CN103852171B - A kind of non-brake method Long Wave Infrared Probe absorbent layer structure - Google Patents
A kind of non-brake method Long Wave Infrared Probe absorbent layer structure Download PDFInfo
- Publication number
- CN103852171B CN103852171B CN201410020977.XA CN201410020977A CN103852171B CN 103852171 B CN103852171 B CN 103852171B CN 201410020977 A CN201410020977 A CN 201410020977A CN 103852171 B CN103852171 B CN 103852171B
- Authority
- CN
- China
- Prior art keywords
- layer
- film
- infrared
- detector
- layer structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title abstract description 30
- 230000002745 absorbent Effects 0.000 title 1
- 239000002250 absorbent Substances 0.000 title 1
- 239000000523 sample Substances 0.000 title 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 12
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims abstract description 12
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 12
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000005855 radiation Effects 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 13
- 238000002360 preparation method Methods 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000004377 microelectronic Methods 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 36
- 238000004140 cleaning Methods 0.000 description 16
- 238000000059 patterning Methods 0.000 description 16
- 239000010409 thin film Substances 0.000 description 15
- 230000009977 dual effect Effects 0.000 description 8
- 238000001659 ion-beam spectroscopy Methods 0.000 description 8
- 238000001755 magnetron sputter deposition Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- YQOXCVSNNFQMLM-UHFFFAOYSA-N [Mn].[Ni]=O.[Co] Chemical compound [Mn].[Ni]=O.[Co] YQOXCVSNNFQMLM-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0853—Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/04—Casings
- G01J5/046—Materials; Selection of thermal materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明公开了一种非制冷长波红外探测器用吸收层结构,该吸收层位于探测器的热敏感薄膜上,自上而下依次由第一介质层、第二金属层、第三绝缘层组成。其特征在于:第一介质层是导热性好、抗腐蚀性强的氮化硅薄膜,作为减反层和器件保护层,膜厚为1000nm–1200nm;第二金属层是膜厚为8nm–12nm的镍铬合金层,作为红外波段的吸收层;第三绝缘层是膜厚为50nm–100nm的二氧化硅薄膜,作为热敏感薄膜与金属层之间的绝缘层。该吸收层制备工艺简单,易与现有的微电子工艺兼容,适用于单元、线列及面阵红外探测器。本专利所提供的红外吸收层具有附着牢固、抗腐蚀性强、重复性好、比热容低、传热性能优异、在8–14微米红外波段具有85%以上吸收率的优点。
The invention discloses an absorbing layer structure for an uncooled long-wave infrared detector. The absorbing layer is located on a heat-sensitive film of the detector and consists of a first dielectric layer, a second metal layer and a third insulating layer from top to bottom. It is characterized in that: the first dielectric layer is a silicon nitride film with good thermal conductivity and strong corrosion resistance, as an anti-reflection layer and device protection layer, with a film thickness of 1000nm-1200nm; the second metal layer is a film thickness of 8nm-12nm The nickel-chromium alloy layer is used as an absorption layer in the infrared band; the third insulating layer is a silicon dioxide film with a film thickness of 50nm-100nm, which is used as an insulating layer between the heat-sensitive film and the metal layer. The preparation process of the absorbing layer is simple, easy to be compatible with the existing microelectronic process, and is suitable for unit, line array and area array infrared detectors. The infrared absorption layer provided by this patent has the advantages of firm adhesion, strong corrosion resistance, good repeatability, low specific heat capacity, excellent heat transfer performance, and an absorption rate of more than 85% in the 8-14 micron infrared band.
Description
技术领域technical field
本发明涉及光学薄膜元件,具体涉及一种非制冷长波红外探测器用吸收层结构。The invention relates to an optical film element, in particular to an absorbing layer structure for an uncooled long-wave infrared detector.
背景技术Background technique
非制冷热敏薄膜型红外探测器是一种重要的红外探测器,相比体材料热敏器件具有热容小、响应速度快、可靠性和稳定性高、重复性好等优点,在军事、民用和工业等领域有着广泛的应用前景,例如可用于产品生产监测、红外热成像、防火报警、非接触测温、光谱分析、温度传感器、导弹跟踪和拦截、医疗诊断等诸多方面。热敏型红外探测器是利用红外辐射的热效应,通过热与其他物理量(例如电阻值、自发极化强度、温度电动势等)的变换来探测红外辐射的。在所有热敏型红外探测器中,以热敏电阻型红外探测器应用最为广泛,它相比热释电和热电偶两种热敏红外探测器更容易制备,而且成本低廉,性能也更稳定。The uncooled heat-sensitive thin-film infrared detector is an important infrared detector. Compared with bulk material heat-sensitive devices, it has the advantages of small heat capacity, fast response speed, high reliability and stability, and good repeatability. It is used in military, Civil and industrial fields have broad application prospects, such as product production monitoring, infrared thermal imaging, fire alarm, non-contact temperature measurement, spectral analysis, temperature sensor, missile tracking and interception, medical diagnosis and many other aspects. Thermal infrared detectors use the thermal effect of infrared radiation to detect infrared radiation through the transformation of heat and other physical quantities (such as resistance value, spontaneous polarization, temperature electromotive force, etc.). Among all thermistor-type infrared detectors, thermistor-type infrared detectors are the most widely used. Compared with pyroelectric and thermocouple two kinds of thermal-sensitive infrared detectors, it is easier to prepare, and the cost is lower, and the performance is more stable. .
常用的热敏电阻型材料主要有金属和半导体薄膜。当温度增加时,金属薄膜电子迁移率下降,从而引起薄膜电阻增加,电阻温度系数(TCR)为正值,但其值一般很小。而半导体材料的TCR一般要高一个数量级,是目前最常用的热敏感材料。当温度升高时,半导体材料的电荷载流子浓度和迁移率增大,电阻率随着材料温度升高而减小,显示出负的TCR。热敏电阻薄膜型红外探测器具有非制冷、制作工艺与集成电路制造工艺兼容,便于大规模生产等优点,具有相当大的发展潜力,是目前发展速度最快、性能最好和最具有应用前景的一种非制冷红外探测器。The commonly used thermistor type materials mainly include metal and semiconductor thin films. When the temperature increases, the electron mobility of the metal film decreases, which causes the film resistance to increase, and the temperature coefficient of resistance (TCR) is positive, but its value is generally small. The TCR of semiconductor materials is generally an order of magnitude higher, and is currently the most commonly used heat-sensitive material. When the temperature increases, the charge carrier concentration and mobility of the semiconductor material increase, and the resistivity decreases as the material temperature increases, showing a negative TCR. Thermistor thin-film infrared detector has the advantages of non-refrigeration, compatible manufacturing process and integrated circuit manufacturing process, and is convenient for mass production. It has considerable development potential and is currently the fastest developing, best performing and most promising. An uncooled infrared detector.
非制冷红外探测的吸收层对红外辐射的吸收特性,不仅直接影响着器件的响应率和探测率,还决定了器件的光谱响应特性。为了提高非致冷红外探测器的性能,对于红外吸收层来说,能以高效率吸收红外辐射是非常重要的。本专利所提供的红外吸收层的最大特点是在8–14微米红外波段具有85%以上吸收率,同是该吸收层具有附着牢固、耐高温、抗腐蚀性强、重复性好、比热容低、传热性能优异等优点,易于与现有的微电子加工工艺兼容,适用于单元、线列及面阵红外探测器。The absorption characteristics of the absorbing layer of uncooled infrared detection to infrared radiation not only directly affect the responsivity and detectivity of the device, but also determine the spectral response characteristics of the device. In order to improve the performance of uncooled infrared detectors, it is very important for the infrared absorbing layer to absorb infrared radiation with high efficiency. The biggest feature of the infrared absorption layer provided by this patent is that it has an absorption rate of more than 85% in the 8-14 micron infrared band. Also, the absorption layer has firm adhesion, high temperature resistance, strong corrosion resistance, good repeatability, and low specific heat capacity. Excellent heat transfer performance and other advantages, easy to be compatible with the existing microelectronics processing technology, suitable for unit, line array and area array infrared detectors.
发明内容Contents of the invention
本发明的目的是提出一种非制冷长波红外探测器用吸收层结构。本专利的设计有效解决了传统红外吸收层结构吸收波段短、和现有半导体工艺不兼容、难以用于线列和面阵探测器的问题。The object of the invention is to propose an absorbing layer structure for an uncooled long-wave infrared detector. The design of this patent effectively solves the problems that the traditional infrared absorbing layer structure has a short absorption band, is incompatible with existing semiconductor processes, and is difficult to be used in line array and area array detectors.
本发明公开了一种非制冷长波红外探测器用吸收层结构及其制备工艺,其结构如图1所示,它由氮化硅薄膜1、镍铬合金层2和二氧化硅薄膜3组成,其特征在于:红外吸收层结构按辐射的入射顺序依次为氮化硅薄膜1、镍铬合金层2、二氧化硅薄膜3,其中:The invention discloses an absorbing layer structure for an uncooled long-wave infrared detector and its preparation process. Its structure is shown in Figure 1. It consists of a silicon nitride film 1, a nickel-chromium alloy layer 2 and a silicon dioxide film 3. It is characterized in that: the structure of the infrared absorbing layer is silicon nitride film 1, nickel-chromium alloy layer 2, and silicon dioxide film 3 in sequence according to the incident order of radiation, wherein:
所述氮化硅薄膜1的膜厚为1000nm–1200nm;The film thickness of the silicon nitride film 1 is 1000nm-1200nm;
所述镍铬合金层2的膜厚为8nm–12nm,其方块电阻为9.0Ω/□–10.0Ω/□;The film thickness of the nickel-chromium alloy layer 2 is 8nm-12nm, and its sheet resistance is 9.0Ω/□-10.0Ω/□;
所述二氧化硅薄膜3的膜厚为50nm–100nm。The film thickness of the silicon dioxide thin film 3 is 50nm-100nm.
本发明设计的长波红外吸收层结构可以通过以下工艺步骤实现:The long-wave infrared absorbing layer structure designed by the present invention can be realized through the following process steps:
1)采用化学溶液法在非晶氧化铝衬底上制备厚度为3.5μm锰钴镍氧薄膜。1) A manganese-cobalt-nickel-oxygen thin film with a thickness of 3.5 μm was prepared on an amorphous alumina substrate by chemical solution method.
2)在锰钴镍氧薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the manganese-cobalt-nickel-oxygen thin film to form an etching mask.
3)采用氩离子/HBr湿法刻蚀工艺制作锰钴镍氧探测器光敏元,面积为0.01mm2-0.25mm2。浮胶清洗。3) Manganese-cobalt-nickel-oxygen detector photosensitive element is manufactured by argon ion/HBr wet etching process, with an area of 0.01mm 2 -0.25mm 2 . Float cleaning.
4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.
5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为50nm–100nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process, with a thickness of 50nm–100nm.
6)采用双离子束溅射工艺淀积镍铬合金层,厚度为8nm–12nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 8nm–12nm. Float cleaning.
7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1000nm–1200nm。浮胶清洗。7) Lithograph patterning on the surface of the film, and use radio frequency magnetron sputtering process to deposit silicon nitride film with a thickness of 1000nm-1200nm. Float cleaning.
本专利的优点在于:该红外吸收层结构具有附着牢固、耐高温、抗腐蚀性强、重复性好、比热容低、传热性能优异,在8–14微米红外波段具有85%以上吸收率等优点;同时该吸收层制备工艺简单,易于与现有的微电子加工工艺兼容,利于工艺整合,适用于单元、线列及面阵红外探测器。The advantages of this patent are: the infrared absorption layer structure has the advantages of firm adhesion, high temperature resistance, strong corrosion resistance, good repeatability, low specific heat capacity, excellent heat transfer performance, and an absorption rate of more than 85% in the 8-14 micron infrared band. ; At the same time, the preparation process of the absorbing layer is simple, easy to be compatible with the existing microelectronic processing technology, beneficial to process integration, and suitable for unit, line array and area array infrared detectors.
附图说明:Description of drawings:
图1为红外吸收层结构图,图中1、氮化硅薄膜,2、镍铬合金层,3、二氧化硅薄膜,4、红外热敏感薄膜。Fig. 1 is a structure diagram of an infrared absorbing layer, in which 1, a silicon nitride film, 2, a nickel-chromium alloy layer, 3, a silicon dioxide film, and 4, an infrared heat-sensitive film.
具体实施方式:detailed description:
以下结合附图,通过具体实例对本专利做进一步详细说明,但本专利的保护范围并不限于以下实例。Below in conjunction with the accompanying drawings, this patent will be further described in detail through specific examples, but the protection scope of this patent is not limited to the following examples.
实例一:Example one:
在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.
(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film
1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.
(二)刻蚀形成电极结构(2) Etching to form electrode structure
2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.
3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.
4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.
(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure
5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为50nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process with a thickness of 50nm.
6)采用双离子束溅射工艺淀积镍铬合金层,厚度为8nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 8nm. Float cleaning.
7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1000nm。浮胶清洗。7) Lithograph patterning on the surface of the film, and use radio frequency magnetron sputtering process to deposit silicon nitride film with a thickness of 1000nm. Float cleaning.
实例二:Example two:
在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.
(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film
1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.
(二)刻蚀形成电极结构(2) Etching to form electrode structure
2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.
3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.
4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.
(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure
5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为75nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process, with a thickness of 75nm.
6)采用双离子束溅射工艺淀积镍铬合金层,厚度为10nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 10 nm. Float cleaning.
7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1100nm。浮胶清洗。7) Photolithographic patterning is carried out on the surface of the film, and a silicon nitride film is deposited by radio frequency magnetron sputtering process, with a thickness of 1100nm. Float cleaning.
实例三:Example three:
在基于Mn1.56Co0.96Ni0.48O4热敏薄膜型红外探测器中,采用了本专利所提供的长波红外吸收层结构。具体通过以下步骤实现。In the infrared detector based on Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film, the long-wave infrared absorption layer structure provided by this patent is adopted. Specifically, it is realized through the following steps.
(一)Mn1.56Co0.96Ni0.48O4热敏薄膜的制备(1) Preparation of Mn 1.56 Co 0.96 Ni 0.48 O 4 thermosensitive thin film
1)采用化学溶液法在非晶氧化铝衬底上制备Mn1.56Co0.96Ni0.48O4薄膜,厚度约为3.5μm。1) The Mn 1.56 Co 0.96 Ni 0.48 O 4 thin film was prepared on the amorphous alumina substrate by the chemical solution method, with a thickness of about 3.5 μm.
(二)刻蚀形成电极结构(2) Etching to form electrode structure
2)在Mn1.56Co0.96Ni0.48O4薄膜表面光刻图形化,形成刻蚀掩膜。2) Photolithography and patterning on the surface of the Mn 1.56 Co 0.96 Ni 0.48 O 4 film to form an etching mask.
3)采用氩离子/HBr湿法刻蚀工艺制作探测器光敏元,面积为0.09mm2。浮胶清洗。3) Argon ion/HBr wet etching process is used to fabricate the photosensitive element of the detector with an area of 0.09mm 2 . Float cleaning.
4)在薄膜表面光刻图形化,采用双离子束溅射工艺淀积50nm的铬和200nm的金作为探测器的电极。浮胶清洗。4) Photolithographic patterning is carried out on the surface of the film, and 50nm of chromium and 200nm of gold are deposited as electrodes of the detector by a dual ion beam sputtering process. Float cleaning.
(三)淀积红外吸收层结构(3) Deposition of infrared absorbing layer structure
5)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积二氧化硅薄膜,厚度为100nm。5) Photolithographic patterning is carried out on the surface of the film, and a silicon dioxide film is deposited by radio frequency magnetron sputtering process with a thickness of 100nm.
6)采用双离子束溅射工艺淀积镍铬合金层,厚度为12nm。浮胶清洗。6) A nickel-chromium alloy layer is deposited by a dual ion beam sputtering process with a thickness of 12nm. Float cleaning.
7)在薄膜表面光刻图形化,采用射频磁控溅射工艺淀积氮化硅薄膜,厚度为1200nm。浮胶清洗。7) Photolithographic patterning is carried out on the surface of the film, and a silicon nitride film is deposited by radio frequency magnetron sputtering process, with a thickness of 1200nm. Float cleaning.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410020977.XA CN103852171B (en) | 2014-01-17 | 2014-01-17 | A kind of non-brake method Long Wave Infrared Probe absorbent layer structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410020977.XA CN103852171B (en) | 2014-01-17 | 2014-01-17 | A kind of non-brake method Long Wave Infrared Probe absorbent layer structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103852171A CN103852171A (en) | 2014-06-11 |
CN103852171B true CN103852171B (en) | 2016-12-07 |
Family
ID=50860098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410020977.XA Active CN103852171B (en) | 2014-01-17 | 2014-01-17 | A kind of non-brake method Long Wave Infrared Probe absorbent layer structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103852171B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106153202B (en) * | 2016-07-18 | 2023-04-07 | 中国科学院重庆绿色智能技术研究院 | Uncooled broadband infrared detector |
FR3056292B1 (en) * | 2016-09-22 | 2020-11-20 | Commissariat Energie Atomique | BOLOMETER TYPE ELECTROMAGNETIC RADIATION DETECTION STRUCTURE AND METHOD FOR MANUFACTURING SUCH A STRUCTURE |
CN110160659B (en) * | 2019-05-17 | 2023-09-12 | 中国科学院上海技术物理研究所 | A sensitive element etching type uncooled infrared narrow-band detector and its preparation method |
CN110793648A (en) * | 2019-11-11 | 2020-02-14 | 中国科学院上海技术物理研究所 | Aerogel heat insulation structure broadband infrared detector and preparation method thereof |
CN113188669B (en) * | 2021-04-29 | 2023-06-27 | 上海翼捷工业安全设备股份有限公司 | Infrared absorption composite film structure and carbon dioxide pyroelectric infrared detector |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100658114B1 (en) * | 2004-09-17 | 2006-12-14 | 한국과학기술연구원 | Infrared Absorption Layer Structure and Formation Method and Uncooled Infrared Sensing Device Using the Same |
KR101183972B1 (en) * | 2008-12-16 | 2012-09-19 | 한국전자통신연구원 | bolometer structure with complemental absorption layer, pixel for IR detector using this and method for fabricating the same |
CN101774530B (en) * | 2010-02-03 | 2012-06-06 | 电子科技大学 | Microbolometer and preparation method thereof |
CN102529211B (en) * | 2011-12-22 | 2014-09-24 | 电子科技大学 | A film structure for enhancing terahertz radiation absorption rate and its preparation method |
CN102848637A (en) * | 2012-08-29 | 2013-01-02 | 中国科学院长春光学精密机械与物理研究所 | Composite multilayer film infrared absorption layer |
CN102928087A (en) * | 2012-11-01 | 2013-02-13 | 中国科学院上海技术物理研究所 | Flat spectrum absorption layer for detectors and manufacture method thereof |
CN203772418U (en) * | 2014-01-17 | 2014-08-13 | 中国科学院上海技术物理研究所 | Absorbing layer structure for non-refrigerating long-wave infrared detector |
-
2014
- 2014-01-17 CN CN201410020977.XA patent/CN103852171B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103852171A (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103852171B (en) | A kind of non-brake method Long Wave Infrared Probe absorbent layer structure | |
US9222837B2 (en) | Black silicon-based high-performance MEMS thermopile IR detector and fabrication method | |
CN104501970B (en) | A three-dimensional temperature detector and its manufacturing method | |
KR100925214B1 (en) | Volometer and its manufacturing method | |
CN103193190B (en) | Infrared-terahertz dual-band array detector microbridge structure and preparation method thereof | |
CN102865938B (en) | Thermocouples and methods of forming them | |
CN103715307A (en) | Non-refrigeration infrared detector and preparation method thereof | |
CN104465850B (en) | Pyroelectric infrared detector based on Graphene absorbed layer and manufacture method thereof | |
CN101872797A (en) | A novel infrared detector structure and manufacturing method based on a microbridge resonator | |
CN110793648A (en) | Aerogel heat insulation structure broadband infrared detector and preparation method thereof | |
CN110672211B (en) | A kind of nano-gold modified uncooled infrared detector and its production method | |
CN103855238B (en) | A kind of back of the body incident immersion thermosensitive film type Infrared Detectors | |
CN205940776U (en) | Micro -bolometer | |
CN203772418U (en) | Absorbing layer structure for non-refrigerating long-wave infrared detector | |
CN104409554A (en) | Carbon black absorbing layer-based pyroelectric infrared detector and manufacturing method thereof | |
CN105258806A (en) | Pyroelectric infrared detection unit and manufacture method thereof, and pyroelectric infrared detector | |
CN104465851B (en) | Pyroelectric infrared detector sensing unit and manufacturing method thereof | |
CN214334040U (en) | Flexible broadband uncooled infrared detector | |
JP5669678B2 (en) | Infrared sensor | |
CN202956191U (en) | Absorbing layer for a spectrally flat detector | |
CN106800271B (en) | A kind of non-refrigerated infrared focal plane probe dot structure and preparation method thereof | |
CN105300529A (en) | Absorption layer for spectrum flat pyroelectric detector and preparation method | |
CN202534698U (en) | Ferroelectric tunnel junction room temperature infrared detector | |
CN203774352U (en) | Back-incident immersed type thermosensitive film infrared detector | |
CN209929328U (en) | Enhanced infrared film detector based on silicon medium structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |