50 μm, and the height is 30-60 μm.
本实施例非氧化物晶体波导2为脊形波导,其横截面如图4所示,波导上表面宽度为27μm,下表面宽度为42μm,波导高度为37μm。The
磷锗锌晶体波导结构的截面光场分布图如图5所示,可以看出波长为6.7μm的中红外光可以被较好的束缚在波导结构内。The cross-sectional light field distribution diagram of the phosphorus-germanium-zinc crystal waveguide structure is shown in Figure 5. It can be seen that the mid-infrared light with a wavelength of 6.7 μm can be well confined in the waveguide structure.
经过差频作用产生的中红外激光的光谱如图6所示,可以看出,2.4μm和3.8μm在磷锗锌晶体波导结构中,经过差频转换,可以实现6-9μm的长波长中红外激光输出。The spectrum of the mid-infrared laser generated by the difference frequency is shown in Figure 6. It can be seen that 2.4 μm and 3.8 μm are in the phosphorus-germanium-zinc crystal waveguide structure, and after the difference frequency conversion, the long-wavelength mid-infrared of 6-9 μm can be realized. Laser output.
本实施例产生的中红外激光的输入输出曲线如图7所示,图中横坐标数值未考虑耦合效率,耦合效率为6.7%,可以从图7中看出本发明实施例中基于磷锗锌波导的片上中红外激光产生装置考虑到耦合效率的阈值仅为2nJ,对应于峰值功率仅为8kW。The input-output curve of the mid-infrared laser produced by this embodiment is shown in Figure 7, the abscissa value in the figure does not consider the coupling efficiency, and the coupling efficiency is 6.7%. The waveguide's on-chip mid-infrared laser generation device considers the coupling efficiency threshold to be only 2nJ, corresponding to a peak power of only 8kW.
所述非氧化物晶体波导2的制备方法如图8所示:The preparation method of the
S1、将通过紫外胶4固定在石英衬底5上的非氧化物晶体在高速旋转的机械磨盘上粗磨和细磨,形成亚百微米非氧化物晶体薄片;S1. Roughly grind and finely grind the non-oxide crystals fixed on the
S2、通过飞秒激光直写在非氧化物晶体薄片形成特定的波导形状。S2. Form a specific waveguide shape on a non-oxide crystal sheet by direct writing with a femtosecond laser.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the technical content disclosed above to make some changes or modify them into equivalent embodiments with equivalent changes. Technical Essence of the Invention Any simple modifications, equivalent changes and modifications made to the above embodiments still fall within the scope of the technical solutions of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210899250.8A CN115390181A (en) | 2022-07-28 | 2022-07-28 | A long-wavelength mid-infrared on-chip integrated optical parameter conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210899250.8A CN115390181A (en) | 2022-07-28 | 2022-07-28 | A long-wavelength mid-infrared on-chip integrated optical parameter conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115390181A true CN115390181A (en) | 2022-11-25 |
Family
ID=84116535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210899250.8A Pending CN115390181A (en) | 2022-07-28 | 2022-07-28 | A long-wavelength mid-infrared on-chip integrated optical parameter conversion device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115390181A (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6442319B1 (en) * | 1999-02-09 | 2002-08-27 | Xoetronics Llc | Chalcopyrite based nonlinear waveguided heterostructure devices and operating methods |
CN1701267A (en) * | 2003-08-01 | 2005-11-23 | 日本电信电话株式会社 | Laser light source |
US20060153254A1 (en) * | 2005-01-10 | 2006-07-13 | Kresimir Franjic | Laser system for generation of high-power sub-nanosecond pulses with controlable wavelengths in 2-15 mum region |
CN201226412Y (en) * | 2008-04-25 | 2009-04-22 | 北京工业大学 | Whole solid-state intermediate infrared light parameter frequency difference laser |
US20150212387A1 (en) * | 2014-01-30 | 2015-07-30 | Rafael R. Gattass | Compact infrared broadband source |
CN105140760A (en) * | 2015-09-30 | 2015-12-09 | 中国科学院合肥物质科学研究院 | Medical 6-micrometer waveband optical parameter laser |
US20160018628A1 (en) * | 2013-04-12 | 2016-01-21 | Daylight Solutions Inc. | Infrared refractive objective lens assembly |
CN106471406A (en) * | 2014-07-01 | 2017-03-01 | 杜比实验室特许公司 | There is the high power visible laser of the nonlinear waveguide of laser manufacture |
CN113156735A (en) * | 2020-12-15 | 2021-07-23 | 北京邮电大学 | Inverse ridge type AlGaAs waveguide and method thereof |
US20220212284A1 (en) * | 2019-09-25 | 2022-07-07 | Q.ant GmbH | Method for producing microstructures on an optical crystal |
-
2022
- 2022-07-28 CN CN202210899250.8A patent/CN115390181A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6442319B1 (en) * | 1999-02-09 | 2002-08-27 | Xoetronics Llc | Chalcopyrite based nonlinear waveguided heterostructure devices and operating methods |
CN1701267A (en) * | 2003-08-01 | 2005-11-23 | 日本电信电话株式会社 | Laser light source |
US20060153254A1 (en) * | 2005-01-10 | 2006-07-13 | Kresimir Franjic | Laser system for generation of high-power sub-nanosecond pulses with controlable wavelengths in 2-15 mum region |
CN201226412Y (en) * | 2008-04-25 | 2009-04-22 | 北京工业大学 | Whole solid-state intermediate infrared light parameter frequency difference laser |
US20160018628A1 (en) * | 2013-04-12 | 2016-01-21 | Daylight Solutions Inc. | Infrared refractive objective lens assembly |
US20150212387A1 (en) * | 2014-01-30 | 2015-07-30 | Rafael R. Gattass | Compact infrared broadband source |
CN106471406A (en) * | 2014-07-01 | 2017-03-01 | 杜比实验室特许公司 | There is the high power visible laser of the nonlinear waveguide of laser manufacture |
CN105140760A (en) * | 2015-09-30 | 2015-12-09 | 中国科学院合肥物质科学研究院 | Medical 6-micrometer waveband optical parameter laser |
US20220212284A1 (en) * | 2019-09-25 | 2022-07-07 | Q.ant GmbH | Method for producing microstructures on an optical crystal |
CN113156735A (en) * | 2020-12-15 | 2021-07-23 | 北京邮电大学 | Inverse ridge type AlGaAs waveguide and method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5083865B2 (en) | Optical waveguide substrate and harmonic generation device | |
CN111916983B (en) | An infrared supercontinuum light source based on multimode chalcogenide glass fiber | |
CN103715593A (en) | Single-frequency intermediate infrared light source system of 2-micron fiber laser pump | |
CN103606813A (en) | Cascade triple frequency harmonic generating device | |
CN112013975A (en) | Miniaturized up-conversion single photon detector | |
JP2007241078A (en) | Wavelength converting element | |
CN110230096A (en) | Micro-structure and preparation method thereof that lithium triborate crystal surface is anti-reflection | |
CN211506095U (en) | Lithium niobate thin film electro-optical modulator | |
CN115390181A (en) | A long-wavelength mid-infrared on-chip integrated optical parameter conversion device | |
CN112612078B (en) | High-efficiency coupling waveguide based on GOI or SOI and preparation method thereof | |
CN111948805A (en) | Super-surface group capable of realizing coordinate transformation and preparation method of super-surface thereof | |
CN114578487A (en) | Vertically coupled binary blazed subwavelength grating coupler with integrated bottom reflection layer and preparation method thereof | |
CN113204134B (en) | On-chip mid-infrared acousto-optic modulator and preparation method thereof | |
CN203690698U (en) | Single-frequency intermediate infrared light source system of 2 [mu]m fiber laser pump | |
CN215833739U (en) | Broadband frequency doubling waveguide device based on birefringence phase matching | |
CN115980917A (en) | A micron lithium niobate ridge waveguide and its preparation method | |
JPH03150509A (en) | Method for connecting between waveguide substrate and optical fiber, and reflection preventive film with ultraviolet-ray cutting-off function used for the method | |
CN111384654B (en) | A supercontinuum laser light source | |
CN117250806A (en) | A lithium niobate film-sulfur series integrated chip on-chip acousto-optical control device and preparation method | |
CN113517624A (en) | A laser frequency doubling system outside the cavity | |
CN218547190U (en) | A high-efficiency frequency doubling device based on micro-fiber integration | |
CN1885642A (en) | Optical fibre laser and frequency generation red-light device | |
CN2927420Y (en) | Intra-cavity frequency-doubling double-clad green fiber laser with double-sided pumping | |
CN110445002A (en) | A kind of low device and method for pumping few mould photonic crystal fiber and generating super continuous spectrums | |
CN218850076U (en) | Tunable lithium niobate suspended waveguide on-chip Brillouin laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |