[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103852171B - A kind of non-brake method Long Wave Infrared Probe absorbent layer structure - Google Patents

A kind of non-brake method Long Wave Infrared Probe absorbent layer structure Download PDF

Info

Publication number
CN103852171B
CN103852171B CN201410020977.XA CN201410020977A CN103852171B CN 103852171 B CN103852171 B CN 103852171B CN 201410020977 A CN201410020977 A CN 201410020977A CN 103852171 B CN103852171 B CN 103852171B
Authority
CN
China
Prior art keywords
layer
film
infrared
detector
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410020977.XA
Other languages
Chinese (zh)
Other versions
CN103852171A (en
Inventor
欧阳程
黄志明
周炜
吴敬
高艳卿
龙芳
褚君浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201410020977.XA priority Critical patent/CN103852171B/en
Publication of CN103852171A publication Critical patent/CN103852171A/en
Application granted granted Critical
Publication of CN103852171B publication Critical patent/CN103852171B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种非制冷长波红外探测器用吸收层结构,该吸收层位于探测器的热敏感薄膜上,自上而下依次由第一介质层、第二金属层、第三绝缘层组成。其特征在于:第一介质层是导热性好、抗腐蚀性强的氮化硅薄膜,作为减反层和器件保护层,膜厚为1000nm–1200nm;第二金属层是膜厚为8nm–12nm的镍铬合金层,作为红外波段的吸收层;第三绝缘层是膜厚为50nm–100nm的二氧化硅薄膜,作为热敏感薄膜与金属层之间的绝缘层。该吸收层制备工艺简单,易与现有的微电子工艺兼容,适用于单元、线列及面阵红外探测器。本专利所提供的红外吸收层具有附着牢固、抗腐蚀性强、重复性好、比热容低、传热性能优异、在8–14微米红外波段具有85%以上吸收率的优点。

The invention discloses an absorbing layer structure for an uncooled long-wave infrared detector. The absorbing layer is located on a heat-sensitive film of the detector and consists of a first dielectric layer, a second metal layer and a third insulating layer from top to bottom. It is characterized in that: the first dielectric layer is a silicon nitride film with good thermal conductivity and strong corrosion resistance, as an anti-reflection layer and device protection layer, with a film thickness of 1000nm-1200nm; the second metal layer is a film thickness of 8nm-12nm The nickel-chromium alloy layer is used as an absorption layer in the infrared band; the third insulating layer is a silicon dioxide film with a film thickness of 50nm-100nm, which is used as an insulating layer between the heat-sensitive film and the metal layer. The preparation process of the absorbing layer is simple, easy to be compatible with the existing microelectronic process, and is suitable for unit, line array and area array infrared detectors. The infrared absorption layer provided by this patent has the advantages of firm adhesion, strong corrosion resistance, good repeatability, low specific heat capacity, excellent heat transfer performance, and an absorption rate of more than 85% in the 8-14 micron infrared band.

Description

一种非制冷长波红外探测器用吸收层结构An absorbing layer structure for an uncooled long-wave infrared detector

技术领域technical field

本发明涉及光学薄膜元件,具体涉及一种非制冷长波红外探测器用吸收层结构。The invention relates to an optical film element, in particular to an absorbing layer structure for an uncooled long-wave infrared detector.

背景技术Background technique

非制冷热敏薄膜型红外探测器是一种重要的红外探测器,相比体材料热敏器件具有热容小、响应速度快、可靠性和稳定性高、重复性好等优点,在军事、民用和工业等领域有着广泛的应用前景,例如可用于产品生产监测、红外热成像、防火报警、非接触测温、光谱分析、温度传感器、导弹跟踪和拦截、医疗诊断等诸多方面。热敏型红外探测器是利用红外辐射的热效应,通过热与其他物理量(例如电阻值、自发极化强度、温度电动势等)的变换来探测红外辐射的。在所有热敏型红外探测器中,以热敏电阻型红外探测器应用最为广泛,它相比热释电和热电偶两种热敏红外探测器更容易制备,而且成本低廉,性能也更稳定。The uncooled heat-sensitive thin-film infrared detector is an important infrared detector. Compared with bulk material heat-sensitive devices, it has the advantages of small heat capacity, fast response speed, high reliability and stability, and good repeatability. It is used in military, Civil and industrial fields have broad application prospects, such as product production monitoring, infrared thermal imaging, fire alarm, non-contact temperature measurement, spectral analysis, temperature sensor, missile tracking and interception, medical diagnosis and many other aspects. Thermal infrared detectors use the thermal effect of infrared radiation to detect infrared radiation through the transformation of heat and other physical quantities (such as resistance value, spontaneous polarization, temperature electromotive force, etc.). Among all thermistor-type infrared detectors, thermistor-type infrared detectors are the most widely used. Compared with pyroelectric and thermocouple two kinds of thermal-sensitive infrared detectors, it is easier to prepare, and the cost is lower, and the performance is more stable. .

常用的热敏电阻型材料主要有金属和半导体薄膜。当温度增加时,金属薄膜电子迁移率下降,从而引起薄膜电阻增加,电阻温度系数(TCR)为正值,但其值一般很小。而半导体材料的TCR一般要高一个数量级,是目前最常用的热敏感材料。当温度升高时,半导体材料的电荷载流子浓度和迁移率增大,电阻率随着材料温度升高而减小,显示出负的TCR。热敏电阻薄膜型红外探测器具有非制冷、制作工艺与集成电路制造工艺兼容,便于大规模生产等优点,具有相当大的发展潜力,是目前发展速度最快、性能最好和最具有应用前景的一种非制冷红外探测器。The commonly used thermistor type materials mainly include metal and semiconductor thin films. When the temperature increases, the electron mobility of the metal film decreases, which causes the film resistance to increase, and the temperature coefficient of resistance (TCR) is positive, but its value is generally small. The TCR of semiconductor materials is generally an order of magnitude higher, and is currently the most commonly used heat-sensitive material. When the temperature increases, the charge carrier concentration and mobility of the semiconductor material increase, and the resistivity decreases as the material temperature increases, showing a negative TCR. Thermistor thin-film infrared detector has the advantages of non-refrigeration, compatible manufacturing process and integrated circuit manufacturing process, and is convenient for mass production. It has considerable development potential and is currently the fastest developing, best performing and most promising. An uncooled infrared detector.

非制冷红外探测的吸收层对红外辐射的吸收特性,不仅直接影响着器件的响应率和探测率,还决定了器件的光谱响应特性。为了提高非致冷红外探测器的性能,对于红外吸收层来说,能以高效率吸收红外辐射是非常重要的。本专利所提供的红外吸收层的最大特点是在8–14微米红外波段具有85%以上吸收率,同是该吸收层具有附着牢固、耐高温、抗腐蚀性强、重复性好、比热容低、传热性能优异等优点,易于与现有的微电子加工工艺兼容,适用于单元、线列及面阵红外探测器。The absorption characteristics of the absorbing layer of uncooled infrared detection to infrared radiation not only directly affect the responsivity and detectivity of the device, but also determine the spectral response characteristics of the device. In order to improve the performance of uncooled infrared detectors, it is very important for the infrared absorbing layer to absorb infrared radiation with high efficiency. The biggest feature of the infrared absorption layer provided by this patent is that it has an absorption rate of more than 85% in the 8-14 micron infrared band. Also, the absorption layer has firm adhesion, high temperature resistance, strong corrosion resistance, good repeatability, and low specific heat capacity. Excellent heat transfer performance and other advantages, easy to be compatible with the existing microelectronics processing technology, suitable for unit, line array and area array infrared detectors.

发明内容Contents of the invention

本发明的目的是提出一种非制冷长波红外探测器用吸收层结构。本专利的设计有效解决了传统红外吸收层结构吸收波段短、和现有半导体工艺不兼容、难以用于线列和面阵探测器的问题。The object of the invention is to propose an absorbing layer structure for an uncooled long-wave infrared detector. The design of this patent effectively solves the problems that the traditional infrared absorbing layer structure has a short absorption band, is incompatible with existing semiconductor processes, and is difficult to be used in line array and area array detectors.

本发明公开了一种非制冷长波红外探测器用吸收层结构及其制备工艺,其结构如图1所示,它由氮化硅薄膜1、镍铬合金层2和二氧化硅薄膜3组成,其特征在于:红外吸收层结构按辐射的入射顺序依次为氮化硅薄膜1、镍铬合金层2、二氧化硅薄膜3,其中:The invention discloses an absorbing layer structure for an uncooled long-wave infrared detector and its preparation process. Its structure is shown in Figure 1. It consists of a silicon nitride film 1, a nickel-chromium alloy layer 2 and a silicon dioxide film 3. It is characterized in that: the structure of the infrared absorbing layer is silicon nitride film 1, nickel-chromium alloy layer 2, and silicon dioxide film 3 in sequence according to the incident order of radiation, wherein:

所述氮化硅薄膜1的膜厚为1000nm–1200nm;The film thickness of the silicon nitride film 1 is 1000nm-1200nm;

所述镍铬合金层2的膜厚为8nm–12nm,其方块电阻为9.0Ω/□–10.0Ω/□;The film thickness of the nickel-chromium alloy layer 2 is 8nm-12nm, and its sheet resistance is 9.0Ω/□-10.0Ω/□;

所述二氧化硅薄膜3的膜厚为50nm–100nm。The film thickness of the silicon dioxide thin film 3 is 50nm-100nm.

本发明设计的长波红外吸收层结构可以通过以下工艺步骤实现:The long-wave infrared absorbing layer structure designed by the present invention can be realized through the following process steps:

1)采用化学溶液法在非晶氧化铝衬底上制备厚度为3.5μm锰钴镍氧薄膜。1) A manganese-cobalt-nickel-oxygen thin film with a thickness of 3.5 μm was prepared on an amorphous alumina substrate by chemical solution method.

2)在锰钴镍氧薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the manganese-cobalt-nickel-oxygen thin film to form an etching mask.

3)采用氩离子/HBr湿法刻蚀工艺制作锰钴镍氧探测器光敏元,面积为0.01mm2-0.25mm2。浮胶清洗。3) Manganese-cobalt-nickel-oxygen detector photosensitive element is manufactured by argon ion/HBr wet etching process, with an area of 0.01mm 2 -0.25mm 2 . Float cleaning.

4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.

5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为50nm–100nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process, with a thickness of 50nm–100nm.

6)采用双离子束溅射工艺淀积镍铬合金层,厚度为8nm–12nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 8nm–12nm. Float cleaning.

7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1000nm–1200nm。浮胶清洗。7) Lithograph patterning on the surface of the film, and use radio frequency magnetron sputtering process to deposit silicon nitride film with a thickness of 1000nm-1200nm. Float cleaning.

本专利的优点在于:该红外吸收层结构具有附着牢固、耐高温、抗腐蚀性强、重复性好、比热容低、传热性能优异,在8–14微米红外波段具有85%以上吸收率等优点;同时该吸收层制备工艺简单,易于与现有的微电子加工工艺兼容,利于工艺整合,适用于单元、线列及面阵红外探测器。The advantages of this patent are: the infrared absorption layer structure has the advantages of firm adhesion, high temperature resistance, strong corrosion resistance, good repeatability, low specific heat capacity, excellent heat transfer performance, and an absorption rate of more than 85% in the 8-14 micron infrared band. ; At the same time, the preparation process of the absorbing layer is simple, easy to be compatible with the existing microelectronic processing technology, beneficial to process integration, and suitable for unit, line array and area array infrared detectors.

附图说明:Description of drawings:

图1为红外吸收层结构图,图中1、氮化硅薄膜,2、镍铬合金层,3、二氧化硅薄膜,4、红外热敏感薄膜。Fig. 1 is a structure diagram of an infrared absorbing layer, in which 1, a silicon nitride film, 2, a nickel-chromium alloy layer, 3, a silicon dioxide film, and 4, an infrared heat-sensitive film.

具体实施方式:detailed description:

以下结合附图,通过具体实例对本专利做进一步详细说明,但本专利的保护范围并不限于以下实例。Below in conjunction with the accompanying drawings, this patent will be further described in detail through specific examples, but the protection scope of this patent is not limited to the following examples.

实例一:Example one:

在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.

(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film

1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.

(二)刻蚀形成电极结构(2) Etching to form electrode structure

2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.

3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.

4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.

(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure

5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为50nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process with a thickness of 50nm.

6)采用双离子束溅射工艺淀积镍铬合金层,厚度为8nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 8nm. Float cleaning.

7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1000nm。浮胶清洗。7) Lithograph patterning on the surface of the film, and use radio frequency magnetron sputtering process to deposit silicon nitride film with a thickness of 1000nm. Float cleaning.

实例二:Example two:

在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.

(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film

1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.

(二)刻蚀形成电极结构(2) Etching to form electrode structure

2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.

3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.

4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.

(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure

5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为75nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process, with a thickness of 75nm.

6)采用双离子束溅射工艺淀积镍铬合金层,厚度为10nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 10 nm. Float cleaning.

7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1100nm。浮胶清洗。7) Photolithographic patterning is carried out on the surface of the film, and a silicon nitride film is deposited by radio frequency magnetron sputtering process, with a thickness of 1100nm. Float cleaning.

实例三:Example three:

在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.

(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film

1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.

(二)刻蚀形成电极结构(2) Etching to form electrode structure

2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.

3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.

4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.

(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure

5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为100nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process with a thickness of 100nm.

6)采用双离子束溅射工艺淀积镍铬合金层,厚度为12nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 12nm. Float cleaning.

7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1200nm。浮胶清洗。7) Photolithographic patterning is carried out on the surface of the film, and a silicon nitride film is deposited by radio frequency magnetron sputtering process, with a thickness of 1200nm. Float cleaning.

Claims (1)

1.一种非制冷长波红外探测器用吸收层结构,它由氮化硅薄膜(1)、镍铬合金层(2)和二氧化硅薄膜(3)组成,其特征在于:所述的吸收层结构按辐射的入射顺序依次为氮化硅薄膜(1)、镍铬合金层(2)和二氧化硅薄膜(3);其中:1. An absorbing layer structure for an uncooled long-wave infrared detector, which is composed of a silicon nitride film (1), a nickel-chromium alloy layer (2) and a silicon dioxide film (3), characterized in that: the absorbing layer According to the incident sequence of radiation, the structure is silicon nitride film (1), nickel-chromium alloy layer (2) and silicon dioxide film (3); among them: 所述氮化硅薄膜(1)的膜厚为1000nm-1200nm;The film thickness of the silicon nitride film (1) is 1000nm-1200nm; 所述镍铬合金层(2)的膜厚为8nm–12nm,其方块电阻为9.0Ω/□–10.0Ω/□;The film thickness of the nickel-chromium alloy layer (2) is 8nm-12nm, and its sheet resistance is 9.0Ω/□-10.0Ω/□; 所述二氧化硅薄膜(3)的膜厚为50nm–100nm。The film thickness of the silicon dioxide film (3) is 50nm-100nm.
CN201410020977.XA 2014-01-17 2014-01-17 A kind of non-brake method Long Wave Infrared Probe absorbent layer structure Active CN103852171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410020977.XA CN103852171B (en) 2014-01-17 2014-01-17 A kind of non-brake method Long Wave Infrared Probe absorbent layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410020977.XA CN103852171B (en) 2014-01-17 2014-01-17 A kind of non-brake method Long Wave Infrared Probe absorbent layer structure

Publications (2)

Publication Number Publication Date
CN103852171A CN103852171A (en) 2014-06-11
CN103852171B true CN103852171B (en) 2016-12-07

Family

ID=50860098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410020977.XA Active CN103852171B (en) 2014-01-17 2014-01-17 A kind of non-brake method Long Wave Infrared Probe absorbent layer structure

Country Status (1)

Country Link
CN (1) CN103852171B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153202B (en) * 2016-07-18 2023-04-07 中国科学院重庆绿色智能技术研究院 Uncooled broadband infrared detector
FR3056292B1 (en) * 2016-09-22 2020-11-20 Commissariat Energie Atomique BOLOMETER TYPE ELECTROMAGNETIC RADIATION DETECTION STRUCTURE AND METHOD FOR MANUFACTURING SUCH A STRUCTURE
CN110160659B (en) * 2019-05-17 2023-09-12 中国科学院上海技术物理研究所 A sensitive element etching type uncooled infrared narrow-band detector and its preparation method
CN110793648A (en) * 2019-11-11 2020-02-14 中国科学院上海技术物理研究所 Aerogel heat insulation structure broadband infrared detector and preparation method thereof
CN113188669B (en) * 2021-04-29 2023-06-27 上海翼捷工业安全设备股份有限公司 Infrared absorption composite film structure and carbon dioxide pyroelectric infrared detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658114B1 (en) * 2004-09-17 2006-12-14 한국과학기술연구원 Infrared Absorption Layer Structure and Formation Method and Uncooled Infrared Sensing Device Using the Same
KR101183972B1 (en) * 2008-12-16 2012-09-19 한국전자통신연구원 bolometer structure with complemental absorption layer, pixel for IR detector using this and method for fabricating the same
CN101774530B (en) * 2010-02-03 2012-06-06 电子科技大学 Microbolometer and preparation method thereof
CN102529211B (en) * 2011-12-22 2014-09-24 电子科技大学 A film structure for enhancing terahertz radiation absorption rate and its preparation method
CN102848637A (en) * 2012-08-29 2013-01-02 中国科学院长春光学精密机械与物理研究所 Composite multilayer film infrared absorption layer
CN102928087A (en) * 2012-11-01 2013-02-13 中国科学院上海技术物理研究所 Flat spectrum absorption layer for detectors and manufacture method thereof
CN203772418U (en) * 2014-01-17 2014-08-13 中国科学院上海技术物理研究所 Absorbing layer structure for non-refrigerating long-wave infrared detector

Also Published As

Publication number Publication date
CN103852171A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
CN103852171B (en) A kind of non-brake method Long Wave Infrared Probe absorbent layer structure
US9222837B2 (en) Black silicon-based high-performance MEMS thermopile IR detector and fabrication method
CN104501970B (en) A three-dimensional temperature detector and its manufacturing method
KR100925214B1 (en) Volometer and its manufacturing method
CN103193190B (en) Infrared-terahertz dual-band array detector microbridge structure and preparation method thereof
CN102865938B (en) Thermocouples and methods of forming them
CN103715307A (en) Non-refrigeration infrared detector and preparation method thereof
CN104465850B (en) Pyroelectric infrared detector based on Graphene absorbed layer and manufacture method thereof
CN101872797A (en) A novel infrared detector structure and manufacturing method based on a microbridge resonator
CN110793648A (en) Aerogel heat insulation structure broadband infrared detector and preparation method thereof
CN110672211B (en) A kind of nano-gold modified uncooled infrared detector and its production method
CN103855238B (en) A kind of back of the body incident immersion thermosensitive film type Infrared Detectors
CN205940776U (en) Micro -bolometer
CN203772418U (en) Absorbing layer structure for non-refrigerating long-wave infrared detector
CN104409554A (en) Carbon black absorbing layer-based pyroelectric infrared detector and manufacturing method thereof
CN105258806A (en) Pyroelectric infrared detection unit and manufacture method thereof, and pyroelectric infrared detector
CN104465851B (en) Pyroelectric infrared detector sensing unit and manufacturing method thereof
CN214334040U (en) Flexible broadband uncooled infrared detector
JP5669678B2 (en) Infrared sensor
CN202956191U (en) Absorbing layer for a spectrally flat detector
CN106800271B (en) A kind of non-refrigerated infrared focal plane probe dot structure and preparation method thereof
CN105300529A (en) Absorption layer for spectrum flat pyroelectric detector and preparation method
CN202534698U (en) Ferroelectric tunnel junction room temperature infrared detector
CN203774352U (en) Back-incident immersed type thermosensitive film infrared detector
CN209929328U (en) Enhanced infrared film detector based on silicon medium structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant