CN101500651B - 用于颅脑血流成像和微泡加强血块溶解的超声系统 - Google Patents
用于颅脑血流成像和微泡加强血块溶解的超声系统 Download PDFInfo
- Publication number
- CN101500651B CN101500651B CN2007800298288A CN200780029828A CN101500651B CN 101500651 B CN101500651 B CN 101500651B CN 2007800298288 A CN2007800298288 A CN 2007800298288A CN 200780029828 A CN200780029828 A CN 200780029828A CN 101500651 B CN101500651 B CN 101500651B
- Authority
- CN
- China
- Prior art keywords
- transducer array
- image data
- imaging system
- ultrasonic diagnosis
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims description 36
- 238000002604 ultrasonography Methods 0.000 title claims description 12
- 208000007536 Thrombosis Diseases 0.000 title abstract description 8
- 230000003727 cerebral blood flow Effects 0.000 title description 4
- 230000009089 cytolysis Effects 0.000 title 1
- 230000002792 vascular Effects 0.000 claims abstract description 32
- 238000003491 array Methods 0.000 claims abstract description 12
- 230000017531 blood circulation Effects 0.000 claims description 34
- 210000004556 brain Anatomy 0.000 claims description 29
- 238000003745 diagnosis Methods 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 17
- 238000009877 rendering Methods 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000013480 data collection Methods 0.000 claims 3
- 238000012544 monitoring process Methods 0.000 abstract description 13
- 239000002872 contrast media Substances 0.000 abstract description 6
- 230000001225 therapeutic effect Effects 0.000 abstract description 2
- 238000002059 diagnostic imaging Methods 0.000 abstract 1
- 210000005166 vasculature Anatomy 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 208000006011 Stroke Diseases 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 12
- 239000008280 blood Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 9
- 206010008190 Cerebrovascular accident Diseases 0.000 description 8
- 210000003484 anatomy Anatomy 0.000 description 8
- 210000003625 skull Anatomy 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 230000002008 hemorrhagic effect Effects 0.000 description 6
- 210000004204 blood vessel Anatomy 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 210000003582 temporal bone Anatomy 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 3
- 206010008118 cerebral infarction Diseases 0.000 description 3
- 208000026106 cerebrovascular disease Diseases 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003527 fibrinolytic agent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 235000020004 porter Nutrition 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 206010002329 Aneurysm Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000003677 hemocyte Anatomy 0.000 description 1
- 229940000351 hemocyte Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 210000000103 occipital bone Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 238000002626 targeted therapy Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/225—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
- A61B17/2251—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves characterised by coupling elements between the apparatus, e.g. shock wave apparatus or locating means, and the patient, e.g. details of bags, pressure control of bag on patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0808—Clinical applications for diagnosis of the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4209—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
- A61B8/4227—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by straps, belts, cuffs or braces
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/481—Diagnostic techniques involving the use of contrast agents, e.g. microbubbles introduced into the bloodstream
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22005—Effects, e.g. on tissue
- A61B2017/22007—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
- A61B2017/22008—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/502—Headgear, e.g. helmet, spectacles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/4281—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/488—Diagnostic techniques involving Doppler signals
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mechanical Engineering (AREA)
- Neurology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Surgical Instruments (AREA)
Abstract
本发明描述了一种超声诊断成像系统,其利用一个或多个贴附于患者头部的换能器阵列(10a,10b)对脑卒中受害者进行诊断和处理。所述换能器头套(200),优选地借助于微泡造影剂的帮助下,生成颅脑内血管系统(300)的二维或三维图像。由该系统生成可以对血块征象进行诊断的血管血流图。如果检测到血块,则发射治疗波束同时给予所述造影剂以便通过微泡的碎裂而使血块破碎。所述头套还可以用在监测应用中,以便对脑卒中受害者体内血块的复发进行检测。
Description
本发明涉及医学诊断超声系统,具体而言涉及对脑卒中受害者进行成像和治疗的超声系统。
缺血性脑卒中是医学中已知最能使人衰弱的一种功能障碍。到脑部的血流的阻滞能迅速导致瘫痪或死亡。已经报道试图通过溶栓药物治疗(例如用组织型纤溶酶原激活剂(tPA)进行处理)实现再通可以在大量病例中引起症状性脑出血。对这一致残的病痛的诊疗进展是继续医学研究的主旨。
已经研发出用于监测和诊断脑卒中的经颅多普勒超声。一种由美国华盛顿州西雅图市(Seattle,Washington,USA)的Spencer Technologies制造的头套设备拥有两个抵靠在颅骨侧面的换能器,每个耳前颞骨上一个。所述换能器发射超声波穿过颞骨,并对返回的回波信号进行多普勒处理并以可听频率再现相移信息。当临床医生注意倾听特定动脉血流速度的特征声音时,可听多普勒识别颅骨内是否存在血流。该技术还可用相移信息的频谱多普勒显示进行放大,从而提供有关颅骨内流速的信息。然而,由于没有与头骨内的解剖结构有关的信息,因此临床医生必须试图基于这一有限信息做出诊断。这一诊断方法还非常依赖于技术,需要由训练有素个人执行。
最近,位于德克萨斯州休斯敦(Houston,Texas)的the University of TexasMedical School的Dr.Andrei Alexandrov发现在tPA治疗期间应用超声提高了tPA对脑卒中的疗效。Dr.Alexandrov观察到超声波的微振动对血块的表面起作用,从而打开tPA之后与其结合并进行渗透的更大表面。Dr.Alexandrov现在正领导一个研究小组调查给tPA增加超声造影剂微泡或单独使用微泡和超声溶解血块所增加的功效。还可以预见到的是,将微泡靶向于血块中诸如纤维蛋白的成分并与该血块粘合,从而提高治疗浓度和疗效。靶向的纳米颗粒是这一过程的另一种可能。因而很多人认为超声与溶栓药物、微泡、或者两者一起可以显著改善脑卒中的治疗。
根据本发明的原理,描述了一种诊断超声系统和方法,其能够使医生经颅观察脑脉管系统中可能存在血块的区域。可以采用二维或三维成像。对所述脉管系统的成像优选通过施予微泡进行增强。如果所述脉管系统的血流状况指示存在部分或完全阻塞,则将聚焦或笔形波束指引到阻滞的位置,从而通过微泡的振动和/或破裂来分解所述血块。在一些实例中破裂的微泡还可以释放被包封的溶栓药物。根据本发明的另一方面,通过超声成像可以监测颅脑脉管系统进而得到指示阻塞复发的变化,以及根据所述状况而警告进行医疗救助。
在附图中:
图1以方框图形式示出了根据本发明原理构建的超声诊断成像系统;
图2a和2b示出了适于用在经颅成像换能器头套中的安全头盔衬里;
图3示出了根据本发明的原理对颅脑脉管系统进行超声成像并溶解血块的过程;
图4示出了根据本发明的三维经颅成像;
图5示出了根据本发明的二维经颅成像;
图6a-6d示出了根据本发明原理进行的颅脑阻塞治疗;
图7示出了根据本发明对颅脑阻塞进行超声监测的过程。
首先参照图1,以方框图形式示出了根据本发明原理构建的超声系统。提供两个换能器阵列10a和10b用于发射超声波并接收回波信息。在该示例中所示阵列是能够提供3D图像信息的二维换能器元件阵列,但是本发明的实现同样可以使用生成2D(平面)图像的二维换能器元件阵列。该换能器阵列耦合到控制所述阵列元件发射和接收信号的微型波束形成器12a和12b。微型波束形成器还能够对如美国专利5,997,479(Savord等人)、6,013,02(Savord)和6,623,42(Powers等人)中所描述的成组或“成片”的换能器元件所接收的信号进行至少部分波束形成。通过时间交错信号由多路复用器14使信号往复于微型波束形成器。所述多路复用器耦合到发射/接收(T/R)开关16,所述T/R开关16在发射和接收之间进行切换并且保护主波束形成器20避免高能量发射信号。通过耦合到T/R开关的发射控制器18对在微型波束形成器12a和12b的控制下由换能器阵列10a和10b发射的超声波束进行指引,所述发射控制器18从用户界面或控制面板38的用户操作中接收输入。
将由微型波束形成器12a、12b产生的部分波束形成信号耦合到主波束形成器20,在所述主波束形成器20中将来自各个元件面片(patch)的部分波束形成信号合并成整个波束形成信号。例如,主波束形成器20可以具有128个通道,每个通道从具有12个换能器元件的面片接收部分波束形成信号。照这样,由超过1500个换能器元件的二维阵列所接收的信号能有效地促成单个波束形成信号。
将所述波束形成信号耦合到基波/谐波信号分离器22。所述分离器22用于分离线性信号和非线性信号,从而能够识别从微泡返回的强非线性回波信号。所述分离器22能以多种方式进行操作,例如通过对基波频带和谐波频带中的接收信号进行带通滤波,或者通过称之为脉冲反向谐波分离的过程进行操作。在国际专利公布WO 2005/074805(Bruce等人)中示出并描述了合适的基波/谐波信号分离器。经分离的信号被耦合到信号处理器24,在所述信号处理器24中所述信号经受额外增强,例如斑点去除、信号复合和噪声消除。
经处理的信号被耦合到B模式处理器26和多普勒处理器28。B模式处理器26采用幅度检测对身体内的结构(例如肌肉、组织和血细胞)进行成像。身体结构的B模式图像可以形成谐波模式或基波模式。身体内组织和微泡均返回这两种类型的信号,而在大多数应用中微泡的谐波返回能够使微泡在图像中得到清晰地分割。多普勒处理器处理来自组织和血流的在时间上有区别的信号,用以检测包括微泡在内的图像场中物质的运动。由这些处理器产生的结构信号和运动信号被耦合到扫描转换器32和体绘制器34,所述扫描转换器32和体绘制器34产生组织结构、血流或这两个特征的组合图像的图像数据。扫描转换器将具有极坐标的回波信号转换成期望图像格式的图像信号,例如笛卡尔坐标的扇形图像。如美国专利6,530,885(Entrekin等人)中所描述的,体绘制器34将3D数据集转换成从给定参考点看去的投影3D图像。正如本文所描述的那样,当所述进行绘制的参考点变化时,3D图像可出现称之为运动视差(kinetic parallax)的旋转。这一图像操纵由用户按照用户界面38和体绘制器34之间显示控制线的指示进行控制。同样描述了不同像平面的平面图像所表示的3D体积,一种称之为多平面重组的技术。如美国专利6,723,050(Dow等人)所描述的,体绘制器34能够对直角坐标或极坐标中的图像数据进行操作。将2D或3D图像从扫描转换器和体绘制器中耦合到图像处理器30中,为在图像显示器40上显示而进一步增强、缓冲和临时保存。
图形处理器36还被耦合到图像处理器30,所述图像处理器生成与超声图像一同显示的图形覆盖。这些图形覆盖可以含有诸如患者姓名、图像日期和时间、成像参数等的标准识别信息,并且还能产生由用户按如下所述那样导向波束矢量的图像覆盖。为此,图形处理器接收来自用户界面38的输入。用户界面还被耦合到发射控制器18以控制从换能器阵列10a和10b中生成超声信号,因此控制所述换能器阵列生成图像并施加治疗。响应用户调节而控制的发射参数包括控制所发射波峰值强度的MI(机械指数),它涉及超声的空化效应、为图像定位而对所发射的波束进行导向和/或治疗波束的定位(导向),后面还将对此进行讨论。
换能器阵列10a和10b从头部的相对两侧将超声波发射到患者的颅脑中,当然也可以或替代地采用其他位置,例如头部的前端或头颅后方枕下声窗。大多数患者头部的两侧有利地在头部每一侧耳朵周围和上方的颞骨处提供用于经颅超声的适当声窗。为了通过这些声窗发射和接收回波,所述换能器阵列必须在这些位置上处于良好的声学接触,这可通过用头套将所述换能器阵列保持抵靠在头部上而实现。例如,图2a示出了常规安全头盔200,其通过如图2b的视图中所示的头盔衬里202可调节地保持在穿戴者的头部上。所述头盔衬里牢固地包绕穿戴者的头围。在头盔衬里内如由圆环的位置204、206所指示的每一侧上定位的换能器阵列将被牢固地抵靠在穿戴者颞骨的皮肤上,从而能够使头盔衬里202用作经颅超声头套。通过可调节旋钮208将头盔衬里头套可调节地固定在适当位置。枕骨换能器将被定位在可调节旋钮208的位置处或其下方。所述头套具有一个或多个穿过头顶用于调节头套垂直位置的条带210。这些条带和头套的其他可调节构件可以是有弹性的或者可通过诸如扣环或的其他工具进行调节。当得到恰当地调节时,所述头套将声学换能器阵列以声学接触的方式牢固地保持在患者的颞部上。通过在换能器和皮肤之间施加声学耦合凝胶来帮助进行声学耦合。
图3的流程图示出了根据本发明使用刚刚描述的超声系统和经颅超声头套的过程。在步骤60中,使患者穿戴所述头套,并使换能器阵列声学接触患者的皮肤。启动所述系统以便在颅脑内部进行成像,并且在步骤62中,对所述头套进行调节直到能在一个或(当双工显示时)两个换能器阵列的超声图像中看到颅脑内部的血流。此时优选使用系统的彩色血流成像模式以生成颅脑内部血流的二维或三维图像。如果在彩色血流中能够看到颅脑血流,则可以期望按需要处理该过程的其他步骤。当在超声图像中看到血流时,在步骤64中紧固所述头套以保证换能器阵列在其成像位置上。图4示出了该点上用于3D成像的情况。在该图示中,换能器阵列10a、10b保持抵靠在颅骨100的两侧,并对颅脑内部的3D图像场102、104进行成像。在多平面或体绘制3D投影中,用户将在超声系统的显示器上看到一个或两个3D图像场102、104。用户可以操纵运动视差控制以便从不同的取向观察体绘制3D图像。如美国专利5,720,291(Schwartz)中所描述的那样,用户可以调节3D图像的组织成分和血流成分的相对不透明度,从而使脑组织内部的脉管结构更好地可视化,或者可完全关闭显示器的B模式(组织)部分,而仅使3D图像场102、104内的脉管结构的血流可视化。
当正在成功地对颅脑进行成像时,在步骤66中将微泡造影剂注入到患者的血液中。在短时间内血液中的微泡将被泵送通过颈动脉并进入颅脑脉管系统而出现在图像中。医生用户现在能够开始对阻塞脑中血管的血块进行诊断检索,从而查找脉管系统中由于局部阻塞而终止或仅被从微泡返回的回波微弱照亮的分支。当存在来自两个换能器阵列的双显示时,医生还能够比较两个显示区域的相对对称性,从而查找不对称的征象。如果医生在当前通过图像场102、104观察的脉管系统中没有发现阻塞征象,则医生可按步骤68中所指示的那样将图像场导向到所述解剖结构的其他区域。通过物理地调节换能器阵列的位置以将其的图像场瞄准通过脑部的不同解剖结构,从而可以机械地完成对图像场的导向。优选地,医生能够利用用户界面上的控制,来调节对来自换能器阵列的波束进行的导向。通过调节该控制(到发射控制器18的波束导向控制线),医生能够电子地导向颅骨内部四周的图像场,而不妨碍阵列抵靠在患者头部的声学耦合。
在图像场102、104的每个位置上,医生能够在显示器上的实时图像中查找血流的梗阻,或者可以如步骤70所指示的那样捕获(抓取)颅脑脉管系统的图像或图。当采集并静态保持脉管图时,所述图像可以进行增强处理(例如,复合、信号平均)从而提高分辨率或比例尺,并能在屏幕上进行操纵及在血管阻塞的精细检索中以不同的点和不同的视角进行仔细检查。以这种方式医生能够按步骤72所指示的那样对狭窄进行诊断。如果医生检查脉管图并且没有发现血流路径中有梗阻的迹象,则医生可以将图像场导向到颅脑的另一区域,并检查另一图像场的脉管图。医生可以使用脉管图的多普勒数据或超声系统的频谱多普勒功能对颅脑脉管系统中特定点进行血流速度测量,然后使用超声系统的报告生成能力对所述测量进行记录并准备其诊断的报告。
图6a-6c示出了脉管图的示例。图6a示出了血管的脉管网300。如美国专利5,474,073(Schwartz等人)中所述的那样,当仅执行血流成像并且在没有任何周围的B模式组织结构下显示血流图像时,如图6a所示的那样只示出脉管系统的血流而没有任何遮蔽的周围结构。脉管网300可以以二维、三维及通过多种多普勒技术(例如彩色血流(速度)多普勒或者功率(强度)多普勒)进行显示。在不存在狭窄时,血流网将呈现出是连续的,并且速度和强度与血管大小成比例。但是如果脉管网的分支302有梗阻,则血流将呈现出不同,例如更高的速度和/或强度,并且如果完全梗阻,则如图6c所示的那样在多普勒血流图中将完全消失。通过辨认诸如这些的特征,医生可以对狭窄做出诊断,然后如图6d所示的那样,将治疗波束110引导到怀疑有血管梗阻的位置上。
如果医生发现狭窄,则通过使狭窄部位上的微泡搅动或破碎施加治疗以努力溶解血块。医生启动“治疗”模式,并且在图像场102、104中呈现图形110、112,从而描绘治疗超声波束的矢量路径。治疗超声波束由用户界面38上的控制进行操纵,直到矢量图形110、112聚焦到阻滞部位上,如步骤74所示。治疗波束可以是紧聚焦的会聚波束,或者是称之为笔形波束的具有相对长焦距的波束。治疗波束所产生的能量可以超过诊断超声所允许的超声水平,在这种情形中血块部位上的微泡将剧烈地破碎。导致微泡破裂的能量将强烈地搅动血块,从而趋向于使血块破碎,并使其溶解在血液中。然而在一些情况中,以诊断功率水平对微泡的声照射足够溶解血块。在单次事件中,微泡可以进行振动和振荡而不是进行破碎,并且在微泡溶解之前来自这种延长振荡的能量足以使血块破碎,如步骤76所示。
一种对微泡进行声照射特别有效的方法被称为“闪烁”发射。在闪烁发射中,暂停声照射以使血液流动能够将大量的微泡递送到阻滞部位。在该暂停末,发射一串快速的高MI脉冲以快速并有力地使微泡破裂,这会在阻滞部位处释放能量。来自破裂微泡的气体溶解到血液中。开始另一暂停期从而能够集结新补给的微泡并使过程继续。参见美国专利5,560,364(Porter)和5,685,310(Porter)。利用随着微泡的聚集可以在低MI水平下执行成像,从而能够使医生从视觉上监测微泡的集结并判断施予高MI闪烁的最佳时间的这一发现来改进所述闪烁技术。参见美国专利6,171,246(Averkiou等人)。
根据本发明的另一方面,已经发现低占空比的闪烁将在诊断超声的能量限制内产生快速微泡破坏。这样无需将患者暴露在可能造成损害的治疗性照射水平中。在该技术中,在诊断超声的MI(瞬间压力)限制内递送闪烁脉冲。超声的另一能量限制参数是空间峰值时间平均(SPTA),它是对随时间递送的平均能量的测量,并与温度升高有关。已经发现一串(诊断限制内的)高MI脉冲将使靶向微泡在100-300毫秒内破碎并溶解在血液中。这样,持续的声照射是没有效果的,因为事实上在这一时期之后没有微泡剩下。在本发明的技术中,高MI脉冲期具有50%或更少的占空比。例如,高MI脉冲可以递送200ms,之后在接下来的800msec内抑制高MI脉冲。这样高MI脉冲递送期的占空比仅为20%。多余的高MI脉冲被抑止,并且一秒间隔上递送的时间平均能量在SPTA参数的时间平均限制之内。此外,只要高MI发射停止,就能够将新的微泡回输到血块部位处。而且,在占空比的高MI部分期间可以采用更长的脉冲长度,这已经被认为对微泡的碎裂非常有效。
患者遭受的脑卒中类型可能是出血性脑卒中或缺血性脑卒中。出血性卒中(其可以例如由破裂的动脉瘤所造成)导致血流出血管外,并且将不会通过微泡和超声进行治疗得到改善。此外,出血病证常常由于tPA的应用而变得更糟。由诸如血块的狭窄所造成的缺血性脑卒中是本发明实施例计划进行治疗的脑卒中类型。因此理想的是最初能够确定脑卒中病证是出血性的还是缺血性的。可以完成这一判断的一种方法是通过查找脉管系统外的血池,其表示出血病证。由于血液不是超声波的强反射体,因此在标准超声图像中血池将呈现为黑色。血池还可展现出比含有血管的血流更低的流速(多普勒速度)。在注入造影剂之后,将造影剂灌注到周围组织的微脉管系统中可以在超声图像中产生关于暗黑血池更亮对比的轻微晕圈效应。正是这些特征能够用来识别脑卒中是起源于出血性的还是缺血性的。
在图4的描绘中,看见每个图像场102、104延伸到几乎跨过颅脑的一半,这是图像场大小与期望穿过声窗处骨头的声学穿透及衰减之间的平衡。对于一些患者而言,低衰减效应能够使图像场延伸到完全跨过颅脑,从而能够使医生对颅脑对侧上的颅骨附近的脉管结构进行检查。通过交替地对两个换能器阵列的图像场进行检查,可以有效地检查跨过整个颅脑的脉管系统。有可能采集覆盖颅脑相同的中央区域但从头部相对两侧进行成像的延伸图像场。可以将这些图像相互关联并组合在一起,从而形成可以揭示脑附加特征的融合图像。治疗波束还可以从头部的两侧发射,从而能够从血块的两侧使血块破碎。并不局限于反射式超声成像,通过从一个换能器阵列发射超声并在其他换能器阵列处接收剩余的未吸收超声能量,可以执行透射成像,其可以揭示脑组织的其他特征。
图5示出了本发明的二维成像示例。在该示例中,换能器阵列122是执行2D成像的一维阵列。该阵列被配置成如美国专利5,226,422中所述的圆形相控阵列换能器。该换能器阵列(像本文所描述的其他阵列一样)用透镜124进行覆盖,所述透镜使患者与换能器阵列电绝缘并且在一维阵列的情形下还可以提供在高程(平面外)维度中的聚焦。换能器阵列122用声阻尼材料126进行支撑,所述声阻尼材料衰减从阵列后面发出的声波从而防止它们反射回换能器元件中。在该换能器组套后面是旋转所述阵列的图像平面140的设备130。设备130还可以是由医生抓握以便手动将圆形阵列换能器在其旋转换能器底托(未示出)中进行旋转的单个旋钮或调整片。设备130还可以是如美国专利5,181,514(Solomon等人)中所讨论的通过导体132通电以便机械地旋转所述换能器的电机。按箭头144所指示的那样旋转一维阵列换能器122将使其图像平面140围绕其中心轴枢转,从而能够为充分检查换能器阵列前的脉管系统而重新定位图像平面。如在′514患者中所讨论的,在所述阵列至少180°的旋转期间所采集的平面将占据换能器阵列前的圆锥体,其可以被绘制到该体积区域的3D图像中。该体积区域外的其他平面可以通过重新定位、相对于颅骨100在其头套中摇摆或倾斜所述换能器阵列而进行成像。如果在被成像平面的图像中发现狭窄,则医生可以导向治疗波束矢量图形142以便使所述波束瞄准该狭窄,并施加治疗脉冲以使该狭窄位置上的微泡碎裂。
在脑卒中的情形中通常痛苦不在单次发作中表现出来,而是当心脏、肺部或血管中的血块或梗阻逐渐破碎、从而随时间将小血块相继释放到颅脑脉管系统地在重复发作中表现出来。这样,遭受初始脑卒中事件后依然活着的患者在不远的将来可能会处于其他事件的风险。因此,理想的是在出现初始脑卒中事件之后监测这些患者一段时间,以便在复发时可以立即进行治疗。根据本发明的另一方面,本发明的实施例可以用于监测脑卒中受害者的复发事件。可以将换能器阵列10a、10b、微型波束形成器12a、12b以及多路复用器14有效地作为头套的一部分封装在倒装芯片结构中。这些部件可以由电池供电并且多路复用器的输出被连接到r.f发射器。如图4所示的那样对固定图像场102、104进行连续成像;在该实施例中不一定能够导向或重定位所述图像场。如美国专利6,113,547(Catallo等人)中所描述的那样,将微型波束形成器12a、12b生成的图像数据无线发射到基本单元。在该基站中,如果需要可以执行附加的波束形成以及图1系统的图像处理和显示功能。如果患者是固定不动的,则无线连接并非是必须的,也可以采用与所述基站的有线连接。当所述头套由对该设备具有最少经验的个体进行应用时,所述无线连接同样是有用的。例如,第一急救者可能不能确保所述头套被正确应用并且正在采集关于患者脉管系统满意的图像数据集。在这种情形下,可以将所述图像发射到基站、医院或者其中有经验的人员能够实时观看所述图像并告诉该第一急救者如何将所述头套成功应用在患者身上的其他地方。
在本实例中,图像显示器对于监测应用而言并非是必须的。当在基站形成脉管系统的连续图像时,将它们存储在图像存储器52中,并比较时间上不同的图像以便通过运行血流变化检测器50来检测脉管系统的血流变化。血流变化检测器运行以比较时间上不同的图像的相同性质,类似于如美国专利6,442,289(Olsson等人)中描述的那样用于通过图像处理识别运动的图像数据校正技术。只要连续的图像和分隔开更大时间间隔的图像在其流动特征中表现为基本相同,例如在脉管系统的特定段的流动特征中没有局部变化,并且脉管系统中没有任何段已经停止返回指示血流持续的多普勒信号,则血流变化检测器50将在没有变化的情况下继续其对脉管系统进行监测。例如,所述脉管系统在长时间内可以表现为图6a的脉管网300,而突然可能检测不到一段的血流,如图6c中通过缺失的血管302所示出的那样。如果血流变化检测器50检测到血流变化(例如上面所示的其中一种),则启动报警器,例如位于护士站的声响报警器42。然后可以立即为患者提供医疗救助。另外,医务人员可以对在检测到血流变化时图像存储器中存储的图像进行检查,以准确辨明检测到的梗阻出现在脉管系统中的什么位置。然后将治疗明确地引导到梗阻部位,而无需对一系列脉管图进行仔细地检查。
由于这是监测应用,因此不必以实时成像所必须的高速率进行图像采集。例如可以每秒或以更大的图像采集间隔来采集新的图像。较低的采集速率有助于在使用r.f.链路的行走(ambulatory)实现中节约电池功率。较低的成像速率还允许同一系统以时间交错的方式处理来自多名患者的图像,这对于需要监测多名患者的护士站而言是非常有用的。
在长期监测或对行走患者的监测期间,头套有可能相对于患者的头部发生移动,从而造成来自已经移动的换能器10a、10b的连续图像之间存在差异。这种移动同样造成被监测的特定解剖区域移动到换能器阵列10a或10b的图像场之外。虽然可以将血流变化检测器50设计成不受这种全局变化的影响而只查找血流中的局部变化,但理想的是能够警告医务人员重新调节头套或重新采集图像场中的靶向解剖结构。这在图1的实施例中是借助于图像场控制器54来完成的,所述图像场控制器对时间上不同的图像执行图像分析,以检测图像数据的全局对准变化。如果头套在连续图像之间未发生移动,则(例如)每个换能器阵列的连续图像将是相同的,并且各图像的图像数据将展现出高度的相关性。例如,在美国专利5,556,674(Weng)、6,572,549(Jong等人)或6,589,176(Jago等人)中用于测量图像对准的图像分析技术和其他技术可以用于执行图像比较。头套的移动将导致相关性的全局变化,这会警告医务人员调节头套。相关性的局部变化可能是本应由血流变化检测器50检测的局部血流变化,或者可以使用局部去相关来警告医务人员核查患者状况。另一可能性是将全局相关矢量用作图像相对于图像发生运动的指示。然后,如以前面提到的美国专利6,589,176中讨论的图像稳定方式那样,发射控制器18使用所述运动变化来调节对图像场102、104、140的波束的导向,从而将所述解剖结构重新定位在新采集的图像场中的相同位置。这将能够使系统最初监测的解剖结构不管头套定位中是否有小的变化而保持在视野和图像数据集中。如果靶向解剖结构移出波束导向重新采集的范围,则为医务人员发出警告以重新定位头套。类似地,可以使用这种在存在运动时重新导向校正来保持治疗笔形波束110、112稳定地指向正被处理的靶向血块。
图7的流程图示出了本发明监测实现的典型顺序。在步骤60中将具有阵列换能器的头套戴在患者上,并在步骤62中初始显示和回顾各图像直到对头套进行调节使得在各图像中可以观察到血流为止。在步骤64中,当确定正在采集颅脑血流的图像时,不再需要图像显示器并将头套紧固在患者头上的适当位置。在步骤80中,从阵列的图像场中定期采集图像数据并将其发射到监测单元。在步骤82中,于监测单元处,可以按照需要对图像数据作进一步处理,然后在步骤84中,将新的图像与一个或多个先前采集的图像进行比较。如果图像的流动特征没有变化,则继续进行图像数据的定期发射、接收和比较。但是如果新的图像不同于预定的流动特征,则在步骤86中检测血流变化,并在88中发出警告以引起医护注意。
虽然监测实现可以用2D(平面)成像来执行,但是优选地使用3D成像,以便可以监测更大的体积区域。监测可以只用一个换能器阵列来执行,但是更大数量的阵列同样提供对更大颅脑区域的监测。
Claims (12)
1.一种对颅脑脉管系统中的血块进行监测的超声诊断成像系统,包括:
换能器阵列头套,其保持超声换能器阵列与对象的头部声学接触;
耦合到所述换能器阵列的图像数据处理器,其生成在不同时间所述对象的颅脑中的血流的三维图像数据;
耦合到所述图像数据处理器的血流变化检测器,其用于对时间上不同的图像数据集的流动特征进行比较以检测血流阻滞的发生;以及
图像场控制器(54),所述图像场控制器对时间上不同的图像执行图像分析,以检测所述图像数据的全局对准变化。
2.如权利要求1所述的超声诊断成像系统,还包括无线数据链路,
其中,所述换能器阵列头套借助于所述无线数据链路与所述图像数据处理器进行通信。
3.如权利要求1所述的超声诊断成像系统,其中,所述图像数据处理器以小于实时成像速率的速率生成供所述血流变化检测器进行处理的图像数据。
4.如权利要求1所述的超声诊断成像系统,其中,所述换能器阵列包括二维换能器阵列,并且其中,所述图像数据处理器还包括3D图像数据处理器。
5.如权利要求1所述的超声诊断成像系统,其中,所述换能器阵列头套,还包括两个换能器阵列,通过所述头套将每个所述换能器阵列在所述头部的相对两侧上保持与所述头部声学接触。
6.如权利要求1所述的超声诊断成像系统,其中,所述换能器阵列头套还包括耦合到所述换能器阵列的微型波束形成器,其用于对所述换能器阵列的各元件所接收的回波信号至少部分地进行波束形成。
7.如权利要求6所述的超声诊断成像系统,其中,所述微型波束形成器还用于根据所述颅脑的体积区域的预定空间坐标生成所述换能器阵列的各元件所接收的至少部分波束形成的回波信号,
藉此利用由3D空间坐标识别的数据点而生成3D数据集。
8.如权利要求1所述的超声诊断成像系统,还包括用于存储时间上不同的图像数据集的图像存储器,
其中,可以从所述图像存储器中取回先前采集的图像数据集,以供所述血流变化检测器使用。
9.如权利要求1所述的超声诊断成像系统,还包括用于存储时间上不同的图像数据集的图像存储器,
其中,在检测时间之后可以由用户取回与血流阻滞的检测有关的一个或多个图像数据集。
10.如权利要求1所述的超声诊断成像系统,其中,所述血流变化检测器还用于在检测到发生血流阻滞时发布警告。
11.如权利要求1所述的超声诊断成像系统,其中,所述图像数据处理器包括多普勒处理器。
12.如权利要求11所述的超声诊断成像系统,其中,所述多普勒处理器还包括速度多普勒处理器或功率多普勒处理器中的至少一个。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82210906P | 2006-08-11 | 2006-08-11 | |
US60/822,109 | 2006-08-11 | ||
PCT/IB2007/053074 WO2008017998A2 (en) | 2006-08-11 | 2007-08-03 | Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101500651A CN101500651A (zh) | 2009-08-05 |
CN101500651B true CN101500651B (zh) | 2012-08-08 |
Family
ID=39007768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800298288A Expired - Fee Related CN101500651B (zh) | 2006-08-11 | 2007-08-03 | 用于颅脑血流成像和微泡加强血块溶解的超声系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8211023B2 (zh) |
EP (2) | EP2051778A2 (zh) |
JP (1) | JP5336369B2 (zh) |
CN (1) | CN101500651B (zh) |
WO (1) | WO2008017998A2 (zh) |
Families Citing this family (86)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE319378T1 (de) | 2001-12-03 | 2006-03-15 | Ekos Corp | Katheter mit mehreren ultraschall-abstrahlenden teilen |
US9630028B2 (en) * | 2006-08-11 | 2017-04-25 | Koninklijke Philips N.V. | Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis |
US10182833B2 (en) | 2007-01-08 | 2019-01-22 | Ekos Corporation | Power parameters for ultrasonic catheter |
CN101657160B (zh) * | 2007-04-13 | 2012-06-06 | 皇家飞利浦电子股份有限公司 | 使用超声厚切片成像的量化灌注研究 |
EP2147331B1 (en) | 2007-04-13 | 2017-07-19 | Koninklijke Philips N.V. | High speed ultrasonic thick slice imaging |
EP2494932B1 (en) | 2007-06-22 | 2020-05-20 | Ekos Corporation | Apparatus for treatment of intracranial hemorrhages |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
ES2465915T3 (es) | 2007-11-26 | 2014-06-09 | C.R. Bard, Inc. | Sistema integrado para la colocación intravascular de un catéter |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
EP2303130A2 (en) | 2008-05-27 | 2011-04-06 | Volusonics Medical Imaging Ltd. | Ultrasound garment |
EP3586923B1 (en) | 2008-07-14 | 2021-06-16 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Devices for modulating cellular activity using ultrasound |
US20100210940A1 (en) * | 2008-11-14 | 2010-08-19 | Hoag Memorial Hospital Presbyterian | CT-Guided Focused Ultrasound for Stroke Treatment |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
AU2010315132A1 (en) * | 2009-11-04 | 2012-05-31 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Devices and methods for modulating brain activity |
EP2474263B1 (en) * | 2010-03-24 | 2013-05-22 | Brain Products GmbH | Attaching device for holding dry electrodes for detecting EEG signals |
EP2575611B1 (en) | 2010-05-28 | 2021-03-03 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
KR102044245B1 (ko) * | 2010-08-02 | 2019-11-13 | 가이디드 테라피 시스템스, 엘.엘.씨. | 연조직 급성 및/또는 만성 손상을 치료하기 위한 시스템 |
EP2608730B1 (en) | 2010-08-27 | 2019-07-24 | Ekos Corporation | Apparatus for treatment of intracranial hemorrhages |
US8613714B2 (en) * | 2010-10-05 | 2013-12-24 | Cerevast Therapeutics, Inc. | Non-invasive transcranial ultrasound apparatus |
US8603014B2 (en) * | 2010-10-05 | 2013-12-10 | Cerevast Therapeutics, Inc. | Hands-free operator-independent transcranial ultrasound apparatus and methods |
JP6099865B2 (ja) * | 2011-01-11 | 2017-03-22 | 東芝メディカルシステムズ株式会社 | 画像診断装置 |
EP2739217B1 (en) | 2011-08-05 | 2022-07-20 | Route 92 Medical, Inc. | Systems for treatment of acute ischemic stroke |
WO2013059833A1 (en) | 2011-10-21 | 2013-04-25 | Neurotrek, Inc. | Method and system for direct communication |
CN104363959A (zh) * | 2012-05-11 | 2015-02-18 | 加利福尼亚大学董事会 | 在现场启动并监视中风患者治疗的便携式设备 |
WO2014001977A2 (en) * | 2012-06-28 | 2014-01-03 | Koninklijke Philips N.V. | Fiber optic sensor guided navigation for vascular visualization and monitoring |
WO2014036170A1 (en) | 2012-08-29 | 2014-03-06 | Thync, Inc. | Systems and devices for coupling ultrasound energy to a body |
US20140194740A1 (en) * | 2013-01-07 | 2014-07-10 | Cerebrosonics, Llc | Emboli detection in the brain using a transcranial doppler photoacoustic device capable of vasculature and perfusion measurement |
KR20150126611A (ko) | 2013-03-14 | 2015-11-12 | 에코스 코퍼레이션 | 표적 부위로의 약물 전달을 위한 방법 및 장치 |
CA2917095C (en) * | 2013-07-03 | 2021-11-02 | Bracco Suisse S.A. | Devices and methods for the ultrasound treatment of ischemic stroke |
JP6413616B2 (ja) * | 2013-11-06 | 2018-10-31 | コニカミノルタ株式会社 | 超音波診断装置、超音波診断装置の制御器及び超音波診断装置の制御方法 |
US9265512B2 (en) | 2013-12-23 | 2016-02-23 | Silk Road Medical, Inc. | Transcarotid neurovascular catheter |
KR101572888B1 (ko) * | 2014-02-28 | 2015-11-30 | 주식회사 엠에스피 | 헬멧형 저강도 초음파 집속 자극 시스템 |
US20170065835A1 (en) * | 2014-02-28 | 2017-03-09 | Msp Co., Ltd | Helmet-type low-intensity focused ultrasound stimulation device and system |
KR101674095B1 (ko) * | 2014-02-28 | 2016-11-09 | 주식회사 엠에스피 | 헬멧형 저강도 초음파 집속 자극 시스템 |
CN103860201B (zh) * | 2014-03-06 | 2015-08-05 | 西安交通大学 | 一种基于宽波束造影成像及提取灌注时间强度曲线的方法 |
JP6799537B2 (ja) * | 2014-12-09 | 2020-12-16 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 組織からの医療介入デバイスの単一モダリティベースの視覚的識別 |
US11065019B1 (en) | 2015-02-04 | 2021-07-20 | Route 92 Medical, Inc. | Aspiration catheter systems and methods of use |
ES2770321T3 (es) | 2015-02-04 | 2020-07-01 | Route 92 Medical Inc | Sistema de trombectomía por aspiración rápida |
US10426497B2 (en) | 2015-07-24 | 2019-10-01 | Route 92 Medical, Inc. | Anchoring delivery system and methods |
EP4035586A1 (en) | 2015-04-16 | 2022-08-03 | Gentuity LLC | Micro-optic probes for neurology |
US10656025B2 (en) | 2015-06-10 | 2020-05-19 | Ekos Corporation | Ultrasound catheter |
US11207054B2 (en) | 2015-06-19 | 2021-12-28 | Novasignal Corp. | Transcranial doppler probe |
WO2017040484A1 (en) | 2015-08-31 | 2017-03-09 | Gentuity, Llc | Imaging system includes imaging probe and delivery devices |
US20190069875A1 (en) | 2015-10-14 | 2019-03-07 | Koninklijke Philips N.V. | Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis |
US11284910B2 (en) | 2015-12-09 | 2022-03-29 | Koninklijke Philips N.V. | Interleaved beam pattern for sonothhrombolysis and other vascular acoustic resonator mediated therapies |
US11589836B2 (en) * | 2016-01-05 | 2023-02-28 | Novasignal Corp. | Systems and methods for detecting neurological conditions |
US11090026B2 (en) | 2016-01-05 | 2021-08-17 | Novasignal Corp. | Systems and methods for determining clinical indications |
US10617388B2 (en) | 2016-01-05 | 2020-04-14 | Neural Analytics, Inc. | Integrated probe structure |
EP3419528B1 (en) | 2016-02-24 | 2023-06-07 | Incept, LLC | Enhanced flexibility neurovascular catheter |
US11020563B2 (en) | 2016-07-14 | 2021-06-01 | C. R. Bard, Inc. | Automated catheter-to-vessel size comparison tool and related methods |
CN106236138A (zh) * | 2016-08-19 | 2016-12-21 | 西南医科大学 | 基于瑞利波的颅内压无创监测仪 |
US10589129B2 (en) * | 2016-09-14 | 2020-03-17 | Insightec, Ltd. | Therapeutic ultrasound with reduced interference from microbubbles |
EP3551288A1 (en) | 2016-12-07 | 2019-10-16 | Koninklijke Philips N.V. | Ultrasonic sonothrombolysis treatment planning |
CN110087556A (zh) * | 2016-12-19 | 2019-08-02 | 皇家飞利浦有限公司 | 在经颅超声流程期间的超声换能器阵列监测 |
WO2018129194A1 (en) | 2017-01-06 | 2018-07-12 | Incept, Llc | Thromboresistant coatings for aneurysm treatment devices |
EP3568186B1 (en) | 2017-01-10 | 2022-09-14 | Route 92 Medical, Inc. | Aspiration catheter systems |
CA3057631A1 (en) | 2017-03-24 | 2018-09-27 | BURL Concepts, Inc. | Portable ultrasound device |
CN107088066A (zh) * | 2017-06-20 | 2017-08-25 | 美合实业(苏州)有限公司 | 一种头盔式麻醉深度监护仪的脑电导联 |
CN107296627B (zh) * | 2017-07-14 | 2020-05-26 | 深圳市德力凯医疗设备股份有限公司 | 脑血流自动调节指数的输出方法、存储介质及超声设备 |
EP3700406A4 (en) | 2017-11-28 | 2021-12-29 | Gentuity LLC | Imaging system |
CN111670009A (zh) * | 2018-01-24 | 2020-09-15 | 皇家飞利浦有限公司 | 使用神经网络的引导式经颅超声成像以及相关联的设备、系统和方法 |
JP2021522885A (ja) | 2018-05-01 | 2021-09-02 | インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc | 血管内部位から閉塞性物質を除去する装置および方法 |
US11395665B2 (en) | 2018-05-01 | 2022-07-26 | Incept, Llc | Devices and methods for removing obstructive material, from an intravascular site |
JP2021523793A (ja) | 2018-05-17 | 2021-09-09 | ルート92メディカル・インコーポレイテッドRoute 92 Medical, Inc. | 吸引カテーテルシステム及び使用方法 |
US11517335B2 (en) | 2018-07-06 | 2022-12-06 | Incept, Llc | Sealed neurovascular extendable catheter |
US11471582B2 (en) | 2018-07-06 | 2022-10-18 | Incept, Llc | Vacuum transfer tool for extendable catheter |
US10992079B2 (en) | 2018-10-16 | 2021-04-27 | Bard Access Systems, Inc. | Safety-equipped connection systems and methods thereof for establishing electrical connections |
GB201906743D0 (en) * | 2019-05-13 | 2019-06-26 | Versono Medical Ltd | Compact uitrasonic endovascular occlusion crossing guidewire system |
US11766539B2 (en) | 2019-03-29 | 2023-09-26 | Incept, Llc | Enhanced flexibility neurovascular catheter |
CN113950293A (zh) * | 2019-05-31 | 2022-01-18 | 皇家飞利浦有限公司 | 用于引导对颅部超声数据的采集的方法和系统 |
CN112535499A (zh) | 2019-09-20 | 2021-03-23 | 巴德阿克塞斯系统股份有限公司 | 自动脉管检测工具和方法 |
US11134859B2 (en) | 2019-10-15 | 2021-10-05 | Imperative Care, Inc. | Systems and methods for multivariate stroke detection |
US11633272B2 (en) | 2019-12-18 | 2023-04-25 | Imperative Care, Inc. | Manually rotatable thrombus engagement tool |
US20210315598A1 (en) | 2019-12-18 | 2021-10-14 | Imperative Care, Inc. | Methods of placing large bore aspiration catheters |
CN113365687A (zh) | 2019-12-18 | 2021-09-07 | 因普瑞缇夫护理公司 | 治疗静脉血栓栓塞疾病的方法和系统 |
WO2021183444A1 (en) | 2020-03-10 | 2021-09-16 | Imperative Care, Inc. | Enhanced flexibility neurovascular catheter |
US20230181016A1 (en) * | 2020-04-29 | 2023-06-15 | Gentuity, Llc | Imaging system |
US11877810B2 (en) | 2020-07-21 | 2024-01-23 | Bard Access Systems, Inc. | System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3D visualization thereof |
US11207497B1 (en) | 2020-08-11 | 2021-12-28 | Imperative Care, Inc. | Catheter with enhanced tensile strength |
WO2022051657A1 (en) | 2020-09-03 | 2022-03-10 | Bard Access Systems, Inc. | Portable ultrasound systems and methods |
US11992363B2 (en) | 2020-09-08 | 2024-05-28 | Bard Access Systems, Inc. | Dynamically adjusting ultrasound-imaging systems and methods thereof |
US11925505B2 (en) | 2020-09-25 | 2024-03-12 | Bard Access Systems, Inc. | Minimum catheter length tool |
US12048491B2 (en) | 2020-12-01 | 2024-07-30 | Bard Access Systems, Inc. | Ultrasound probe with target tracking capability |
CN113476032B (zh) * | 2021-08-13 | 2023-03-03 | 电子科技大学 | 一种基于有向图谐波分析的脑结构与功能耦合的方法 |
WO2023222845A1 (en) | 2022-05-20 | 2023-11-23 | Koninklijke Philips N.V. | Multi-modality image visualization for stroke detection |
US12102481B2 (en) | 2022-06-03 | 2024-10-01 | Bard Access Systems, Inc. | Ultrasound probe with smart accessory |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1744861A (zh) * | 2003-01-31 | 2006-03-08 | 株式会社日立医药 | 超声波探针以及超声波装置 |
Family Cites Families (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3948248A (en) | 1974-09-05 | 1976-04-06 | Zuckerman Joel L | Method of measuring ocular pulse |
US4237901A (en) | 1978-08-30 | 1980-12-09 | Picker Corporation | Low and constant pressure transducer probe for ultrasonic diagnostic system |
CA1237482A (en) | 1984-03-09 | 1988-05-31 | Frank B. Stiles | Catheter for effecting removal of obstructions from a biological duct |
US5477858A (en) | 1986-07-30 | 1995-12-26 | Siemens Medical Systems, Inc. | Ultrasound blood flow/tissue imaging system |
US5247938A (en) | 1990-01-11 | 1993-09-28 | University Of Washington | Method and apparatus for determining the motility of a region in the human body |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
GB9109881D0 (en) | 1991-05-08 | 1991-07-03 | Advanced Tech Lab | Transesophageal echocardiography scanner with rotating image plane |
US5181514A (en) | 1991-05-21 | 1993-01-26 | Hewlett-Packard Company | Transducer positioning system |
NO302409B1 (no) | 1991-10-11 | 1998-03-02 | Sodap | Lett rivbar pakning |
US5388583A (en) | 1993-09-01 | 1995-02-14 | Uab Vittamed | Method and apparatus for non-invasively deriving and indicating of dynamic characteristics of the human and animal intracranial media |
US5509896A (en) | 1994-09-09 | 1996-04-23 | Coraje, Inc. | Enhancement of thrombolysis with external ultrasound |
US5503152A (en) | 1994-09-28 | 1996-04-02 | Tetrad Corporation | Ultrasonic transducer assembly and method for three-dimensional imaging |
US5474073A (en) | 1994-11-22 | 1995-12-12 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic scanning for three dimensional display |
US6019724A (en) | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
US5690117A (en) | 1995-03-20 | 1997-11-25 | Gilbert; John W. | Ultrasonic-fiberoptic imaging ventricular catheter |
US6027460A (en) | 1995-09-14 | 2000-02-22 | Shturman Cardiology Systems, Inc. | Rotatable intravascular apparatus |
US5648098A (en) | 1995-10-17 | 1997-07-15 | The Board Of Regents Of The University Of Nebraska | Thrombolytic agents and methods of treatment for thrombosis |
US5720291A (en) | 1996-03-22 | 1998-02-24 | Advanced Technology Laboratories, Inc. | Three dimensional medical ultrasonic diagnostic image of tissue texture and vasculature |
US6066097A (en) | 1997-10-22 | 2000-05-23 | Florida Atlantic University | Two dimensional ultrasonic scanning system and method |
US5919144A (en) | 1997-05-06 | 1999-07-06 | Active Signal Technologies, Inc. | Apparatus and method for measurement of intracranial pressure with lower frequencies of acoustic signal |
US5951477A (en) | 1997-09-11 | 1999-09-14 | Uab Vittamed | Method and apparatus for determining the pressure inside the brain |
US5951476A (en) * | 1997-11-14 | 1999-09-14 | Beach; Kirk Watson | Method for detecting brain microhemorrhage |
US6013032A (en) | 1998-03-13 | 2000-01-11 | Hewlett-Packard Company | Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array |
JP2002509765A (ja) * | 1998-03-31 | 2002-04-02 | ニユコメド・イメージング・アクシエセルカペト | 改良された診断用画像形成 |
US5997479A (en) * | 1998-05-28 | 1999-12-07 | Hewlett-Packard Company | Phased array acoustic systems with intra-group processors |
US6196972B1 (en) * | 1998-11-11 | 2001-03-06 | Spentech, Inc. | Doppler ultrasound method and apparatus for monitoring blood flow |
US6524249B2 (en) * | 1998-11-11 | 2003-02-25 | Spentech, Inc. | Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli |
US6113547A (en) | 1998-11-20 | 2000-09-05 | Atl Ultrasound, Inc. | Ultrasonic diagnostic imaging with cordless scanhead transmission system |
US6398772B1 (en) | 1999-03-26 | 2002-06-04 | Coraje, Inc. | Method and apparatus for emergency treatment of patients experiencing a thrombotic vascular occlusion |
US6171246B1 (en) | 1999-04-29 | 2001-01-09 | Michalakis Averkiou | Realtime ultrasonic imaging of perfusion using ultrasonic contrast agents |
US7238158B2 (en) * | 1999-05-28 | 2007-07-03 | Allez Physionix, Ltd. | Pulse interleaving in doppler ultrasound imaging |
US7534209B2 (en) * | 2000-05-26 | 2009-05-19 | Physiosonics, Inc. | Device and method for mapping and tracking blood flow and determining parameters of blood flow |
US6682483B1 (en) * | 1999-05-28 | 2004-01-27 | Vuesonix Sensors, Inc. | Device and method for mapping and tracking blood flow and determining parameters of blood flow |
US7399279B2 (en) * | 1999-05-28 | 2008-07-15 | Physiosonics, Inc | Transmitter patterns for multi beam reception |
ATE447190T1 (de) * | 1999-05-28 | 2009-11-15 | Physiosonics Inc | Vorrichtung und verfahren zur vermessung und nachführung des blutflusses und zur bestimmung von blutflussparametern |
US6442289B1 (en) | 1999-06-30 | 2002-08-27 | Koninklijke Philips Electronics N.V. | Extended field of view ultrasonic diagnostic imaging |
US6887199B2 (en) * | 1999-09-23 | 2005-05-03 | Active Signal Technologies, Inc. | Brain assessment monitor |
US6733451B2 (en) | 1999-10-05 | 2004-05-11 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic probe used with a pharmacological agent |
US7037267B1 (en) * | 1999-11-10 | 2006-05-02 | David Lipson | Medical diagnostic methods, systems, and related equipment |
US6635017B1 (en) * | 2000-02-09 | 2003-10-21 | Spentech, Inc. | Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis |
US6530885B1 (en) | 2000-03-17 | 2003-03-11 | Atl Ultrasound, Inc. | Spatially compounded three dimensional ultrasonic images |
US6468219B1 (en) * | 2000-04-24 | 2002-10-22 | Philip Chidi Njemanze | Implantable telemetric transcranial doppler device |
US6328694B1 (en) | 2000-05-26 | 2001-12-11 | Inta-Medics, Ltd | Ultrasound apparatus and method for tissue resonance analysis |
US6503202B1 (en) * | 2000-06-29 | 2003-01-07 | Acuson Corp. | Medical diagnostic ultrasound system and method for flow analysis |
US6468216B1 (en) * | 2000-08-24 | 2002-10-22 | Kininklijke Philips Electronics N.V. | Ultrasonic diagnostic imaging of the coronary arteries |
US7604599B2 (en) * | 2000-09-29 | 2009-10-20 | New Health Sciences, Inc. | Systems and methods for using dynamic vascular assessment to improve vascular stent placement, application, design and marketing |
US20070016046A1 (en) * | 2000-09-29 | 2007-01-18 | New Health Sciences, Inc. | Systems and methods for using dynamic vascular assessment to distinguish among vascular states and for investigating intracranial pressure |
US7547283B2 (en) | 2000-11-28 | 2009-06-16 | Physiosonics, Inc. | Methods for determining intracranial pressure non-invasively |
US7806892B2 (en) * | 2001-05-29 | 2010-10-05 | Ethicon Endo-Surgery, Inc. | Tissue-retaining system for ultrasound medical treatment |
JP3350531B2 (ja) * | 2001-06-19 | 2002-11-25 | 株式会社東芝 | 結石破砕装置 |
US6390979B1 (en) * | 2001-08-24 | 2002-05-21 | Philip Chidi Njemanze | Noninvasive transcranial Doppler ultrasound computerized mental performance testing system |
JP2003070787A (ja) * | 2001-08-31 | 2003-03-11 | Toshiyuki Saito | 肺血栓・塞栓症の検出モニター装置 |
JP2003111755A (ja) * | 2001-10-03 | 2003-04-15 | Toshiyuki Saito | 経食道肺血栓・塞栓症の検出モニター装置 |
US6589176B2 (en) | 2001-12-05 | 2003-07-08 | Koninklijke Philips Electronics N.V. | Ultrasonic image stabilization system and method |
US6572549B1 (en) | 2001-12-18 | 2003-06-03 | Koninklijke Philips Electronics Nv | High frame rate extended field of view ultrasound imaging system and method |
US6723050B2 (en) | 2001-12-19 | 2004-04-20 | Koninklijke Philips Electronics N.V. | Volume rendered three dimensional ultrasonic images with polar coordinates |
US6985771B2 (en) | 2002-01-22 | 2006-01-10 | Angel Medical Systems, Inc. | Rapid response system for the detection and treatment of cardiac events |
JP2003214516A (ja) * | 2002-01-24 | 2003-07-30 | Honda Motor Co Ltd | トロイダル変速機構 |
US20040220474A1 (en) * | 2002-03-20 | 2004-11-04 | Kenneth Abend | Determining the power of an ultrasound reflection using an autocorrelation technique |
JP2003275207A (ja) * | 2002-03-25 | 2003-09-30 | Junichi Ninomiya | 超音波による遠隔診断治療方法及び遠隔診断治療システム |
US20040049134A1 (en) | 2002-07-02 | 2004-03-11 | Tosaya Carol A. | System and methods for treatment of alzheimer's and other deposition-related disorders of the brain |
EP1591073A4 (en) * | 2003-01-31 | 2010-11-17 | Hitachi Medical Corp | ULTRASONIC PROBE AND ULTRASONIC DEVICE |
AU2004241786B9 (en) * | 2003-05-21 | 2008-05-15 | Syme, Paul Mr | Method for diagnosis and treatment of vessel occlusion |
WO2004107963A2 (en) * | 2003-06-03 | 2004-12-16 | Allez Physionix Limited | Non-invasive determination of intracranial pressure via acoustic transducers |
US7128713B2 (en) * | 2003-07-10 | 2006-10-31 | Spentech, Inc. | Doppler ultrasound method and apparatus for monitoring blood flow and hemodynamics |
EP1663394B1 (en) * | 2003-09-08 | 2014-05-21 | The Board Of Trustees Of The University Of Arkansas | Ultrasound apparatus for augmented clot lysis |
JP4567967B2 (ja) * | 2003-12-25 | 2010-10-27 | 株式会社東芝 | 超音波診断装置 |
WO2005074805A1 (en) | 2004-02-05 | 2005-08-18 | Koninklijke Philips Electronics N.V. | Ultrasonic imaging of perfusion and blood flow with harmonic contrast agents |
JP4677199B2 (ja) * | 2004-04-14 | 2011-04-27 | 株式会社日立メディコ | 超音波診断装置 |
US8355775B2 (en) * | 2004-06-03 | 2013-01-15 | Hitachi Medical Corporation | Image diagnosing support method and image diagnosing support apparatus |
JP4612379B2 (ja) * | 2004-09-22 | 2011-01-12 | 株式会社東芝 | 医用画像診断支援システム、医用画像診断支援装置、医用画像診断支援方法、コンピュータ読み取り可能な記憶媒体及びコンピュータプログラム |
US20060122513A1 (en) * | 2004-12-06 | 2006-06-08 | Taylor William G | Doppler helmet |
US7857763B2 (en) * | 2005-02-08 | 2010-12-28 | Alan Chi-Chung Tai | Automatic signal-optimizing transducer assembly for blood flow measurement |
US8162837B2 (en) * | 2005-06-13 | 2012-04-24 | Spentech, Inc. | Medical doppler ultrasound system for locating and tracking blood flow |
WO2007058668A1 (en) * | 2005-11-18 | 2007-05-24 | Imarx Therapeutics, Inc. | Ultrasound apparatus and method to treat an ischemic stroke |
-
2007
- 2007-08-03 CN CN2007800298288A patent/CN101500651B/zh not_active Expired - Fee Related
- 2007-08-03 WO PCT/IB2007/053074 patent/WO2008017998A2/en active Application Filing
- 2007-08-03 EP EP07825990A patent/EP2051778A2/en not_active Withdrawn
- 2007-08-03 EP EP10167685A patent/EP2255847A1/en not_active Withdrawn
- 2007-08-03 JP JP2009523404A patent/JP5336369B2/ja not_active Expired - Fee Related
- 2007-08-03 US US12/376,321 patent/US8211023B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1744861A (zh) * | 2003-01-31 | 2006-03-08 | 株式会社日立医药 | 超声波探针以及超声波装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2051778A2 (en) | 2009-04-29 |
US8211023B2 (en) | 2012-07-03 |
JP5336369B2 (ja) | 2013-11-06 |
JP2010500085A (ja) | 2010-01-07 |
EP2255847A1 (en) | 2010-12-01 |
WO2008017998B1 (en) | 2008-06-19 |
US20100160780A1 (en) | 2010-06-24 |
CN101500651A (zh) | 2009-08-05 |
WO2008017998A3 (en) | 2008-05-08 |
WO2008017998A2 (en) | 2008-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101500651B (zh) | 用于颅脑血流成像和微泡加强血块溶解的超声系统 | |
CN101500650B (zh) | 用于颅脑血流成像和微泡加强血块溶解的超声系统 | |
EP1885248B1 (en) | Ultrasound diagnosis and treatment apparatus | |
WO2012042423A1 (en) | Monitoring and control of microbubble cavitation in therapeutic ultrasound | |
US20180049762A1 (en) | Ultrasonic transducer array for sonothrombolysis treatment and monitoring | |
JP5451819B2 (ja) | 凝血塊を溶解するために組み合わされたイメージング及び治療トランスデューサを使用する方法 | |
US20100056924A1 (en) | Control and display of ultrasonic microbubble cavitation | |
JP2002516586A (ja) | 音響止血を提供する方法及びその装置 | |
US11284910B2 (en) | Interleaved beam pattern for sonothhrombolysis and other vascular acoustic resonator mediated therapies | |
US20190069875A1 (en) | Ultrasound system for cerebral blood flow imaging and microbubble-enhanced blood clot lysis | |
AU2006246311B2 (en) | Ultrasound diagnosis and treatment apparatus | |
Jansson et al. | Use of contrast in ultrasound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120808 |
|
CF01 | Termination of patent right due to non-payment of annual fee |