[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102460760A - 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法 - Google Patents

光电转换元件,其制备方法,光传感器,成像装置及其驱动方法 Download PDF

Info

Publication number
CN102460760A
CN102460760A CN2010800245988A CN201080024598A CN102460760A CN 102460760 A CN102460760 A CN 102460760A CN 2010800245988 A CN2010800245988 A CN 2010800245988A CN 201080024598 A CN201080024598 A CN 201080024598A CN 102460760 A CN102460760 A CN 102460760A
Authority
CN
China
Prior art keywords
substituting group
formula
conversion element
compound
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800245988A
Other languages
English (en)
Other versions
CN102460760B (zh
Inventor
福崎英治
野村公笃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN102460760A publication Critical patent/CN102460760A/zh
Application granted granted Critical
Publication of CN102460760B publication Critical patent/CN102460760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/02Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • C07D223/22Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/38[b, e]-condensed with two six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/26[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom without other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • C07D279/22[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom
    • C07D279/24[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom
    • C07D279/28[b, e]-condensed with two six-membered rings with carbon atoms directly attached to the ring nitrogen atom with hydrocarbon radicals, substituted by amino radicals, attached to the ring nitrogen atom with other substituents attached to the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提供一种光电转换元件,其能够当将具有特定结构的化合物用于光电转换元件时起着光电转换元件的作用,使元件显示出低暗电流并且即使当热处理元件时也减小暗电流增加的范围,并且提供一种配备有该光电转换元件的成像装置。一种光电转换元件,所述光电转换元件具有光电转换膜,所述光电转换膜被夹在透明导电膜与导电膜之间,并且含有光电转换层和电子阻挡层,其中所述电子阻挡层包含具有含三个以上环结构的取代氨基作为取代基的化合物。

Description

光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
技术领域
本发明涉及光电转换元件,其制备方法,光传感器,成像装置及其驱动方法。本发明还涉及可用作用于光电转换元件的材料的化合物。
背景技术
对于固态成像装置,广泛地使用平面型光接受装置,其中光电转换部位在半导体中二维地排列以形成像素,并且在每一个像素中通过光电转换产生的信号被电荷转移并且通过CCD或CMOS电路读出。通常使用的常规光电转换部位是使用半导体例如Si中的PN结形成的光电二极管部。
近年来,正在进行多像素装置的制造,并且进而像素尺寸变小,并且光电二极管部的面积变小,这导致开口率(aperture ratio)的下降,光收集效率的下降及其导致灵敏度的下降的问题。对于增加开口率等的对策,正在对具有使用有机材料的有机光电转换膜的固态成像装置进行研究。
已知的是将使用富勒烯或富勒烯衍生物的体相异质结结构引入到有机光电转换膜中以产生高光电转换效率(高激子解离效率)的技术。例如,专利文献1公开了含有富勒烯或富勒烯衍生物的光电转换膜。
在太阳能电池中所使用的有机光电转换元件的目的是收集电力,因此,不施加外部电场,但是用作固态成像装置的可见光传感器的光电转换元件需要最大化光电转换效率,并且有时在外部施加电压以提高光电转换效率或增强响应速度。
当在外部施加电压以提高光电转换效率或增强响应速度时,由于外部电场而发生从电极注入空穴或电子,并且这不利地增加暗电流。
许多经常用作光电转换元件中的电极的材料具有约4.5eV的功函(WF)(例如,ITO),例如,在使用富勒烯(C60)作为光电转换膜的材料的情况下,在电极的WF与富勒烯(C60)的LUMO之间的能隙变小,作为结果,特别是电子容易从电极注入至光电转换膜中,并且引起暗电流的显著增加。
至于防止由注入的电流引起的暗电流的增加,公开了这样的技术:设置电荷阻挡层以抑制电荷注入至光电转换层中,从而有效率地阻挡注入载流子且降低暗电流(专利文献2)。
在专利文献1和2中,没有提及在实践中为一个重要因素的耐热性,并且没有充分地描述具有高耐热性的化学结构。
专利文献3至6公开了具有空穴传输性能的有机材料,例如芴和咔唑,但是未记载光电转换元件,并且还缺少关于暗电流和耐热性的充分描述。
专利文献7公开了具有芴骨架的有机材料,但是该材料是在染料敏化太阳能电池中使用的,并且因为太阳能电池所需的特性不同于针对成像装置部件的光电转换元件所需的特性,因此不同于本发明,关于暗电流和耐热性的描述是不充分的。
此外,在通过使用在专利文献7中所述的化合物制备膜的情况下,可能发生由低非晶性质引起的结晶所致的晶界的产生和膜表面上的不均匀性的形成,并且这种材料不适合作为针对光传感器、成像装置等的光电转换元件的材料。
现有技术文献
专利文献
专利文献1:JP-A-2007-123707(如本文中所用的术语″JP-A″是指″未审查的公布日本专利申请″)
专利文献2:JP-A-2008-72090
专利文献3:JP-A-2005-290000
专利文献4:日本专利3,508,984
专利文献5:JP-A-2005-290000
专利文献6:美国专利6,649,772
专利文献7:JP-A-2007-115665
发明概述
本发明所要解决的问题
为了实现高光电转换效率和高速响应性,要求用于光电转换元件的材料不仅具有阻挡电荷从电极注入以降低暗电流的能力,而且具有能够将在光电转换膜中产生的电荷传输至电极的高电荷传输性。在使用具有差的电荷传输性的材料的光电转换元件中,未观察到光电流。而且,考虑到储存性和适用于包括加热步骤的生产工序,例如滤色器的安置,保护膜的安置或元件的焊接,用于光电转换元件的材料必须具有高耐热性。
即,在具有使用空穴传输的二芳基胺部分骨架的光电转换元件材料的情况下,必须设计材料以满足小Ea(电子亲和势)值,高空穴传输性能和高耐热性,并且构造被大大限制以满足这些要求。
另外,必须考虑用于允许能级位置取优选值的分子设计使得材料可以适当地在元件构造中使用。
当将具有小Ip(电离势)值的材料与具有大Ea值的材料(例如,富勒烯C60)接触时,由于热激发在光电转换元件内从具有小Ip值的材料层的HOMO在具有大Ea值的材料层的LUMO中产生电荷(电子,空穴),结果,增加了引起噪音的暗电流。与富勒烯C60接触的电子阻挡层的Ip必须足够大,并且同时,需要足够小以从富勒烯C60的体相异质结层内传输空穴的材料的HOMO接受没有阻挡(barrier)的空穴。即,必须设计电子阻挡层的Ip为相当有限的值,并且必须对其余地(latitude)原来就窄的材料设计进一步设定大的限制。
本发明是为了改进这些问题而作出的,且本发明的一个目的是提供一种光电转换元件,其能够当用于光电转换元件时起着光电转换元件的作用,显示出低暗电流并且当热处理元件时减小暗电流增加的范围,并且提供一种配备有该光电转换元件的成像装置。
本发明的另一个目是提供一种适用于形成光电转换元件中的电子阻挡层的化合物,其能够降低暗电流增加并且减小当热处理元件时的暗电流增加的范围。
用于解决问题的手段
作为深入研究的结果,本发明已经发现,上述目的可以通过使用具有特定结构的化合物而达到。
由式(F-1)表示的化合物是这样的化合物,其中稠合二芳基胺(由式(A-1)表示的取代基)通过下列二价连接基团(D-1)连接。常规地,已经研究其中通过连接基团(D-2)连接稠合二芳基胺的结构作为电子阻挡层材料,并且常规的电子阻挡层材料具有高的电荷收集效率、高速响应性和低暗电流特性,但是缺乏足够的耐热性。为了提高耐热性,通常使用以下技术:例如,增加分子量以增强分子间相互作用(分子间力),或引入许多稠合环结构以降低分子的自由度。然而,在具有大的相互作用的材料或采用稠合环结构的材料中,p共轭体系宽地伸展,并且该材料容易与含有具有深Ea(大Ea)的材料的光电转换层相互作用,从而在界面形成源电荷,并且增加暗电流。此外,为了抑制分子间相互作用并且增加分子量,可以赋予空间位阻,但是引起空间位阻的过大取代基导致电荷传输性的降低,并且损害所得装置的高速响应性。为此原因,含有许多大体积取代基被认为是不适宜的。然而,在本发明中,稠合二芳基胺(由式(A-1)表示的取代基)通过下列二价连接基团(D-1)连接,由此可以在不损害高的电荷收集效率、高速响应性和低暗电流特性情况下增强耐热性。
与其中稠合二芳基胺通过(D-2)连接的电子阻挡材料比较,其中稠合二芳基胺通过连接基团(D-1)连接的由式(F-1)表示的化合物可以增加分子量并且增强耐热性。此外,在骨架间的键扭曲而破坏共轭体系,并且这据估计不允许与光电转换层的相互作用,并且保持低的暗电流。此外,二芳基胺结构作为电荷传输单元被引入到分子内部中而非被引入至两端,因此,该化合物被认为具有高电荷传输性。
Figure BPA00001479626300041
(其中每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基)。
另外,连接基团(D-1)与由式(A-1)表示的取代基连接的位置以及取代基(烷基)的取代位置和种类已经被研究以增加电子阻挡层的耐热性,而不引起响应速度的下降。据认为,通过发现连接位置,取代位置和种类的最佳点,获得了抑制与光电转换层的相互作用并且增加分子量以增强由式(F-1)表示的化合物之间的分子间力的显著效果,并且增强了耐热性。
即,上述目的可以通过下列技术实现。
[1]一种光电转换元件,所述光电转换元件具有光电转换膜,所述光电转换膜被夹在透明导电膜与导电膜之间,并且含有光电转换层和电子阻挡层,其中所述电子阻挡层含有由下式(F-1)表示的化合物:
Figure BPA00001479626300051
(其中R11至R18以及R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
式(A-1):
Figure BPA00001479626300052
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且每一个n独立地表示0至4的整数);
取代基(S11):
Figure BPA00001479626300061
(其中R1至R3的每一个独立地表示氢原子或烷基)。
[2]根据[1]所述的光电转换元件,其中所述由式(F-1)表示的化合物是由下式(F-2)表示的化合物:
(其中R11至R16,R18,R′11至R′16以及R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,A11和A12的每一个独立地表示由式(A-1)表示的取代基并且作为R11至R14以及R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基)。
[3]根据[1]或[2]所述的光电转换元件,其中在式(F-1)或式(F-2)中,所述R12和R′12的每一个独立地表示由式(A-1)表示的取代基。
[4]根据[1]至[3]中任一项所述的光电转换元件,其中在式(A-1)中,n表示0至2的整数。
[5]根据[1]至[4]中任一项所述的光电转换元件,其中在式(A-1)中,Ra3和Ra6的至少任一个各自独立地表示取代基(S11)。
[6]根据[1]至[5]中任一项所述的光电转换元件,其中在式(F-1)或式(F-2)中,Y表示-N(R20)-(其中每一个R20独立地表示烷基,芳基或杂环基,它们可以进一步具有取代基)。
[7]根据[1]至[6]中任一项所述的光电转换元件,其中在式(F-1)或式(F-2)中,Y表示-C(R21)(R22)-(其中R21和R22的每一个独立地表示烷基,芳基或杂环基,它们可以进一步具有取代基)。
[8]根据[1]至[7]中任一项所述的光电转换元件,其中所述由式(F-1)和(F-2)表示的化合物的电离势(Ip)为4.9至5.8eV。
[9]根据[1]至[9]中任一项所述的光电转换元件,其中所述由式(F-1)和(F-2)表示的化合物的分子量为500至2,000。
[10]根据[1]至[9]中任一项所述的光电转换元件,其中所述光电转换层包含n型有机半导体。
[11]根据[10]所述的光电转换元件,其中所述n型有机半导体为富勒烯或富勒烯衍生物。
[12]根据[1]至[11]中任一项所述的光电转换元件,其中所述光电转换膜包含下式(I)的化合物:
式(I):
Figure BPA00001479626300071
(其中Z1表示用于形成5或6元环所必需的原子团,L1,L2和L3的每一个表示未取代的次甲基或取代的次甲基,D1表示原子团,且n1表示0以上的整数)。
[13]根据[1]至[12]中任一项所述的光电转换元件,其中所述导电膜,所述电子阻挡层,所述光电转换层和所述透明导电膜是以该顺序层叠的。
[14]一种用于制备[1]至[13]中任一项所述的光电转换元件的方法,所述方法包括通过真空加热沉积来沉积所述光电转换层和所述电子阻挡层的每一层的步骤。
[15]一种光传感器,所述光传感器包括[1]至[13]中任一项所述的光电转换元件。
[16]一种成像装置,所述成像装置包括[1]至[13]中任一项所述的光电转换元件。
[17]一种用于驱动[1]至[13]中任一项所述的光电转换元件,[15]所述的光传感器或[16]所述的成像装置的方法,所述方法包括通过使用与所述电子阻挡层接触的电极作为阴极并且使用另一个电极作为阳极而施加电压。
[18]一种由下式(F-1)表示的化合物:
(其中R11至R18和R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
式(A-1):
Figure BPA00001479626300082
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且每一个n独立地表示0至4的整数);
取代基(S11):
Figure BPA00001479626300083
(其中R1至R3的每一个独立地表示氢原子或烷基)。
发明益处
根据本发明,可以提供一种光电转换元件,其能够当将具有特定结构的化合物用于光电转换元件时起着光电转换元件的作用,使元件显示出低暗电流并且即使当热处理元件时也减小暗电流增加的范围,并且可以提供一种配备有该光电转换元件的成像装置。
附图简述
[图1]图1(a)和图1(b)各自为显示光电转换元件的一个构造实例的示意性横截面图。
[图2]成像装置的一个像素部分的示意性横截面图。
[图3]另一个构造实例中的成像装置的一个像素部分的示意性横截面图。
[图4]另一个构造实例中的成像装置的一个像素部分的示意性横截面图。
实施本发明的实施方案
[光电转换元件]
本发明的光电转换元件是这样一种光电转换元件,所述光电转换元件具有光电转换膜,所述光电转换膜被夹在透明导电膜与导电膜之间,并且包含光电转换层和电子阻挡层,其中所述电子阻挡层包含由下式(F-1)表示的化合物:
Figure BPA00001479626300091
(其中R11至R18以及R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
式(A-1):
Figure BPA00001479626300101
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且n表示0至4的整数);
取代基(S11):
Figure BPA00001479626300102
(其中R1至R3的每一个独立地表示氢原子或烷基)。
在光电转换膜中包含式(F-1)的化合物的实施方案不受特别限制,但是在光电转换膜还含有具有大的电子亲和势(Ea)的材料(优选Ea为4.0eV以上的材料)的情况下,优选产生具有大的电子亲和势(Ea)的材料与式(F-1)的化合物接触的状态。通过以与具有大的电子亲和势(Ea)的材料接触的状态含有式(F-1)的化合物,可以有效地抑制在两种材料的界面产生源电荷(电子,空穴)。附带地,电子亲和势(Ea)为4.0eV以上的材料优选为后述富勒烯或富勒烯衍生物。
更具体地,优选在下列实施方案中的光电转换元件。
(1)其中光电转换膜包括光电转换层和电荷阻挡层(电子阻挡层和电荷阻挡层中的任何一个或两者),光电转换层含有具有大的电子亲和势(Ea)的材料并且至少任何一个电荷阻挡层由由式(F-1)的化合物组成的实施方案。
(2)其中光电转换膜包括光电转换层、电荷阻挡层和被设置在光电转换层和电荷阻挡层之间的有机层,光电转换层含有具有大的电子亲和势(Ea)的材料并且有机层由式(F-1)的化合物组成的实施方案。
在上述(1)的实施方案中,归因于由式(F-1)的化合物组成的电荷阻挡层,可以防止从电极注入电荷,同时抑制在电荷阻挡层和光电转换层之间产生源电荷,而在上述的实施方案(2)中,可以防止在电荷阻挡层和光电转换层之间由于这些层的直接接触而产生源电荷。
下面描述本发明的光电转换元件的合适的实施方式。导电膜,光电转换层,电子阻挡层和透明导电膜可以以这种顺序层叠,但是在一个优选的实施方案中,导电膜,电子阻挡层,光电转换层和透明导电层是以该顺序层叠的。
图1显示了根据该实施方式的光电转换元件的构造实例。
在图1(a)所示的光电转换元件10a中,电子阻挡层16A,光电转换层12和上部电极15以该顺序层叠在下部电极11上。
在图1(b)所示的光电转换元件10b中,电子阻挡层16A,光电转换层12,空穴阻挡层16B和上部电极15以该顺序层叠在下部电极11上。可以根据用途或特性颠倒图1(a)和1(b)中层叠电子阻挡层、光电转换层和电荷阻挡层的顺序。
将描述构成根据该实施方式的光电转换元件的组分。
(电极)
电极(上部电极(透明导电膜)15和下部电极(导电膜)11)由导电材料组成。可以使用的导电材料的实例包括金属,合金,金属氧化物,导电化合物以及它们的混合物。
光从上部电极15入射,因此上部电极15需要对要检测的光足够透明。其具体实例包括:导电金属氧化物,例如掺杂锑,氟的氧化锡(ATO,FTO)等,氧化锡,氧化锌,氧化铟,氧化铟锡(ITO)和氧化铟锌(IZO);金属薄膜,例如金,银,铬和镍;这样的金属和这样的导电金属氧化物的混合物或层压体;无机导电物质,例如碘化铜和硫化铜;有机导电材料,例如聚苯胺,聚噻吩和聚吡咯;以及这样的材料和ITO的层压体。其中,鉴于高电导率、透明性等,优选导电金属氧化物。上部电极15被沉积在光电转换层12上,因此优选通过不导致光电转换层12性质劣化的方法进行沉积。
下部电极11包括:根据例如用途,其中赋予透明性的情况,和反之使用能够反射光的材料而不赋予透明性的情况。其具体的实例包括:导电金属氧化物,例如掺杂锑,氟的氧化锡(ATO,FTO)等,氧化锡,氧化锌,氧化铟,氧化铟锡(ITO)和氧化铟锌(IZO);金属,例如金,银,铬,镍,钛,钨和铝;导电化合物,例如上述金属的氧化物和氮化物;这样的金属和这样的导电金属氧化物的混合物或层压体;无机导电物质,例如碘化铜和硫化铜;有机导电材料,例如聚苯胺,聚噻吩和聚吡咯;以及这样的材料和ITO的层压体。
不对用于形成电极的方法进行特别的限制,并且考虑到电极材料适合性,可以适当地选择。具体地,电极可以例如通过下列方法形成:湿体系,例如印刷和涂覆;物理体系,例如真空沉积、溅射和离子电镀;或化学体系,例如CVD和等离子体CVD。
在电极材料为ITO的情况下,电极可以通过下列方法形成:例如电子束法,溅射法,电阻加热沉积法,化学反应法(例如,溶胶-凝胶法)或涂覆氧化铟锡的分散体的方法。使用ITO制备的膜可以进一步进行例如UV-臭氧处理或等离子体处理。
优选在无等离子体的状态下制备上部电极15。当在无等离子体的状态下制备上部电极15时,可以减少等离子体对基板的影响并可以获得良好的光电转换性质。本文中,无等离子体状态是指在上部电极15沉积过程中不产生等离子体的状态,或其中从等离子体发生源至基板的距离为2cm以上,优选10cm以上,更优选20cm以上,并且到达基板的等离子体的量被减少的状态。
在上部电极15沉积过程中不产生等离子体的设备的实例包括电子束沉积设备(EB沉积设备)和脉冲激光沉积设备。关于EB沉积设备或脉冲激光沉积设备,可以使用在例如Yutaka Sawada(导师)的Tomei Doden Maku  no Shin Tenkai(透明导电膜的新发展(New Development of Transparent  Conductive Film)),CMC(1999),Yutaka Sawada(导师)的Tomei Doden Maku  no Shin Tenkai II(透明导电膜的新发展II(New Development II of  Transparent Conductive Film)),CMC(2002),Tomei Doden Maku no Gijutsu (透明导电膜技术(Technolo gy of Transparent Conductive Film)),JSPS,Ohmsha(1999)及其中所引用文件中所述的设备。在下文中,通过使用EB沉积设备沉积透明电极膜的方法称为EB沉积法,而通过使用脉冲激光沉积设备沉积透明电极膜的方法称为脉冲激光沉积法。
关于能够实现其中从等离子体发生源到基板的距离为2cm以上,并且到达基板的等离子体的量被减少的状态的设备(下文中称为“无等离子体沉积设备”),考虑对置靶溅射设备(opposed-target sputtering apparatus),电弧等离子体沉积法(arc plasma deposition method)等,且可以使用例如在Yutaka Sawada(导师)的Tomei Doden Maku no Shin Tenkai(透明导电膜的 新发展(New Development of Transparent Conductive Film)),CMC(1999),Yutaka Sawada(导师)的Tomei Doden Makuno Shin Tenkai II(透明导电膜的 新发展II(New Development II of Transparent Conductive Film)),CMC(2002),Tomei Doden Maku no Gijutsu(透明导电膜技术(Technology of  Transparent Conductive Film)),JSPS,Ohmsha(1999)及其中所引用文件中所述的设备。
在透明导电膜例如TCO用于上部电极15的情况下,有时发生DC短路或漏电流增加。其原因之一被认为是,因为引入到光电转换层12中的细微裂缝被致密的膜如TCO所覆盖,从而导致提高了与在相反侧的第一电极膜11的传导。因此,在电极具有相对差的膜质量例如Al的情况下,漏电流不太可能增加。通过相对于光电转换层12的膜厚度(即,裂缝深度)控制上部电极15的膜厚度,可以极大地抑制漏电流的增加。上部电极15的厚度优选为光电转换层12的厚度的1/5以下,更优选1/10以下。
通常,当使导电膜的厚度小于某个范围时,引起电阻值的突然增加,但是在其中结合有根据此实施方案的光电转换元件的固态成像装置中,薄层电阻(sheet resistance)可以优选为100至10,000Ω/□,并且其中可以减小膜厚度的范围的余地大。此外,因为上部电极(透明导电膜)15的厚度较小,吸收的光的量减少并且透光率通常增加。透光率的增加致使光电转换层12中光吸收增加以及光电转换性能提高,而且这是非常优选的。考虑到与膜厚度的减小相关的漏电流的抑制和薄膜的电阻值的增加以及透射率的增加,上部电极15的厚度优选为5至100nm,更优选5至20nm。
(电荷阻挡层)
根据该实施方式的电荷阻挡层含有由下式(F-1)表示的化合物。本发明的一个实施方案是使用式(F-1)的材料作为用于与含有具有大Ea的材料的光电转换层接触的阻挡层的材料。
(电子阻挡层,空穴阻挡层)
用于本发明的电子阻挡层含有由式(F-1)表示的化合物:
Figure BPA00001479626300141
(其中R11至R18以及R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
式(A-1):
Figure BPA00001479626300142
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且n表示0至4的整数);
取代基(S11):
Figure BPA00001479626300151
(其中R1至R3的每一个独立地表示氢原子或烷基)。
在式(F-1)中,R11至R18以及R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基。进一步的取代基的具体实例包括后述取代基W,且取代基优选为卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,更优选为卤素原子,烷基,芳基或杂环基,还更优选为氟原子,烷基或芳基,又还更优选为烷基或芳基,最优选为烷基。
R11至R18以及R′11至R′18的每一个优选为氢原子,可以具有取代基的烷基,芳基或杂环基,更优选为氢原子,碳数为1至18的烷基,碳数为6至18的芳基,或碳数为4至16的杂环基,它们可以具有取代基。特别是,优选其中由式(A-1)表示的取代基独立地在R12和R′12的每一个上进行取代的化合物;更优选其中由式(A-1)表示的取代基独立地在R12和R′12的每一个上进行取代且R11,R13至R18,R′11和R′13至R′18的每一个为氢原子或可以具有取代基的碳数为1至18的烷基的化合物;还更优选其中由式(A-1)表示的取代基独立地在R12和R′12的每一个上进行取代且R11,R13至R18,R′11和R′13至R′18的每一个为氢原子的化合物。
每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基。即,Y表示由碳原子,氮原子,氧原子,硫原子或硅原子组成的二价连接基团。这些中,-C(R21)(R22)-,-Si(R23)(R24)-和-N(R20)-是优选的,-C(R21)(R22)-和-N(R20)-是更优选的,且-C(R21)(R22)-是还更优选的。
在上述-C(R21)(R22)-中,R21和R22的每一个独立地表示氢原子,卤素原子,或可以具有取代基的烷基,芳基或杂环基。进一步的取代基的具体实例包括取代基W。R21和R22的每一个优选为氢原子或可以具有取代基的烷基,芳基或杂环基,更优选为氢原子,碳数为1至18的烷基,碳数为6至18的芳基,或碳数为4至16的杂环基,它们可以具有取代基,还更优选为氢原子或碳数为1至18的烷基,它们可以具有取代基,又还更优选为碳数为1至18的烷基。
在上述-Si(R23)(R24)-中,R23和R24的每一个独立地表示氢原子,卤素原子,或烷基,芳基,杂环基,羟基,氨基或巯基,它们可以具有取代基。进一步的取代基的具体实例包括取代基W。R23和R24的每一个优选为氢原子或烷基,芳基或杂环基,它们可以具有取代基,更优选为氢原子,碳数为1至18的烷基,碳数为6至18的芳基,或碳数为4至16的杂环基,它们可以具有取代基,还更优选为氢原子或碳数为1至18的烷基,它们可以具有取代基,又还更优选为碳数为1至18的烷基。
在上述-N(R20)-中,R20表示烷基,芳基或杂环基,它们可以具有取代基。进一步的取代基的具体实例包括取代基W。R20优选为氢原子,碳数为1至18的烷基,碳数为6至18的芳基,或碳数为4至16的杂环基,它们可以具有取代基,更优选为氢原子或碳数为1至18的烷基,它们可以具有取代基,还更优选为碳数为1至18的烷基。
在式(A-1)中,Ra1至Ra8的每一个独立地表示氢原子,卤素原子,或烷基,芳基,杂环基,羟基,氨基或巯基,它们可以具有取代基。进一步的取代基的具体实例包括取代基W,取代基优选为烷基。此外,多个这样的取代基可以相互结合以形成环。
Ra1至Ra8的每一个优选为氢原子,卤素原子,碳数为1至18的烷基,碳数为6至18的芳基,或碳数为4至16的杂环基,更优选为氢原子,碳数为1至12的烷基,或碳数为6至14的芳基,还更优选为氢原子,碳数为1至6的烷基或碳数为6至10的芳基。烷基可以是支链烷基。
具体优选实例包括氢原子,甲基,乙基,丙基,丁基,己基,环己基,苯基和萘基。
其中Ra3和Ra6的至少任何一个为氢原子或碳数为1至10的烷基,且Ra1,Ra2,Ra4,Ra5,Ra7和Ra8的每一个为氢原子的取代基,或其中Ra2和Ra7的至少任何一个为氢原子或碳数为1至10的烷基,且Ra1,Ra3,Ra4,Ra5,Ra6和Ra8的每一个为氢原子的取代基是优选的,且其中Ra3和Ra6的每一个为氢原子或碳数为1至6的烷基,且Ra1,Ra2,Ra4,Ra5,Ra7和Ra8的每一个为氢原子的取代基是更优选的。
Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基。
Xa优选为单键,碳数为1至12的亚烷基,碳数为2至12的亚烯基,碳数为6至14的亚芳基,碳数为4至13的杂环基,氧原子,硫原子,含有碳数为1至12的烃基(优选为芳基或烷基)的亚氨基(例如,苯基亚氨基,甲基亚氨基,叔丁基亚氨基),或亚甲硅基,更优选为单键,氧原子,碳数为1至6的亚烷基(例如,亚甲基,1,2-亚乙基,1,1-二甲基亚甲基),碳数为2的亚烯基(例如,-CH2=CH2-),碳数为6至10的亚芳基(例如,1,2-亚苯基,2,3-亚萘基),或亚甲硅基,还更优选为单键,氧原子,或碳数为1至6的亚烷基(例如,亚甲基,1,2-亚乙基,1,1-二甲基亚甲基)。这些取代基可以进一步具有后述取代基W。
由式(A-1)表示的基团优选为由式(A-2)表示的基团:
Figure BPA00001479626300171
(其中Ra21至Ra28的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,且n表示0至4的整数)。
在式(A-2)中,Xa,S11,Ra21至Ra28和n具有与式(A-1)中的Xa,S11,Ra1至Ra8(不包括杂环)和n相同的含义,且优选范围也是相同的。
由式(A-1)和(A-2)表示的基团的具体实例包括下面所示的基团N1至N11,但是本发明不限于此。作为由式(A-1)表示的基团,N-1至N-7是优选的,N-1至N-6是更优选的,N-1至N-3是还更优选的,N-1和N-2是再更优选的且N-1是最优选的。
Figure BPA00001479626300181
在取代基(S11)中,R1表示氢原子或烷基。R1优选为甲基,乙基,丙基,异丙基,丁基,或叔丁基,更优选为甲基,乙基,丙基,异丙基或叔丁基,还更优选为甲基,乙基,异丙基或叔丁基,又还更优选为甲基,乙基或叔丁基。
R2表示氢原子或烷基。R2优选为氢原子,甲基,乙基,丙基,异丙基,丁基,或叔丁基,更优选为氢原子,甲基,乙基或丙基,还更优选为氢原子或甲基,又还更优选为甲基。
R3表示氢原子或烷基。R3优选为氢原子或甲基,更优选为甲基。
此外,R1至R3可以相互结合以形成环。在形成环的情况下,环的元数不受特别限制,但是5或6元环是优选的且6元环是更优选的。
S11表示取代基(S11)且作为Ra1至Ra8的任何一个进行取代。在式(A-1)和(A-2)中,Ra3和Ra6的至少任何一个优选独立地表示取代基(S11)。
优选取代基(S11)包括下列(a)至(x)。这些中,(a)至(j)是优选的,(a)至(h)是更优选的,(a)至(f)是还更优选的,(a)至(c)是再更优选的,且(a)是最优洗的。
Figure BPA00001479626300191
每一个n独立地表示0至4的整数且优选为0至3,更优选为0至2,还更优选为1或2,且又还更优选为2。归因于由S11表示的取代基的引入,抑制了与光电转换层的相互作用,降低了暗电流,增强了由式(F-1)表示的化合物之间的分子间力,这是由分子量增加导致的,并且增强了元件的耐热性。
由式(F-1)表示的化合物的一个优选的实施方案是由下式(F-2)表示的化合物。抑制了与光电转换层的相互作用,降低了暗电流,增强了分子间力,这是由分子量增加导致的,并且增强了元件的耐热性。
由式(F-1)表示的化合物优选为由式(F-2)表示的化合物:
Figure BPA00001479626300201
(其中R11至R16,R18,R′11至R′16和R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,A11和A12的每一个独立地表示由式(A-1)表示的取代基且作为R11至R14和R′11至R′14的任何一个进行取代,且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基)。
在式(F-2)中,R11至R′16,R18,R′11至R′16,R′18,Y,A11和A12具有与式(F-1)中的R11至R′16,R18,R′11至R′16,R′18,Y,A11和A12相同的含义,且优选范围也相同。
由式(F-1)表示的化合物的一个优选的实施方案为由下式(F-3)表示的化合物。抑制了与光电转换层的相互作用,降低了暗电流,增强了分子间力,这是由分子量增加导致的,并且增强了元件的耐热性。
Figure BPA00001479626300202
(其中R11至R18和R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-2)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
Figure BPA00001479626300211
(其中Ra21至Ra28的每一个独立地表示氢原子,卤素原子或烷基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示取代基(S11)且作为Ra1至Ra8的任何一个进行取代,且n表示0至4的整数);
取代基(S11):
Figure BPA00001479626300212
(其中R1至R3的每一个独立地表示氢原子或烷基)。
在式(F-3)中,R11至R′16,R18,R′11至R′16,R′18,Y′,A11和A12具有与式(F-1)中的R11至R′16,R18,R′11至R′16,R′18,Y(不包括氮原子),A11和A12相同的含义且优选范围也相同。
由式(F-1)表示的化合物的其它实施方案包括由下式(F-4)表示的化合物:
Figure BPA00001479626300213
(其中R11至R18和R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且Y4表示氮原子,其可以进一步具有取代基);式(A-1):
Figure BPA00001479626300221
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,且n表示0至4的整数)。
在式(F-4)中,R11至R′16,R18,R′11至R′16,R′18,Y4,A11和A12具有与式(F-1)中的R11至R′16,R18,R′11至R′16,R′18,Y(当Y表示氮原子时),A11和A12相同的含义且优选范围也相同。
在本发明中使用的化合物的电离势(Ip),在该化合物用于电子阻挡层时,必须小于在光电转换层中承担空穴传输的材料的Ip,因为必须接受空穴,而没有来自光电转换层中承担空穴传输的材料的阻挡。特别是,当选择在可见区具有吸收灵敏度的材料时,为了适合更多数量的材料,本发明中使用的化合物的电离势优选为5.8eV以下。当Ip为5.8eV以下时,这带来了产生高电荷收集效率和高速响应性而不产生对电荷传输的阻挡的效果。
此外,Ip优选为4.9eV以上,更优选为5.0eV以上。当Ip为4.9eV以上时,可以获得更高的暗电流降低效果。
在这方面,可以通过紫外光电子光谱法(ultraviolet photoelectronspectroscopy)(UPS)或空气中光电子分光光度计(in-air photoelectronspectrometer)(例如,由Riken Keiki Co.,Ltd.生产的AC-2)测量每一种化合物的Ip。
例如,通过改变结合至骨架的取代基,可以将本发明中使用的化合物的Ip调节至上述范围。
[由式(F-1)表示的化合物]
本发明还涉由下式(F-1)表示的化合物。由式(F-1)表示的化合物被赋予优异的耐热性和高电荷传输性,因此适合形成电子阻挡层。
Figure BPA00001479626300231
(其中R11至R18和R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基);
式(A-1):
Figure BPA00001479626300232
(其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且n表示0至4的整数);
取代基(S11):
Figure BPA00001479626300241
(其中R1至R3的每一个独立地表示氢原子或烷基)。
在本发明的化合物中,R11至R′16,R18,R′11至R′16,R′18,Y,A11和A12具有与上述本发明的光电转换元件中的R11至R′16,R18,R′11至R′16,R′18,Y,A11和A12相同的含义,且优选范围也相同。
由式(F-1)表示的化合物优选为由式(F-2)表示的化合物或由式(F-3)表示的化合物。
下面示例本发明中使用的化合物的具体实例,但是本发明不限于下列具体实例。此外,在式(a)至(t)中,当在″A11和A12″,″R20和R′20″,″R23/R24和R′23/R′24″等的每一对中的成员不相同时,它们可以进行除了所示的结构以外的组合。
附带地,下面显示下列化合物实例中的部分结构B-1至B-51。此外,Me:甲基,Et:乙基,i-Pro:异丙基,n-Bu:正丁基,t-Bu:叔丁基,Ph:苯基,2-tol:2-甲苯甲酰基(toluyl group),3-tol:3-甲苯甲酰基,4-tol:4-甲苯甲酰基,1-Np:1-萘基,2-Np:2-萘基,2-An:2-蒽基和2-Fn:2-芴基。
Figure BPA00001479626300251
Figure BPA00001479626300261
Figure BPA00001479626300271
Figure BPA00001479626300281
Figure BPA00001479626300291
Figure BPA00001479626300301
Figure BPA00001479626300311
Figure BPA00001479626300321
Figure BPA00001479626300331
Figure BPA00001479626300341
Figure BPA00001479626300351
Figure BPA00001479626300361
Figure BPA00001479626300371
Figure BPA00001479626300381
Figure BPA00001479626300401
Figure BPA00001479626300411
Figure BPA00001479626300421
Figure BPA00001479626300431
Figure BPA00001479626300441
Figure BPA00001479626300451
Figure BPA00001479626300461
Figure BPA00001479626300471
Figure BPA00001479626300481
Figure BPA00001479626300491
本发明中使用的化合物的分子量优选为500至2,000,更优选为500至1,500,还更优选为700至1,300。当分子量为500至2,000时,材料的气相沉积变得可能并且耐热性可以被更大地提高。
可以通过使用已知方法合成本发明中使用的化合物。
式(F-1)的化合物的用量,当用于电荷阻挡层时,优选为10至300nm,更优选30至150nm,再更优选50至100nm,就单层而言。在将化合物用于置于光电转换层和电荷阻挡层之间的层的情况下,使用的量优选为100nm以下,更优选50nm以下,还要更优选20nm以下,就单层而言。
在电荷阻挡层中含有式(F-1)的化合物。在电子阻挡层中,在与电极接触的部分中的化合物必须具有足够小的Ea以抑制来自电极的电子注入,并且进而该部分的Ip趋向于变得相对小。此外,在电子阻挡层中,与光电转换层接触的部分必须被设计为具有比光电转换层的空穴传输部分中的Ip小的Ip,以在没有能垒的情况下从光电转换层接收电子阻挡层中的空穴。由于这些原因,组成电子阻挡的材料必须被设计为具有相对小的Ip,在此情况下,可以使用式(F-1)的材料,同时即使在与光电转换层中具有大Ea的材料接触时,尽管Ip相同,也进一步抑制源电荷。
附带地,在具有如图1(b)中所示的实施方案中的空穴阻挡层的情况下,优选将电子接受材料用作用于形成空穴阻挡层的材料。
可使用的电子接受材料的实例包括:
Figure BPA00001479626300501
二唑衍生物,例如1,3-双(4-叔丁基苯基-1,3,4-二唑基)苯撑(OXD-7);蒽醌二甲烷(anthraquinodimethane)衍生物;二苯基醌衍生物;浴铜灵,红菲咯啉及它们的衍生物;三唑化合物;三(8-羟基喹啉)铝配合物;双(4-甲基-8-喹啉)铝配合物;二苯乙烯基亚芳基(distyrylarylene)衍生物;和矽咯(silole)化合物。而且,也可以使用具有足够的电子传输性的材料,即使所述材料不是电子接受有机材料。可以使用卟啉基化合物,苯乙烯基化合物,例如DCM(4-二氰基亚甲基-2-甲基-6-(4-(二甲基氨基苯乙烯基))-4H-吡喃,和4H-吡喃基化合物。
具体地,优选下面所示化合物。在以下具体的实例中,Ea表示材料的电子亲和势(eV),而Ip表示材料的电离势(eV)。
Figure BPA00001479626300511
电荷阻挡层可以通过气相沉积形成。所述气相沉积可以为物理气相沉积(PVD)或化学气相沉积(CVD),但是优选物理气相沉积例如真空沉积。在通过真空沉积对膜进行沉积的情况下,制备条件例如真空度和沉积温度可以根据传统方法进行设置。
电荷阻挡层的厚度优选为10至300nm,更优选30至150nm,再更优选50至100nm。以10nm以上的厚度,获得了合适的暗电流减小效果,而以300nm以下的厚度,获得了合适的光电转换效率。
附带地,对于电荷阻挡层可以形成多个层。
(光电转换层)
构成光电转换层12的有机材料优选包括p型有机半导体和n型有机半导体中的至少任一种,更优选包含n型有机半导体。此外,对于本发明的效果,特别当光电转换层含有具有4.0eV以上的电子亲和势(Ea)的材料时,带来了极大的效果。所述电子亲和势(Ea)为4.0eV以上的材料包括随后所述的n型有机半导体。
P型有机半导体(化合物)是给体型有机半导体(化合物)并且表示具有易于给予电子的性质的有机化合物,主要以空穴传输有机化合物为典型。更具体地,当两种有机材料被接触使用时,其为具有较小电离势的有机化合物。因此,给体型有机化合物可以是任何有机化合物,只要其为具有给予电子性质的有机化合物即可。可以使用的化合物的实例包括:三芳基胺化合物,联苯胺化合物,吡唑啉化合物,苯乙烯胺化合物,腙化合物,三苯基甲烷化合物,咔唑化合物,聚硅烷化合物,噻吩化合物,酞菁化合物,花青化合物,部花青化合物,氧杂菁(oxonol)化合物,聚胺化合物,吲哚化合物,吡咯化合物,吡唑化合物,聚芳撑化合物,稠合芳族碳环化合物(例如,萘衍生物,蒽衍生物,菲衍生物,并四苯衍生物,芘衍生物,苝衍生物,荧蒽衍生物),和具有含氮杂环化合物作为配体的金属配合物。不将给体型有机半导体限制于这些化合物并且,如上所述,任何具有比用作n型(受体)化合物的有机化合物的电离势更小的电离势的有机化合物都可以被用作给体型有机半导体。
这些中,优选三芳基胺化合物。
重要地,更优选以下式(I)表示的三芳基胺化合物。
式(I):
Figure BPA00001479626300531
其中Z1表示用于形成5或6元环所必需的原子团,L1,L2和L3的每一个表示未取代的次甲基或取代的次甲基,D1表示原子团,并且n1表示0以上的整数。
在式(I)中,Z1表示用于形成5-或6-元环所必需的原子团,L1,L2和L3中的每一个表示未取代的次甲基或取代的次甲基,D1表示原子团,并且n表示0以上的整数。
Z1表示用于形成5-或6-元环所必需的原子团。所形成的环优选为通常用作部花青染料中的酸核(acidic nucleus)的环,且其具体实例包括下列:
(a)1,3-二羰基核,例如1,3-茚满二酮核,1,3-环己二酮,5,5-二甲基-1,3-环己二酮和1,3-二
Figure BPA00001479626300532
烷-4,6-二酮;(b)吡唑啉酮核,例如1-苯基-2-吡唑啉-5-酮,3-甲基-1-苯基-2-吡唑啉-5-酮和1-(2-苯并噻唑基)-3-甲基-2-吡唑啉-5-酮;(c)异
Figure BPA00001479626300533
唑啉酮核,例如3-苯基-2-异
Figure BPA00001479626300534
唑啉-5-酮和3-甲基-2-异唑啉-5-酮;(d)羟基吲哚核,例如1-烷基-2,3-二氢-2-羟基吲哚;(e)2,4,6-三酮六氢嘧啶核,例如巴比妥酸,2-硫代巴比妥酸以及它们的衍生物,所述衍生物的实例包括1-烷基形式例如1-甲基和1-乙基,1,3-二烷基形式例如1,3-二甲基,1,3-二乙基和1,3-二丁基,1,3-二芳基形式例如1,3-二苯基,1,3-二(对氯苯基)和1,3-二(对乙氧基羰基苯基),1-烷基-1-芳基形式例如1-乙基-3-苯基,和1,3-二杂环取代形式例如1,3-二(2-吡啶基);(f)2-硫代-2,4-噻唑烷二酮核,例如绕丹宁和它的衍生物,所述衍生物的实例包括3-烷基绕丹宁例如3-甲基绕丹宁,3-乙基绕丹宁和3-烯丙基基绕丹宁,3-芳基绕丹宁例如3-苯基绕丹宁,和3-杂环环取代的绕丹宁例如3-(2-吡啶基)绕丹宁,
(g)2-硫代-2,4-
Figure BPA00001479626300536
唑烷二酮(2-硫代-2,4-(3H,5H)-唑二酮)核,例如3-乙基-2-硫代-2,4-唑烷二酮;(h)硫茚酮核,例如1,1-二氧化3(2H)-硫茚酮(3(2H)-thianaphthenone-1,1-dioxide);(i)2-硫代-2,5-噻唑烷二酮核,例如3-乙基-2-硫代-2,5-噻唑烷二酮(3-ethyl-2-thio-2,5-thiazolidinedione);(j)2,4-噻唑烷二酮核,例如2,4-噻唑烷二酮,3-乙基-2,4-噻唑烷二酮和3-苯基-2,4-噻唑烷二酮;(k)噻唑啉-4-酮核,例如4-噻唑啉酮和2-乙基-4噻唑啉酮;(l)2,4-咪唑烷二酮(乙内酰脲)核,例如2,4-咪唑烷二酮和3-乙基-2,4-咪唑烷二酮;(m)2-硫代-2,4-咪唑烷二酮(2-硫代乙内酰脲)核,例如2-硫代-2,4-咪唑烷二酮和3-乙基-2-硫代-2,4-咪唑烷二酮;(n)咪唑啉-5-酮核,例如2-丙基巯基-2-咪唑啉-5-酮;(o)3,5-吡唑烷二酮核,例如1,2-二苯基-3,5-吡唑烷二酮和1,2-二甲基-3,5-吡唑烷二酮;(p)苯并噻吩-3-酮核,例如苯并噻吩-3-酮,氧代苯并噻吩-3-酮和二氧代苯并噻吩-3-酮;和(q)茚满酮核,例如1-茚满酮,3-苯基-1-茚满酮,3-甲基-1-茚满酮,3,3-二苯基-1-茚满酮和3,3-二甲基-1-茚满酮。
由Z1形成的环优选为1,3-二羰基核,吡唑啉酮核,2,4,6-三酮六氢嘧啶核(包括硫酮形式,例如,巴比妥酸核,2-硫代巴比妥酸核),2-硫代-2,4-噻唑烷二酮核,2-硫代-2,4-
Figure BPA00001479626300541
唑烷二酮核,2-硫代-2,5-噻唑烷二酮核,2,4-噻唑烷二酮核,2,4-咪唑烷二酮核,2-硫代-2,4-咪唑烷二酮核,2-咪唑啉-5-酮核,3,5-吡唑烷二酮核,苯并噻吩-3-酮核或茚满酮核,更优选1,3-二羰基核,2,4,6-三酮六氢嘧啶核(包括硫酮形式,例如,巴比妥酸核,2-硫代巴比妥酸核),3,5-吡唑烷二酮核,苯并噻吩-3-酮核或茚满酮核,再更优选1,3-二羰基核或2,4,6-三酮六氢嘧啶核(包括硫酮形式,例如,巴比妥酸核,2-硫代巴比妥酸核),仍然再更优选1,3-茚满二酮核,巴比妥酸核,2-硫代巴比妥酸核或其衍生物。
由Z1形成的环优选为以下式表示的环:
Figure BPA00001479626300542
Z3表示用于形成5-或6-元环所必需的原子团。Z3可以选自上述由Z1形成的环并且优选为1,3-二羰基核或2,4,6-三酮六氢嘧啶核(包括硫酮形式),更优选1,3-茚满二酮核,巴比妥酸核,2-硫代巴比妥酸核或其衍生物。
已发现通过控制受体部分之间的相互作用,当通过与C60气相共沉积进行沉积膜时可以带来高的空穴传输性。可以通过受体部分的结构和起空间位阻作用的取代基的引入对所述相互作用进行控制。在巴比妥酸核和2-硫代巴比妥酸核中,在两个N-位置的两个氢都优选被取代基取代,由此可以控制分子间相互作用。取代基的实例包括随后所述的取代基W,并且取代基优选为烷基,更优选甲基,乙基,丙基或丁基。
在由Z1形成的环为1,3-茚满二酮核的情况下,优选以下式(IV)表示的基团或以下式(V)表示的基团。
式(IV):
Figure BPA00001479626300551
其中R41至R44中的每一个独立地表示氢原子或取代基。
式(V):
Figure BPA00001479626300552
其中R41,R44和R45至R48中的每一个独立地表示氢原子或取代基。
在以式(IV)表示的基团的情况下,R41至R44中的每一个独立地表示氢原子或取代基。关于取代基,例如,可以应用那些被描述为取代基W的取代基。R41至R44中邻近的成员可以结合以形成环,并且优选R42和R43结合在一起以形成环(例如,苯环,吡啶环或吡嗪环)。优选地,R41至R44全部都为氢原子。
以式(IV)表示的基体优选为以式(V)表示的基团。在以式(V)表示的基团的情况下,R41,R44和R45至R48中的每一个独立地表示氢原子或取代基。关于取代基,例如,可以应用作为取代基W所述的那些。优选R41,R44和R45至R48全部都为氢原子。
在由Z1形成的环为2,4,6-三酮六氢嘧啶核(包括硫酮形式)的情况下,优选以下式(VI)表示的基团。
式(VI):
Figure BPA00001479626300561
其中R81和R82中的每一个独立地表示氢原子或取代基,并且R83表示氧原子,硫原子或取代基。
在以式(VI)表示的基团的情况下,R81和R82中的每一个独立地表示氢原子或取代基。关于取代基,例如,可以应用作为取代基W所述的那些。R81和R82中的每一个独立为,优选烷基,芳基或杂环基(例如,2-吡啶基),更优选碳数为1至6的烷基(例如,甲基,乙基,正丙基,叔丁基)。
R83表示氧原子,硫原子或取代基,但是R83优选表示氧原子或硫原子。所述取代基优选为结合部分为氮原子或碳原子的取代基。在氮原子的情况下,取代基优选为烷基(碳数为1至12)或芳基(碳数为6至12),并且其具体的实例包括甲氨基,乙氨基,丁氨基,己氨基,苯氨基和萘氨基。在碳原子的情况下,如果至少一个吸电子基团被进一步取代,则可以是足够的。所述吸电子基团包括羰基,氰基,亚砜基,磺酰基和磷酰基并且优选其进一步具有取代基。此取代基的实例包括取代基W。R83优选形成含有碳原子的5-或6-元环,并且其具体实例包括具有下列结构的那些基团。
Figure BPA00001479626300581
在以上基团中,Ph表示苯基。
L1,L2和L3中的每一个独立地表示未取代的次甲基或取代的次甲基。取代的次甲基可以结合在一起以形成环(例如,6-元环如苯环)。取代的次甲基的取代基的实例包括取代基W,并且优选L1,L2和L3全部都是未取代的次甲基。
n1表示0以上的整数,优选表示0至3的整数,并且更优选0。当n1变大时,吸收波长区域被允许处于长波长侧,但是热分解温度变低。从在可见区具有适当吸收并且抑制膜气相沉积时的热分解的观点来看,n优选为0。
D1表示原子团。D1优选为含有-NRa(Rb)的基团,并且更优选D1表示被-NRa(Rb)取代的芳基(优选地,可以被取代的苯基或萘基)。Ra和Rb中的每一个独立地表示氢原子或取代基,并且以Ra和Rb表示的取代基的实例包括取代基W,但是所述取代基优选为脂族烃基(优选地,可以被取代的烷基或烯基),芳基(优选地,可以被取代的苯基)或杂环基。所述杂环基优选为5元环例如呋喃,噻吩,吡咯和
Figure BPA00001479626300591
二唑。
在其中Ra和Rb中的每一个为取代基(优选烷基或烯基)的情况下,所述取代基可以通过与被-NRa(Rb)取代的芳基的芳环(优选苯环)骨架中的氢原子或取代基结合而形成环(优选6-元环)。在此情况下,D1优选以随后所述的式(VIII),(IX)或(X)表示。
取代基Ra和Rb可以结合在一起以形成环(优选5-或6-元环,更优选6-元环),或Ra和Rb中的每一个可以与L(表示L1,L2和L3中的任何一个)中的取代基结合以形成环(优选5-或6-元环,更优选6-元环)。
D1优选为在对位被氨基取代的芳基(优选苯基),在此情况下,优选以下式(II)表示。氨基可以被取代。氨基的取代基的实例包括取代基W,但是该取代基优选为脂族烃基(优选可以被取代的烷基),芳基(优选为可以被取代的苯基)或杂环基。氨基优选为被两个芳基取代的氨基,即所谓的二芳基取代的氨基。在此情况下,D1优选以下式(III)表示。氨基的取代基(优选地,可以被取代的烷基或烯基)可以与芳基的芳环(优选地,苯环)骨架中的氢原子或取代基结合以形成环(优选地,6-元环)。
式(II):
Figure BPA00001479626300601
其中R1至R8的每一个独立地表示取代基,并且在这些取代基中,R1和R2,R3和R4,R5和R6,R2和R5或R4和R6可以结合在一起以形成环。
式(III):
Figure BPA00001479626300602
其中R11至R14,R20至R24和R30至R34中的每一个独立地表示氢原子或取代基,并且R11至R14,R20至R24,或R30至R34可以相互结合以形成环。
在其中Ra和Rb中的每一个为脂族烃基,芳基,或杂环基的情况下,取代基优选为烷基,烯基,芳基,烷氧基,芳氧基,酰基,烷氧羰基,芳氧羰基,酰氨基,磺酰氨基,磺酰基,甲硅烷基或芳族杂环基,更优选烷基,烯基,芳基,烷氧基,芳氧基,甲硅烷基或芳族杂环基,再更优选烷基,芳基,烷氧基,芳氧基,甲硅烷基或芳族杂环基。关于具体实例,可以应用作为取代基W所述的那些。
Ra和Rb中的每一个优选为烷基,芳基或芳族杂环基。Ra和Rb中的每一个更优选为烷基,通过与L结合而形成环的亚烷基,或芳基,再更优选碳数为1至8的烷基,通过与L结合而形成5-或6-元环的亚烷基,或取代的或未取代的苯基,又再更优选碳数为1至8的烷基,或取代的或未取代的苯基。
还优选D1以下式(VII)表示。
式(VII):
Figure BPA00001479626300611
其中R91至R98中的每一个独立地表示氢原子或取代基;m表示0以上的整数,并且m优选为0或1;Rx和Ry中的每一个独立地表示氢原子或取代基并且当m为2以上时,与各个6-元环结合的Rx或Ry可以为不同的取代基;R91和R92,R92和Rx,Rx和R94,R94和R97,R93和Ry,Ry和R95,R95和R96,或R97和R98可以独立地结合在一起以形成环。与L3(当n为0时,与L1)的结合部分可以为R91,R92或R93的位置并且在此情况下,与R91,R92或R93对应的取代基或氢原子可以被结合到式(VII)中表示为与L3的结合部分的位置,并且邻近的R可以结合在一起以形成环。如在本文中使用的,表达“邻近的R可以结合在一起以形成环”表示,例如,在其中R91是与L3(当n为0时,与L1)的结合部分的情况下,假设R90被结合到式(VII)的结合部分,R90和R93可以结合以形成环;在其中R92为与L3(当n为0时,与L1)的结合部分的情况下,假设R90被结合到式(VII)的结合部分,R90和R91,或R90和R93可以结合在一起以形成环;并且在其中R93为与L3(当n为0时,与L1)的结合部分的情况下,假设R90被结合到式(VII)的结合部分,R90和R91,或R91和R92可以结合在一起以形成环。
以上的环优选为苯环。
取代基R91至R98,Rx和Ry的实例包括取代基W。
优选R91至R96全部都为氢原子,并且优选Rx和Ry都为氢原子。优选R91至R96为氢原子并且同时Rx和Ry为氢原子。
R97和R98中的每一个独立地优选为可以被取代的苯基,取代基的实例包括取代基W,优选未被取代的苯基。
m表示0以上的整数并且优选为0或1。
还优选D1为以式(VIII),(Ⅸ)或(X)表示的基团。
式(VIII):
Figure BPA00001479626300621
其中R51至R54中的每一个独立地表示氢或取代基。所述取代基的实例包括取代基W。R52和R53,或R51和R52可以结合在一起以形成环。
式(IX):
Figure BPA00001479626300622
其中R61至R64中的每一个独立地表示氢或取代基。所述取代基的实例包括取代基W。R62和R63,或R61和R62可以结合在一起以形成环。
式(X):
其中R71至R73中的每一个独立地表示氢原子或取代基。所述取代基的实例包括取代基W。R72和R73可以结合在一起以形成环。
D1更优选为以式(II)或(III)表示的基团。
式(II)中,R1至R6中的每一个独立地表示氢原子或取代基,并且R1和R2,R3和R4,R5和R6,R2和R5,或R4和R6可以结合在一起以形成环。
R1至R4中的取代基的实例包括取代基W。优选R1至R4为氢原子或R2和R5,或R4和R6形成5-元环,并且更优选地,R1至R4全部都为氢原子。
R5和R6中的取代基的实例包括取代基W。在取代基中,优选取代的或未取代的芳基。取代的芳基的取代基优选为烷基(例如,甲基,乙基)或芳基(例如,苯基,萘基,菲基,蒽基)。R5和R6中的每一个优选为苯基,烷基取代的苯基,苯基取代的苯基,萘基,菲基,蒽基,或芴基(优选9,9’-二甲基-2-芴基)。
式(III)中,R11至R14,R20至R24和R30至R34中的每一个独立地表示氢原子或取代基。此外,R11至R14,R20至R24或R30至R34可以结合在一起以形成环。成环的实例包括其中R11和R12,或R13和R14结合以形成苯环的情况,其中R20至R24中的两个邻近成员(R24和R23,R23和R20,R20和R21,或R21和R22)结合以形成苯环的情况,其中R30至R34中的两个邻近成员(R34和R33,R33和R30,R30和R31,或R31和R32)结合以形成苯环的情况,和R22和R34结合以与N原子共同形成5-元环的情况。
以R11至R14,R20至R24和R30至R34表示的取代基的实例包括取代基W。该取代基优选为烷基(例如,甲基,乙基)或芳基(例如,苯基,萘基),和可以用取代基W进一步取代的基团(优选芳基)。首先,优选其中R20和R30为取代基的情况,并且更优选其中同时另外的R11至R14,R21至R24和R31至R34为氢原子的情况。
以式(I)表示的化合物是JP-A-2000-297068中所描述的化合物,并且在此出版物中未描述的化合物也可以根据其中所述的合成方法制备。
以式(I)表示的化合物的具体实例示例如下,但是本发明不被限制于此。
Figure BPA00001479626300641
Figure BPA00001479626300651
Figure BPA00001479626300671
Figure BPA00001479626300681
Figure BPA00001479626300691
Figure BPA00001479626300701
Figure BPA00001479626300711
在以上示例的化合物中,R101和R102中的每一个独立地表示氢原子或取代基。所述取代基的实例包括取代基W,并且该取代基优选为烷基或芳基。
n型有机半导体(化合物)是受体型有机半导体(化合物)并且表示具有易于接受电子的性质的有机化合物,主要以电子传输有机化合物为典型。更具体地,当两种有机材料被接触使用时,其为具有较大电子亲和势的有机化合物。
因此,对于受体型有机化合物,可以使用任何有机化合物,只要其为具有电子接受性质的有机化合物即可。其实例包括:稠合芳族碳环化合物(萘,蒽,富勒烯,菲,并四苯,芘,苝,荧蒽,及其衍生物),含有氮原子,氧原子或硫原子的5-至7-元杂环化合物(例如,吡啶,吡嗪,嘧啶,哒嗪,三嗪,喹啉,喹
Figure BPA00001479626300712
啉,喹唑啉,酞嗪,噌啉,异喹啉,蝶啶,吖啶,吩嗪,菲咯啉,四唑,吡唑,咪唑,噻唑,
Figure BPA00001479626300713
唑,吲唑,苯并咪唑,苯并三唑,苯并
Figure BPA00001479626300714
唑,苯并噻唑,咔唑,嘌呤,三唑并哒嗪,三唑并嘧啶,四氮杂茚(tetrazaindene),
Figure BPA00001479626300715
二唑,咪唑并吡啶,吡喃烷(pyralidine),吡咯并吡啶,噻二唑并吡啶,二苯并西平(dibenzazepine),三苯并吖庚因(tribenzazepine)),聚芳撑化合物,芴化合物,环戊二烯化合物,甲硅烷基化合物,和以含氮杂环化合物作为配体的金属配合物。如上所述,不将受体型有机半导体限制于这些化合物,并且可以将任何电子亲和势大于用作给体型有机化合物的电子亲和势的有机化合物用作受体型有机半导体。
优选使用富勒烯或富勒烯衍生物作为n型有机半导体。
富勒烯表示富勒烯C60,富勒烯C70,富勒烯C76,富勒烯C78,富勒烯C80,富勒烯C82,富勒烯C84,富勒烯C90,富勒烯C96,富勒烯C240,富勒烯C540,混合的富勒烯或富勒烯纳米管,而富勒烯衍生物表示通过向这样的富勒烯增加取代基而获得的化合物。所述取代基优选为烷基,芳基或杂环基。
下列化合物优选作为所述富勒烯衍生物。
Figure BPA00001479626300741
对于富勒烯和富勒烯衍生物,也可以使用例如Kikan Kagaku Sosetsu (科学综述季刊(Scientific Review Quarterly)),第43期,日本化学会(TheChemical Society of Japan)编辑(1999),JP-A-10-167994,JP-A-11-255508,JP-A-11-255509,JP-A-2002-241323和JP-A-2003-196881中所述的化合物。
在与p型材料的混合层中,基于形成混合膜的其它材料的量,富勒烯或富勒烯衍生物的含量优选为50%以上(摩尔比),更优选200%以上(以摩尔计),再更优选300%以上(摩尔比)。
光电转换层可以通过气相沉积形成。所述气相沉积可以是物理气相沉积(PVD)或化学气相沉积(CVD),但是优选物理气相沉积如真空沉积。在通过真空沉积对膜进行沉积的情况下,制备条件例如真空度和沉积温度可以根据传统方法进行设置。
光电转换层的厚度优选为10至1,000nm,更优选50至800nm,再更优选100至500nm。在10nm以上的厚度的情况下,得到适宜的暗电流减小效果,在1,000nm以下的厚度的情况下,得到适宜的光电转换效率。
本发明还涉及光电转换元件的制备方法,所述方法包括通过真空加热沉积(真空沉积)来沉积光电转换层和电子阻挡层的每一层的步骤。
[光传感器]
光电转换元件被粗略地分类为光电池和光传感器,并且本发明的光电转换元件适合用于光传感器。光传感器可以为单独使用上述光电转换元件的光传感器,或者可以处于其中将光电转换元件线性排列的行传感器(linesensor)的模式,或者处于其中将光电转换元件排列在平面上的二维传感器的模式。本发明的光电转换元件起成像装置的作用:在行传感器中,通过使用光学系统和驱动部件例如扫描器等将光学图像信息转换为电信号;以及在二维传感器中,借助于光学系统在传感器上形成光学图像信息的图像并且将其转换为电信号,如成像模块。
光电池是发电装置,因此将光能转换为电能的效率是重要的性能,而作为在暗处中电流的暗电流没有变成功能方面的问题。此外,在后期的加热步骤中,不需要比如滤色器的安置。在光传感器中,光/暗信号到电信号的高精度转换是重要的性能,并进而将光量转换为电流的效率也是重要的性能,但是在暗处输出时的信号成为噪声,因此低的暗电流是必需的。此外,对于在稍后阶段中工序的耐受性也是重要的。
[成像装置]
下面描述包括光电转换元件的成像装置的构造实例。在下列构造实例中,具有与上述构件相同的构造/作用的构件等在图中由相同或相似的符号或标记表示,并且对它们的描述被简化或省略。
成像装置是将图像的光学信息转换为电信号的装置,其中将多个光电转换元件排列在基体的相同平面上并且其中可以将光信号在每个光电转换元件(像素)中转换为电信号,并且每个像素可以继而将电信号输出到成像装置的外部。因此,对于每一个像素,成像装置由一个光电转换元件和一个或多个晶体管构成。
(成像装置的第一构造实例)
图2是成像装置的一个像素部分的示意横截面图。
在成像装置100中,各自构成一个像素的大量像素在同一平面上以阵列方式布置,并且图像数据的一个像素数据(one-pixel data)可以由从一个像素获得的信号产生。
图2中所示的成像装置的一个像素由n型硅基板1,在n型硅基板1上形成的透明绝缘膜7,和光电转换元件组成,所述光电转换元件由在绝缘膜7上形成的下部电极101,在下部电极101上形成的光电转换层102和在光电转换层102上形成的含透明电极材料的上部电极104组成。在光电转换元件上形成具有安置在其中的开口的遮光膜14,并且在上部电极104上形成透明绝缘膜105。附带地,还优选遮光膜部分104在绝缘膜7中形成的模式。
在n型硅基板1的内部,p型杂质区域(之后简称为“p区域”)4,n型杂质区域(之后简称为“n区域”)3,和p区域2以深度增大的顺序形成。在p区域4中,高浓度的p区域6在被遮光膜14遮光的部分的表面部分中形成,并且p区域6被n区域5包围。
从n型硅基板1的表面到p区域4和n区域3之间的pn结平面的深度被设置为蓝光在其被吸收的深度(约0.2μm)。因此,p区域4和n区域3形成吸收蓝光并因此积累电荷的光电二极管(B光电二极管)。
从n型硅基板1的表面到p区域2和n型硅基板1之间的pn结平面的深度被设置为红光在其被吸收的深度(约2μm)。因此,p区域2和n型硅基板1形成吸收红光并因此积累电荷的光电二极管(R光电二极管)。
经由在钻通绝缘膜7的开口中形成的连接部9,将p区域6与下部电极101电连接。由下部电极101捕获的空穴与p区域6中的电子复合并且因此重置的p区域6中积累的电子的数量根据捕获的空穴的数量而减少。通过绝缘膜8使连接部9在除了下部电极101和p区域6以外的周围电绝缘。
通过MOS电路(未显示)将P区域2中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n型硅基板1内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域4中积累的电子的转换为根据电荷的量的信号,所述MOS电路由在n区域3内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域6中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n区域5内部形成的p沟道MOS晶体管组成,并将这些信号输出到成像装置100的外部。用布线10将每个MOS电路与信号读出垫(pad)(未显示)连接。附带地,当在p区域2和p区域4中安置引出电极(extractor electrode)并且施加预定的重置电势(resetpotential)时,每个区域被耗尽(deplete)并且每个pn结部的电容变为无限小的值,由此可以使结平面中产生的电容极小。
由于这样的构造,G光可以通过光电转换层102而被光电转换,而B光和R光可以分别通过n型硅基板1中的B光电二极管和R光电二极管被光电转换。而且,因为G光首先在上部被吸收,因此在B-G之间和G-R之间达到了极好的色分离。与如下类型的成像装置比较,这是极为优异的特点:三个PD被层叠在硅基板的内部,并且所有的BGR光都在硅基板的内部被分离。附带地,还可以使用其中对于基板1和各个区域2至6,颠倒p型和n型并且通过下部电极101捕获电子的模式。此外,可以使用其中区域2和3被省略,在绝缘膜105的上面或下面形成滤色器而使滤色器进行BGR的色分离,以及其中对应每个像素的光被光电转换层102光电转换,并且BGR光被相应的像素检测的模式。在此情况下,优选下部电极101不透过BGR光,并且,例如优选使用Al,Mo或TiN。
(成像装置的第二构造实例)
在此实施方式中,代替如图3的成像装置中两个光电二极管被层叠在硅基板1的内部的构造,两个光电二极管在与入射光的入射方向垂直的方向上排列,从而在p型硅基板的内部检测两种颜色的光。
图3是此构造实例的成像装置的一个像素部分的示意性横截面图。
附带地,与图2的成像装置实例类似,还可以使用其中将图3中各个区域的p型和n型颠倒,且电子被下部电极101捕获的模式。
图3中所示的成像装置200的一个像素由n型硅基板17和光电转换元件组成,所述光电转换元件由在n型硅基板17上方形成的下部电极101,在下部电极101上形成的光电转换层102,和在光电转换层102上形成的上部电极104组成。在光电转换元件上形成具有安置在其中的开口的遮光膜34,并且在上部电极104上形成透明绝缘膜33。这里,还优选其中遮光部34是在绝缘膜24中形成的模式。
在遮光膜34的开口之下的n型硅基板17的表面上,形成并列位于n型硅基板17的表面上的由n区域19和p区域18组成的光电二极管和由n区域21和p区域20组成的光电二极管。n型硅基板17表面上任意的平面方向变为与入射光的入射方向垂直的方向。
在由n区域19和p区域18组成的光电二极管上方,经由透明绝缘膜24形成能够透射B光的滤色器28,并在其上形成下部电极101。在由n区域21和p区域20组成的光电二极管上方,经由透明绝缘膜24形成能够透射R光的滤色器29,并在其上形成下部电极101。滤色器28和29的外围覆盖有透明绝缘膜25。
由n区域19和p区域18组成的光电二极管起到基板内光电转换部的作用,其吸收通过滤色器28透射的B光,因此产生电子并在p区域18中积累产生的电子。由n区域21和p区域20组成的光电二极管起到基板内光电转换部的作用,其吸收通过滤色器29透射的R光,因此产生电子并在p区域20中积累产生的空穴。
在被n型硅基板17表面上的遮光膜34遮光的部分中,形成p区域23,并且p区域23的外围被n区域22包围。
经由在钻通绝缘膜24和25的开口中形成的连接部27,将p区域23与下部电极101电连接。由下部电极101捕获的空穴与p区域23中的电子复合并且因此重置的p区域23中积累的电子的数量根据捕获的空穴的数量而减少。通过绝缘膜26使连接部27与除了下部电极101和p区域23以外的周围电绝缘。
通过MOS电路(未显示)将P区域18中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n型硅基板17内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域20中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n型硅基板17内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域23中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n区域22内部形成的n沟道MOS晶体管组成,并将这些信号输出到成像装置200的外部。通过布线35将每个MOS电路与信号读出垫(未显示)连接。
就此而论,代替MOS电路,信号读出部可以由CCD和放大器组成,即,可以是这样的信号读出部:在p区域18,p区域20和p区域23中积累的电子被读出,进入到在n型硅基板17内部形成的CCD中,然后通过CCD传送至放大器,并且从放大器输出相应于传送的电子的信号。
以此方式,信号读出部包括CCD结构和CMOS结构,但是考虑到功率消耗,高速读出,像素加算(addition),部分读出等,优选CMOS。
附带地,在图3的成像装置中,R光和B光的色分离是通过滤色器28和29进行的,但是代替提供滤色器28和29,可以调节p区域20和n区域21之间的pn结平面的深度和p区域18和n区域19之间的pn结平面的深度,以通过相应的光电二极管吸收R光和B光。
此外,可以在n型硅基板17和下部电极101之间(例如,在绝缘膜24和n型硅基板17之间)形成由无机材料组成的无机光电转换部,该无机材料吸收通过光电转换层102透射的光,根据光产生电子并积累电荷。在此种情况下,用于读出相应于无机光电转换部的电荷积累区域中积累的电荷的信号的MOS电路可以安置在n型硅基板17的内部,并且也可以将布线35与此MOS电路连接。
也可以采用:其中将一个光电二极管安置在n型硅基板17的内部并且将多个光电转换部层叠在n型硅基板17上方的构造;其中将多个光电二极管安置在n型硅基板17的内部并且将多个光电转换部层叠在n型硅基板17上方的构造;或当不需要形成彩色图像时,其中将一个光电二极管安置在n型硅基板17的内部并且层叠仅一个光电转换部的构造。
(成像装置的第三构造实例)
此实施方式的成像装置具有以下构造:不在硅基板的内部安置光电二极管,而是将多个(在此为3个)光电转换元件层叠在硅基板的上方。
图4是此构造实例的成像装置的一个像素部分的示意性横截面图。附带地,与图2和3的成像装置实例类似,还可以使用其中通过将图4中各个区域42至47的p型和n型颠倒,电子被下部电极101r,101g和101b捕获的模式。
图4中所示的成像装置300具有这样的构造:其中R光电转换元件,B光电转换元件,和G光电转换元件依次层叠在硅基板41上方。
在硅基板41的上方,R光电转换元件由以下组成:下部电极101r,在下部电极101r上形成的光电转换层102r,和在光电转换层102r上形成的上部电极104r。
B光电转换元件由以下组成:层叠在R光电转换元件的上部电极104r上的下部电极101b,在下部电极101b上形成的光电转换层102b,和在光电转换层102b上形成的上部电极104b。
G光电转换元件由以下组成:层叠在B光电转换元件的上部电极104b上的下部电极101g,在下部电极101g上形成的光电转换层102g,和在光电转换层102g上形成的上部电极104g。本构造实例的成像装置具有其中R光电转换元件,B光电转换元件和G光电转换元件依此顺序层叠的构造。
透明绝缘膜59在R光电转换元件的上部电极104r和B光电转换元件的下部电极101b之间形成,并且透明绝缘膜63在B光电转换元件的上部电极104b和G光电转换元件的下部电极101g之间形成。遮光膜68在G光电转换元件的上部电极104g上除了开口的区域内形成,并且形成透明绝缘膜67以覆盖上部电极104g和遮光膜68。
在R,G和B光电转换元件中的每一个中所包含的下部电极,光电转换层和上部电极可以具有与上述的光电转换元件中相同的构造。然而,光电转换层102g含有能够吸收绿光并相应地产生电子和空穴的有机材料,光电转换层102b含有能够吸收蓝光并相应地产生电子和空穴的有机材料,而光电转换层102r含有能够吸收红光并相应地产生电子和空穴的有机材料。
在被硅基板41表面上的遮光膜68遮光的部分中,形成p区域43,45和47,并且这些区域的外围分别被n区域42,44和46包围。
经由在钻通绝缘膜48的开口中形成的连接部54,将p区域43与下部电极101r电连接。由下部电极101r捕获的空穴与p区域43中的电子复合并且因此重置的p区域43中积累的电子的数量根据捕获的空穴的数量而减少。通过绝缘膜51使连接部54与除了下部电极101r和p区域43以外的周围电绝缘。
经由在穿透绝缘膜48,R光电转换元件和绝缘膜59的开口中形成的连接部53,将p区域45与下部电极101b电连接。由下部电极101b捕获的空穴与p区域45中的电子复合并且因此重置的p区域45中积累的电子的数量根据所捕获的空穴的数量而减少。通过绝缘膜50使连接部53与除了下部电极101b和p区域45以外的周围电绝缘。
经由在穿透绝缘膜48,R光电转换元件,绝缘膜59,B光电转换元件和绝缘膜63的开口中形成的连接部52,将p区域47与下部电极101g电连接。由下部电极101g捕获的空穴与p区域47中的电子复合并且因此重置的p区域47中积累的电子的数量根据捕获的空穴的数量而减少。通过绝缘膜49使连接部52在除了下部电极101g和p区域47以外的周围电绝缘。
通过MOS电路(未显示)将p区域43中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n区域42内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域45中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n区域44内部形成的p沟道MOS晶体管组成,通过MOS电路(未显示)将P区域47中积累的电子转换为根据电荷的量的信号,所述MOS电路由在n区域46内部所形成的p沟道MOS晶体管组成,并且这些信号被输出到成像装置300的外部。通过布线55将每个MOS电路与信号读出垫(未显示)连接。附带地,代替MOS电路,信号读出部可以由CCD和放大器组成,即,可以是这样的信号读出部:在p区域43,45和47中积累的电子被读出,进入到在硅基板41内部形成的CCD中,然后通过CCD传送至放大器,并且从放大器输出相应于空穴的信号。
在以上描述中,能够吸收B光的光电转换层是指可以至少吸收波长为400至500nm的光,并且其中在以上波长范围内的峰值波长的吸收率优选为50%以上的层。能够吸收G光的光电转换层是指可以至少吸收波长为500至600nm的光,并且其中在以上波长范围内的峰值波长的吸收率优选为50%以上的层。能够吸收R光的光电转换层是指可以至少吸收波长为600至700nm的光,并且其中在以上波长范围内的峰值波长的吸收率优选为50%以上的层。
[驱动方法]
本发明还涉及用于驱动本发明的光电转换元件,光传感器或成像装置的方法,所述方法包括通过使用与所述电子阻挡层接触的电极作为阴极并且使用另一个电极作为阳极而施加电压。
[取代基W]
以下描述取代基W。
取代基W包括:卤素原子,烷基(包括环烷基,二环烷基和三环烷基),烯基(包括环烯基和二环烯基),炔基,芳基,杂环基(heterocyclic group)(也可以称为杂环基(hetero-ring group)),氰基,羟基,硝基,羧基,烷氧基,芳氧基,甲硅烷氧基,杂环氧基,酰氧基,氨甲酰氧基,烷氧羰氧基,芳氧基羰基,氨基(包括苯胺基),铵基,酰氨基,氨基羰基氨基,烷氧基羰基氨基,芳氧基羰基氨基,氨磺酰基氨基,烷基磺酰基氨基,芳基磺酰基氨基,巯基,烷硫基,芳硫基,杂环硫基,氨磺酰基,磺基,烷基亚磺酰基,芳基亚磺酰基,烷基磺酰基,芳基磺酰基,酰基,芳氧羰基,烷氧羰基,氨基甲酰基,芳基偶氮基,杂环偶氮基,亚氨基,膦基,氧膦基,氧膦基氧基,氧膦基氨基,膦酰基,甲硅烷基,肼基,脲基,硼酸基(-B(OH)2),磷酸基(phosphato group)(-OPO(OH)2),硫酸基(sulfato group)(-OSO3H)和其它已知取代基。
更优选地,W表示例如下列(1)至(48):
(1)卤素原子,
例如氟原子,氯原子,溴原子和碘原子;
(2)烷基,
直链的,支链的或环状的,取代或未取代的烷基,包括(2-a)至(2-e):
(2-a)烷基,
优选地,碳数为1至30的烷基(例如,甲基,乙基,正丙基,异丙基,叔丁基,正辛基,二十烷基,2-氯乙基,2-氰基乙基,2-乙基己基),(2-b)环烷基,
优选地,碳数为3至30的取代的或未取代的环烷基(例如,环己基,环戊基,4-正十二烷基环己基),
(2-c)二环烷基,
优选地,碳数为5至30的取代的或未取代的二环烷基(例如,二环[1,2,2]庚-2-基,二环[2,2,2]辛-3-基),
(2-d)三环烷基,
优选地,碳数为7至30的取代的或未取代的三环烷基(例如1-金刚烷基),
(2-e)具有更多数量的环结构的多环环烷基,
在本文中,下述取代基中的烷基(例如,烷硫基中的烷基)是指具有这样概念的烷基但还包括烯基和炔基;
(3)烯基,
直链的,直链的或环状的,取代的或未取代的烯基,包括(3-a)至(3-c):
(3-a)烯基,
优选地,碳数为2至30的取代的或未取代的烯基(例如,乙烯基,烯丙基,异戊二烯基,香叶基,油烯基),
(3-b)环烯基,
优选地,碳数为3至30的取代的或未取代的环烯基(例如,2-环戊烯-1-基,2-环己烯-1基),
(3-c)二环烯基,
取代的或未取代的二环烯基,优选地,碳数为5至30的取代的或未取代的二环烯基(例如,二环[2,2,1]庚-2-烯-1-基,二环[2,2,2]辛-2-烯-4-基);
(4)炔基,
优选地,碳数为2至30的取代的或未取代的炔基(例如,乙炔基,炔丙基,三甲基甲硅烷基乙炔基);
(5)芳基,
优选地,碳数为6至30的取代的或未取代的芳基(例如,苯基,对甲苯基,萘基,间氯苯基,邻-十六酰基氨基苯基,二茂铁基);
(6)杂环基,
优选地,通过从5-或6-元取代的或未取代的,芳族或非芳族的杂环化合物移除一个氢原子而获得的单价基团,更优选地,碳数为2至50的5-或6-元芳族杂环基(例如,2-呋喃基,2-噻吩基,2-嘧啶基,2-苯并噻唑基,2-咔唑基,3-咔唑基,9-咔唑基;杂环基还可以为阳离子杂环基如1-甲基-2-吡啶子基(pyridinio),1-甲基-2-喹啉子基(quinolinio));
(7)氰基;
(8)羟基;
(9)硝基;
(10)羰基;
(11)烷氧基,
优选地,碳数为1至30的取代的或未取代的烷氧基(例如,甲氧基,乙氧基,异丙氧基,叔丁氧基,正辛氧基,2-甲氧基乙氧基);
(12)芳氧基,
优选地,碳数为6至30的取代的或未取代的芳氧基(例如,苯氧基,2-甲基苯氧基,4-叔丁基苯氧基,3-硝基苯氧基,2-十四碳酰基氨基苯氧基);
(13)甲硅氧基,
优选地,碳数为3至20的甲硅氧基(例如,三甲基甲硅氧基,叔丁基二甲基甲硅氧基);
(14)杂环氧基,
优选地,碳数为2至30的取代的或未取代的杂环氧基(例如,1-苯基四唑-5-氧基,2-四氢吡喃基氧基);
(15)酰氧基,
优选地,甲酰氧基,碳数为2至30的取代的或未取代的烷基羰氧基,和碳数为6至30的取代的或未取代的芳基羰氧基(例如,甲酰氧基,乙酰氧基,新戊酰氧基,硬脂酰氧基,苯甲酰氧基,对甲氧基苯基羰氧基);
(16)氨基甲酰氧基,
优选地,碳数为1至30的取代的或未取代的氨基甲酰氧基(例如,N,N-二甲基氨基甲酰氧基,N,N-二乙基氨基甲酰氧基,吗啉代羰氧基,N,N-二-正辛基氨基羰氧基,N-正辛基氨基甲酰氧基);
(17)烷氧基羰氧基,
优选地,碳数为2至30的取代的或未取代的烷氧基羰氧基(例如,甲氧基羰氧基,乙氧基羰氧基,叔丁氧基羰氧基,正辛基羰氧基);
(18)芳氧基羰氧基,
优选地,碳数为7至30的取代的或未取代的芳氧基羰氧基(例如,苯氧基羰氧基,对甲氧基苯氧基羰氧基,对正十六烷氧基苯氧基羰氧基);
(19)氨基,
优选地,氨基,碳数为1至30的取代的或未取代的烷氨基,和碳数为6至30的取代的或未取代的苯胺基(例如氨基,甲氨基,二甲基氨基,苯胺基,N-甲基-苯胺基,二苯基氨基);
(20)铵基,
优选地,铵基,和被碳数为1至30的取代的或未取代的烷基,芳基或杂环基取代的铵基(例如,三甲基铵基,三乙基铵基,二苯基甲基铵基);
(21)酰氨基,
优选地,甲酰氨基,碳数为1至30的取代的或未取代的烷基羰氨基,和碳数为6至30的取代的或未取代的芳基羰氨基(例如甲酰氨基,乙酰氨基,新戊酰氨基,月桂酰氨基,苯甲酰氨基,3,4,5-三-正辛氧基苯基羰氨基);
(22)氨基羰氨基,
优选地,碳数为1至30的取代的或未取代的氨基羰氨基(例如,氨基甲酰基氨基,N,N-二甲基氨基羰氨基,N,N-二乙基氨基羰氨基,吗啉代羰氨基);
(23)烷氧基羰氨基,
优选地,碳数为2至30的取代的或未取代的烷氧基羰氨基(例如,甲氧基羰氨基,乙氧基羰氨基,叔丁氧基羰氨基,正十八烷氧基羰氨基,N-甲基-甲氧基羰氨基);
(24)芳氧基羰氨基,
优选地,碳数为7至30的取代的或未取代的芳氧基羰氨基(例如,苯氧基羰氨基,对氯代苯氧基羰氨基,间-正辛氧基苯氧基羰氨基);
(25)氨磺酰氨基,
优选地,碳数为0至30的取代的或未取代的氨磺酰氨基(例如氨磺酰氨基,N,N-二甲基氨基氨磺酰氨基,N-正辛氨基氨磺酰基氨基);
(26)烷基-或芳基-磺酰基氨基,
优选地,碳数为1至30的取代的或未取代的烷基磺酰氨基,和碳数为6至30的取代的或未取代的芳基磺酰氨基(例如甲基磺酰氨基,丁基磺酰氨基,苯基磺酰氨基,2,3,5-三氯苯基磺酰氨基,对甲基苯基磺酰氨基);
(27)巯基,
(28)烷硫基,
优选地,碳数为1至30的取代的或未取代的烷硫基(例如,甲硫基,乙硫基,正十六烷硫基);
(29)芳硫基,
优选地,碳数为6至30的取代的或未取代的芳硫基(例如,苯硫基,对氯苯硫基,间甲氧基苯硫基);
(30)杂环硫基,
优选地,碳数为2至30的取代的或未取代的杂环硫基(例如,2-苯并噻唑基硫基,1-苯基四唑-5-基硫基);
(31)氨磺酰基,
优选地,碳数为0至30的取代的或未取代的氨磺酰基(例如N-乙基氨磺酰基,N-(3-十二烷氧基丙基)氨磺酰基,N,N-二甲基氨磺酰基,N-乙酰基氨磺酰基,N-苯甲酰基氨磺酰基,N-(N′-苯基氨基甲酰基)氨磺酰基);
(32)磺基,
(33)烷基-或芳基-亚磺酰基
优选地,碳数为1至30的取代的或未取代的烷基亚磺酰基,和碳数为6至30的取代的或未取代的芳基亚磺酰基(例如甲基亚磺酰基,乙基亚磺酰基,苯基亚磺酰基,对甲基苯基亚磺酰基);
(34)烷基-或芳基-磺酰基,
优选地,碳数为1至30的取代的或未取代的烷基磺酰基,和碳数为6至30的取代的或未取代的芳基磺酰基,例如甲基磺酰基,乙基磺酰基,苯基磺酰基,对甲基苯基磺酰基);
(35)酰基,
优选地,甲酰基,碳数为2至30的取代的或未取代的烷基羰基,碳数为7至30的取代的或未取代的芳基羰基,和通过碳原子与羰基结合的碳数为4至30的取代的或未取代的杂环羰基(例如乙酰基,新戊酰基,2-氯乙酰基,硬脂酰基,苯甲酰基,对-正辛氧基苯基羰基,2-吡啶基羰基,2-呋喃基羰基);
(36)芳氧基羰基,
优选地,碳数为7至30的取代的或未取代的芳氧基羰基(例如,苯氧基羰基,邻氯代苯氧基羰基,间硝基苯氧基羰基,对叔丁基苯氧基羰基);
(37)烷氧基羰基,
优选地,碳数为2至30的取代的或未取代的烷氧基羰基(例如,甲氧基羰基,乙氧基羰基,叔丁氧基羰基,正十八烷氧基羰基);
(38)氨基甲酰基,
优选地,碳数为1至30的取代的或未取代的氨基甲酰基(例如,氨基甲酰基,N-甲基氨基甲酰基,N,N-二甲基氨基甲酰基,N,N-二-正辛基氨基甲酰基,N-(甲基磺酰基)氨基甲酰基);
(39)芳基或杂环偶氮基,
优选地,碳数为6至30的取代的或未取代的芳基偶氮基,和碳数为3至30的取代的或未取代的杂环偶氮基(例如苯基偶氮基,对氯苯基偶氮基,5-乙硫基-1,3,4-噻二唑-2-基偶氮基);
(40)亚氨基,
优选地,N-琥珀酰亚氨基和N-苯二甲酰亚氨基;
(41)膦基,
优选地,碳数为2至30的取代的或未取代的膦基(例如,二甲基膦基,二苯基膦基,甲基苯氧基膦基);
(42)氧膦基,
优选地,碳数为2至30的取代的或未取代的氧膦基(例如,氧膦基,二辛氧基氧膦基,二乙氧基氧膦基);
(43)氧膦基氧基,
优选地,碳数为2至30的取代的或未取代的氧膦基氧基(例如,二苯氧基氧膦基氧基,二辛氧基氧膦基氧基);
(44)氧膦基氨基,
优选地,碳数为2至30的取代的或未取代的氧膦基氨基(例如,二甲氧基氧膦基氨基,二甲基氨基氧膦基氨基);
(45)二氧磷基,
(46)甲硅烷基,
优选地,碳数为3至30的取代的或未取代的甲硅烷基(例如三甲基甲硅烷基,三乙基甲硅烷基,三异丙基甲硅烷基,叔丁基二甲基甲硅烷基,苯基二甲基甲硅烷基);
(47)肼基,
优选地,碳数为0至30的取代的或未取代的肼基(例如,三甲基肼基);和
(48)脲基,
优选地,碳数为0至30的取代的或未取代的脲基(例如,N,N-二甲基脲基)。
在取代基W中,那些具有氢原子的取代基可以通过移除氢原子而被上述基团进一步取代。这样取代基的实例包括-CONHSO2-基团(磺酰基氨基甲酰基或羰基氨磺酰基),-CONHCO-基团(羰基氨基甲酰基)和-SO2NHSO2-基团(磺酰基氨磺酰基)。更具体地,取代基包括烷基羰基氨基磺酰基(例如,乙酰基氨基磺酰基),芳基羰基氨基磺酰基(例如,苯甲酰基氨基磺酰基),烷基磺酰基氨基羰基(例如,甲基磺酰基氨基羰基)和芳基磺酰基氨基羰基(例如,对甲基苯基磺酰基氨基羰基)。
[环R]
环R包括芳族的或非芳族的烃环,杂环和由这些环进一步结合而形成的多环的稠环。其实例包括苯环,萘环,蒽环,菲环,芴环,苯并[9,10]菲环,并四苯环,联苯环,吡咯环,呋喃环,噻吩环,咪唑环,
Figure BPA00001479626300881
唑环,噻唑环,吡啶环,吡嗪环,嘧啶环,哒嗪环,中氮茚环,吲哚环,苯并呋喃环,苯并噻吩环,异苯并呋喃环,喹啉烷(quinolidine)环,喹啉环,酞嗪环,萘烷(naphthylidine)环,喹喔啉环,喹
Figure BPA00001479626300882
唑啉(quinoxazoline)环,异喹啉环,咔唑环,菲啶环,吖啶环,菲咯啉环,噻蒽环,色烯环,呫吨环,吩噻
Figure BPA00001479626300883
(phenoxathiine)环,吩噻嗪环和吩嗪环。
实施例
(化合物a-2(A-1)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-2。
Figure BPA00001479626300891
将2-溴芴(89.0g,0.363mol)溶解在1.3L的THF中,并且在冷却至5℃之后,加入叔丁醇钾(102g,0.908mol),在5℃滴加甲基碘(565ml,0.908mol),并且在滴加之后,将所得的溶液在室温搅拌5小时,从而以87%的收率获得2-溴-9,9-二甲基-芴。在氮气气氛中,将镁粉(3.51g,0.144mol)加入到50ml的THF中,并且将混合物在沸点回流。滴加2-溴-9,9-二甲基-芴(75.0g,0.275mol)的250ml THF溶液,并且将所得的溶液搅拌1小时。之后,加入四(三苯基膦)钯(1.59g,1.38mmol),且将混合物在沸点回流2小时而以82%的收率获得化合物1。将化合物1(43.8g,0.113mol)的500ml氯仿溶液滴加至溴(39.8g,0.249mol)中,并且将所得的溶液搅拌3小时而以78%的收率合成化合物2。将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物3(991mg,4.44mmol)溶解在11ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶和升华纯化而纯化所得的反应混合物,从而以66%的收率获得化合物a-2。附带地,实施例中使用的化合物A-1对应该化合物a-2.1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.50(s,18H),1.65(s,12H),7.28-7.32(m,2H),7.40-7.46(m,4H),7.49(d,J=8.2,2H),7.53(dd,J=8.7,1.9Hz,2H),7.57(dd,J=8.0,1.8Hz,2H),7.66(d,J=1.8Hz,2H),7.74(dd,J=7.9,1.6Hz,2H),7.77(s,2H),7.89(d,J=7.8Hz,2H),7.96(d,J=8.0Hz,2H),8.18-8.18(m,6H)。
(化合物a-3(A-2)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-3。
Figure BPA00001479626300901
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物4(1.24g,4.44mmol)溶解在11ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶和升华纯化而纯化所得的反应混合物,从而以61%的收率获得化合物a-3。附带地,实施例中使用的化合物A-2对应该化合物a-3。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.49(s,36H),7.44(d,J=7.6Hz,4H),7.51(dd,J=8.4,1.9Hz,4H),7.56(dd,J=8.0,1.9Hz,2H),7.65(d,J=1.4Hz,2H),7.73(dd,J=7.8,1.8Hz,2H),7.77(d,J=1.2Hz,2H),7.88(d,J=7.8Hz,2H),7.95(d,J=8.0Hz,2H),8.17(d,J=1.6Hz,4H)。
(化合物a-4(A-3)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-4。
Figure BPA00001479626300902
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和2.1-当量化合物5(888mg,4.24mmol)溶解在10ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶,升华纯化等纯化所得的反应混合物,从而以42%的收率获得化合物a-4。附带地,在实施例中使用的化合物A-3对应该化合物a-4。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.61(s,12H),1.73(s,12H),6.38(dd,J=8.1,1.2Hz,4H),6.92-7.02(m,8H),7.32(dd,J=7.9,1.8Hz,2H),7.43(d,J=1.6Hz,2H),7.48(dd,J=7.6,1.6Hz,4H),7.73(dd,J=7.9,1.6Hz,2H),7.77(s,2H),7.88(d,J=7.8Hz,2H),8.00(d,J=7.9Hz,2H)。
(化合物a-5(A-4)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-5。
Figure BPA00001479626300911
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物6(1.13g,4.24mmol)溶解在10ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶,升华纯化等纯化所得的反应混合物,从而以44%的收率获得化合物a-5。附带地,实施例中使用的化合物A-4对应该化合物a-5。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.32(s,18H),1.61(s,12H),1.73(s,12H),6.31-6.37(m,4H),6.91-6.99(m,4H),7.02(dd,J=8.6,2.1Hz,2H),7.32(dd,J=7.9,1.6Hz,2H),7.42(d,J=1.5Hz,2H),7.47(d,J=8.5Hz,2H),7.51(d,J=2.1Hz,2H),7.73(d,J=7.8Hz,2H),7.77(s,2H),7.88(d,J=7.8Hz,2H),7.99(d,J=7.9Hz,2H)。
(化合物的合成a-6(A-5))
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-6。
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物7(1.36g,4.24mmol)溶解在10ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶,升华纯化等纯化所得的反应混合物,从而以35%的收率获得化合物a-6。附带地,实施例中使用的化合物A-5对应该化合物a-6。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.32(s,18H),1.60(s,12H),1.76(s,12H),6.29(d,J=8.6Hz,4H),7.00(dd,J=8.6,2.2Hz,4H),7.31(dd,J=7.9,1.8Hz,2H),7.43(d,J=1.6Hz,2H),7.50(d,J=2.2Hz,4H),7.73(d,J=7.9,1.5Hz,2H),7.77(s,2H),7.88(d,J=7.8Hz,2H),7.97(d,J=7.9Hz,2H)。
(化合物a-8(A-6)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-8。
Figure BPA00001479626300922
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物8(778mg,4.24mmol)溶解在10ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶,升华纯化等纯化所得的反应混合物,从而以44%的收率获得化合物a-8。附带地,实施例中使用的化合物A-6对应该化合物a-8。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.59(s,12H),6.02(d,J=7.2Hz,4H),6.59-6.72(m,12H),7.33(dd,J=7.9,1.7Hz,2H),7.44(d,J=1.5Hz,2H),7.72(dd,J=7.9,1.6Hz,2H),7.74(d,J=1.2Hz,2H),7.86(d,J=7.8Hz,2H),7.96(d,J=7.9Hz,2H)。
(化合物a-20的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物a-20。
Figure BPA00001479626300931
将化合物2(1.10g,2.02mmol),乙酸钯(22.7mg,0.101mmol),三(叔丁基)膦(61.3mg,0.303mmol),碳酸铯(2.63g,8.08mmol)和化合物9(845mg,4.24mmol)溶解在10ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行4小时。将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶和升华纯化而纯化所得的反应混合物,从而以48%的收率获得化合物a-20。1H-NMR(400MHz,在CDCl3中):δ(ppm)=1.61(s,12H),6.31(d,J=8.0,1.4Hz,4H),6.80-6.89(m,8H),7.04(dd,J=7.3,1.8Hz,4H),7.40(dd,J=7.9,1.8Hz,2H),7.49(d,J=1.7Hz,2H),7.72(dd,J=7.9,1.6Hz,2H),7.76(d,J=1.2Hz,2H),7.87(d,J=7.9Hz,2H),7.98(d,J=8.0Hz,2H)。
(化合物e-5(A-13)的合成)
可以根据下列反应式制备作为由式(F-1)表示的化合物的化合物e-5。
Figure BPA00001479626300941
将1,4-二溴-2-硝基苯(23.2g,0.0825mol)和铜粉(15.6g,0.248mol)加入到4-碘苯甲醚(25.1g,0.107mol)中,并且将混合物在175℃搅拌3小时,从而以44%的收率获得化合物10。将化合物10(11.1g,36.0mmol)和三苯基膦(23.6g,90.0mmol)溶解在70ml的邻-二氯苯中,并且使反应在氮气气氛中在沸点回流下进行5小时,从而以89%的收率获得化合物11。将化合物11(4.4g,0.15.9mmol),乙酸钯(89.4mg,0.398mmol),三(叔丁基)膦(241mg,119mmol),碳酸铯(15.5g,47.7mmol)和碘甲苯(16.2g,79.5mmol)溶解在86ml的二甲苯中,并且使反应在氮气气氛中在沸点回流下进行3小时,从而合成化合物12(收率:52%)。
在氮气气氛中,将镁(103mg,4.24mmol)加入到2ml的THF中,且将混合物在沸点回流。滴加化合物12(2.90g,8.23mmol)的8ml THF溶液,并且将所得的溶液搅拌1小时。之后,加入四(三苯基膦)钯(47.6mg,0.0412mmol),且将混合物在沸点回流2小时,从而以52%的收率获得化合物13。将化合物13(1.20g,2.20mmol)溶解在50ml的二氯甲烷并且在0℃和在氮气气氛中滴加5.5ml的1mol/IBBr3二氯甲烷之后,使反应在室温进行3小时。
在反应猝灭之后,将乙酸乙酯和水加入到反应混合物中以分离有机相,并且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。将浓缩的反应混合物溶解于30ml的二氯甲烷和N,N′-二甲基甲酰胺(1∶1)的混合溶剂中,且在5℃和在氮气气氛中滴加全氟丁磺酰氟(1.16ml,6.60mmol)之后,使反应在室温进行3小时,从而以46%的收率获得化合物15。将化合物15(1.00g,0.925mmol),乙酸钯(11.3mg,0.0463mmol),三(叔丁基)膦(28.1mg,0.139mmol),碳酸铯(1.21g,3.70mmol)和化合物6(540mg,2.03mmol)溶解在9ml的二甲苯中并且使反应在氮气气氛中在沸点回流下进行4小时。
将乙酸乙酯和水加入到反应混合物中以分离有机相,且将有机相用水和饱和盐水洗涤,然后在减压下浓缩。通过重结晶和升华纯化而纯化所得的反应混合物,从而以39%的收率获得化合物e-5。附带地,实施例中使用的化合物A-13对应该化合物e-5。1H-NMR(400MHz,在CDCl3):δ(ppm)=1.30(s,18H),1.72(s,12H),6.25(d,J=8.6Hz,2H),6.30(dd,J=8.3,1.4Hz,2H),6.86-6.94(m,4H),6.97(dd,J=8.9,2.0Hz,2H),7.23(dd,J=6.4,1.8Hz,2H),7.38(d,J=1.8Hz,2H),7.43-7.49(m,6H),7.57-7.59(m,8H),7.65(dd,J=8.5,1.6Hz,2H),7.72(s,2H),8.24(d,J=8.1Hz,2H),8.37(d,J=8.2Hz,2H)。
[实施例1]
制作图1(a)中所示的实施方案中的装置。即,通过溅射至30nm的厚度而将非晶ITO沉积在玻璃基板上,从而形成下部电极,并且通过真空加热沉积至100nm的厚度而在其上沉积化合物(A-1),以形成电子阻挡层。其后,在基板温度控制为25℃的情况下,通过真空加热沉积在其上沉积以单层计将化合物(1)和富勒烯(C60)共沉积至100nm和300nm的厚度而形成的层,以形成光电转换层。在本文中,光电转换层的真空沉积在4×10-4Pa以下的真空度下进行。
而且,通过溅射至10nm的厚度以形成透明导电膜在其上沉积非晶ITO作为上部电极。以这样的方式,制作具有光电转换元件的固态成像装置。
下面显示实施例中使用的化合物。
Figure BPA00001479626300981
Figure BPA00001479626300991
[实施例2]
以与实施例2中相同的方式制作具有光电转换元件的固态成像装置,不同之处在于,将化合物(1)的膜厚度改变为30nm。
[实施例3至19和比较例1至8]
以与实施例1相同的方式制作固态成像装置,不同之处在于,如表1中所示改变用于电子阻挡层的化合物(A-1)。
[评价]
对于所得装置的每一个,验证光电转换元件是否起作用。将电压施加给每一个装置的图2中的电极101和104,使得电场强度变为2.5×105V/cm,结果,所有装置在暗处显示出100nA/cm2以下的暗电流,而在明处显示出10μA/cm2以上的电流,这表明光电转换元件起作用。
得到的每一个装置的暗电流值(基于实施例1的相对值),和将每一个装置保持在200℃和210℃的环境中历时30分钟并且将其返回到室温以后所测量的基于加热之前的暗电流的暗电流增加幅度显示在表1中。附带地,每一种材料的Ip是通过将每一种材料沉积为单层膜并借助于由RikenKeiki Co.,Ltd.制造的AC-2对其进行测量而确定的,并且Ea是通过从Ip减去与能隙相对应的能量而确定的。在以上单层膜的光谱吸收光谱的长波末端的波长的能量当量值(energy-equivalent value)被用作与能隙相对应的能量。
下面显示在比较例中使用的化合物。
Figure BPA00001479626301001
Figure BPA00001479626301011
表1
Figure BPA00001479626301021
可见在实施例1至19中,与比较例1至8相比,在加热之后的暗电流的增加量小,且耐热性高。如与比较例5和6比较,暗电流的相对值小。
此外,制作与图2中所示的实施方案相同的成像装置。即,通过溅射至30nm的厚度而在CMOS基板上沉积非晶ITO并且通过光刻法图案化,使得对于CMOS基板上的每一个光电二极管(PD)可以存在一个像素,从而形成下部电极。电子阻挡材料的沉积和随后的操作以与实施例1至19和比较例1至8中相同的方式进行,以制作成像装置。也以相同的方式进行其评价,并且得到了与表1中所示相同的结果。证实的是,同样在成像装置中,基于本发明的实施例的元件表现出在加热以后的小的暗电流和高的耐热性。
工业适用性
可以提供一种光电转换元件,其能够当将具有特定结构的化合物用于光电转换元件时起着光电转换元件的作用,使元件显示出低暗电流并且即使当热处理元件时也减小暗电流增加的范围,并且可以提供一种配备有该光电转换元件的成像装置。
尽管已经参考其具体实施方案详细描述了本发明,但是对于本领域技术人员明显的是,在不偏离本发明的精神和范围的情况下,可以在其中进行各种变化和修改。
本申请基于2009年6月3日提交的日本专利申请(专利申请号2009-134017),2010年1月28日提交的日本专利申请(专利申请号2010-17477)和2010年3月31日提交的日本专利申请(专利申请号2010-84412),它们的内容通过引用结合在此。
附图标记和符号的说明
11下部电极(导电膜)
12光电转换层(光电转换膜)
15上部电极(透明导电膜)
16A电子阻挡层
16B空穴阻挡层
100,200,300,400成像装置

Claims (18)

1.一种光电转换元件,所述光电转换元件具有光电转换膜,所述光电转换膜被夹在透明导电膜与导电膜之间,并且包含光电转换层和电子阻挡层,其中所述电子阻挡层包含由下式(F-1)表示的化合物:
Figure FPA00001479626200011
其中R11至R18以及R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基;
式(A-1):
Figure FPA00001479626200012
其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且每一个n独立地表示0至4的整数;
取代基(S11):
Figure FPA00001479626200021
其中R1至R3的每一个独立地表示氢原子或烷基。
2.根据权利要求1所述的光电转换元件,其中所述由式(F-1)表示的化合物是由下式(F-2)表示的化合物:
其中R11至R16,R18,R′11至R′16以及R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,A11和A12的每一个独立地表示由式(A-1)表示的取代基并且作为R11至R14以及R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基。
3.根据权利要求1或2所述的光电转换元件,其中在式(F-1)或式(F-2)中,所述由式(A-1)表示的取代基独立地在R12和R′12的每一个上进行取代。
4.根据权利要求1至3中任一项所述的光电转换元件,其中在式(A-1)中,n表示0至2的整数。
5.根据权利要求1至4中任一项所述的光电转换元件,其中在式(A-1)中,Ra3和Ra6的至少任一个各自独立地表示所述取代基(S11)。
6.根据权利要求1至5中任一项所述的光电转换元件,其中在式(F-1)或式(F-2)中,Y表示-N(R20)-,其中每一个R20独立地表示烷基,芳基或杂环基,它们可以进一步具有取代基。
7.根据权利要求1至6中任一项所述的光电转换元件,其中在式(F-1)或式(F-2)中,Y表示-C(R21)(R22)-,其中R21和R22的每一个独立地表示烷基,芳基或杂环基,它们可以进一步具有取代基。
8.根据权利要求1至7中任一项所述的光电转换元件,其中所述由式(F-1)和(F-2)表示的化合物的电离势(Ip)为4.9至5.8eV。
9.根据权利要求1至8中任一项所述的光电转换元件,其中所述由式(F-1)和(F-2)表示的化合物的分子量为500至2,000。
10.根据权利要求1至9中任一项所述的光电转换元件,其中所述光电转换层包含n型有机半导体。
11.根据权利要求10所述的光电转换元件,其中所述n型有机半导体为富勒烯或富勒烯衍生物。
12.根据权利要求1至11中任一项所述的光电转换元件,其中所述光电转换膜包含下式(I)的化合物:
式(I):
Figure FPA00001479626200031
其中Z1表示用于形成5或6元环所必需的原子团,L1,L2和L3的每一个表示未取代的次甲基或取代的次甲基,D1表示原子团,且n1表示0以上的整数。
13.根据权利要求1至12中任一项所述的光电转换元件,其中所述导电膜,所述电子阻挡层,所述光电转换层和所述透明导电膜是以该顺序层叠的。
14.一种用于制备权利要求1至13中任一项所述的光电转换元件的方法,所述方法包括通过真空加热沉积来沉积所述光电转换层和所述电子阻挡层的每一层的步骤。
15.一种光传感器,所述光传感器包括权利要求1至13中任一项所述的光电转换元件。
16.一种成像装置,所述成像装置包括权利要求1至13中任一项所述的光电转换元件。
17.一种用于驱动权利要求1至13中任一项所述的光电转换元件,权利要求15所述的光传感器或权利要求16所述的成像装置的方法,所述方法包括通过使用与所述电子阻挡层接触的电极作为阴极并且使用另一个电极作为阳极而施加电压。
18.一种由下式(F-1)表示的化合物:
Figure FPA00001479626200041
其中R11至R18和R′11至R′18的每一个独立地表示氢原子,卤素原子,烷基,芳基,杂环基,羟基,氨基或巯基,它们可以进一步具有取代基,R15至R18的任何一个通过单键与R′15至R′18的任何一个连接,A11和A12的每一个独立地表示由下式(A-1)表示的取代基并且作为R11至R14和R′11至R′14的任何一个进行取代,并且每一个Y独立地表示碳原子,氮原子,氧原子,硫原子或硅原子,它们可以进一步具有取代基;
式(A-1):
Figure FPA00001479626200042
其中Ra1至Ra8的每一个独立地表示氢原子,卤素原子,烷基,芳基或杂环基,它们可以进一步具有取代基,*表示结合位置,Xa表示单键,氧原子,硫原子,亚烷基,亚甲硅基,亚烯基,亚环烷基,亚环烯基,亚芳基,二价杂环基或亚氨基,它们可以进一步具有取代基,每一个S11独立地表示下列取代基(S11)并且作为Ra1至Ra8的任何一个进行取代,并且n表示0至4的整数;
取代基(S11):
其中R1至R3的每一个独立地表示氢原子或烷基。
CN201080024598.8A 2009-06-03 2010-06-03 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法 Active CN102460760B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2009-134017 2009-06-03
JP2009134017 2009-06-03
JP2010017477 2010-01-28
JP2010-017477 2010-01-28
JP2010-084412 2010-03-31
JP2010084412 2010-03-31
PCT/JP2010/059409 WO2010140645A1 (ja) 2009-06-03 2010-06-03 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410310213.4A Division CN104119265B (zh) 2009-06-03 2010-06-03 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法

Publications (2)

Publication Number Publication Date
CN102460760A true CN102460760A (zh) 2012-05-16
CN102460760B CN102460760B (zh) 2014-08-27

Family

ID=43297778

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080024598.8A Active CN102460760B (zh) 2009-06-03 2010-06-03 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
CN201410310213.4A Active CN104119265B (zh) 2009-06-03 2010-06-03 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201410310213.4A Active CN104119265B (zh) 2009-06-03 2010-06-03 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法

Country Status (6)

Country Link
US (1) US8847141B2 (zh)
EP (1) EP2439803B1 (zh)
KR (1) KR101574379B1 (zh)
CN (2) CN102460760B (zh)
TW (2) TWI471309B (zh)
WO (1) WO2010140645A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020573A (zh) * 2009-09-08 2011-04-20 富士胶片株式会社 光电转换材料、含其的膜、光电转换装置、其制造方法、光传感器、成像装置及其使用方法
CN106463564A (zh) * 2014-07-31 2017-02-22 富士胶片株式会社 光电转换元件及成像元件

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125476A1 (ja) * 2008-04-08 2009-10-15 株式会社島津製作所 放射線検出器
JP2012077064A (ja) 2010-09-08 2012-04-19 Fujifilm Corp 光電変換材料、該材料を含む膜、光電変換素子、光電変換素子の製造方法、光電変換素子の使用方法、光センサ、撮像素子
TWI550059B (zh) * 2011-02-07 2016-09-21 Idemitsu Kosan Co A double carbazole derivative and an organic electroluminescent element using the same
JP2012224618A (ja) * 2011-04-08 2012-11-15 Fujifilm Corp 有機材料の精製方法、有機エレクトロニクス用材料、光電変換素子、光センサ、撮像素子、及び有機電界発光素子
JP6034005B2 (ja) * 2011-08-03 2016-11-30 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
JP5814044B2 (ja) * 2011-08-16 2015-11-17 富士フイルム株式会社 光電変換素子およびその使用方法、撮像素子、光センサ
KR101951853B1 (ko) 2011-09-30 2019-02-26 유디씨 아일랜드 리미티드 유기 전계 발광 소자, 및 신규 이리듐 착물
TWI470776B (zh) 2011-12-29 2015-01-21 Ind Tech Res Inst 光偵測陣列結構與光偵測模組
JP6153522B2 (ja) * 2012-06-28 2017-06-28 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP5938028B2 (ja) * 2013-03-27 2016-06-22 富士フイルム株式会社 光電変換素子およびその使用方法、光センサ、撮像素子
KR102115477B1 (ko) * 2013-08-14 2020-05-27 삼성디스플레이 주식회사 유기 화합물 및 이를 포함하는 유기 발광 장치
KR102163721B1 (ko) 2014-01-06 2020-10-08 삼성전자주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR101556241B1 (ko) * 2014-04-02 2015-10-01 주식회사 엘엠에스 신규한 화합물 및 이를 포함하는 발광소자
JP7141826B2 (ja) * 2015-03-17 2022-09-26 日産化学株式会社 光センサ素子の正孔捕集層形成用組成物および光センサ素子
CN112002807B (zh) 2015-05-29 2024-06-18 索尼半导体解决方案公司 光电转换元件、固体摄像装置和电子设备
KR102491494B1 (ko) 2015-09-25 2023-01-20 삼성전자주식회사 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자 및 이미지 센서
KR102529631B1 (ko) 2015-11-30 2023-05-04 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102557864B1 (ko) 2016-04-06 2023-07-19 삼성전자주식회사 화합물, 및 이를 포함하는 유기 광전 소자, 이미지 센서 및 전자 장치
US9985579B2 (en) 2016-04-12 2018-05-29 Preformed Line Products Co. Mounting assembly for mounting a solar panel
US10236461B2 (en) 2016-05-20 2019-03-19 Samsung Electronics Co., Ltd. Organic photoelectronic device and image sensor
KR102605375B1 (ko) 2016-06-29 2023-11-22 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102589215B1 (ko) 2016-08-29 2023-10-12 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
JP7073388B2 (ja) 2016-11-08 2022-05-23 メルク パテント ゲーエムベーハー 電子デバイスのための化合物
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
JP7346011B2 (ja) 2017-09-20 2023-09-19 キヤノン株式会社 有機化合物及び光電変換素子
US11145822B2 (en) 2017-10-20 2021-10-12 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor, and electronic device including the same
JP7046562B2 (ja) 2017-10-25 2022-04-04 キヤノン株式会社 有機化合物及び光電変換素子
CN109761877A (zh) * 2018-11-29 2019-05-17 宇瑞(上海)化学有限公司 一种有机化合物及其使用该化合物的有机电致发光器件
EP3674290B1 (en) 2018-12-28 2024-05-22 Samsung Electronics Co., Ltd. Heterocyclic compound, composition including the same, and organic light-emitting device including the heterocyclic compound
KR20220097876A (ko) * 2019-11-08 2022-07-08 이데미쓰 고산 가부시키가이샤 유기 일렉트로루미네센스 소자 및 전자 기기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762182A (zh) * 2003-01-24 2006-04-19 出光兴产株式会社 有机电致发光元件
US20070063156A1 (en) * 2005-09-20 2007-03-22 Fuji Photo Film Co., Ltd. Organic photoelectric conversion element and image element
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
WO2008090912A1 (ja) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、該製造方法により得られた有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP1970976A1 (en) * 2006-01-05 2008-09-17 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
US20090050881A1 (en) * 2007-08-22 2009-02-26 Fujifilm Corporation Photoelectric conversion element, method for producing photoelectric conversion element, and solid-state imaging device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3919028B2 (ja) 1996-12-09 2007-05-23 三菱化学株式会社 炭素クラスター誘導体
DE69804529T2 (de) 1997-05-19 2002-10-02 Canon Kk Organisches Material und elektrolumineszente Vorrichtung dasselbe nutzend
JP3508984B2 (ja) 1997-05-19 2004-03-22 キヤノン株式会社 有機化合物及び該有機化合物を用いた発光素子
JP3438571B2 (ja) 1998-03-09 2003-08-18 三菱化学株式会社 C70誘導体
JP3480298B2 (ja) 1998-03-09 2003-12-15 三菱化学株式会社 C60誘導体
JP4213832B2 (ja) 1999-02-08 2009-01-21 富士フイルム株式会社 有機発光素子材料、それを使用した有機発光素子およびスチリルアミン化合物
TWI297038B (en) 2000-11-22 2008-05-21 Academia Sinica 3,6,9-trisubstituted carbazoles for light emitting diodes
JP4115674B2 (ja) 2001-02-20 2008-07-09 三菱化学株式会社 炭素クラスターアニオン及びこれを含む金属錯体
JP2003196881A (ja) 2001-09-03 2003-07-11 Mitsui Chemicals Inc フラーレン系色素及びその用途
KR100573137B1 (ko) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자
JP4972288B2 (ja) * 2004-08-30 2012-07-11 富士フイルム株式会社 撮像素子
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
JP5022573B2 (ja) * 2005-06-02 2012-09-12 富士フイルム株式会社 光電変換素子、及び撮像素子、並びに、これらに電場を印加する方法
JP4911446B2 (ja) 2005-09-15 2012-04-04 富士フイルム株式会社 エリアセンサ、画像入力装置、およびそれを組み込んだ電子写真装置等
KR101156529B1 (ko) 2005-10-18 2012-06-20 삼성에스디아이 주식회사 신규한 홀 전달물질 및 이를 이용한 고체전해질 및광전변환소자
JP4914597B2 (ja) 2005-10-31 2012-04-11 富士フイルム株式会社 光電変換素子及び撮像素子、並びに、これらに電場を印加する方法
DE102006016083A1 (de) 2006-04-04 2007-10-11 Putzmeister Ag Kolbenpumpe für Dickstoffe
JP2008072090A (ja) 2006-08-14 2008-03-27 Fujifilm Corp 光電変換素子及び固体撮像素子
JP2009134017A (ja) 2007-11-29 2009-06-18 Hitachi Maxell Ltd 光学異方性フィルムの製造方法及び光学異方性フィルム
JP5329849B2 (ja) * 2008-06-19 2013-10-30 富士フイルム株式会社 液晶性有機半導体材料および有機電子デバイス
JP2010017477A (ja) 2008-07-14 2010-01-28 Terumo Corp コンプレッサ及びこれを用いた酸素濃縮装置
JP4825251B2 (ja) 2008-09-30 2011-11-30 大建工業株式会社 蝶番の固定構造
KR101718165B1 (ko) * 2009-09-11 2017-03-20 후지필름 가부시키가이샤 광전 변환 소자 및 그 제조방법, 광센서, 촬상소자 및 이들의 구동방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1762182A (zh) * 2003-01-24 2006-04-19 出光兴产株式会社 有机电致发光元件
US20070063156A1 (en) * 2005-09-20 2007-03-22 Fuji Photo Film Co., Ltd. Organic photoelectric conversion element and image element
EP1970976A1 (en) * 2006-01-05 2008-09-17 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
WO2008035571A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Élément électroluminescent organique
WO2008090912A1 (ja) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子の製造方法、該製造方法により得られた有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20090050881A1 (en) * 2007-08-22 2009-02-26 Fujifilm Corporation Photoelectric conversion element, method for producing photoelectric conversion element, and solid-state imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020573A (zh) * 2009-09-08 2011-04-20 富士胶片株式会社 光电转换材料、含其的膜、光电转换装置、其制造方法、光传感器、成像装置及其使用方法
CN103992237A (zh) * 2009-09-08 2014-08-20 富士胶片株式会社 可用作光电转换装置材料的化合物
US9035055B2 (en) 2009-09-08 2015-05-19 Fujifilm Corporation Photoelectric conversion material, film containing the material, photoelectric conversion device, production method thereof, photosensor, imaging device and their use methods
CN102020573B (zh) * 2009-09-08 2016-03-16 富士胶片株式会社 光电转换材料、含其的膜、光电转换装置、其制造方法、光传感器、成像装置及其使用方法
CN103992237B (zh) * 2009-09-08 2017-01-11 富士胶片株式会社 可用作光电转换装置材料的化合物
CN106463564A (zh) * 2014-07-31 2017-02-22 富士胶片株式会社 光电转换元件及成像元件
US10297774B2 (en) 2014-07-31 2019-05-21 Fujifilm Corporation Photoelectric conversion element and imaging element

Also Published As

Publication number Publication date
TW201105633A (en) 2011-02-16
US20120080585A1 (en) 2012-04-05
EP2439803B1 (en) 2017-11-08
KR20120038405A (ko) 2012-04-23
CN104119265A (zh) 2014-10-29
WO2010140645A1 (ja) 2010-12-09
CN104119265B (zh) 2016-07-13
US8847141B2 (en) 2014-09-30
TWI523841B (zh) 2016-03-01
EP2439803A1 (en) 2012-04-11
CN102460760B (zh) 2014-08-27
TWI471309B (zh) 2015-02-01
EP2439803A4 (en) 2013-05-15
TW201446738A (zh) 2014-12-16
KR101574379B1 (ko) 2015-12-03

Similar Documents

Publication Publication Date Title
CN102460760B (zh) 光电转换元件,其制备方法,光传感器,成像装置及其驱动方法
CN101908597B (zh) 光电转换装置和成像装置
EP2448031B1 (en) Photoelectric conversion device and solid-state imaging device
JP4825924B2 (ja) 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
CN102034933B (zh) 光电转换装置,光电转换装置材料,光传感器和成像装置
JP5578996B2 (ja) 光電変換素子及びその製造方法、光センサ、並びに撮像素子及びそれらの駆動方法
KR101719089B1 (ko) 광전 변환 소자 및 그 사용 방법, 광 센서, 촬상 소자
CN103992237B (zh) 可用作光电转换装置材料的化合物
WO2011099606A1 (en) Photoelectric element and imaging device and driving methods therefor
CN101908574A (zh) 光电转换装置及其制造方法和成像装置
WO2011105624A1 (en) Photoelectric conversion device, imaging device and production methods thereof
JP6010567B2 (ja) 光電変換材料、光電変換素子、光センサおよび撮像素子
WO2014157238A1 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
CN102549792A (zh) 生产有机太阳能电池和有机光检测器用光活性层的混合物
JP2015043362A (ja) 光電変換素子および撮像素子
TWI632203B (zh) 光電轉換元件、光感測器及攝像元件
JP6059616B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
JP2013012535A (ja) 光電変換素子およびその使用方法、撮像素子、光センサ、光電変換膜
JP6114606B2 (ja) 光電変換材料、光電変換素子およびその使用方法、光センサ、撮像素子
KR20150046785A (ko) 광전 변환 소자, 촬상 소자, 광 센서

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant