CN102905061B - 双镜头9片面阵探测器的无缝拼接成像光电系统 - Google Patents
双镜头9片面阵探测器的无缝拼接成像光电系统 Download PDFInfo
- Publication number
- CN102905061B CN102905061B CN201210327213.6A CN201210327213A CN102905061B CN 102905061 B CN102905061 B CN 102905061B CN 201210327213 A CN201210327213 A CN 201210327213A CN 102905061 B CN102905061 B CN 102905061B
- Authority
- CN
- China
- Prior art keywords
- planar array
- image planes
- array detector
- area array
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 46
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 238000009434 installation Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims 1
- 230000011218 segmentation Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 238000013507 mapping Methods 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000012634 optical imaging Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Landscapes
- Studio Devices (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
双镜头9片面阵探测器的无缝拼接成像光电系统,采用2成像系统结构和棱镜分光方式,在第一个镜头上实现8片面阵探测器的成像,其中主像面放置4片面阵探测器,4个侧像面各放置1片共4片面阵探测器;在第二个镜头上实现1片面阵探测器的成像;2成像系统与面阵探测器组合在一起实现了3×3模式共9片面阵探测器形成的像面无缝拼接。分光棱镜由1块四棱锥和4块半四棱锥镜组合实现,在分光面采用半透半反实现分光,用于实现等能量分光、以及消除面阵探测器的拼接渐晕。本发明可应用于航空、航天光学成像、光学探测仪器及设备,特别适用于大视场超大面阵探测器的航空、航天测绘相机。
Description
技术领域
本发明属于超大面阵探测器拼接的无缝成像光电系统,特别是一种双镜头9片面阵探测器的无缝拼接成像光电系统。
背景技术
随着航空、航天技术的发展,对大面阵以及超大面阵的光电成像系统需求越来越急迫。常采用两种方式实现大面阵规模成像,一是在探测器厂家定制超大规模探测器器件,二是采用探测器拼接。
目前国际上单片大面阵探测器规模在17k×15k(DMC250)左右,非货架商品,应用成本昂贵。另外进一步增大单片探测器规模也是当前探测器发展的一个技术瓶颈。
国外采用拼接方式的航空测绘相机,如UCE探测器规模已达到20k×13k(UCE)。而航空、航天光电成像系统对重量、尺寸、功耗等有严格的限制。在继续增大探测器规模的情况下,如实现40k×40k规模或更大规模的光电成像系统,采用如UCE的4镜头9探测器拼接,镜头数量多,整个结构将变得庞大。
陈旭南等.多片面阵CCD图像传感器焦平面光学拼接技术中采用单镜头的光学拼接方式可实现多片面阵CCD的拼接,但分光次数过多、光能损失严重,光学系统后工作距离要求大的缺点,在大视场测绘相机系统中无法实现或存在光能严重不足的问题。
中国发明专利CN 101692447B采用单镜头、旋转反射镜与CCD探测器组的方式工作在4个位置实现像面拼接。存在运动机构、可靠性、系统精度的长期稳定性难以保证,以及后工作距离较长的不足。
发明内容
本发明解决的技术问题:克服现有技术的不足,提供一种无视场缺失、无渐晕、无运动机构、结构简单易实现、系统精度稳定可靠的双镜头9片面阵探测器的无缝拼接成像光电系统。
本发明技术解决方案:双镜头9片面阵探测器的无缝拼接成像光电系统,其特点在于:采用两套成像系统实现3×3模式9片探测器的成像获取,每套成像系统包括一个镜头和一个分光棱镜或光学平板,分光棱镜或光学平板位于镜头后方;两套成像系统光轴平行安装,9片面阵探测器在主像面和侧像面上进行阵列错位间隔安装,实现像面无缝拼接;
主像面位于分光棱镜或光学平板的正后方,侧像面位于分光棱镜的4个侧面;
将拼接后的整个像面按照3×3阵列进行等间距分割,水平与垂直分割尺寸与面阵探测器相应方向感光尺寸相一致,所有面阵探测器应选用同一型号产品,即其感光尺寸等参数相同;
阵列编号为由上而下,由左至右编号,即最上一行为第1行,最下一行为第3行;最左一列为第1列,最右一列为第3列;第一行为第一至第三面阵探测器1~3,第二行为第四至第六面阵探测器4~6,第三行为第七至第九面阵探测器7~9;
第一套成像系统中,在第一个镜头a后放置分光棱镜b和8片面阵探测器,其中主像面放置4片面阵探测器,4个侧像面中每个侧像面各放置1片面阵探测器;主像面放置的4片面阵探测器分别为第一、第三、第七和第九面阵探测器1、3、7、9;侧像面放置的4片面阵探测器分别为第二、第四、第六和第八面阵探测器2、4、6、8,从第一镜头a向主像面方向看,其中第二面阵探测器2位于上侧像面,第八面阵探测器8位于下侧像面,第四面阵探测器4位于左侧像面,第六面阵探测器6位于右侧像面;主像面的面阵探测器和侧像面的面阵探测器中两两相互之间的中心间距为面阵探测器相应方向感光尺寸的2倍;
第二套成像系统中,在第二个镜头c后放置光学平板d和1片面阵探测器,位于主像面上;
在3×3阵列像面上,第二套成像系统的面阵探测器布置在第一套成像系统面阵探测器布置后的剩余区域,即在整个像面上两成像系统面阵探测器布置为互补关系。
所述分光棱镜b由1块四棱锥镜和4块半四棱锥镜组成;四棱锥镜包含4个45°分光面和一个后端面;所述半四棱锥镜是四棱锥镜的对半剖分;四棱锥镜位于中央,其余4块半四棱锥镜位于四棱锥镜外侧周围,组合后变成为一块等厚的光学平板;光学平板厚度为四棱锥镜后端面通光尺寸的1/2。所述光学平板d包含前后端面、及4个侧面,与光学棱镜b厚度相等。
所述四棱锥棱镜在4个45°分光面镀制半透半反膜系,后端面为全透膜系,通过半反半透分光,实现等能量分光。
所述半四棱锥棱镜在每个面镀制全透膜系。
所述光学平板d在前端面镀制半透半反膜系,后端面镀制全透膜系。
本发明与现有技术相比的优点在于:
(1)通过本发明的结构实现了9片面阵探测器的像面无缝拼接方法,具有无视场缺失、无渐晕、无运动机构、结构简单易实现、系统精度稳定可靠的优点;特别是如果采用10k×10k的货架产品,则3×3模式可实现30k×30k的探测成像规模。
(2)本发明的2镜头与棱镜半透半反分光方式组合,像面光能为进入成像系统光能的50%,实现像面等照度成像。
(3)本发明的分光棱镜由1块四棱锥和4块半四棱锥镜组合实现,在分光面采用半透半反实现分光,用于实现等能量分光、以及消除面阵探测器的拼接渐晕。
(4)本发明可应用于航空、航天光学成像、光学探测仪器及设备,特别适用于大视场超大面阵探测器的航空、航天测绘相机。
附图说明
图1本发明双镜头组合实现9片面阵探测器无缝拼接成像光电系统图;
图2本发明镜头a与8片面阵探测器安装布置图;
图3本发明镜头c与1片面阵探测器安装布置图;
图4本发明9片面阵探测器组合实现的像面拼接图;
图5本发明中分光棱镜结构图,其中a为主视图,b为侧视图;
图6本发明中四棱锥结构图;
图7本发明中半四棱锥结构图。
具体实施方式
如图1所示,本发明包括2套成像系统,第1套成像系统包括第镜头a、分光棱镜b、8片面阵探测器组;第2套成像系统包括镜头c、光学平板d、1片面阵探测器组;组合实现9片面阵探测器的像面无缝拼接成像光电系统。
如图2所示,在镜头a后放置分光棱镜b和8片面阵探测器,其中主像面放置4片面阵探测器,4个侧像面各放置1片面阵探测器。主像面放置面阵探测器为1、3、7、9;侧像面放置面阵探测器2、4、6、8,从镜头向主像面方向看,其中面阵探测器2位于上侧像面,面阵探测器8位于下侧像面,面阵探测器4位于左侧像面,面阵探测器6位于右侧像面;主像面的面阵探测器和侧像面的面阵探测器中两两相互之间的中心间距为面阵探测器相应方向感光尺寸的2倍。
如图3所示,在镜头c后放置光学平板d和1片面阵探测器,面阵探测器位于主像面上。在实施时,可根据镜头c像面实际大小,减小镜头c的视场大小以与像面大小相适应,而其它参数如焦距、F/#等不变,进一步减小整个成像光电系统的尺寸和重量。光学平板d在前端面镀制半透半反膜系,后端面镀制全透膜系。
如图5所示,分光棱镜包括1块四棱锥(如图6)和4块半四棱锥(如图7)。四棱锥包含4个45°分光面和一个后端面,位于图5中央,其余4块半四棱锥位于四棱锥四周,组合后变成为一块等厚的光学平板。光学平板厚度仅为四棱锥后端面通光尺寸的1/2。
如图6所示,四棱锥棱镜在4个45°分光面镀制半透半反膜系,后端面镀制全透膜系。如图7所示,半四棱锥棱镜在各面镀制全透膜系。通过半反半透分光,实现像面各个面阵探测器照度均等。
如图2所示,由物方入射的光线经镜头a进入分光棱镜b,经45°分光面分光,一部分光线进入主像面,在面阵探测器1、3、7、9上成像,另一部分光线进入4个侧像面,分别在面阵探测器2、4、6、8上成像。如图3所示,由物方入射的光线经镜头b进入光学平板d,直接进入主像面的面阵探测器5上成像。
分别调整各面阵探测器的位置,使入射在各面阵探测器上的光程相等。
本发明说明书中未作详细阐述的内容属于本领域技术人员的公知技术。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (4)
1.双镜头9片面阵探测器的无缝拼接成像光电系统,其特征在于:
采用两套成像系统实现3×3模式9片探测器的成像获取,每套成像系统包括一个镜头和一个分光棱镜或光学平板,分光棱镜或光学平板位于镜头后方;两套成像系统光轴平行安装,9片面阵探测器在主像面和侧像面上进行阵列错位间隔安装,实现像面无缝拼接;
主像面位于分光棱镜或光学平板的正后方,侧像面位于分光棱镜的4个侧面;
将拼接后的整个像面按照3×3阵列进行等间距分割,水平与垂直分割尺寸与面阵探测器相应方向感光尺寸相一致,所有面阵探测器应选用同一型号产品,即感光尺寸参数相同;
所述阵列编号为由上而下,由左至右编号,即最上一行为第1行,最下一行为第3行;最左一列为第1列,最右一列为第3列;第一行为第一至第三面阵探测器(1~3),第二行为第四至第六面阵探测器(4~6),第三行为第七至第九面阵探测器(7~9);
第一套成像系统中,在第一个镜头(a)后放置分光棱镜(b)和8片面阵探测器,其中主像面放置4片面阵探测器,4个侧像面中每个侧像面各放置1片面阵探测器;主像面放置的4片面阵探测器分别为第一、第三、第七和第九面阵探测器(1、3、7、9);侧像面放置的4片面阵探测器分别为第二、第四、第六和第八面阵探测器(2、4、6、8),从第一镜头(a)向主像面方向看,其中第二面阵探测器(2)位于上侧像面,第八面阵探测器(8)位于下侧像面,第四面阵探测器(4)位于左侧像面,第六面阵探测器(6)位于右侧像面;主像面的面阵探测器和侧像面的面阵探测器中两两相互之间的中心间距为面阵探测器相应方向感光尺寸的2倍;
第二套成像系统中,在第二个镜头(c)后放置光学平板(d)和1片面阵探测器,位于主像面上;
在3×3阵列像面上,第二套成像系统的面阵探测器布置在第一套成像系统面阵探测器布置后的剩余区域,即在整个像面上两成像系统面阵探测器布置为互补关系;
所述分光棱镜(b)由1块四棱锥镜和4块半四棱锥镜组成;四棱锥镜包含4个45°分光面和一个后端面;所述半四棱锥镜是四棱锥镜的对半剖分;四棱锥镜位于中央,其余4块半四棱锥镜位于四棱锥镜外侧周围,组合后变成为一块等厚的光学平板;所述光学平板厚度为四棱锥镜后端面通光尺寸的1/2,所述光学平板(d)包含前后端面、及4个侧面,与光学棱镜(b)厚度相等。
2.根据权利要求1所述的双镜头9片面阵探测器的无缝拼接成像光电系统,其特征在于:所述四棱锥棱镜在4个45°分光面镀制半透半反膜系,后端面为全透膜系,通过半反半透分光,实现等能量分光。
3.根据权利要求1所述的双镜头9片面阵探测器的无缝拼接成像光电系统,其特征在于:所述半四棱锥棱镜在每个面镀制全透膜系。
4.根据权利要求1所述的双镜头9片面阵探测器的无缝拼接成像光电系统,其特征在于:所述光学平板(d)在前端面镀制半透半反膜系,后端面镀制全透膜系。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210327213.6A CN102905061B (zh) | 2012-09-06 | 2012-09-06 | 双镜头9片面阵探测器的无缝拼接成像光电系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210327213.6A CN102905061B (zh) | 2012-09-06 | 2012-09-06 | 双镜头9片面阵探测器的无缝拼接成像光电系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102905061A CN102905061A (zh) | 2013-01-30 |
CN102905061B true CN102905061B (zh) | 2015-04-01 |
Family
ID=47577085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210327213.6A Expired - Fee Related CN102905061B (zh) | 2012-09-06 | 2012-09-06 | 双镜头9片面阵探测器的无缝拼接成像光电系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102905061B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103148839B (zh) * | 2013-02-06 | 2014-12-17 | 北京空间机电研究所 | 一种镜间分光焦平面拼接超大面阵航测相机 |
CN104698849B (zh) * | 2015-02-12 | 2017-04-05 | 中国科学院长春光学精密机械与物理研究所 | 敏捷卫星同轨条带无缝拼接姿态配准与成像匹配方法 |
CN106842492B (zh) * | 2016-12-29 | 2019-04-30 | 中国科学院长春光学精密机械与物理研究所 | 空间光学遥感器焦平面多反射镜拼接结构 |
CN107664763B (zh) * | 2017-08-30 | 2023-12-26 | 中国科学院上海技术物理研究所 | 一种高效集成多波束激光测距系统接收耦合装置 |
CN107807490A (zh) * | 2017-09-26 | 2018-03-16 | 中国科学院长春光学精密机械与物理研究所 | 基于双相机分光成像增大视场的方法及系统 |
CN109120826B (zh) * | 2018-09-30 | 2021-02-09 | 北京空间机电研究所 | 一种大幅面相机内外视场混合拼接方法 |
CN110686770A (zh) * | 2019-09-23 | 2020-01-14 | 北京空间机电研究所 | 一种2×2面阵探测器光学拼接方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5717518A (en) * | 1996-07-22 | 1998-02-10 | Kla Instruments Corporation | Broad spectrum ultraviolet catadioptric imaging system |
CN101692447A (zh) * | 2009-09-30 | 2010-04-07 | 浙江大学 | 一种多ccd超大视场像面拼接光电系统 |
CN102261909A (zh) * | 2011-04-20 | 2011-11-30 | 中国科学院光电技术研究所 | 一种拼接式大面阵数字航测相机 |
-
2012
- 2012-09-06 CN CN201210327213.6A patent/CN102905061B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5717518A (en) * | 1996-07-22 | 1998-02-10 | Kla Instruments Corporation | Broad spectrum ultraviolet catadioptric imaging system |
CN101692447A (zh) * | 2009-09-30 | 2010-04-07 | 浙江大学 | 一种多ccd超大视场像面拼接光电系统 |
CN102261909A (zh) * | 2011-04-20 | 2011-11-30 | 中国科学院光电技术研究所 | 一种拼接式大面阵数字航测相机 |
Also Published As
Publication number | Publication date |
---|---|
CN102905061A (zh) | 2013-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102905061B (zh) | 双镜头9片面阵探测器的无缝拼接成像光电系统 | |
KR101701528B1 (ko) | 3차원 촬상 장치 | |
CN103472592B (zh) | 一种快照式高通量的偏振成像方法和偏振成像仪 | |
CN101650423B (zh) | 大面阵光电器件的光学拼接方法 | |
CN104007556B (zh) | 基于微透镜阵列组的低串扰集成成像三维显示方法 | |
EP3513550B1 (en) | Flat digital image sensor | |
CN108873321A (zh) | 基于干涉的超薄高分辨率平板成像探测系统 | |
CN115516283A (zh) | 偏振成像摄像头 | |
CN105157601A (zh) | 单相机三维影像测量仪 | |
CN103292740A (zh) | 一种三维扫描仪测量方法及其装置 | |
CN102917161B (zh) | 采用全反棱镜实现3×3面阵探测器的无缝拼接方法 | |
CN103852060A (zh) | 一种基于单目视觉的可见光图像测距方法 | |
CN102538961A (zh) | 利用组合半波片检测螺旋光束的轨道角动量的方法和装置 | |
CN103115685A (zh) | 一种红外多探测器组合探测装置及红外探测方法 | |
CN104320565B (zh) | 一种多镜头探测器阵列曲面像面拼接方法 | |
CN106813781B (zh) | 一种红外探测器超大面阵复合拼接方法 | |
CN205809439U (zh) | 一种基于复合针孔阵列和偏振光栅的集成成像双视3d显示装置 | |
CN102928903B (zh) | 一种3×3面阵探测器的无缝光学拼接方法 | |
CN104864855A (zh) | 一种单像机全向立体视觉传感器及其设计方法 | |
CN206546159U (zh) | 显微三维测量装置及系统 | |
CN102883095B (zh) | 双镜头25片面阵探测器的无缝拼接成像光电系统 | |
CN103148839B (zh) | 一种镜间分光焦平面拼接超大面阵航测相机 | |
JPS6238695A (ja) | 立体表示システム | |
CN207304715U (zh) | 一种多相机凝视探测系统 | |
CN209946543U (zh) | 高分辨率双视3d显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150401 Termination date: 20210906 |