CN115094306B - 屈服强度960MPa级海洋工程用钢板及生产方法 - Google Patents
屈服强度960MPa级海洋工程用钢板及生产方法 Download PDFInfo
- Publication number
- CN115094306B CN115094306B CN202210587845.XA CN202210587845A CN115094306B CN 115094306 B CN115094306 B CN 115094306B CN 202210587845 A CN202210587845 A CN 202210587845A CN 115094306 B CN115094306 B CN 115094306B
- Authority
- CN
- China
- Prior art keywords
- heating
- percent
- steel plate
- yield strength
- 960mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 52
- 239000010959 steel Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000012407 engineering method Methods 0.000 title description 2
- 238000010438 heat treatment Methods 0.000 claims abstract description 34
- 238000005096 rolling process Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000005496 tempering Methods 0.000 claims abstract description 21
- 238000010791 quenching Methods 0.000 claims abstract description 11
- 230000000171 quenching effect Effects 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 7
- 238000003723 Smelting Methods 0.000 claims abstract description 5
- 238000009749 continuous casting Methods 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000001816 cooling Methods 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 10
- 238000002791 soaking Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229910001563 bainite Inorganic materials 0.000 claims description 2
- 229910000734 martensite Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910000797 Ultra-high-strength steel Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
一种屈服强度960MPa级海洋工程用钢板及生产方法,属于冶金技术领域。钢板化学成分及质量含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~1.1%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%,V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质。其生产方法包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序。本发明钢板合金成本低,在高温回火前增加一次低温回火工序,保证了钢板的低温韧性。
Description
技术领域
本发明属于冶金技术领域,具体涉及一种屈服强度960MPa级海洋工程用钢板及生产方法。
背景技术
近年来,我国在海洋工程装备用钢的生产方面取得了很大的进步,随着海洋工程装备的大型化及深海作业需求的增加,海洋工程装备用钢的强度需求逐渐增加,采用高强度或超高强度钢可以有效减轻海洋工程装备结构自重,提升海洋工程装备运行效率,高强度成为海洋工程装备用钢的发展方向。
目前国内屈服强度960MPa级钢板存在强度高但冲击韧性普遍较差,或合金成本高、推广难度大等问题。
公开号为CN111455269A的发明专利申请公开了一种屈服强度960MPa级甚高强度海工钢板及其制造方法,其通过成分设计,经过淬火和回火热处理得到合理的性能,但该专利公布的成分设计含Ni:1.00%~2.00%,合金成本高,不利于推广应用。
因此,通过合理的成分设计和工艺设计,开发屈服强度960MPa级低成本海工钢板具有重要的意义。
发明内容
为解决上述技术问题,本发明提供一种屈服强度960MPa级海洋工程用钢板及生产方法,该钢板合金成本低,力学性能良好。本发明采用如下技术方案:
一种屈服强度960MPa级海洋工程用钢板,所述钢板化学成分及质量百分含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~1.1%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%, V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质。
所述钢板厚度为15~50mm,钢板组织为马氏体+贝氏体。
所述钢板屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J。
上述屈服强度960MPa级海洋工程用钢板的生产方法,包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序;所述淬火工序,加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷;所述两阶段回火工序,一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
所述加热工序,钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
所述轧制工序,采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度;第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
采用上述技术方案所产生的有益效果在于:1、本发明钢板的化学成分设计采用低C,保证钢板良好的焊接性;采用Nb、V、Ti微合金化设计,细化晶粒;添加Cr、Mo和B等合金元素提高钢的淬透性,保证钢板的综合性能。2、本发明钢板的化学成分设计未含Ni元素,钢板合金成本大幅度降低,更适合钢板的大规模推广应用。3、本发明钢板采用两阶段回火工序,即在高温回火前增加一次低温回火工序,此低温回火工序可减少组织M-A岛中残余奥氏体边缘的位错密度和相变残余应力,抑制碳化物在残余奥氏体边缘位置形核,改善高温回火后析出相聚集区中的碳化物的尺寸和分布,减轻M-A岛高温回火转变产物的危害性,提高钢板高温回火后的低温冲击韧性。4、本发明钢板具有良好的综合性能,屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J,钢板厚度为15~50mm。
附图说明
图1为本发明实施例1钢板的显微组织图。
具体实施方式
下面结合实施例对本发明做进一步详细说明。
实施例1-10
一种屈服强度960MPa级海洋工程用钢板的生产方法,其工艺流程包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序。
加热工序:钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
轧制工序:采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度;第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
淬火工序:加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷。
两阶段回火工序:一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
各实施例生产工序参数见表1、2,所得钢板化学成分及质量百分含量见表3,钢板规格及性能见表4。
表1. 各实施例加热、轧制工序参数
表2. 各实施例淬火、两阶段回火工序参数
表3. 各实施例钢板化学成分及质量百分含量(%)
表4. 各实施例钢板规格及性能
Claims (6)
1.一种屈服强度960MPa级海洋工程用钢板,其特征在于,所述钢板化学成分及质量百分含量为C:0.15~0.17%,Si:0.25~0.35%,Mn:0.75~0.97%,P≤0.010%,S≤0.004%,Nb:0.018~0.025%, V:0.02~0.04%,Cr:1.45~1.50%,Mo:0.50~0.60%,B:0.0010~0.0018%,Ti:0.013~0.018%,Alt:0.02~0.05%,余量为Fe和不可避免的杂质;所述钢板屈服强度≥960MPa,抗拉强度980~1150MPa,延伸率≥12%,-40℃横向冲击功≥120J;
所述钢板的生产方法包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序;所述淬火工序,加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷;所述两阶段回火工序,一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
2.根据权利要求1所述的屈服强度960MPa级海洋工程用钢板,其特征在于,所述钢板厚度为15~50mm,钢板组织为马氏体+贝氏体。
3.基于权利要求1或2所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述生产方法包括冶炼、连铸、加热、轧制、淬火、两阶段回火工序;所述淬火工序,加热温度900~930℃,加热系数为2~3min/mm,出炉后水冷;
所述两阶段回火工序,一阶段回火加热温度420~450℃,加热系数为4~5min/mm,出炉后空冷,二阶段回火加热温度570~610℃,加热系数为4~5min/mm,出炉后空冷。
4.根据权利要求3所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述加热工序,钢坯最高加热温度1240~1250℃,均热温度1210~1220℃,总加热时间≥10min/cm,均热段在炉时间≥40min。
5.根据权利要求3所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述轧制工序,采用两阶段控制轧制工艺,第一阶段轧制温度为1040~1150℃,待温轧制厚度为2.6~3.2倍成品钢板厚度。
6.根据权利要求3所述的屈服强度960MPa级海洋工程用钢板的生产方法,其特征在于,所述轧制工序,第二阶段开轧温度为900~930℃,第二阶段终轧温度为820~850℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210587845.XA CN115094306B (zh) | 2022-05-27 | 2022-05-27 | 屈服强度960MPa级海洋工程用钢板及生产方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210587845.XA CN115094306B (zh) | 2022-05-27 | 2022-05-27 | 屈服强度960MPa级海洋工程用钢板及生产方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115094306A CN115094306A (zh) | 2022-09-23 |
CN115094306B true CN115094306B (zh) | 2023-05-09 |
Family
ID=83288260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210587845.XA Active CN115094306B (zh) | 2022-05-27 | 2022-05-27 | 屈服强度960MPa级海洋工程用钢板及生产方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115094306B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3848397B2 (ja) * | 1996-03-25 | 2006-11-22 | 新日本製鐵株式会社 | 高効率で且つ均一性の良い強靭厚鋼板の製造法 |
JP5303856B2 (ja) * | 2007-04-25 | 2013-10-02 | Jfeスチール株式会社 | 低温靭性に優れ、かつ強度異方性が小さい高張力鋼材の製造方法 |
CN102953000B (zh) * | 2011-08-19 | 2015-12-09 | 鞍钢股份有限公司 | 一种超高强度钢板及其制造方法 |
CN103320697B (zh) * | 2013-06-17 | 2015-11-18 | 中国石油集团渤海石油装备制造有限公司 | 一种应用于超深井工况的钻杆管体及其制造方法 |
CN104498837A (zh) * | 2014-12-01 | 2015-04-08 | 舞阳钢铁有限责任公司 | 大厚度屈服强度890Mpa以上级别调质钢板及其生产方法 |
CN109468529A (zh) * | 2018-10-12 | 2019-03-15 | 舞阳钢铁有限责任公司 | 一种无镍超高强钢板及其生产方法 |
JP6988836B2 (ja) * | 2019-01-28 | 2022-01-05 | Jfeスチール株式会社 | 超低降伏比高張力厚鋼板およびその製造方法 |
CN111826593B (zh) * | 2020-07-27 | 2021-11-02 | 中国兵器工业第五九研究所 | 一种具有高温高耐磨性的中低碳中低合金钢及其制备方法 |
-
2022
- 2022-05-27 CN CN202210587845.XA patent/CN115094306B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN115094306A (zh) | 2022-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114959460B (zh) | 一种低屈强比易焊接耐候桥梁钢及其制造方法 | |
CN103233183B (zh) | 一种屈服强度960MPa级超高强度钢板及其制造方法 | |
CN107475620B (zh) | 低温压力容器用调质型A537Cl2钢板及其生产方法 | |
CN102676945B (zh) | 一种水电工程用易焊接调质高强韧性钢板及其生产方法 | |
CN113652607A (zh) | 一种1000MPa级调质型水电用钢板及其生产方法 | |
CN102400043B (zh) | 一种大厚度海洋工程用钢板 | |
CN103352167A (zh) | 一种低屈强比高强度桥梁用钢及其制造方法 | |
CN104357742B (zh) | 420MPa级海洋工程用大厚度热轧钢板及其生产方法 | |
CN104513936A (zh) | 一种屈服强度1100MPa级调质高强钢及其生产方法 | |
CN109628828B (zh) | 一种低屈强比超厚水电高强度钢板及其制造方法 | |
CN109652733B (zh) | 一种690MPa级特厚钢板及其制造方法 | |
CN101514435A (zh) | 低温韧性优良且稳定的管线钢及其热轧板卷轧制方法 | |
CN117210771B (zh) | 核电用厚规格高性能含氮奥氏体不锈钢及其制造方法 | |
CN114164315B (zh) | 一种60~120mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN111041329B (zh) | 一种海洋工程用高强高韧性钢板及其生产方法 | |
CN104651735A (zh) | 一种韧性大于50J/cm2的低合金耐磨钢及生产方法 | |
CN115094306B (zh) | 屈服强度960MPa级海洋工程用钢板及生产方法 | |
CN114058960B (zh) | 一种25~60mm厚1000MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN116121644A (zh) | 一种高韧性矿山圆盘锯片钢板及其制造方法 | |
CN112375997B (zh) | 一种低成本和超低温条件下使用的x70m管线钢板的制造方法 | |
CN115896598A (zh) | 一种高韧性f690特厚钢板的生产方法 | |
CN114086051B (zh) | 一种60~120mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN114058815B (zh) | 一种1150MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN115927809B (zh) | 一种高韧性f550特厚钢板的生产方法 | |
CN115747658B (zh) | 一种高韧性f500特厚钢板的生产方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240219 Address after: No.385, South TIYU street, Shijiazhuang City, Hebei Province Patentee after: HBIS Co.,Ltd. Country or region after: China Patentee after: Hebei Hegang Material Technology Research Institute Co.,Ltd. Address before: No.385, South TIYU street, Shijiazhuang City, Hebei Province Patentee before: HBIS Co.,Ltd. Country or region before: China |