CN103685088A - Pilot frequency optimization method of sparse channel, device and channel estimation method - Google Patents
Pilot frequency optimization method of sparse channel, device and channel estimation method Download PDFInfo
- Publication number
- CN103685088A CN103685088A CN201210350713.1A CN201210350713A CN103685088A CN 103685088 A CN103685088 A CN 103685088A CN 201210350713 A CN201210350713 A CN 201210350713A CN 103685088 A CN103685088 A CN 103685088A
- Authority
- CN
- China
- Prior art keywords
- pilot arrangement
- optimal
- pilot
- arrangement
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0204—Channel estimation of multiple channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0228—Channel estimation using sounding signals with direct estimation from sounding signals
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种稀疏信道的导频优化方法,本发明实施例还公开了一种稀疏信道的导频优化装置和一种稀疏信道估计方法。其中所述方法包括:随机从子载波集合中选取元素生成初始导频排布,根据所述子载波集合和所述初始导频排布生成侯选集并从所述侯选集中选取所述初始导频排布中各元素位置上的最佳元素从而生成优选导频排布,其中,所述优选导频排布由所述初始导频排布中各元素位置上的最佳元素构成;多次重复执行上述步骤,并将多次重复过程中生成的第一目标函数值最优的优选导频排布确定为优化导频排布。采用本发明,具有收敛速度快、均方误差和误码率性能好等优点。
The embodiment of the invention discloses a sparse channel pilot optimization method, and the embodiment of the invention also discloses a sparse channel pilot optimization device and a sparse channel estimation method. The method includes: randomly selecting elements from a subcarrier set to generate an initial pilot arrangement, generating a candidate set according to the subcarrier set and the initial pilot arrangement, and selecting the initial pilot from the candidate set The optimal element at each element position in the frequency arrangement to generate an optimal pilot arrangement, wherein the optimal pilot arrangement is formed by the best element at each element position in the initial pilot arrangement; multiple times The above steps are repeatedly executed, and the optimal pilot arrangement with the best first objective function value generated during the multiple repetitions is determined as the optimal pilot arrangement. The invention has the advantages of fast convergence speed, good performance of mean square error and bit error rate, and the like.
Description
技术领域 technical field
本发明涉及通信领域,尤其涉及一种稀疏信道的导频优化方法、装置和信道估计方法。The invention relates to the communication field, in particular to a sparse channel pilot optimization method, device and channel estimation method.
背景技术 Background technique
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)作为第四代移动通信及未来无线通信的核心技术,能有效对抗无线传播中的多径效应、简化均衡器设计、降低接收机复杂度和功耗并提高频谱利用率。信道估计作为OFDM系统的关键环节之一,对信号传输所经历的信道的时延、衰减、多径等参数进行估测。信道估计的准确程度对信道均衡、解调和信道译码等均有直接的影响。因此,信道估计技术一直倍受研究者关注。Orthogonal Frequency Division Multiplexing (OFDM), as the core technology of the fourth-generation mobile communication and future wireless communication, can effectively combat multipath effects in wireless propagation, simplify equalizer design, reduce receiver complexity and power consumption and improve spectrum utilization. As one of the key links in OFDM system, channel estimation estimates the time delay, attenuation, multipath and other parameters of the channel experienced by the signal transmission. The accuracy of channel estimation has a direct impact on channel equalization, demodulation and channel decoding. Therefore, channel estimation technology has always attracted the attention of researchers.
信道估计可分为盲估计和导频辅助信道估计(Pilot Assisted ChannelEstimation,PACE)两大类。其中,盲估计利用传输数据本身的一些特性对信道进行估计,由于其运算复杂度较高且实时性差,在实际通信系统中很少采用。PACE在发送数据前,预先插入一些接收端已知的符号(即导频),接收机基于最小二乘(Least Squares,LS)或者最小均方误差(Minimum Mean Square Error,MMSE)等准则对信道进行估计。最近新出现的稀疏信道估计(Sparse ChannelEstimation)或者称为压缩信道感知(Compressed Channel Sensing),也属于PACE范畴,它利用无线信道的稀疏性,将压缩感知(Compressed Sensing,CS)技术用于信道估计。相比传统的LS或MMSE信道估计,压缩感知技术能大幅度降低导频开销,提高频谱利用率和信道估计精度。考虑到无线信道的时延扩展和接收机前端较高的采样率,信道多径分量分散于这一时延扩展中,经过采样以后的信道冲击响应(Channel Impulse Response,CIR)序列通常呈现大多数为零、少数非零的稀疏性,尤其对于普遍使用过采样技术的OFDM系统,这一稀疏特性更为明显。Channel estimation can be divided into two categories: blind estimation and pilot-assisted channel estimation (Pilot Assisted Channel Estimation, PACE). Among them, the blind estimation utilizes some characteristics of the transmitted data itself to estimate the channel. Due to its high computational complexity and poor real-time performance, it is rarely used in actual communication systems. Before sending data, PACE pre-inserts some known symbols (pilots) at the receiving end, and the receiver calculates the channel based on least squares (Least Squares, LS) or minimum mean square error (Minimum Mean Square Error, MMSE) and other criteria. Make an estimate. The recently emerging Sparse Channel Estimation (Sparse Channel Estimation), or Compressed Channel Sensing (Compressed Channel Sensing), also belongs to the PACE category. It uses the sparseness of wireless channels and uses Compressed Sensing (CS) technology for channel estimation. . Compared with traditional LS or MMSE channel estimation, compressed sensing technology can greatly reduce pilot overhead, improve spectrum utilization and channel estimation accuracy. Considering the delay spread of the wireless channel and the high sampling rate of the receiver front-end, the channel multipath components are scattered in this delay spread, and the channel impulse response (Channel Impulse Response, CIR) sequence after sampling usually presents most of Zero and a few non-zero sparsity, especially for OFDM systems that generally use oversampling technology, this sparsity characteristic is more obvious.
在现有技术一中,长期演进(Long-Term Evolution,LTE)系统主要采用均匀导频的分配方式,导频的位置在频率域和时间域上均匀分布。很多研究文献表明,这类均匀分布的导频设计方法对于基于压缩感知的信道估计方案并不是最优的。因此,有必要对基于压缩感知信道估计的方案进行专门的导频设计。In
在现有技术二中,公开了一种基于压缩感知的非连续正交频分复用信道估计方法。该方法包括:设计信道估计导频图案;导频图案的选取;信道频域响应的估计。导频图案选择使用以下两种方案。方案一:保留传统的均匀导频图案,禁用子载波处的导频自然禁用,从而使可用导频呈现自然的不均匀性;方案二:固定导频数量,基于恢复矩阵互相关最小化的准则,以更少的导频获得优于目前其他方法的信道估计性能和系统误码率性能。本方法可以在多种禁用子载波场景下,以更少的导频获得优于目前其他方法的信道估计性能和系统误码率性能。该方法主要考虑如何在非连续正交频分复用情况下进行导频设计,以及在优化后导频位置与禁用位置重合情况下的导频优化设计方法,并没有对连续子载波情况下的最优导频设计方案作出讨论。In the second prior art, a compressed sensing-based discontinuous OFDM channel estimation method is disclosed. The method includes: designing a channel estimation pilot pattern; selecting the pilot pattern; and estimating the frequency domain response of the channel. The pilot pattern selection uses the following two schemes. Option 1: Retain the traditional uniform pilot pattern, disable the pilots at the subcarriers and disable them naturally, so that the available pilots show natural inhomogeneity; Option 2: Fix the number of pilots, based on the criterion of minimizing the cross-correlation of the recovery matrix , with fewer pilots to obtain better channel estimation performance and system bit error rate performance than other current methods. The method can obtain better channel estimation performance and system bit error rate performance than other current methods with fewer pilots in a variety of forbidden subcarrier scenarios. This method mainly considers how to design pilots in the case of discontinuous OFDM, and how to optimize the design of pilots when the optimized pilot position coincides with the forbidden position, and does not have any consideration for the continuous subcarriers. The optimal pilot design scheme is discussed.
在现有技术三(C.Qi and L.Wu,“A Study of Deterministic Pilot Allocation forSparse Channel Estimation in OFDM Systems,”IEEE Comm.Lett.,Vol.16,No.5,pp.742-744,May 2012.)中,公开了一种基于正交频分复用的导频优化方法。该方法能够在子载波数目不规则的情况下,利用随机近似的方法获得近似的最优导频分布,并能够取得较优的收敛速度和信道估计增益。但该方法的收敛速度仍有不足。In prior art 3 (C.Qi and L.Wu, "A Study of Deterministic Pilot Allocation for Sparse Channel Estimation in OFDM Systems," IEEE Comm.Lett., Vol.16, No.5, pp.742-744, May 2012.), a pilot optimization method based on OFDM was disclosed. This method can use the random approximation method to obtain the approximate optimal pilot distribution when the number of subcarriers is irregular, and can obtain better convergence speed and channel estimation gain. However, the convergence speed of this method is still insufficient.
在现有技术四中,采用穷举法生成优化导频排布,即每次随机生成导频排布,在指定的程序运行时间内,从所有随机生成的导频排布中选择一个目标函数值最小的导频排布。这种方法的收敛性能、均方误差(Mean Square Error,MSE)性能及误码率(Bit Error Rate,BER)性能均有所欠缺。In prior art 4, an exhaustive method is used to generate an optimized pilot arrangement, that is, a pilot arrangement is randomly generated each time, and an objective function is selected from all randomly generated pilot arrangements within the specified program running time The pilot arrangement with the smallest value. The convergence performance, mean square error (Mean Square Error, MSE) performance and bit error rate (Bit Error Rate, BER) performance of this method are all lacking.
发明内容 Contents of the invention
本发明实施例所要解决的技术问题在于,提供一种稀疏信道的导频优化方法、装置和信道估计方法。可对基于压缩感知技术的信道估计方案进行专门的导频设计,优化导频排布,提高OFDM稀疏信道估计的均方误差和误码率性能。The technical problem to be solved by the embodiments of the present invention is to provide a sparse channel pilot optimization method, device and channel estimation method. Special pilot design can be carried out for the channel estimation scheme based on compressed sensing technology, the pilot arrangement can be optimized, and the mean square error and bit error rate performance of OFDM sparse channel estimation can be improved.
为了解决上述技术问题,本发明实施例提供了一种稀疏信道的导频优化方法,包括:In order to solve the above technical problems, an embodiment of the present invention provides a pilot optimization method for sparse channels, including:
随机从子载波集合中选取元素生成初始导频排布,根据所述子载波集合和所述初始导频排布生成侯选集并从所述侯选集中选取所述初始导频排布中各元素位置上的最佳元素从而生成优选导频排布,其中,所述优选导频排布由所述初始导频排布中各元素位置上的最佳元素构成;Randomly select elements from the subcarrier set to generate an initial pilot arrangement, generate a candidate set according to the subcarrier set and the initial pilot arrangement, and select each element in the initial pilot arrangement from the candidate set The best element in position to generate a preferred pilot arrangement, wherein the preferred pilot arrangement is composed of the best elements in the position of each element in the initial pilot arrangement;
多次重复执行上述步骤,并将多次重复过程中生成的第一目标函数值最优的优选导频排布确定为优化导频排布。The above steps are repeated multiple times, and the optimal pilot arrangement with the best first objective function value generated during the repeated repetitions is determined as the optimal pilot arrangement.
相应地,本发明实施例还提供了一种稀疏信道的导频优化装置,该装置包括:Correspondingly, an embodiment of the present invention also provides a sparse channel pilot optimization device, which includes:
初始化单元,用于随机从子载波集合中选取元素生成初始导频排布;The initialization unit is used to randomly select elements from the subcarrier set to generate an initial pilot arrangement;
优选导频排布生成单元,用于根据所述子载波集合和所述初始导频排布生成侯选集并从所述侯选集中选取所述初始导频排布中各元素位置上的最佳元素从而生成优选导频排布,其中,所述优选导频排布由所述初始导频排布中各元素位置上的最佳元素构成;A preferred pilot arrangement generating unit, configured to generate a candidate set according to the subcarrier set and the initial pilot arrangement and select the best position of each element in the initial pilot arrangement from the candidate set elements to generate a preferred pilot arrangement, wherein the preferred pilot arrangement is formed by the best element at each element position in the initial pilot arrangement;
优化导频排布生成单元,用于多次重复调用所述初始化单元和优选导频排布生成单元,并将多次重复过程中生成的第一目标函数值最优的优选导频排布确定为优化导频排布。The optimized pilot arrangement generation unit is used to repeatedly call the initialization unit and the optimal pilot arrangement generation unit, and determine the optimal pilot arrangement with the best first objective function value generated during the multiple repetitions To optimize the pilot arrangement.
本发明实施例还提供了一种信道估计方法,该方法包括:The embodiment of the present invention also provides a channel estimation method, the method comprising:
发射端根据权利要求1所述方法确定优化导频排布以插入优化导频;The transmitting end determines the optimized pilot arrangement according to the method of
接收端基于压缩感知技术进行信道估计。The receiver performs channel estimation based on compressed sensing technology.
实施本发明实施例,具有如下有益效果:Implementing the embodiment of the present invention has the following beneficial effects:
一)根据互相关性确定初始导频排布中的最佳元素从而生成优选导频排布,在多种优选导频排布中选取其中互相关性最小的生成优化导频排布,能够最小化测量矩阵的互相关且具有更快的收敛速度;1) Determine the best elements in the initial pilot arrangement according to the cross-correlation to generate the optimal pilot arrangement, and select the optimal pilot arrangement with the smallest cross-correlation among various optimal pilot arrangements, which can minimize Optimize the cross-correlation of the measurement matrix and have a faster convergence speed;
二)根据优化导频排布并基于压缩感知技术进行信道估计,能够提升OFDM稀疏信道估计的均方误差和误码率性能。2) According to the optimized pilot arrangement and channel estimation based on compressed sensing technology, the mean square error and bit error rate performance of OFDM sparse channel estimation can be improved.
附图说明 Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本发明的一种正交频分复用系统的稀疏信道的导频优化方法的第一实施例流程示意图;Fig. 1 is a schematic flow chart of the first embodiment of a pilot optimization method for a sparse channel of an OFDM system according to the present invention;
图2是本发明的一种确定初始导频排布中一个元素位置上最佳元素的方法流程示意图;Fig. 2 is a schematic flowchart of a method for determining the best element at an element position in the initial pilot arrangement according to the present invention;
图3是本发明的一种生成优选导频排布的方法流程示意图;FIG. 3 is a schematic flowchart of a method for generating a preferred pilot arrangement according to the present invention;
图4是本发明的一种正交频分复用系统的稀疏信道的导频优化方法第二实施例流程示意图;Fig. 4 is a schematic flow chart of a second embodiment of a pilot optimization method for a sparse channel of an OFDM system according to the present invention;
图5是本发明的一种正交频分复用系统的稀疏信道的导频优化装置第一实施例结构示意图;FIG. 5 is a schematic structural diagram of a first embodiment of a pilot optimization device for a sparse channel of an OFDM system according to the present invention;
图6是本发明的一种优选导频排布生成单元结构示意图;Fig. 6 is a schematic structural diagram of a preferred pilot arrangement generating unit of the present invention;
图7是本发明的一种优选导频排布生成单元结构示意图;Fig. 7 is a schematic structural diagram of a preferred pilot arrangement generating unit of the present invention;
图8是本发明与几种现有技术的收敛性能比较结果图;Fig. 8 is the comparison result figure of the convergence performance of the present invention and several prior art;
图9是本发明与几种现有技术的MSE性能比较结果图;Fig. 9 is the MSE performance comparison result figure of the present invention and several prior art;
图10是本发明与几种现有技术的BER性能比较结果图。Fig. 10 is a graph showing the comparison results of BER performance between the present invention and several prior art.
具体实施方式 Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
图1是本发明的一种正交频分复用系统的稀疏信道的导频优化方法的第一实施例流程示意图,参照图1,该方法包括:Fig. 1 is a schematic flow chart of the first embodiment of a pilot optimization method for a sparse channel of an OFDM system according to the present invention. With reference to Fig. 1, the method includes:
S100:随机从子载波集合中选取元素生成初始导频排布。S100: Randomly select elements from the subcarrier set to generate an initial pilot arrangement.
在本实施例的一种实现方式中,子载波数目为N,导频数目为M,从1到N的N个整数构成的集合子载波集合{1,2,3……N}中随机选取M个元素,构成长度为M的一维列向量P,向量P即初始导频排布。In an implementation of this embodiment, the number of subcarriers is N, the number of pilots is M, and the set subcarrier set {1, 2, 3...N} composed of N integers from 1 to N is randomly selected M elements form a one-dimensional column vector P with a length of M, and the vector P is the initial pilot arrangement.
S102:计算侯选集并确定初始导频排布中各元素位置上的最佳元素从而生成优选导频排布;其中,优选导频排布由初始导频排布中各元素位置上的最佳元素构成。S102: Calculate the candidate set and determine the best element at the position of each element in the initial pilot arrangement to generate an optimal pilot arrangement; wherein, the optimal pilot arrangement is determined by the best element at the position of each element in the initial pilot arrangement Element composition.
在本实施例的一种实现方式中,步骤S102通过逐一确定初始导频排布中各元素位置上的最佳元素实现,其中,在每一次确定一个元素位置上的最佳元素时将该元素位置上的元素替换为最佳元素,以便进行其他元素位置上最佳元素的确定和替换。具体地请参照图2,图2是本发明的一种确定初始导频排布中一个元素位置上最佳元素的方法流程示意图,该方法包括:In an implementation of this embodiment, step S102 is implemented by determining the best element at each element position in the initial pilot arrangement one by one, wherein, each time the best element at an element position is determined, the element The element at the position is replaced with the best element, so as to determine and replace the best element at other element positions. Please refer to FIG. 2 specifically. FIG. 2 is a schematic flowchart of a method for determining the best element at an element position in the initial pilot arrangement according to the present invention. The method includes:
S200:定义变动元素和固定元素,具体地,将需要确定最佳元素的当前元素位置上的元素定义为变动元素,保持当前元素位置之外的元素位置上的元素不变并定义为固定元素;S200: Define a variable element and a fixed element, specifically, define the element at the current element position that needs to determine the best element as a variable element, keep the element at the element position other than the current element position unchanged and define it as a fixed element;
S202:计算侯选集,具体地,计算子载波集合与固定元素组成的集合的差集生成侯选集;S202: Calculate a candidate set, specifically, calculate a difference set between a subcarrier set and a set composed of fixed elements to generate a candidate set;
S204:确定最佳元素,具体地,分别用侯选集中的各元素替换变动元素,计算每次发生替换后的初始导频排布的第二目标函数值(即g(p)值,对于g(p)的说明请参照下文相应说明),并将使第二目标函数值最优的元素确定为当前元素位置上的最佳元素。S204: Determine the best element, specifically, replace the variable element with each element in the candidate set, and calculate the second objective function value (ie g(p) value of the initial pilot arrangement after each replacement occurs, for g For the description of (p), please refer to the corresponding description below), and determine the element with the best value of the second objective function as the best element at the current element position.
按照上述方法确定初始导频排布中各元素位置上的最佳元素之后,初始导频排布中各元素位置上的元素实际上均更新为最佳元素,此时的初始导频排布可以作为优化导频排布。After determining the best element at each element position in the initial pilot arrangement according to the above method, the elements at each element position in the initial pilot arrangement are actually updated to the best element, and the initial pilot arrangement at this time can be As an optimized pilot arrangement.
在本实施例的另一种实现方式中,可以通过迭代生成优选导频排布。例如,参照图3,图3是本发明的一种生成优选导频排布的方法流程示意图,该方法包括:In another implementation manner of this embodiment, the optimal pilot arrangement may be generated iteratively. For example, referring to FIG. 3, FIG. 3 is a schematic flowchart of a method for generating an optimal pilot arrangement according to the present invention, the method including:
S300:逐一确定初始导频排布中各元素位置上的最佳元素,其中,在每一次确定一个元素位置上的最佳元素时将该元素位置上的元素替换为最佳元素(确定初始导频排布中一个元素位置上最佳元素的方法请参照图2所示实现方式);S300: Determine the best element at each element position in the initial pilot arrangement one by one, wherein, each time the best element at an element position is determined, replace the element at the element position with the best element (determine the initial pilot Please refer to the implementation shown in Figure 2 for the method of the best element at an element position in the frequency arrangement);
S302:重复执行预设次数的步骤S300,或者重复执行步骤S300直至初始导频排布中各元素位置上的最佳元素不再变化,其中,每一次开始执行步骤S300时,初始导频排布中各元素位置上的元素均为最新确定出的最佳元素,即每一次确定出最佳元素,初始导频排布同时更新并在第一次循环结束之后以更新的初始导频排布参与下一次循环。S302: Repeat step S300 for a preset number of times, or repeat step S300 until the best element in the position of each element in the initial pilot arrangement does not change, wherein, each time step S300 is executed, the initial pilot arrangement The elements at the positions of each element in are the newly determined best elements, that is, each time the best element is determined, the initial pilot arrangement is updated at the same time, and after the end of the first cycle, the updated initial pilot arrangement participates in the next cycle.
在本实现方式中,步骤S302结束之后,初始导频排布中各元素位置上的元素为最终确定出的最佳元素,此时,该初始导频排布即优选导频排布。In this implementation manner, after step S302 is completed, the element at each element position in the initial pilot arrangement is the final determined optimal element, and at this time, the initial pilot arrangement is the optimal pilot arrangement.
S104:多次重复执行步骤S100和步骤S102,并将多次重复过程中生成的第一目标函数(即g(p),详见后文)值最优的优选导频排布确定为优化导频排布。S104: Repeat step S100 and step S102 multiple times, and determine the optimal pilot arrangement with the best value of the first objective function (that is, g(p), see later) generated in the multiple repetition process as the optimization guide frequency arrangement.
步骤S104中,目标函数为测量矩阵A的互相关g(p),具体的:In step S104, the objective function is the cross-correlation g(p) of the measurement matrix A, specifically:
设正交频分复用系统的子载波数目为N,导频数目为M,设导频子载波的索引号为k1,k2,…kM,满足1≤k1<k2<…<kM≤N。发射的导频符号记为X(k1),X(k2),…,X(kM),接收到的导频符号记为Y(k1),Y(k2),…,Y(kM)。则正交频分复用系统的频域信道估计问题可写为:Let the number of subcarriers of the OFDM system be N, the number of pilots be M, and the index numbers of the pilot subcarriers be k 1 , k 2 ,...k M , satisfying 1≤k 1 <k 2 <... <k M ≤ N. The transmitted pilot symbols are denoted as X(k 1 ), X(k 2 ), ..., X(k M ), and the received pilot symbols are denoted as Y(k 1 ), Y(k 2 ), ..., Y (k M ). Then the frequency domain channel estimation problem of OFDM system can be written as:
其中h=[h(1),h(2),…,h(L)]T为等效的离散信道冲击响应函数,长度为L。上标“T”表示向量转置。η=[η(1),η(2),…,η(M)]T为噪声向量,其每一个元素独立同分布,满足均值为0、方差为σ2的复高斯分布。对于标准的N维DFT方阵F,取F的行号为k1,k2,…kM的M行和F的前L列,构成M乘L维的DFT子矩阵FM×L。设y=[Y(k1),Y(k2),…,Y(kM)]T,X=diag{X(k1),X(k2),…,X(kM)}为由发射导频符号X(k1),X(k2),…,X(kM)构成的对角阵,并设方阵X与FM×L的乘积为A=X·FM×L,则可将式(1)进一步写为:Where h=[h(1), h(2),...,h(L)] T is an equivalent discrete channel impulse response function, and its length is L. The superscript "T" indicates vector transpose. η=[η(1), η(2),..., η(M)] T is a noise vector, each element of which is independently and identically distributed, and satisfies a complex Gaussian distribution with a mean value of 0 and a variance of σ2 . For a standard N-dimensional DFT square matrix F, the row numbers of F are k 1 , k 2 , ...k M rows of M and the first L columns of F to form an M×L-dimensional DFT sub-matrix F M×L . Let y=[Y(k 1 ), Y(k 2 ), . . . , Y(k M )] T , X=diag{X(k 1 ), X(k 2 ), . . . , X(k M )} is a diagonal matrix composed of transmitted pilot symbols X(k 1 ), X(k 2 ), ..., X(k M ), and the product of the square matrix X and F M×L is A=X·F M ×L , formula (1) can be further written as:
y=A·h+η(1)y=A h+η(1)
其中,h=[h(1),h(2),…,h(L)]T是稀疏的,即L个元素中,大多数为零而仅有少数非零,但非零元的个数、位置、数值均未知,在此情况下可采用压缩感知技术重建h,而重建性能一方面与采用的重建算法有关系,另一方面与矩阵A密切相关。信道估计问题本质上,是在噪声项未知的情况下,由已知的y和A来估计h,并充分利用h稀疏这一先验信息。矩阵A称为测量矩阵,若能最小化A的互相关,将提升稀疏重建性能。这就涉及到导频的优化问题。设导频排布为p=[k1,k2,…kM]。一旦p确定,则FM×L也确定了,导频子载波的位置也就确定了。Among them, h=[h(1), h(2), ..., h(L)] T is sparse, that is, among the L elements, most of them are zero and only a few non-zero, but non-zero elements The number, location, and value are all unknown. In this case, compressed sensing technology can be used to reconstruct h, and the reconstruction performance is related to the reconstruction algorithm used on the one hand, and is closely related to the matrix A on the other hand. In essence, the channel estimation problem is to estimate h from the known y and A when the noise item is unknown, and make full use of the prior information that h is sparse. The matrix A is called the measurement matrix. If the cross-correlation of A can be minimized, the sparse reconstruction performance will be improved. This involves the optimization of the pilot. Let the pilot arrangement be p=[k 1 , k 2 ,...k M ]. Once p is determined, F M×L is also determined, and the position of the pilot subcarrier is also determined.
矩阵A的互相关g(p)定义为:The cross-correlation g(p) of matrix A is defined as:
则最优的导频为:Then the optimal pilot frequency is:
即最小化矩阵A的互相关的导频排布。实际上,g(p)的计算等价于寻找AHA的所有非对角上三角元素中具有最大绝对值的元素的绝对值,其中上标“H”表示矩阵的共轭转置。That is, the pilot arrangement that minimizes the cross-correlation of matrix A. In fact, the calculation of g(p) is equivalent to finding the absolute value of the element with the largest absolute value among all off-diagonal upper triangular elements of A H A, where the superscript "H" denotes the conjugate transpose of the matrix.
在本实施例的一种实现方式中,预设步骤S100和步骤S102的重复次数从而获取多种优选导频排布并计算每种优选导频排布的目标函数值(第一目标函数值),选取其中目标函数值最优的优选导频排布作为优化导频排布。如果目标函数值最优的优选导频排布为至少两种,则随机选取其中一种作为优化导频排布。In an implementation of this embodiment, the number of repetitions of step S100 and step S102 is preset so as to obtain multiple preferred pilot arrangements and calculate the objective function value (first objective function value) of each preferred pilot arrangement , select the optimal pilot arrangement with the best objective function value as the optimized pilot arrangement. If there are at least two optimal pilot arrangements with the best objective function value, one of them is randomly selected as the optimal pilot arrangement.
图4是本发明的一种正交频分复用系统的稀疏信道的导频优化方法第二实施例流程示意图,在本实施例中,假设正交频分复用系统的子载波个数为N=256,其中导频数目为M=16;正交频分复用系统的保护间隔为64,信道冲击响应经过采样以后长度为L=60。此时式(2)中,向量y的长度为16,向量h的长度为60,矩阵A为16乘64维。Fig. 4 is a schematic flow chart of the second embodiment of a pilot optimization method for a sparse channel of an OFDM system according to the present invention. In this embodiment, it is assumed that the number of subcarriers of the OFDM system is N=256, where the number of pilots is M=16; the guard interval of the OFDM system is 64, and the length of the channel impulse response after sampling is L=60. In formula (2), the length of the vector y is 16, the length of the vector h is 60, and the matrix A is 16 by 64 dimensions.
本实施例在数据初始化时(S400),预设外层循环次数S=100,二层循环次数T=20,从而在100次外层循环中随机选取100种初始导频排布,针对每一种初始导频排布,在最多20次二层循环中确定该初始导频排布的优选导频排布。其中,In this embodiment, when data is initialized (S400), the number of outer loops is preset to be S=100, and the number of second-tier loops T=20, so that 100 initial pilot arrangements are randomly selected in 100 outer loops, and for each An initial pilot arrangement is selected, and an optimal pilot arrangement of the initial pilot arrangement is determined in a maximum of 20 Layer 2 cycles. in,
在步骤S402中,从1到N(256)的256个整数构成的子载波集合{1,2,…,256}中随机选取M(16)个元素构成一个长度为16的一维列向量p。设p^为一个长度为16的零向量。In step S402, M (16) elements are randomly selected from the subcarrier set {1, 2, ..., 256} composed of 256 integers from 1 to N (256) to form a one-dimensional column vector p with a length of 16 . Let p^ be a zero vector of length 16.
在步骤S404和S406中,在每一次二层循环开始时都判断向量p与p^是否相同,如果相同则说明初始导频排布中各元素位置上的最佳元素不再变化,此时执行步骤S410,如果不同则将向量p中每一个元素赋值给p^,并再次确定向量p中各元素位置上的最佳元素。In steps S404 and S406, it is judged whether the vector p and p^ are the same at the beginning of each second-layer cycle, if they are the same, it means that the best element in the position of each element in the initial pilot arrangement will no longer change, and at this time execute Step S410, if different, assign each element in the vector p to p^, and determine the best element at the position of each element in the vector p again.
在步骤S408中,通过M(16)次循环依次确定向量p中各元素位置上的最佳元素。例如:假设m=3,当前的随机导频排布In step S408, the best element at each element position in the vector p is sequentially determined through M (16) cycles. For example: Assuming m=3, the current random pilot arrangement
p=[4,5,18,39,55,72,92,111,130,153,177,192,211,218,237,241]。首先,固定向量p的所有元素中除第3个元素外的其余15个元素,即固定4,5,39,55,72,92,111,130,153,177,192,211,218,237,241不变。然后,令集合c为向量p中除第3个元素外的其余15个元素构成的集合,即c=[4,5,39,55,72,92,111,130,153,177,192,211,218,237,241],令候选集a为子载波集合与集合c的差集,即a={1,2,…,256}\c,则集合a中的元素个数为241。每次从集合a中取出一个不同的元素,放到p的第3个元素位置上,一共有241种放法;计算每种放法形成的导频排布对应的目标函数,从241个目标函数中取最小的一个,将其对应的一种导频排布作为新的p,用于后续迭代。p = [4, 5, 18, 39, 55, 72, 92, 111, 130, 153, 177, 192, 211, 218, 237, 241]. First, fix the remaining 15 elements except the third element among all the elements of the vector p, that is,
在步骤S410中,可以预设一个长度为S(100)的零向量b,和一个S×M(100×16)维的零矩阵Z,Z的每一行用于存放一种导频排布。每一次跳出二层循环后,将向量p保存在矩阵Z的第i行,计算向量p的目标函数值并将该目标函数值保存为向量b的第i个元素。In step S410, a zero vector b with a length of S (100) and a zero matrix Z of dimension S×M (100×16) can be preset, and each row of Z is used to store a pilot arrangement. After jumping out of the second-layer loop each time, save the vector p in the i-th row of the matrix Z, calculate the objective function value of the vector p and save the objective function value as the i-th element of the vector b.
在步骤S412中,从向量b的S(100)个元素中选取最小的元素,假设最小元素为第k个元素,则输出Z的第k行,该第k行即为优化导频排布。In step S412, the smallest element is selected from the S (100) elements of the vector b, assuming that the smallest element is the kth element, then the kth row of Z is output, and the kth row is the optimized pilot arrangement.
当然也可以在步骤S410中进行目标函数值的比较,在步骤S412中直接输出优化导频排布。Of course, it is also possible to compare the objective function values in step S410, and directly output the optimized pilot arrangement in step S412.
图5是本发明的一种正交频分复用系统的稀疏信道的导频优化装置第一实施例结构示意图,该导频优化装置50包括:FIG. 5 is a schematic structural diagram of a first embodiment of a pilot optimization device for a sparse channel of an OFDM system according to the present invention. The
初始化单元502,用于随机从子载波集合中选取元素生成初始导频排布;An
优选导频排布生成单元504,用于根据子载波集合和初始导频排布生成侯选集并从侯选集中选取初始导频排布中各元素位置上的最佳元素从而生成优选导频排布,其中,优选导频排布由初始导频排布中各元素位置上的最佳元素构成;The preferred pilot
优化导频排布生成单元506,用于多次重复调用初始化单元502和优选导频排布生成单元504,并将多次重复过程中生成的第一目标函数值最优的优选导频排布确定为优化导频排布。The optimized pilot
在本实施例的一种实现方式中,参照图6,优选导频排布生成单元504包括:In an implementation of this embodiment, referring to FIG. 6, the preferred pilot
最佳元素确定模块60,用于逐一确定初始导频排布中各元素位置上的最佳元素,其中,在每次确定出一个元素位置上的最佳元素时将该元素位置上的元素替换为对应的最佳元素。该最佳元素确定模块60可以包括:The optimal
定义子模块602,用于将需要确定最佳元素的当前元素位置上的元素定义为变动元素,保持当前元素位置之外的元素位置上的元素不变并定义为固定元素;The
侯选集生成子模块604,用于计算子载波集合与固定元素组成的集合的差集生成侯选集;The candidate set
确定子模块606,用于分别用侯选集中的各元素替换变动元素,计算每次发生替换后的初始导频排布的第二目标函数值,并将使第二目标函数值最优的元素确定为当前元素位置上的最佳元素。The
在本实施例的另一种实现方式中,参照图7,优选导频排布生成单元504除了包括上述的最佳元素确定模块60之外,还包括:In another implementation of this embodiment, referring to FIG. 7 , the preferred pilot
循环调用模块70,用于按照预设次数重复调用最佳元素确定模块60,或者用于重复调用最佳元素确定模块60直至初始导频排布中各元素位置上的最佳元素不再变化,其中,每一次调用最佳元素确定模块60时,初始导频排布中各元素位置上的元素均为最新确定的最佳元素;The cyclic call module 70 is used to repeatedly call the optimal
最终确定模块72,用于确定优选导频排布,该优选导频排布由循环调用模块70最终确定的初始导频排布中各元素位置上的最佳元素构成。The final determination module 72 is configured to determine an optimal pilot arrangement, where the optimal pilot arrangement is formed by the best element at each element position in the initial pilot arrangement finally determined by the cyclic calling module 70 .
在本实施例的再一种实现方式中,优化导频排布生成单元506还包括:In yet another implementation of this embodiment, the optimized pilot
优化导频排布选择模块,用于在第一目标函数值最优的优选导频排布存在至少两种时,随机选取其中一种作为所述优选导频排布。The optimized pilot arrangement selection module is configured to randomly select one of them as the preferred pilot arrangement when there are at least two preferred pilot arrangements with the best first objective function value.
导频优化装置50及该装置各单元、模块及子模块用于实现图1至图4所示实施例中的相应功能,此处不再赘述。The
此外,本发明还提供一种正交频分复用系统的稀疏信道估计方法,该方法包括:In addition, the present invention also provides a sparse channel estimation method for an OFDM system, the method comprising:
1)发射端确定优化导频排布以插入优化导频,具体的确定方法请参照图1至图4所示实施例中的详细说明,或者发射端通过图5所示装置确定优化导频排布;1) The transmitting end determines the optimized pilot arrangement to insert the optimized pilot. For the specific determination method, please refer to the detailed description in the embodiment shown in Figure 1 to Figure 4, or the transmitting end determines the optimized pilot arrangement through the device shown in Figure 5 cloth;
2)接收端基于压缩感知技术进行信道估计。具体的压缩感知技术可以采用现有技术,此处不详述。2) The receiving end performs channel estimation based on compressed sensing technology. The specific compressive sensing technology can adopt the existing technology, which will not be described in detail here.
本发明提供的稀疏信道的导频优化方法和装置能够在导频优化过程中,实现更低的测量矩阵互相关,具有更快的收敛速度。The pilot optimization method and device for sparse channels provided by the present invention can realize lower measurement matrix cross-correlation and faster convergence speed in the pilot optimization process.
本发明能提升OFDM稀疏信道估计的均方误差和误码率性能。The invention can improve the mean square error and bit error rate performance of OFDM sparse channel estimation.
图8、9、10为将本发明与几种现有技术进行性能对比的对比结果示意图。Figures 8, 9 and 10 are schematic diagrams of comparison results comparing the performance of the present invention with several existing technologies.
在仿真试验中,正交频分复用系统的子载波个数为256,其中导频数目为16,正交频分复用系统的保护间隔为64。采用QPSK调制,信道冲击响应长度为60,信道非零抽头数目为6。仿真平台基于Windows 7操作系统,MATLAB2011a软件,CPU为双核2.5GHz,内存3G字节。设定程序运行时间均为348.6秒。采用本发明、现有技术四、现有技术三获得的优化导频结果依次为[4,21,29,46,63,95,116,136,140,184,187,192,197,200,221,248]、[35,38,45,47,49,71,74,79,99,115,147,156,174,194,213,240]、[11,23,42,60,105,127,148,171,175,178,182,190,205,207,217,241],分别对应于目标函数4.8421、5.3535、5.0241。In the simulation test, the number of sub-carriers of the OFDM system is 256, the number of pilots is 16, and the guard interval of the OFDM system is 64. QPSK modulation is adopted, the length of the channel impulse response is 60, and the number of non-zero taps of the channel is 6. The simulation platform is based on the Windows 7 operating system, MATLAB2011a software, the CPU is dual-core 2.5GHz, and the memory is 3G bytes. The set program running time is 348.6 seconds. The optimized pilot results obtained by using the present invention, prior art 4, and prior art 3 are [4,21,29,46,63,95,116,136,140,184,187,192,197,200,221,248], [35,38,45,47,49,71,74, 79,99,115,147,156,174,194,213,240], [11,23,42,60,105,127,148,171,175,178,182,190,205,207,217,241], corresponding to the objective functions 4.8421, 5.3535, 5.0241, respectively.
图8是本发明与几种现有技术的收敛性能比较结果图。Fig. 8 is a comparison result diagram of the convergence performance between the present invention and several existing technologies.
在进行MSE和BER性能仿真时,每次信道生成方式为:从60个抽头里任选6个抽头,这6个抽头位置上的抽头系数服从复高斯分布,对每一次随机生成的信道均采用主流的正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法进行稀疏信道估计,信道随机生成30000次,最后对30000次结果取平均。在信道估计时,假设信道的非零抽头个数未知、非零抽头位置未知、非零抽头系数数值未知。When performing MSE and BER performance simulations, each channel generation method is as follows: select 6 taps from 60 taps, and the tap coefficients at these 6 tap positions obey the complex Gaussian distribution, and use The mainstream Orthogonal Matching Pursuit (OMP) algorithm performs sparse channel estimation, the channel is randomly generated 30,000 times, and finally the results of 30,000 times are averaged. During channel estimation, it is assumed that the number of non-zero taps of the channel is unknown, the positions of non-zero taps are unknown, and the values of coefficients of non-zero taps are unknown.
图9是本发明与几种现有技术的MSE性能比较结果图。Fig. 9 is a graph showing the comparison results of MSE performance between the present invention and several prior art.
图10是本发明与几种现有技术的BER性能比较结果图。Fig. 10 is a graph showing the comparison results of BER performance between the present invention and several prior art.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented through computer programs to instruct related hardware, and the programs can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。The above disclosure is only a preferred embodiment of the present invention, which certainly cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210350713.1A CN103685088B (en) | 2012-09-20 | 2012-09-20 | The pilot frequency optimization method of condition of sparse channel, device and channel estimation methods |
PCT/CN2013/073676 WO2014044042A1 (en) | 2012-09-20 | 2013-04-03 | Pilot frequency optimizing method, apparatus and channel estimating method for sparse channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210350713.1A CN103685088B (en) | 2012-09-20 | 2012-09-20 | The pilot frequency optimization method of condition of sparse channel, device and channel estimation methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103685088A true CN103685088A (en) | 2014-03-26 |
CN103685088B CN103685088B (en) | 2017-06-06 |
Family
ID=50321440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210350713.1A Active CN103685088B (en) | 2012-09-20 | 2012-09-20 | The pilot frequency optimization method of condition of sparse channel, device and channel estimation methods |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103685088B (en) |
WO (1) | WO2014044042A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103997397A (en) * | 2014-04-30 | 2014-08-20 | 北京邮电大学 | Space-domain non-uniform pilot design method |
CN105847208A (en) * | 2015-01-13 | 2016-08-10 | 上海数字电视国家工程研究中心有限公司 | Selection method and design method of continuous pilot frequency number based on OFDM (orthogonal frequency division multiplexing) technology |
CN106059730A (en) * | 2016-05-13 | 2016-10-26 | 电子科技大学 | Adaptive pilot frequency structure optimization design method based on sparse channel estimation |
CN106416307A (en) * | 2015-04-29 | 2017-02-15 | 华为技术有限公司 | Information transmission method, network device and terminal device |
WO2017162143A1 (en) * | 2016-03-24 | 2017-09-28 | Huawei Technologies Co., Ltd. | System and method for downlink channel estimation in massive multiple-input-multiple-output (mimo) |
US9794041B2 (en) | 2013-12-12 | 2017-10-17 | Huawei Technologies Co., Ltd | Method for determining pilot arrangement and base station |
CN104796373B (en) * | 2015-04-16 | 2018-02-27 | 西安交通大学 | A kind of pilot frequency transmitting method of ofdm system |
CN109361497A (en) * | 2018-10-11 | 2019-02-19 | 天津大学 | A pilot design method for OFDM cognitive radio system |
CN114338300A (en) * | 2021-12-02 | 2022-04-12 | 重庆两江卫星移动通信有限公司 | Pilot frequency optimization method and system based on compressed sensing |
CN114866379A (en) * | 2022-07-06 | 2022-08-05 | 湖北大学 | Generation method of channel estimation pilot for high spectral efficiency frequency division multiplexing optical communication system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109361631B (en) * | 2018-10-15 | 2021-02-09 | 中国人民解放军战略支援部队信息工程大学 | Underwater sound orthogonal frequency division multiplexing channel estimation method and device with unknown sparsity |
CN109861934A (en) * | 2019-01-25 | 2019-06-07 | 中国人民解放军国防科技大学 | A method for accurate estimation of spatial channel system function based on sparsity theory |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383656A (en) * | 2007-09-05 | 2009-03-11 | 中兴通讯股份有限公司 | Method and device for optimizing pilot based on speed and channel quality indication |
CN101764777A (en) * | 2009-12-11 | 2010-06-30 | 中国科学技术大学 | Method for obtaining optimal pilot frequencies of non-continuous orthogonal frequency division multiplexing system |
WO2011066296A1 (en) * | 2009-11-24 | 2011-06-03 | Qualcomm Incorporated | Apparatus and method for compressive sensing tap identification for channel estimation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102833058B (en) * | 2012-09-20 | 2015-09-23 | 东南大学 | Based on the pilot design method that condition of sparse channel is estimated in cognitive radio |
-
2012
- 2012-09-20 CN CN201210350713.1A patent/CN103685088B/en active Active
-
2013
- 2013-04-03 WO PCT/CN2013/073676 patent/WO2014044042A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101383656A (en) * | 2007-09-05 | 2009-03-11 | 中兴通讯股份有限公司 | Method and device for optimizing pilot based on speed and channel quality indication |
WO2011066296A1 (en) * | 2009-11-24 | 2011-06-03 | Qualcomm Incorporated | Apparatus and method for compressive sensing tap identification for channel estimation |
CN101764777A (en) * | 2009-12-11 | 2010-06-30 | 中国科学技术大学 | Method for obtaining optimal pilot frequencies of non-continuous orthogonal frequency division multiplexing system |
Non-Patent Citations (2)
Title |
---|
孟庆微等: "《采用时域测量矩阵的压缩感知稀疏信道估计方法》", 《西安交通大学学报》 * |
戚晨皓等: "《采用压缩感知的数字广播信道估计》", 《东南大学学报》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9794041B2 (en) | 2013-12-12 | 2017-10-17 | Huawei Technologies Co., Ltd | Method for determining pilot arrangement and base station |
CN103997397A (en) * | 2014-04-30 | 2014-08-20 | 北京邮电大学 | Space-domain non-uniform pilot design method |
CN103997397B (en) * | 2014-04-30 | 2019-10-01 | 北京邮电大学 | The non-homogeneous pilot design method in airspace |
CN105847208A (en) * | 2015-01-13 | 2016-08-10 | 上海数字电视国家工程研究中心有限公司 | Selection method and design method of continuous pilot frequency number based on OFDM (orthogonal frequency division multiplexing) technology |
CN105847208B (en) * | 2015-01-13 | 2019-04-30 | 上海数字电视国家工程研究中心有限公司 | The method for selecting and design method of CP continuous pilot number based on OFDM technology |
CN104796373B (en) * | 2015-04-16 | 2018-02-27 | 西安交通大学 | A kind of pilot frequency transmitting method of ofdm system |
CN106416307B (en) * | 2015-04-29 | 2020-01-03 | 华为技术有限公司 | Information transmission method, network equipment and terminal equipment |
CN106416307A (en) * | 2015-04-29 | 2017-02-15 | 华为技术有限公司 | Information transmission method, network device and terminal device |
US10250309B2 (en) | 2016-03-24 | 2019-04-02 | Huawei Technologies, Co., Ltd. | System and method for downlink channel estimation in massive multiple-input-multiple-output (MIMO) |
WO2017162143A1 (en) * | 2016-03-24 | 2017-09-28 | Huawei Technologies Co., Ltd. | System and method for downlink channel estimation in massive multiple-input-multiple-output (mimo) |
CN106059730A (en) * | 2016-05-13 | 2016-10-26 | 电子科技大学 | Adaptive pilot frequency structure optimization design method based on sparse channel estimation |
CN109361497A (en) * | 2018-10-11 | 2019-02-19 | 天津大学 | A pilot design method for OFDM cognitive radio system |
CN114338300A (en) * | 2021-12-02 | 2022-04-12 | 重庆两江卫星移动通信有限公司 | Pilot frequency optimization method and system based on compressed sensing |
CN114338300B (en) * | 2021-12-02 | 2024-03-12 | 重庆两江卫星移动通信有限公司 | Pilot frequency optimization method and system based on compressed sensing |
CN114866379A (en) * | 2022-07-06 | 2022-08-05 | 湖北大学 | Generation method of channel estimation pilot for high spectral efficiency frequency division multiplexing optical communication system |
CN114866379B (en) * | 2022-07-06 | 2022-09-20 | 湖北大学 | Method for generating channel estimation pilot frequency of high-spectrum-efficiency frequency division multiplexing optical communication system |
Also Published As
Publication number | Publication date |
---|---|
CN103685088B (en) | 2017-06-06 |
WO2014044042A1 (en) | 2014-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103685088B (en) | The pilot frequency optimization method of condition of sparse channel, device and channel estimation methods | |
US11671151B2 (en) | Efficient peak-to-average-power reduction for OFDM and MIMO-OFDM | |
US20250132961A1 (en) | Distributed Radio System | |
CN101984612B (en) | Method for estimating discontinuous orthogonal frequency division multiplying channel based on compressed sensing | |
CN102833058B (en) | Based on the pilot design method that condition of sparse channel is estimated in cognitive radio | |
CN108111441B (en) | A Channel Estimation Method Based on Variational Bayesian Inference | |
CN108599820B (en) | Channel Estimation Method for Massive MIMO System Based on Block Structure Adaptive Compressed Sampling Matching Pursuit Algorithm | |
CN104394110B (en) | A kind of time domain super Nyquist non orthogonal transmissions pilot design method | |
CN107359906B (en) | Methods of Suppressing Impulse Noise in Low Voltage Power Line Communication System | |
CN106506415B (en) | A method for channel estimation in multi-user MIMO-OFDM systems | |
CN115065432B (en) | Method and system for modeling and obtaining relevant channel information of sky-wave large-scale MIMO triple-beam base channel | |
CN104702390A (en) | Pilot frequency distribution method in distributed compressive sensing (DCS) channel estimation | |
CN106506042A (en) | Impulse Noise Suppression Method for Power Line Communication System Based on L1/2 Norm Regularization | |
CN104320369A (en) | Iterative method based on channel estimation errors and data detection errors | |
CN101364966A (en) | Time Domain Channel Estimation Method for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiple Access Downlink System | |
CN103023544A (en) | Low-complexity interference alignment method of multiple input multiple output (MIMO)interference channel system | |
CN114826832A (en) | Channel estimation method, neural network training method, device and equipment | |
CN102227098A (en) | A frequency-domain bearing point selection method for multi-mode MIMO-SCFDE adaptive transmission system | |
Whitworth et al. | Optimized training and basis expansion model parameters for doubly-selective channel estimation | |
CN106341216A (en) | Wireless communication link adaptive method and uplink and downlink adaptive method | |
CN105634568A (en) | LLR calculation method based on large-scale MIMO system signal detection | |
WO2015117479A1 (en) | Path detection method and device, and sphere decoding detection device | |
Manasseh et al. | Pilot symbol assisted channel estimation for OFDM-based cognitive radio systems | |
CN103873205A (en) | MIMO user selection algorithm based on MMSE precoding and simulated annealing algorithm | |
CN113067668B (en) | Method for performing activity and signal joint detection aiming at MMV model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |