[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN102422473A - 燃料电池系统 - Google Patents

燃料电池系统 Download PDF

Info

Publication number
CN102422473A
CN102422473A CN2009801592600A CN200980159260A CN102422473A CN 102422473 A CN102422473 A CN 102422473A CN 2009801592600 A CN2009801592600 A CN 2009801592600A CN 200980159260 A CN200980159260 A CN 200980159260A CN 102422473 A CN102422473 A CN 102422473A
Authority
CN
China
Prior art keywords
fuel cell
water content
unit
output current
resistance components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801592600A
Other languages
English (en)
Other versions
CN102422473B (zh
Inventor
石川智隆
末松启吾
渡边修夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN102422473A publication Critical patent/CN102422473A/zh
Application granted granted Critical
Publication of CN102422473B publication Critical patent/CN102422473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明的课题在于提供一种不会使向燃料电池供给的反应气体的供给状态变动而能够判定燃料电池的含水状态的燃料电池系统。本发明的燃料电池系统的控制部具备输出电流控制部(71)、含水状态判定部(72)及含水量增加/减少处理部(73、74)。在此,输出电流控制部(71)在维持氧化气体向燃料电池的供给量的状态下暂时性地进行电流扫描,电阻成分算出部(72b)使用暂时性进行电流扫描时的燃料电池的输出电流值及输出电压值而算出燃料电池内的电阻成分。含水量算出部(72c)使用所述电阻成分而算出燃料电池内的含水量,含水量判定部(72d)判定含水量是否为干燥状态阈值以下,含水量增加处理部(73)在含水量为干燥状态阈值以下时,执行含水量增加处理,从而解决上述课题。

Description

燃料电池系统
技术领域
本发明涉及燃料电池系统。
背景技术
在下述专利文献1中公开有一种用于对燃料电池系统的燃料电池内的含水量进行诊断的技术。在该燃料电池系统中,求出使燃料电池的输出电流以一定的变化率进行变化时的电池电压的变化率,根据该电池电压的变化率与预先确定的基准电压变化率之差,诊断燃料电池内的含水量。
专利文献1:日本特开2008-123783号公报
发明内容
然而,在上述的燃料电池系统中,使燃料电池的输出电流以一定的变化率变化时,使向燃料电池供给的燃料气体的供给量变化。使燃料气体的供给量变化时,压力、生成水量等各条件发生变动,因此难以准确地诊断燃料电池内的含水量。
本发明为了消除上述的现有技术的问题点而作出,其目的在于提供一种能够不使向燃料电池供给的反应气体的供给状态变动地判定燃料电池的含水状态的燃料电池系统。
为了解决上述课题,本发明的燃料电池系统的特征在于,具备:燃料电池,具有将多个单电池层叠而形成的电池层叠体,并通过向该电池层叠体供给的反应气体的电化学反应而产生电力;输出电流控制单元,在维持所述反应气体向所述燃料电池的供给量的状态下使所述燃料电池的输出电流暂时性地增加;及含水状态判定单元,使用通过所述输出电流控制单元使所述输出电流暂时性地增加时的所述燃料电池的输出电压,来判定所述燃料电池内的含水状态。
根据本发明,能够在维持反应气体向燃料电池的供给量的状态下判定燃料电池内的含水状态。
在上述燃料电池系统中,也可以还具备含水量增加单元,该含水量增加单元在由上述含水状态判定单元判定为所述燃料电池内的含水状态为干燥状态时,执行增加所述燃料电池内的含水量的含水量增加处理。
由此,能够在燃料电池内为干燥状态时使燃料电池内的含水量增加。
在上述燃料电池系统中,也可以是,上述含水状态判定单元具备:电阻成分算出单元,根据通过所述输出电流控制单元使所述输出电流暂时性地增加时的所述燃料电池的输出电流值及输出电压值,算出电阻成分;含水量算出单元,算出与由所述电阻成分算出单元算出的所述电阻成分对应的所述燃料电池内的含水量;及含水量判定单元,判定由所述含水量算出单元算出的所述含水量是否为干燥状态阈值以下,其中所述干燥状态阈值是判定处于干燥状态时的阈值,所述含水量增加单元在由所述含水量判定单元判定为所述含水量处于所述干燥状态阈值以下时,执行所述含水量增加处理。
由此,能够基于燃料电池内的电阻成分而算出燃料电池内的含水量,该算出的含水量为干燥状态阈值以下时,可使燃料电池内的含水量增加。
在上述燃料电池系统中,也可以是上述含水状态判定单元还具备含水量估算单元,该含水量估算单元使用从所述燃料电池的发电所生成的水分量减去向所述燃料电池外部带出的水分量而得到的值,估算所述燃料电池内的含水量,上述含水量判定单元在判定所述燃料电池内的干燥状态时,当通过所述含水量算出单元算出了所述含水量时,判定该算出的所述含水量是否为所述干燥状态阈值以下,当没有通过所述含水量算出单元算出所述含水量时,判定通过所述含水量估算单元估算出的所述含水量是否为所述干燥状态阈值以下。
由此,能够利用通过含水量算出单元算出的高精度的含水量对容易产生误差的估算含水量进行校正,因此能够高精度地判定燃料电池的含水状态。
在上述燃料电池系统中,也可以是上述输出电流控制单元在所述燃料电池进行间歇运转时,在维持所述反应气体的供给量的状态下使所述燃料电池的输出电流暂时性地增加。
由此,在反应气体的供给量、压力等不变动的状况下,能够进行所谓的电流扫描,因此能够高精度地算出电阻成分。
在上述燃料电池系统中,也可以还具备催化剂活化单元,该催化剂活化单元在上述间歇运转时使电流从所述燃料电池输出以使所述燃料电池的电压处于该燃料电池中所包含的催化剂的还原区域,上述电阻成分算出单元对应于被所述催化剂活化单元活化了的所述催化剂的老化状态,而校正所述电阻成分。
由此,能够在间歇运转时,在对催化剂进行活化之后判定催化剂的老化状态,并且能够根据判明的老化状态来校正电阻成分。
在上述燃料电池系统中,也可以还具备:电力消耗装置,消耗来自上述燃料电池的电力;及气体供给量控制单元,在通过所述输出电流控制单元使所述输出电流暂时性地增加的期间,在来自所述电力消耗装置的要求发电量增大的情况下,对应于该要求发电量而使所述反应气体的供给量增加,所述电阻成分算出单元在通过所述气体供给量控制单元使所述反应气体的供给量增加时校正所述电阻成分。
由此,即使在电流扫描时要求发电量增大的情况下,也能够供给与要求发电量相对应的反应气体并进行电流扫描,因此不会产生反应气体的供给延迟,而能够顺畅地对要求负载作出响应。
在上述燃料电池系统中,也可以还具备含水量减少单元,该含水量减少单元在由上述含水状态判定单元判定为所述燃料电池内的含水状态为湿润状态时,执行使所述燃料电池内的含水量减少的含水量减少处理。
由此,在燃料电池内为湿润状态时,能够减少燃料电池内的含水量。
在上述燃料电池系统中,也可以是上述含水状态判定单元具备电池电压判定单元,该电池电压判定单元判定在通过所述输出电流控制单元使所述输出电流暂时性地增加的期间由检测所述单电池的电压的电池电压检测部所检测到的任一个电压是否达到湿润状态阈值以下,其中所述湿润状态阈值是判定处于湿润状态时的阈值,所述含水量减少单元在由所述电池电压判定单元判定为所述电压达到所述湿润状态阈值以下时,执行所述含水量减少处理。
由此,能够通过判定电池电压是否为湿润状态阈值以下来检测燃料电池内是否处于湿润状态,在处于湿润状态时,能够减少燃料电池内的含水量。
[发明效果]
根据本发明,能够不使向燃料电池供给的反应气体的供给状态变动而判定燃料电池的含水状态。
附图说明
图1是示意性地表示各实施方式中的燃料电池系统的结构图。
图2是表示第一实施方式中的控制部的功能结构的框图。
图3是用于说明第一实施方式中的含水状态判定处理的流程图。
图4是用于说明第一实施方式中的含水状态判定处理的流程图。
图5是表示第二实施方式中的控制部的功能结构的框图。
图6是用于说明第二实施方式中的含水状态判定处理的流程图。
图7是表示第三实施方式中的控制部的功能结构的框图。
图8是用于说明第三实施方式中的含水状态判定处理的流程图。
具体实施方式
以下,参照附图,说明本发明的燃料电池系统的优选的实施方式。在各实施方式中,说明使用本发明的燃料电池系统作为燃料电池车辆(FCHV;Fuel Cell Hybrid Vehicle)的车载发电系统的情况。需要说明的是,本发明的燃料电池系统也可以适用于燃料电池车辆以外的各种移动体(机器人、船舶、航空器等),进而,还可以适用于作为建筑物(住宅、大楼等)用的发电设备而使用的固定用发电系统。
[第一实施方式]
首先,参照图1,说明第一实施方式中的燃料电池系统的结构。图1是示意性地表示第一实施方式中的燃料电池系统的结构图。
如该图所示,燃料电池系统1具有:接受作为反应气体的氧化气体及燃料气体的供给而通过电化学反应产生电力的燃料电池2;将作为氧化气体的空气向燃料电池2供给的氧化气体配管系统3;将作为燃料气体的氢向燃料电池2供给的燃料气体配管系统4;向燃料电池2循环供给冷却水的冷却系统5;对系统的电力进行充放电的电力系统6;及对系统整体进行集中控制的控制部7。
燃料电池2例如是高分子电解质型燃料电池,成为将多个单电池层叠而成的堆叠结构。单电池在由离子交换膜构成的电解质的一个面上具有阴极(空气极),在另一面上具有阳极(燃料极)。在包含阴极和阳极的电极中使用以多孔质的碳原料为基体的铂Pt作为催化剂(电极催化剂)。进而,单电池具有将阴极及阳极从两侧夹入的一对隔板。这种情况下,向一方的隔板的氢气流路供给氢气,向另一方的隔板的氧化气体流路供给氧化气体,这些反应气体进行化学反应而产生电力。
在燃料电池2上设有对燃料电池的输出电压进行检测的电压传感器V和对燃料电池的输出电流进行检测的电流传感器A。在燃料电池2的各单电池上设有对单电池的电压进行检测的电池监视器(电池电压检测部,未图示)。
氧化气体配管系统3具有:对经由过滤器取入的空气进行压缩并将压缩后的空气作为氧化气体送出的压缩机31;将氧化气体向燃料电池2供给的氧化气体供给流路32;及将从燃料电池2排出的氧化废气排出的氧化废气排出流路33。
在压缩机31的出口侧设有对从压缩机31喷出的氧化气体的流量进行测定的流量传感器F。在氧化废气排出流路33上设有对燃料电池2内的氧化气体的压力进行调整的背压阀34。在氧化废气排出流路33中的、燃料电池2的出口侧设有对燃料电池2内的氧化气体的压力进行检测的压力传感器P。
燃料气体配管系统4具有:积存有高压的燃料气体的作为燃料供给源的燃料罐40;用于将燃料罐40的燃料气体向燃料电池2供给的燃料气体供给流路41;及用于使从燃料电池2排出的燃料废气向燃料气体供给流路41返回的燃料循环流路42。在燃料气体供给流路41上设有将燃料气体的压力调压成预先设定的二次压力的调压阀43。在燃料循环流路42上设有对燃料循环流路42内的燃料废气进行加压而向燃料气体供给流路41侧送出的燃料泵44。
冷却系统5具有:对冷却水进行冷却的散热器51;将冷却水向燃料电池2及散热器51循环供给的冷却水循环流路52;使冷却水向冷却水循环流路52循环的冷却水循环泵53。在散热器51上设有散热器风扇54。在冷却水循环流路52中的、燃料电池2的出口侧设有对冷却水的温度进行检测的温度传感器T。需要说明的是,设置温度传感器T的位置也可以在燃料电池2的入口侧。
电力系统6具有DC/DC转换器61、作为二次电池的蓄电池62、牵引逆变器63、作为电力消耗装置的牵引电动机64、未图示的各种辅机逆变器等。DC/DC转换器61是直流的电压转换器,具有对从蓄电池62输入的直流电压进行调整而向牵引逆变器63侧输出的功能和对从燃料电池2或牵引电动机64输入的直流电压进行调整而向蓄电池62输出的功能。通过此种DC/DC转换器61的功能,而实现蓄电池62的充放电。
蓄电池62对蓄电池电池进行层叠而将一定的高电压作为端子电压,通过未图示的蓄电池计算机的控制而能够充电剩余电力或辅助性地供给电力。牵引逆变器63将直流电流转换成三相交流,并向牵引电动机64供给。牵引电动机64例如是三相交流电动机,构成搭载有燃料电池系统1的燃料电池车辆的主动力源。辅机逆变器是对各电动机的驱动进行控制的电动机控制部,将直流电流向三相交流转换而供给至各电动机。
控制部7测定在燃料电池车辆上设置的加速操作构件(例如,油门)的操作量,接受加速要求值(例如,来自牵引电动机64等电力消耗装置的要求发电量)等的控制信息,而控制系统内的各种设备的动作。需要说明的是,在电力消耗装置上,除了牵引电动机64之外,例如还包含为了使燃料电池2工作所需的辅机装置(例如压缩机31、燃料泵44、冷却水循环泵53的电动机等)、与车辆的行驶相关的各种装置(变速器、车轮控制装置、转向装置、悬架装置等)中使用的促动器、乘员空间的空调装置(空调器)、照明、音响等。
控制部7在物理方面例如具有CPU、存储器、输入输出接口。存储器例如包括对CPU所处理的控制程序或控制数据进行存储的ROM、主要作为用于控制处理的各种作业区域而使用的RAM。这些要素相互经由总线连接。在输入输出接口连接有电压传感器V、电流传感器A、压力传感器P、温度传感器T及流量传感器F等各种传感器,并且连接有用于对压缩机31、燃料泵44及冷却水循环泵53等进行驱动的各种驱动器。
CPU按照存储在ROM中的控制程序,经由输入输出接口而接收各种传感器中的测定结果,并使用RAM内的各种数据等进行处理,从而执行各种控制处理。另外,CPU通过经由输入输出接口向各种驱动器输出控制信号,从而控制燃料电池系统1整体。以下,说明通过第一实施方式的控制部7进行的含水状态判定处理。需要说明的是,第一实施方式中的含水状态判定处理在通常运转时执行。燃料电池的运转状态包括通常运转和间歇运转。间歇运转是仅利用从蓄电池62供给的电力来使燃料电池车辆行驶的运转模式,通常运转是间歇运转以外的运转模式。
如图2所示,控制部7在功能上具有输出电流控制部71(输出电流控制单元)、含水状态判定部72(含水状态判定单元)、含水量增加处理部73(含水量增加单元)、含水量减少处理部74(含水量减少单元)。控制部7的存储器79中存储有上述各部参照的各种映射。
输出电流控制部71在维持向燃料电池2的氧化气体的供给量的状态下,使燃料电池2的输出电流暂时增加。输出电流的增加通过使燃料电池2的电压比要求电压低并从燃料电池2强制性地取出比要求电流大的电流(以下,称为“电流扫描”)来进行。需要说明的是,在电流扫描时进行的维持并未限定为氧化气体的供给量。既可以维持燃料气体的供给量,也可以维持氧化气体和燃料气体这双方的供给量。
输出电流控制部71不使氧化气体的供给量、压力等变化而暂时性地进行电流扫描。通常,不使氧化气体的供给量等变化而进行电流扫描时,氧化气体不足而化学计量比下降成小于1,无法持续发电。然而,在本发明中,通过暂时进行电流扫描,而避免电流扫描时产生的化学计量比的下降。
这基于如下的见解,即,在燃料电池2的电池组内,尤其是在催化剂残留有氧、氢,即便在维持氧化气体的供给量的状态下进行电流扫描,只要在残留氧或残留氢消灭之前的期间,就能在维持化学计量比的状态下进行电流扫描。即,通过有效地利用电池组内的残留氧、残留氢,即便在维持氧化气体的供给量的状态下进行电流扫描,也能够暂时维持化学计量比。需要说明的是,化学计量比表示向燃料电池供给的气体量与由燃料电池消耗的气体量之比,由化学计量比=供给气体量/消耗气体量表示。
进行电流扫描的时间可以根据残留氧、残留氢的量来设定。作为进行电流扫描的上限时间,例如,可以设定为消耗可通过残留氧、残留氢供给的电力量所需的时间。可通过残留氧、残留氢供给的电力量可以通过例如燃料电池的电池组的设计、氧化气体、燃料气体的供给量、压力等各条件、燃料电池内的含水量等来决定。只要决定通过残留氧、残留氢能够供给的电力量,就能够决定电流扫描所需的电流和电流扫描的上限时间。
作为进行电流扫描的下限时间,例如可以设定为取得判定燃料电池内的含水状态时的判定误差能处于容许范围内的数据所需的时间。电流扫描时取得的数据为燃料电池的输出电流值和输出电压值。含水状态的判定基于将取得的输出电压值除以输出电流值而求出的电阻成分来判定。
另外,使燃料电池的电压下降的速度(以下,称为“扫描速度”)越大,输出电流越增加,根据这样的关系,而优选根据必要的电流来决定扫描速度。进而,当燃料电池的电压过低或过高时,催化剂的还原反应下降,因此残留氧减少。当残留氧减少时,从燃料电池取出的电流也减少。因此,优选在催化剂的还原反应不下降的范围内使电压变动。
燃料电池内的含水状态例如可以大体分为适当状态、干燥(干涸)状态、湿润(溢流)状态。适当状态是指含水量处于适当范围内的状态,干燥状态是指含水量处于比适当范围少量侧的状态,湿润状态是指含水量处于比适当范围多量侧的状态。含水量的适当范围设置在能够满足燃料电池2的特性的范围内。
含水状态判定部72使用通过输出电流控制部71暂时性地进行电流扫描时的燃料电池2的输出电压,来判定燃料电池2内的含水状态。含水状态判定部72具有含水量估算部72a(含水量估算单元)、电阻成分算出部72b(电阻成分算出单元)、含水量算出部72c(含水量算出单元)、含水量判定部72d(含水量判定单元)、及电池电压判定部72e(电池电压判定单元)。
含水量估算部72a使用从由燃料电池2的发电所生成的水分量减去带出到燃料电池2外的水分量而得到的值(以下,称为“水平衡”)来估算燃料电池2内的含水量。具体而言,含水量估算部72a通过在上一次估算出的含水量上加上本次算出的水平衡而估算燃料电池2内的含水量。
带出到燃料电池外的水分量可以根据燃料电池2的阴极出口的气体的湿度和气体量来算出。气体的湿度可以基于冷却水的温度和发电量来算出。因此,也可以预先通过试验等来求出用于根据冷却水的温度和发电量算出气体的湿度的映射,并预先存储在存储器79中。
作为算出水平衡时的参数,可以使用例如电流传感器A的检测值(燃料电池的电流值)、温度传感器T的检测值(冷却水的温度)、压力传感器P的检测值(燃料电池的阴极压力)、流量传感器F的检测值(氧化气体的流量)、燃料电池的阴极湿度(不确定时可以假定为100%)等。
在上一次估算出的含水量中存储由含水量估算部72a估算的含水量,但通过后述的含水量算出部72c算出含水量时,将该算出的含水量存储在上一次估算出的含水量中。由此,能够利用由含水量算出部72c算出的高精度的含水量对容易产生误差的估算含水量进行校正,因此能够提高含水量的估算精度。
电阻成分算出部72b使用由输出电流控制部71暂时性地进行电流扫描时的燃料电池2的输出电流值及输出电压值而算出燃料电池2内的电阻成分。电阻成分可以通过将输出电压值除以输出电流值来求出。需要说明的是,在将输出电压值相对于输出电流值的变化表示在横轴显示输出电流且纵轴显示输出电压的坐标平面上时,该电阻成分被表示作为描绘在该坐标平面上的曲线图的斜率。
含水量算出部72c使用由电阻成分算出部72b算出的电阻成分来算出燃料电池2内的含水量。含水量例如可以如下所述算出。首先,电阻成分与含水量之间存在电阻成分越小含水量越增加且电阻成分越大含水量越减少这样的相关关系,因此将存储有此种相关关系的映射预先存储在存储器79中。含水量算出部72c基于由电阻成分算出部72b算出的电阻成分,参照上述映射,通过从映射取出与电阻成分对应的含水量而算出燃料电池内的含水量。
含水量判定部72d判定由含水量估算部72a估算出的含水量或由含水量算出部72c算出的含水量是否为规定的干燥状态阈值以下。与干燥状态阈值进行比较的含水量通常为由含水量估算部72a估算出的含水量,但在由含水量算出部72c算出含水量时,成为该算出的含水量。为了基于此种含水量进行判定,例如也可以设置含水状态判定用含水量这样的判定用的项目,使用该含水状态判定用含水量而如下述那样判定含水状态。
具体说明时,每当由含水量估算部72a估算含水量时,将该估算出的含水量存储在含水状态判定用含水量中。并且,由含水量算出部72c算出含水量时,使用该算出的含水量来更新含水状态判定用含水量的内容。由此,能够利用由含水量算出部72c算出的高精度的含水量对容易产生误差的估算含水量进行校正,因此能够高精度地判定燃料电池的含水状态。
作为上述干燥状态阈值,可以设定能够判定燃料电池内处于干燥状态的上限含水量。由此,当含水量为干燥状态阈值以下时,能够将燃料电池内的含水状态判定为干燥状态。
在由输出电流控制部71暂时性地进行电流扫描期间,电池电压判定部72e判定由电池监视器检测到的电池电压中的最低电池电压是否达到了规定的湿润状态阈值以下。作为湿润状态阈值,可以设定能够判定为燃料电池内处于湿润状态的上限电压值。由此,当电池电压为湿润状态阈值以下时,能够判定为燃料电池内的含水状态处于湿润状态。需要说明的是,与湿润状态阈值进行比较的值并未限定于最低电池电压。只要能够判定由电池监视器检测到的电池电压中的任一电压是否达到了湿润状态阈值以下即可。
含水量增加处理部73在由含水量判定部72d判定为上述含水量为干燥状态阈值以下时,执行使燃料电池内的含水量增加的含水量增加处理。作为含水量增加处理,例如相当于以下列举的各处理。使压缩机31的流量下降而使阴极化学计量下降的阴极化学计量下降处理。对背压阀34进行调整而使燃料电池内的氧化气体的压力上升的氧化气体压力上升处理。使散热器风扇54驱动等而使冷却水的温度下降的冷却水温下降处理。
含水量减少处理部74在利用电池电压判定部72e判定为最低电池电压达到了湿润状态阈值以下时,执行使燃料电池内的含水量减少的含水量减少处理。作为含水量减少处理,例如相当于以下列举的各处理。使压缩机31的流量增加而使氧化气体的流量增加的氧化气体吹气处理。控制背压阀34的开度而使燃料电池内的氧化气体的压力变动的氧化气体压力脉动处理。使燃料泵44的电动机的转速增大的燃料泵转速增大处理。由此,能够不会对运转性能造成影响地判定溢流而实现含水量的恢复。
接下来,使用图3及图4所示的流程图,说明在本实施方式的燃料电池系统中执行的含水状态判定处理。图3是判定干燥状态时的流程图,图4是判定湿润状态时的流程图。这些含水状态判定处理是能够并行地执行的处理,例如,在点火键接通时开始,在运转结束之前反复执行。
首先,说明图3所示的判定干燥状态时的含水状态判定处理。首先,控制部7的含水量估算部72a基于水平衡而估算燃料电池2内的含水量(步骤S101),将该估算出的含水量设定为含水状态判定用含水量(步骤S102)。
接下来,控制部7判定当前时刻是否为电流扫描的时间(步骤S103),在不是电流扫描的时间时(步骤S103为否),使处理向后述的步骤S108转移。
另一方面,在当前时刻是电流扫描的时间时(步骤S103为是),控制部7的输出电流控制部71在维持氧化气体向燃料电池2的供给量的状态下,暂时进行电流扫描(步骤S104)。
接下来,控制部7的电阻成分算出部72b使用由输出电流控制部71暂时性地进行电流扫描时的燃料电池2的输出电流值及输出电压值来算出燃料电池2内的电阻成分(步骤S105)。
接下来,控制部7的含水量算出部72c使用由电阻成分算出部72b算出的电阻成分来计算燃料电池2内的含水量(步骤S106),并利用该算出的含水量来更新含水状态判定用含水量(步骤S107)。
接下来,控制部7的含水量判定部72d判定含水状态判定用含水量是否为干燥状态阈值以下(步骤S108)。在该判定为否时(步骤S108为否),控制部7结束含水状态判定处理。
另一方面,在上述步骤S108的判定中,当判定为含水状态判定用含水量为干燥状态阈值以下时(步骤S108为是),控制部7的含水量增加处理部73执行含水量增加处理(步骤S109)。
接下来,说明图4所示的判定湿润状态时的含水状态判定处理。首先,控制部7判定当前时刻是否为电流扫描的时间(步骤S151),在不是电流扫描的时间时(步骤S151为否),结束含水状态判定处理。
另一方面,在当前时刻是电流扫描的时间时(步骤S151为是),控制部7的输出电流控制部71在维持氧化气体向燃料电池2的供给量的状态下,暂时性地进行电流扫描(步骤S152)。
接下来,控制部7的电池电压判定部72e在由输出电流控制部71暂时性地进行电流扫描期间,取得由电池监视器检测到的各电池电压(步骤S153),判定各电池电压中的最低电池电压是否达到了湿润状态阈值以下(步骤S154)。在该判定为否时(步骤S154为否),控制部7结束含水状态判定处理。
另一方面,在上述步骤S154的判定中,当判定为最低电池电压为湿润状态阈值以下时(步骤S154为是),控制部7的含水量减少处理部74执行含水量减少处理(步骤S155)。
如上所述,根据第一实施方式中的燃料电池系统1,能够在维持氧化气体向燃料电池2的供给量的状态下,判定燃料电池内的含水状态。另外,通过判定基于燃料电池内的电阻成分而算出的含水量是否为干燥状态阈值以下,而能够检测燃料电池内是否处于干燥状态,在处于干燥状态时,能够使燃料电池内的含水量增加。进而,通过判定电池电压是否为湿润状态阈值以下,而能够检测燃料电池内是否处于湿润状态,在处于湿润状态时,能够使燃料电池内的含水量减少。
[第二实施方式]
对本发明的第二实施方式进行说明。第二实施方式中的燃料电池系统在电流扫描时要求发电量增大的情况下,在对应于该增大的要求发电量而使氧化气体的供给量增加这一点上,与在维持氧化气体的供给量的状态下进行电流扫描的第一实施方式中的燃料电池系统不同。第二实施方式中的燃料电池系统的结构与上述的第一实施方式中的燃料电池系统的结构不同的点是对控制部7追加新功能这一点。关于除此以外的结构,由于与第一实施方式中的燃料电池系统的各结构相同,因此对各结构要素标注相同的标号而省略其说明,并在以下,主要说明与第一实施方式的不同点。
如图5所示,第二实施方式中的控制部7除了第一实施方式中的各部分之外,还具有氧化气体供给量控制部75(气体供给量控制单元)。
氧化气体供给量控制部75在通过输出电流控制部71暂时性地进行电流扫描时来自牵引电动机64的要求发电量增大的情况下,对应于该要求发电量而使氧化气体的供给量增加。由此,即使在电流扫描时要求发电量增大的情况下,也能够供给与要求发电量对应的氧化气体并进行电流扫描,因此能够不会产生氧化气体供给延迟地顺畅地对要求负载作出响应。
电阻成分算出部72b在通过氧化气体供给量控制部75使氧化气体的供给量增加时,对电阻成分进行校正。这是因为,在电流扫描中使氧化气体的供给量增加时,残留氧、残留氢的量等发生变化,电阻成分发生变动。电阻成分的校正例如可以如下所述进行。
在电阻成分与阴极压力之间存在阴极压力越大而电阻成分越小的相关关系,因此预先将存储有此种相关关系的映射存储在存储器79中。首先,电阻成分算出部72b使用通过输出电流控制部71暂时性地进行电流扫描时的燃料电池2的输出电流值及输出电压值而算出燃料电池2内的电阻成分。接下来,电阻成分算出部72b在通过氧化气体供给量控制部75使氧化气体的供给量增加时,从压力传感器P取得氧化气体的供给量增加前后的阴极压力。接下来,电阻成分算出部72b基于取得的阴极压力,参照上述映射,从映射取出与各个阴极压力对应的电阻成分。接下来,电阻成分算出部72b使用取出的电阻成分而算出电阻成分的变动率,使用该变动率,对上述电流扫描时算出的电阻成分进行校正。
需要说明的是,在电阻成分与阴极化学计量之间存在阴极化学计量越大而电阻成分越小这样的相关关系,在电阻成分与冷却水温之间存在冷却水温越高而电阻成分越小这样的相关关系。因此,也可以改变成存储有上述的电阻成分与阴极压力的相关关系的映射,使用存储有电阻成分与阴极化学计量的相关关系的映射、存储有电阻成分与冷却水温的相关关系的映射,而利用与上述的校正方法同样的顺序来校正电阻成分。
另外,校正电阻成分的方法并未限定为上述校正方法。只要能够求出在电流扫描中与由于使氧化气体的供给量增加而变动的气体量、压力、温度等各条件对应的电阻成分即可,也可以是其他的方法。
接下来,参照图6所示的流程图,说明利用第二实施方式中的燃料电池系统执行的含水状态判定处理。图6是判定干燥状态时的流程图。该含水状态判定处理例如在点火键接通时开始,在运转结束之前反复执行。
首先,控制部7的含水量估算部72a基于水平衡而估算燃料电池2内的含水量(步骤S201),将该估算出的含水量设定成含水状态判定用含水量(步骤S202)。
接下来,控制部7判定当前时刻是否为电流扫描的时间(步骤S203),在不是电流扫描的时间时(步骤S203为否),使处理向后述的步骤S213转移。
另一方面,在当前时刻为电流扫描的时间时(步骤S203为是),控制部7的输出电流控制部71在维持氧化气体向燃料电池2的供给量的状态下开始电流扫描(步骤S204)。
接下来,控制部7的氧化气体供给量控制部75判定要求发电量是否大于扫描开始时的要求发电量(步骤S205)。当该判定为否时(步骤S205为否),控制部7的电阻成分算出部72b使用通过输出电流控制部71进行电流扫描时的燃料电池2的输出电流值及输出电压值来算出燃料电池2内的电阻成分(步骤S206)。接下来,控制部7的含水量算出部72c使用通过电阻成分算出部72b算出的电阻成分来算出燃料电池2内的含水量(步骤S207),并利用该算出的含水量来更新含水状态判定用含水量(步骤S212)。然后,使处理向后述的步骤S213转移。
另一方面,在上述步骤S205的判定中,当判定为要求发电量大于扫描开始时的要求发电量时(步骤S205为是),控制部7的氧化气体供给量控制部75对应于增大的要求发电量而使氧化气体的供给量增加(步骤S208)。
接下来,控制部7的电阻成分算出部72b使用通过输出电流控制部71进行电流扫描时的燃料电池2的输出电流值及输出电压值来算出燃料电池2内的电阻成分(步骤S209),参照上述的映射等来校正该算出的电阻成分(步骤S210)。
接下来,控制部7的含水量算出部72c使用校正后的电阻成分来算出燃料电池2内的含水量(步骤S211),并利用该算出的含水量来更新含水状态判定用含水量(步骤S212)。
接下来,控制部7的含水量判定部72d判定含水状态判定用含水量是否为干燥状态阈值以下(步骤S213)。在该判定为否时(步骤S213为否),控制部7结束含水状态判定处理。
另一方面,在上述步骤S213的判定中,当判定为含水状态判定用含水量为干燥状态阈值以下时(步骤S213为是),控制部7的含水量增加处理部73执行含水量增加处理(步骤S214)。
如上述那样,根据第二实施方式的燃料电池系统1,能起到与上述的第一实施方式的燃料电池系统1同样的效果,而且,进而即使在电流扫描时要求发电量增大的情况下,也能够供给与要求发电量相对应的氧化气体的同时进行电流扫描,因此不会产生氧化气体的供给延迟,能够顺畅地对要求负载作出响应。
[第三实施方式]
对本发明的第三实施方式进行说明。第三实施方式中的燃料电池系统在燃料电池进行间歇运转时执行含水状态判定处理,在这一点上与在通常运转时执行含水状态判定处理的第一实施方式中的燃料电池系统不同。第三实施方式中的燃料电池系统的结构与上述的第一实施方式中的燃料电池系统的结构不同点是对第三实施方式中的控制部7追加了新功能这一点。除此以外的结构与第一实施方式中的燃料电池系统的各结构相同,因此对各结构要素标注相同的标号而省略其说明,并且以下,主要说明与第一实施方式的不同点。
在此,燃料电池2的电阻成分根据燃料电池2中包含的催化剂的老化状态而进行变动。因此,为了准确地把握燃料电池内的含水状态,而优选算出与催化剂的老化状态对应的电阻成分。另一方面,催化剂由于使用而发生氧化。催化剂发生氧化时,其表面被氧化被膜覆盖,有效面积减少。因此,为了准确地把握催化剂的老化状态,优选对催化剂进行活化(还原)而使催化剂的有效面积一致之后判定老化状态。因此,在第三实施方式的燃料电池系统中,在间歇运转时执行含水状态判定处理,并且对催化剂进行活化而提高老化状态的判定精度之后判定催化剂的老化状态,根据判明的老化状态来校正电阻成分。
如图7所示,第三实施方式中的控制部7除了第一实施方式中的各部分之外,还具有催化剂活化部76(催化剂活化单元)。
催化剂活化部76在燃料电池2进行间歇运转时执行催化剂活化处理。催化剂活化处理是通过使燃料电池2的输出电压下降到处于催化剂产生还原反应的区域(还原区域)的电压,从而对催化剂进行还原使其发生活化的处理。
输出电流控制部71在燃料电池2进行间歇运转时,在维持氧化气体的供给量的状态下,暂时性地进行电流扫描。在间歇运转中,存在停止氧化气体的供给的情况和仅供给一定量的氧化气体的情况。在任何情况下,输出电流控制部71在维持该时刻的氧化气体的供给量(0或一定量)的状态下进行电流扫描。
电阻成分算出部72b对通过催化剂活化部76还原后的催化剂的老化状态进行判定。对催化剂的老化状态进行判定的方法可以使用公知的方法。电阻成分算出部72b根据判明的催化剂的老化状态来校正电阻成分。具体而言,通过试验等求出催化剂的老化状态与电阻成分的相关关系,预先存储在映射中。电阻成分算出部72b从映射中取出与判明的催化剂的老化状态对应的电阻成分。电阻成分算出部72b使用取出的电阻成分对由电阻成分算出部72b算出的电阻成分进行校正。
需要说明的是,校正电阻成分的方法只要能够求出与因催化剂的老化状态而变动的电流值、电压值等各条件对应的电阻成分即可,可以使用任何方法。
接下来,参照图8所示的流程图,说明利用第三实施方式中的燃料电池系统执行的含水状态判定处理。图8是判定干燥状态时的流程图。该含水状态判定处理例如在点火键接通时开始,在运转结束之前反复执行。
首先,控制部7判定燃料电池2的运转状态是否为间歇运转(步骤S301),在该判定为否时(步骤S301为否),控制部7结束含水状态判定处理。
另一方面,当判定为燃料电池2的运转状态为间歇运转时(步骤S301为是),控制部7的含水量估算部72a基于水平衡而估算燃料电池2内的含水量(步骤S302),并将该估算出的含水量设定成含水状态判定用含水量(步骤S303)。
接下来,控制部7判定当前时刻是否为电流扫描的时间(步骤S304),在不是电流扫描的时间时(步骤S304为否),使处理向后述的步骤S311转移。
另一方面,在当前时刻为电流扫描的时间时(步骤S304为是),控制部7的催化剂活化部76执行催化剂活化处理(步骤S305)。
接下来,控制部7的输出电流控制部71在维持氧化气体向燃料电池2的供给量的状态下,暂时性地进行电流扫描(步骤S306)。
接下来,控制部7的电阻成分算出部72b使用通过输出电流控制部71暂时性地进行电流扫描时的燃料电池2的输出电流值及输出电压值来算出燃料电池2内的电阻成分(步骤S307),并根据催化剂的老化状态来校正该算出的电阻成分(步骤S308)。
接下来,控制部7的含水量算出部72c使用校正后的电阻成分来算出燃料电池2内的含水量(步骤S309),并利用该算出的含水量对含水状态判定用含水量进行更新(步骤S310)。
接下来,控制部7的含水量判定部72d判定含水状态判定用含水量是否为干燥状态阈值以下(步骤S311)。在该判定为否时(步骤S311为否),控制部7结束含水状态判定处理。
另一方面,在上述步骤S311的判定中,当判定为含水状态判定用含水量为干燥状态阈值以下时(步骤S311为是),控制部7的含水量增加处理部73执行含水量增加处理(步骤S312)。
如上所述,根据第三实施方式的燃料电池系统1,能起到与上述的第一实施方式的燃料电池系统1同样的效果,进而在氧化气体的供给量、压力等不变动的间歇运转时,能够进行电流扫描,因此能够高精度地算出电阻成分。另外,能够在使催化剂活化之后判定催化剂的老化状态,并且能够根据判明的老化状态来校正电阻成分,因此能够高精度地判定燃料电池的含水状态。
需要说明的是,上述的各实施方式中的控制部的功能结构可以适当组合。
[工业实用性]
本发明的燃料电池系统不会使向燃料电池供给的反应气体的供给状态变动,适于判定燃料电池的含水状态。
标号说明:
1…燃料电池系统、2…燃料电池、3…氧化气体配管系统、4…燃料气体配管系统、5…冷却系统、6…电力系统、7…控制部、31…压缩机、34…背压阀、40…燃料罐、44…燃料泵、51…散热器、53…冷却水循环泵、54…散热器风扇、61…DC/DC转换器、62…蓄电池、64…牵引电动机、71…输出电流控制部、72…含水状态判定部、72a…含水量估算部、72b…电阻成分算出部、72c…含水量算出部、72d…含水量判定部、72e…电池电压判定部、73…含水量增加处理部、74…含水量减少处理部、75…氧化气体供给量控制部、76…催化剂活化部、79…存储器、V…电压传感器、A…电流传感器、P…压力传感器、T…温度传感器、F…流量传感器。

Claims (9)

1.一种燃料电池系统,其特征在于,具备:
燃料电池,具有将多个单电池层叠而形成的电池层叠体,并通过向该电池层叠体供给的反应气体的电化学反应而产生电力;
输出电流控制单元,在维持所述反应气体向所述燃料电池的供给量的状态下使所述燃料电池的输出电流暂时性地增加;及
含水状态判定单元,使用通过所述输出电流控制单元使所述输出电流暂时性地增加时的所述燃料电池的输出电压,来判定所述燃料电池内的含水状态。
2.根据权利要求1所述的燃料电池系统,其特征在于,
还具备含水量增加单元,该含水量增加单元在由所述含水状态判定单元判定为所述燃料电池内的含水状态为干燥状态时,执行增加所述燃料电池内的含水量的含水量增加处理。
3.根据权利要求2所述的燃料电池系统,其特征在于,
所述含水状态判定单元具备:
电阻成分算出单元,根据通过所述输出电流控制单元使所述输出电流暂时性地增加时的所述燃料电池的输出电流值及输出电压值,算出电阻成分;
含水量算出单元,算出与由所述电阻成分算出单元算出的所述电阻成分对应的所述燃料电池内的含水量;及
含水量判定单元,判定由所述含水量算出单元算出的所述含水量是否为干燥状态阈值以下,其中所述干燥状态阈值是判定处于干燥状态时的阈值,
所述含水量增加单元在由所述含水量判定单元判定为所述含水量处于所述干燥状态阈值以下时,执行所述含水量增加处理。
4.根据权利要求3所述的燃料电池系统,其特征在于,
所述含水状态判定单元还具备含水量估算单元,该含水量估算单元使用从所述燃料电池的发电所生成的水分量减去向所述燃料电池外部带出的水分量而得到的值,估算所述燃料电池内的含水量,
所述含水量判定单元在判定所述燃料电池内的干燥状态时,当通过所述含水量算出单元算出了所述含水量时,判定该算出的所述含水量是否为所述干燥状态阈值以下,当没有通过所述含水量算出单元算出所述含水量时,判定通过所述含水量估算单元估算出的所述含水量是否为所述干燥状态阈值以下。
5.根据权利要求3或4所述的燃料电池系统,其特征在于,
所述输出电流控制单元在所述燃料电池进行间歇运转时,在维持所述反应气体的供给量的状态下使所述燃料电池的输出电流暂时性地增加。
6.根据权利要求5所述的燃料电池系统,其特征在于,
还具备催化剂活化单元,该催化剂活化单元在所述间歇运转时使电流从所述燃料电池输出以使所述燃料电池的电压处于该燃料电池中所包含的催化剂的还原区域,
所述电阻成分算出单元对应于被所述催化剂活化单元活化了的所述催化剂的老化状态,而校正所述电阻成分。
7.根据权利要求3~6中任一项所述的燃料电池系统,其特征在于,还具备:
电力消耗装置,消耗来自所述燃料电池的电力;及
气体供给量控制单元,在通过所述输出电流控制单元使所述输出电流暂时性地增加的期间,在来自所述电力消耗装置的要求发电量增大的情况下,对应于该要求发电量而使所述反应气体的供给量增加,
所述电阻成分算出单元在通过所述气体供给量控制单元使所述反应气体的供给量增加时校正所述电阻成分。
8.根据权利要求1~7中任一项所述的燃料电池系统,其特征在于,
所述燃料电池系统还具备含水量减少单元,该含水量减少单元在由所述含水状态判定单元判定为所述燃料电池内的含水状态为湿润状态时,执行使所述燃料电池内的含水量减少的含水量减少处理。
9.根据权利要求8所述的燃料电池系统,其特征在于,
所述含水状态判定单元具备电池电压判定单元,该电池电压判定单元判定在通过所述输出电流控制单元使所述输出电流暂时性地增加的期间由检测所述单电池的电压的电池电压检测部所检测到的任一个电压是否达到湿润状态阈值以下,其中所述湿润状态阈值是判定处于湿润状态时的阈值,
所述含水量减少单元在由所述电池电压判定单元判定为所述电压达到所述湿润状态阈值以下时,执行所述含水量减少处理。
CN200980159260.0A 2009-05-14 2009-05-14 燃料电池系统 Active CN102422473B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058990 WO2010131351A1 (ja) 2009-05-14 2009-05-14 燃料電池システム

Publications (2)

Publication Number Publication Date
CN102422473A true CN102422473A (zh) 2012-04-18
CN102422473B CN102422473B (zh) 2014-06-25

Family

ID=43084741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980159260.0A Active CN102422473B (zh) 2009-05-14 2009-05-14 燃料电池系统

Country Status (5)

Country Link
US (1) US8728672B2 (zh)
JP (1) JP5273244B2 (zh)
CN (1) CN102422473B (zh)
DE (1) DE112009004773B4 (zh)
WO (1) WO2010131351A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849957A (zh) * 2013-12-25 2016-08-10 丰田自动车株式会社 燃料电池系统
CN106299402A (zh) * 2015-06-23 2017-01-04 丰田自动车株式会社 燃料电池系统
CN107452974A (zh) * 2016-04-07 2017-12-08 丰田自动车株式会社 缺氢判断方法及缺氢判断装置
CN109428099A (zh) * 2017-09-05 2019-03-05 奥迪股份公司 用于运行燃料电池的方法和燃料电池系统
CN109560309A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种燃料电池及其自增湿水管理系统和方法
CN109935856A (zh) * 2017-12-19 2019-06-25 中国科学院大连化学物理研究所 一种液体燃料电池系统水平衡的控制方法
TWI674207B (zh) * 2018-08-14 2019-10-11 國立高雄科技大學 燃料電池之防護方法
CN111244505A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 燃料电池监视装置以及判定燃料电池的状态的方法
CN113793958A (zh) * 2021-08-24 2021-12-14 清华大学 一种基于电流密度分布的燃料电池水淹诊断方法
CN115842142A (zh) * 2022-12-29 2023-03-24 上海氢晨新能源科技有限公司 一种燃料电池电堆阳极排水控制方法及装置
CN116154235A (zh) * 2023-04-20 2023-05-23 上海重塑能源科技有限公司 大功率电堆散热控制方法、装置、电子设备及燃料电池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205330A (ja) * 2011-03-24 2012-10-22 Toyota Motor Corp 燃料電池システム
JP5454556B2 (ja) * 2011-11-22 2014-03-26 トヨタ自動車株式会社 燃料電池システム、および、燃料電池システムの制御方法
AU2014274877B2 (en) * 2013-06-07 2018-10-18 Nuvera Fuel Cells, LLC Health monitoring of an electrochemical cell stack
KR101584864B1 (ko) * 2013-12-20 2016-01-21 현대오트론 주식회사 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치
KR101593760B1 (ko) 2013-12-20 2016-02-18 현대오트론 주식회사 연료전지 스택용 주입 전류 생성 방법 및 이를 실행하는 장치
KR101838510B1 (ko) * 2016-03-11 2018-03-14 현대자동차주식회사 증발냉각식의 연료 전지 시스템과 그것을 위한 냉각 제어 방법
KR101795245B1 (ko) * 2016-04-19 2017-11-07 현대자동차주식회사 연료전지 스택의 제어 장치 및 그 방법
DE102017206729B4 (de) * 2016-04-29 2022-11-24 Ford Global Technologies, Llc Verfahren zum Betreiben eines Brennstoffzellensystems
JP7096076B2 (ja) * 2018-06-12 2022-07-05 株式会社Soken 燃料電池監視装置
CN110752396B (zh) * 2019-09-30 2021-04-30 青岛大学 一种质子交换膜燃料电池水合状态在线评估与异常自愈控制方法
JP7565552B2 (ja) * 2020-02-17 2024-10-11 国立研究開発法人宇宙航空研究開発機構 燃料電池装置の制御方法
JP7439794B2 (ja) 2021-05-28 2024-02-28 トヨタ自動車株式会社 燃料電池システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192520A1 (en) * 1999-02-23 2002-12-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system with humidity determination
CN1890832A (zh) * 2003-12-03 2007-01-03 日产自动车株式会社 燃料电池系统
CN101213696A (zh) * 2005-06-30 2008-07-02 丰田自动车株式会社 燃料电池系统
WO2008108451A1 (ja) * 2007-03-01 2008-09-12 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、電極触媒の劣化判定方法、および移動体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379987B2 (ja) * 1999-11-30 2009-12-09 トヨタ自動車株式会社 燃料電池の制御装置
JP2007179749A (ja) * 2005-12-26 2007-07-12 Nissan Motor Co Ltd 燃料電池の制御方法及びその制御装置
JP4946058B2 (ja) * 2006-01-11 2012-06-06 トヨタ自動車株式会社 燃料電池システム
JP2008047368A (ja) 2006-08-11 2008-02-28 Nissan Motor Co Ltd 燃料電池システム
JP4973138B2 (ja) 2006-11-10 2012-07-11 株式会社デンソー 燃料電池システム
JP2009026483A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192520A1 (en) * 1999-02-23 2002-12-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system with humidity determination
CN1890832A (zh) * 2003-12-03 2007-01-03 日产自动车株式会社 燃料电池系统
CN101213696A (zh) * 2005-06-30 2008-07-02 丰田自动车株式会社 燃料电池系统
WO2008108451A1 (ja) * 2007-03-01 2008-09-12 Toyota Jidosha Kabushiki Kaisha 燃料電池システム、電極触媒の劣化判定方法、および移動体

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849957B (zh) * 2013-12-25 2019-03-26 丰田自动车株式会社 燃料电池系统
CN105849957A (zh) * 2013-12-25 2016-08-10 丰田自动车株式会社 燃料电池系统
CN106299402A (zh) * 2015-06-23 2017-01-04 丰田自动车株式会社 燃料电池系统
CN106299402B (zh) * 2015-06-23 2018-09-25 丰田自动车株式会社 燃料电池系统
CN107452974A (zh) * 2016-04-07 2017-12-08 丰田自动车株式会社 缺氢判断方法及缺氢判断装置
CN109428099B (zh) * 2017-09-05 2021-11-23 奥迪股份公司 用于运行燃料电池的方法和燃料电池系统
CN109428099A (zh) * 2017-09-05 2019-03-05 奥迪股份公司 用于运行燃料电池的方法和燃料电池系统
CN109560309A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种燃料电池及其自增湿水管理系统和方法
CN109935856A (zh) * 2017-12-19 2019-06-25 中国科学院大连化学物理研究所 一种液体燃料电池系统水平衡的控制方法
TWI674207B (zh) * 2018-08-14 2019-10-11 國立高雄科技大學 燃料電池之防護方法
CN111244505A (zh) * 2018-11-28 2020-06-05 丰田自动车株式会社 燃料电池监视装置以及判定燃料电池的状态的方法
CN111244505B (zh) * 2018-11-28 2023-04-14 丰田自动车株式会社 燃料电池监视装置以及判定燃料电池的状态的方法
CN113793958A (zh) * 2021-08-24 2021-12-14 清华大学 一种基于电流密度分布的燃料电池水淹诊断方法
CN115842142A (zh) * 2022-12-29 2023-03-24 上海氢晨新能源科技有限公司 一种燃料电池电堆阳极排水控制方法及装置
CN115842142B (zh) * 2022-12-29 2024-01-09 上海氢晨新能源科技有限公司 一种燃料电池电堆阳极排水控制方法及装置
CN116154235A (zh) * 2023-04-20 2023-05-23 上海重塑能源科技有限公司 大功率电堆散热控制方法、装置、电子设备及燃料电池

Also Published As

Publication number Publication date
US8728672B2 (en) 2014-05-20
WO2010131351A1 (ja) 2010-11-18
JPWO2010131351A1 (ja) 2012-11-01
DE112009004773T5 (de) 2012-10-11
DE112009004773B4 (de) 2018-03-15
CN102422473B (zh) 2014-06-25
US20120058404A1 (en) 2012-03-08
JP5273244B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
CN102422473B (zh) 燃料电池系统
JP4905182B2 (ja) 燃料電池システム
CN101911357B (zh) 燃料电池系统
US8227123B2 (en) Fuel cell system and current control method with PI compensation based on minimum cell voltage
KR101053991B1 (ko) 연료전지시스템 및 전원제어방법
JP5120594B2 (ja) 燃料電池システム及びその運転方法
CN100452512C (zh) 一种燃料电池发电系统功率输出的控制方法和控制系统
US7485383B2 (en) Fuel cell power supply
JP5146898B2 (ja) 燃料電池電源制御装置、燃料電池システム及び燃料電池電源制御方法
CN101529634B (zh) 燃料电池系统
US20100248055A1 (en) Fuel cell system and method for limiting current thereof
US7318971B2 (en) Fuel cell system utilizing control of operating current to adjust moisture content within fuel cell
WO2012042328A1 (en) Fuel cell system, method and program of determining cause of negative voltage, and storage medium storing program
KR20160058005A (ko) 연료 전지 시스템 및 그 셀 전압의 복귀 방법
US10826092B2 (en) Method for operating fuel cell vehicle
US20120146421A1 (en) Fuel cell system
US11978932B2 (en) Method of detecting degradation of membrane electrode assembly in fuel cell system
JP2008270047A (ja) 燃料電池システム
JP4734821B2 (ja) 燃料電池制御システム
US20120122001A1 (en) Method for determining amount of reactant gases supplied to fuel cell system
JP4710323B2 (ja) 燃料電池システム
JP2006252918A (ja) 燃料電池システムの制御装置
JP2011009102A (ja) 燃料電池システム
JP2007109567A (ja) 燃料電池システムの制御装置
JP2007123029A (ja) 燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant