CN101427422A - 用于无线网络的毫米波片透镜阵列天线系统 - Google Patents
用于无线网络的毫米波片透镜阵列天线系统 Download PDFInfo
- Publication number
- CN101427422A CN101427422A CNA2006800543232A CN200680054323A CN101427422A CN 101427422 A CN101427422 A CN 101427422A CN A2006800543232 A CNA2006800543232 A CN A2006800543232A CN 200680054323 A CN200680054323 A CN 200680054323A CN 101427422 A CN101427422 A CN 101427422A
- Authority
- CN
- China
- Prior art keywords
- chip
- lens
- array antenna
- millimeter wave
- millimeter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
- H01Q15/148—Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/007—Details of, or arrangements associated with, antennas specially adapted for indoor communication
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/062—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/17—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0031—Parallel-plate fed arrays; Lens-fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2658—Phased-array fed focussing structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2664—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture electrically moving the phase centre of a radiating element in the focal plane of a focussing device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
- Mobile Radio Communication Systems (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
描述了片透镜阵列天线系统的一些实施例。在一些实施例中,片透镜阵列天线系统(100)包括毫米波透镜(104);以及片阵列天线(102),用于生成毫米波信号,并引导其通过所述毫米波透镜(104),供随后发射。
Description
相关申请
本专利申请涉及同时在俄罗斯受理局递交的,代理机构文号为884.H17US1(P23947)的,目前未决的专利PCT申请。
技术领域
本发明的一些实施例涉及使用毫米波信号的无线通信系统。一些实施例涉及天线系统。
背景技术
许多常规无线网络用通常在2GHz和10GHz之间的微波频率进行通信。这些系统一般采用全向或低方向性天线,主要是因为所用波长较长。这些天线的低方向性会限制这些系统的吞吐量。定向天线能够提高这些系统的吞吐量,但是,微波的波长使得紧凑的定向天线很难实现。毫米波频带可能有可用的频谱,并且能够提供更高吞吐量。
因此,一般而言,存在对紧凑的适合无线通信网络的定向毫米波天线和天线系统的一般需求。还存在对能够提高无线网络吞吐量的紧凑的定向毫米波天线和天线系统的一般需求。
附图说明
图1A和1B说明本发明一些实施例中的片透镜(chip-lens)阵列天线系统;
图2A和2B说明本发明一些实施例中的片透镜阵列天线系统;
图3说明本发明一些正割平方(secant-squared)实施例中的片透镜阵列天线系统;
图4A和4B说明本发明一些全填充(fully-filled)实施例中的片透镜阵列天线系统;
图5说明本发明一些多扇区实施例中的片透镜阵列天线系统;以及
图6说明本发明一些实施例中的毫米波通信系统。
具体实施方式
以下描述和附图充分说明本发明的具体实施例,以便本领域技术人员能够实践它们。其它实施例可能结合结构、逻辑、电气、工艺和其它改变。这些实例仅仅给出典型的可能变化。各个组件和功能是可选的,除非明确是必需的,而且操作顺序可能变化。一些实施例的一些部分和特征可以包括在其它实施例中的那些里,或者替换其它实施例中的那些。权利要求中给出的本发明的实施例包含权利要求的所有可能等同替换。在这里将本发明的实施例单独或一起称为“发明”仅仅是为了方便起见,不是要将这一申请的范围局限于任何单个发明或发明思想,如果事实上公开了一个以上的。
图1A和1B说明本发明一些实施例中的片透镜阵列天线系统。片透镜阵列天线系统100包括片阵列天线102和毫米波透镜104。图1A是片透镜阵列天线系统100的顶视图,图1B是片透镜阵列天线系统100的侧视图。片透镜阵列天线系统100可以在第一面115内产生发散波束110,在第二面117内产生基本不发散的波束112。
片阵列天线102产生毫米波信号的入射波束,并将其引导到通过毫米波透镜104,供随后发射给用户设备。毫米波透镜104具有内表面106和外表面108,它们的曲率被选择成在第一面115内提供发散波束110,在第二面117内提供基本不发散的波束112。在这些实施例中,片阵列天线102引导的毫米波信号入射波束可以被看成在第二面117内被挤压,在第一面115内保持不变。
在一些实施例中,内表面106在第一面115中可以由基本圆形的弧线126限定,在第二面117内由基本圆形的弧线136限定。在图1A和1B所示的实施例中,外表面108在第一面115中可以由基本圆形的弧线128限定,在第二面117中由椭圆形弧线138限定。在这些实施例中,当第一面115内和第二面117内都是由基本圆形的弧线限定的时候,内表面106可以包括基本球形的内表面,虽然本发明的范围不限于这一方面。
在一些实施例中,第一面115可以是水平面,第二面117可以是垂直面,发散波束110可以是水平面中的扇形波束。在一些实施例中,片阵列天线102可以在垂直面内产生较宽的入射波束103,在水平面内产生较窄的入射波束113,入射到毫米波透镜104内表面106上。较宽的入射波束103可以被毫米波透镜104转换成基本上不发散的波束112,较窄的入射波束113可以被毫米波透镜104转换成发散波束110。
在图1A和1B所示的实施例中,当外表面108由第一面115中基本圆形的弧线128限定时,发散波束110和绞窄入射波束113可能具有近似相等的波束宽度。例如,在一些实施例中,垂直面117中较宽的入射波束103可能具有如图1B所示的60度波束宽度,而水平面115内较窄的入射波束113可能具有图1A所示30度的波束宽度。虽然本发明的范围不限于这一方面。在这些实施例中,较宽的入射波束103,以及较窄的入射波束113,都可以是发散波束。在水平面115中,毫米波透镜104对绞窄入射波束113可能没有多少影响或者毫无影响,将绞窄入射波束113画成具有30度的波束宽度,以便提供发散波束110,发散波束110也具有30度的波束宽度。在垂直面117中,毫米波透镜104可以将较宽的入射波束103转换成基本不发散的波束112。
在一些实施例中,较宽入射波束103和绞窄入射波束113的波束宽度可以是指扫描角,片透镜阵列天线102在这个扫描角内将入射波束引导到毫米波透镜104。这些实施例可以支持在水平面内进行大角度扫描。水平面内的扫描角和波束宽度都可以由片阵列天线102的尺寸决定,而垂直面内的波束宽度则主要由毫米波透镜104的垂直孔径决定。
在一些实施例中,片透镜天线102可以将入射波束扫描或操纵(steer)在毫米波透镜104内,将波束110和112扫描或操纵在毫米波透镜104以外,虽然本发明的范围不限于这一方面。下面更加详细地讨论这些实施例。
在一些实施例中,抗反射层107可以被设置在毫米波透镜104的内表面106上,帮助减少片阵列天线102发射的入射毫米波信号的反射。在一些实施例中,抗反射层107可以是一层毫米波透明材料,它包括与毫米波透镜104的材料不同的材料。抗反射层107的厚度可以被选择成使得从抗反射层107的入射表面反射的毫米波跟从内表面106(也就是抗反射层107后面)反射的毫米波基本抵消,从而消除大多数或所有反射。在一些实施例中,当抗反射层107的折射指数在毫米波透镜104和空气之间时,抗反射层107的厚度可以是大约四分之一波长,虽然本发明的范围不限于这一方面。在一些实施例中,抗反射层107的厚度可以远大于波长。在一些实施例中,可以用一个或多个抗反射层进一步抑制反射,虽然本发明的范围不限于这一方面。在一些实施例中,抗反射层或抗反射涂层可以在外表面108上。
在一些实施例中,抗反射层107可以包括抗反射涂层,虽然本发明的范围不限于这一方面。在一些实施例中,使用抗反射层107能够减小输入反射系数,从而能够在片透镜阵列天线系统100发射时,减少因为反射而对片阵列天线102的反馈。这样能够帮助避免对片阵列天线102的那些单元不希望的激励。减少反馈还能够帮助提高片透镜天线系统100的效率。
在一些实施例中,片阵列天线102包括各个天线单元的线阵(也就是一维阵)或平面阵(也就是二维阵),其中的各个天线单元通过控制元件耦合到射频(RF)信号路径。这些控制元件可以用于控制这些单元之间的幅度和/或相移,以便将入射波束操纵在毫米波透镜内。在一些实施例中,当片阵列天线102包括天线单元的平面阵时,这些控制元件可以为天线单元设置幅度和/或相移(例如为了获得所需要的扫描角),虽然本发明的范围不限于这一方面。这样就能够产生不同波束宽度和扫描角的宽、窄入射波束。在一些实施例中,可以单独控制天线单元的一些行来引导天线波束。
在一些实施例中,可以在那些行天线单元上提供线性相移。在一些实施例中,可以给片阵列天线102的天线单元应用阵列激励功能来获得天线波束的某些特性,例如某个功率曲线(power profile)和/或旁瓣电平。例如,在天线单元阵列上均匀的幅度分布,在水平方向上线性相移,在垂直方向上恒定相位可以被用来帮助获得波束110和112的某些特性,虽然本发明的范围不限于这一方面。在一些其它实施例中,可以给片阵列天线102的天线单元的幅度和/或相移使用多夫-切比雪夫分布或高斯功率曲线,虽然本发明的范围不限于这一方面。
控制片阵列天线102天线单元之间的幅度和/或相位差能够将波束操纵或引导到所需要的覆盖区内。要注意毫米波透镜104的形状支持波束110和112的特性,而控制和改变天线单元之间的幅度和/或相位差则能够操纵和引导波束。
在一些实施例中,片阵列天线102的天线单元可以包括偶极子辐射单元,虽然本发明的范围不限于这一方面,因为其它类型的辐射单元也行。在一些实施例中片阵列天线102的天线单元可以被配置成各种形状和/或配置中的任意一个,包括方形、矩形、曲线形、直线形、圆形或椭圆形。
在一些实施例中,毫米波透镜104可以与片阵列天线102分隔开,在它们之间提供空腔105。在一些实施例中,空腔105里可以填充空气或填充惰性气体。在其它实施例中,空腔105可以包括在毫米波频率上与毫米波透镜104相比具有较高介电常数和/或较高折射指数的电介质材料。由于可能在空腔105内的电介质材料可以具有较低的介电常数和/或较低的折射指数,从内表面106反射的毫米波较少。在这些实施例中,可以采用一个或多个焦点来提供多个天线扇区,虽然本发明的范围不限于这一方面。
在一些实施例中,可以用固体毫米波电介质材料制作毫米波透镜104,例如在预定毫米波频率上相对折射指数在2和3之间的毫米波折射材料,虽然本发明的范围不限于这一方面。在一些实施例中,可以将交叉链接聚合物(cross-linked polymer),例如Rexolite,用作这种毫米波折射材料,虽然也可以采用其它聚合物和电介质材料,例如聚乙烯、聚-4-甲基戊烯-1特氟隆和高密度聚乙烯。例如,可以从美国新泽西州贝弗利的C-LEC塑料公司获得Rexolite。在一些实施例中,砷化镓GaAs、石英和/或丙烯酸有机玻璃也可以被用作毫米波透镜104。也可以将这些材料中的任意一种选作抗反射层107,只要它是一种不同的材料,并且比用作毫米波透镜104的材料具有更高的折射指数。在一些实施例中,毫米波透镜104和/或抗反射层107可以包括人工电介质材料,并且也可以采用例如分布在电介质材料中的一组金属板或金属颗粒,虽然本发明的范围不限于这一方面。
在一些实施例中,毫米波透镜104可以包括两层或多层毫米波电介质材料。在这些实施例中,距离片阵列天线102较近的第一层的毫米波电介质材料可以比第二层的毫米波电介质材料具有更高的介电常数,虽然本发明的范围不限于这一方面。
在一些实施例中,片透镜天线系统100发射和/或接收的毫米波信号可以包括具有多个基本正交子载波的多载波信号。在一些实施例中,这些多载波信号可以包括正交频分复用(OFDM)信号,虽然本发明的范围不限于这一方面。这些毫米波信号可以包括大约60和90GHz之间的毫米波频率。在一些实施例中,片透镜天线系统100发射和/或接收的毫米波信号可以包括单载波信号,虽然本发明的范围不限于这一方面。
图2A和2B说明本发明一些实施例中的片透镜阵列天线系统。片透镜阵列天线系统200包括片阵列天线202和毫米波透镜204。图2A是片透镜阵列天线系统200的顶视图,图2B是片透镜阵列天线系统200的侧视图。片透镜阵列天线系统200可以在第一面215内产生发散波束210,在垂直面217内产生基本不发散的波束212。
在图2A和2B所示的实施例中,外表面208可以由第一面215中的椭圆形弧线228和第二面217中的椭圆形弧线238限定。内表面206可以由第一面215中基本圆形的弧线226和第二面217中基本圆形的弧线236限定。
在图2A和2B所示的实施例中,当外表面208由第一面215中的椭圆形弧线228限定时,发散波束210可以具有比较窄的入射波束213基本上更窄的波束。在这些实施例中,片阵列天线202引导的毫米波信号的入射波束可以被看作在第二面217和第一面215中都被挤压,虽然可以将入射波束看成在第一面215中被挤压。这样,与片透镜阵列天线系统100相比(图1A和1B),片透镜阵列天线系统200可以在第一面215中以较小的扫描角提供更高的天线增益,
在图2A和2B所示的实施例中,较宽的入射波束203和较窄的入射波束213都可以是发散波束。在这些实施例中,在水平面215内,毫米波透镜204可以将图示具有近似30度波束宽度的较窄的入射波束213转换成波束宽度基本上减小了的图示近似15度波束宽度的发散波束210。在垂直面217内,毫米波透镜204可以将图示具有近似60度波束宽度的较宽入射波束203转换成基本上不发散的波束212。在某个面内选择某个椭圆形弧线可以决定这个面内发射波束的波束宽度,并且发射波束在这个面内是发散还是不发散。在一些实施例中,较宽入射波束203和较窄入射波束213可以指片透镜阵列天线202将入射波束引导到毫米波透镜204上的扫描角,虽然本发明的范围不限于这一方面。
在图2A和2B所示的一些实施例中,外表面208可以由第一面215中的第一椭圆形弧线228限定,并由第二面217中的第二椭圆形弧线238限定。在这些实施例中,第一椭圆形弧线228的曲率半径可以比第二椭圆形弧线238的大,因为第一椭圆形弧线228的曲率半径大于第二椭圆形弧线238的曲率半径,因此在第一面215内,与片阵列天线202产生的入射波束213相比,发散波束210可以不那么发散,虽然本发明的范围不限于这一方面。具有较大曲率半径的椭圆形弧线可以指这样的一些椭圆,它们具有一些焦点,这些焦点间隔更大,以提供“更加平坦“的椭圆形弧线。
在一些实施例中,可以在毫米波透镜204和片阵列天线202之间提供空腔205。如同前面对照片透镜阵列天线系统100(图1)讨论的一样,空腔205中也可以填充空气或惰性气体,或者,空腔205也可以包括在毫米波频率上与毫米波透镜204相比,具有更高介电常数和/或更高折射指数的电介质材料,虽然本发明的范围不限于这一方面。在一些实施例中,毫米波透镜204还可以包括两层或多层毫米波电介质材料。
图3说明本发明中一些正割平方(sec2)实施例的片透镜阵列天线系统。图3是片透镜阵列天线系统300的侧视图。片透镜阵列天线系统300包括毫米波透镜304和片阵列天线302。片阵列天线302可以产生和引导毫米波信号入射波束通过毫米波透镜304供随后发射到用户设备。在这些实施例中,毫米波透镜304可以具有基本球形的内表面306,并且具有包括第一和第二部分318A和318B的外表面308。外表面308的第一和第二部分318A和318B可以被选择成在第一面315提供基本全向的方向图,在第二面317提供基本上正割平方的方向图314。
在一些实施例中,内表面306可以由水平面315和垂直面317内都基本圆形的弧线336限定,正割平方方向图314可以提供这样的天线增益方向图:它依赖于仰角303,为用户设备提供基本上与距离无关的基本均匀的信号电平。在这些实施例中,外表面308的曲线可以代表一个差分方程的解,并且具有既不是球形,椭圆形,也不是抛物形的形状。在一些实施例中,外表面308的曲线可以是母线曲线(generatrix curve),其中的参数是基于基本正割平方314分配的,虽然本发明的范围不限于这一方面。
在一些实施例中,毫米波透镜304可以相对于垂直轴301对称。换句话说,毫米波透镜304的形状可以是通过绕垂直轴301旋转获得的,虽然本发明的范围不限于这一方面。
在一些实施例中,第一面315可以是水平面,第二面317可以是垂直面。在这些实施例中,水平面内基本全向的方向图和垂直面内基本上正割平方的方向图314可以为一个或多个用户设备提供近似相同的信号功率电平,在预定距离内基本上与毫米波透镜304的距离无关。在这些实施例中,水平面内基本全向的方向图和垂直面内基本正割平方的方向图314还可以为一个或多个用户设备提供近似相同的天线灵敏度用来接收信号,在预定距离内基本上与毫米波透镜304的距离无关。换句话说,远照射区的用户设备能够与近照射区中的用户设备一样进行通信。
在一些实施例中,可以在毫米波透镜304和片阵列天线302之间提供空腔305。如同前面参考片透镜阵列天线系统100(图1)所描述的一样,空腔305也可以填充空气或惰性气体,也可以包括与毫米波透镜304相比在毫米波频率上具有更高介电常数和/或更高折射指数的电介质材料,虽然本发明的范围不限于这一方面。在一些实施例中,毫米波透镜304还可以包括两层或多层毫米波电介质材料。
图4A和4B说明本发明的一些全填充实施例中的片透镜阵列天线系统。图4A是片透镜阵列天线系统400的顶视图,图4B是片透镜阵列天线系统400的侧视图。在这些实施例中,片透镜阵列天线系统400包括片阵列天线402和设置在片阵列天线402上面的毫米波折射材料404。片阵列天线402产生毫米波信号波束,并将其引导到毫米波折射材料404内,用于随后发射到一个或多个用户设备。在这些实施例中,毫米波折射材料404具有外表面408,在第一面415中这个外表面408可以由基本圆形弧线(没有画出)或椭圆形弧线428限定,在第二面417中由椭圆形弧线438限定。这种曲率会在第一面415中产生发散波束410,在第二面417产生基本不发散的波束412。
在这些全填充实施例中,片阵列天线402可以至少部分地嵌入毫米波折射材料404。当配置成获得相似的特性并且采用类似的透镜材料时,片透镜阵列天线系统400需要的空间可能比片透镜阵列天线系统100(图1A和1B)或者片透镜阵列天线系统200(图2A和2B)需要的空间少。在一些实施例中,尺寸能够减小多达3倍,虽然本发明的范围不限于这一方面。在一些实施例中,片阵列天线402的尺寸可以按比例缩小,而折射材料404中的波束宽度维持不变,因为毫米波信号在折射材料404中的波长可能比例如空气中的短。这样能够帮助降低片透镜阵列天线系统400的成本。在这些实施例中,片阵列天线402提供的波前在靠近外表面408处可以变得更加象球形,畸变较少。在这些实施例中,毫米波折射材料404可以减小片阵列天线402非零尺寸引起的畸变,提供更加可预测的方向图。此外,没有来自内表面的反射能够减小输入反射系数,减少对片阵列天线402的不利反馈。
在一些实施例中,可以在外表面408上提供非反射涂层或非反射层来减小反射,虽然本发明的范围不限于这一方面。在一些实施例中,毫米波电介质材料404可以包括两层或多层毫米波电介质材料,虽然本发明的范围不限于这一方面。
图5说明图5所示一些多扇区实施例中的片透镜阵列天线系统。图5是多扇区片透镜阵列天线系统500的顶视图。多扇区片透镜阵列天线系统500可以包括多个毫米波透镜部分504和多个片阵列天线502,用来引导毫米波信号通过毫米波透镜部分504中有关的一个,供随后发射给一个或多个用户设备。在这些多扇区实施例中,每个毫米波透镜部分504可以包括弧线限定的内表面506。每个毫米波透镜部分504还可以具有第一面515中基本圆形弧线或椭圆形弧线,第二面内椭圆形弧线限定的外表面508。第一面515可以是水平面,第二面可以是垂直面(也就是垂直于页面或者在页面内),虽然本发明的范围不限于这一方面。
在一些实施例中,用于限定内表面506和外表面508的弧线可以是椭圆形的、双曲线的、抛物线的和/或基本圆形的,可以被选择成在第一面515内提供发散波束510,在第二面内提供基本不发散的波束。在一些多扇区实施例中,每个片阵列天线502,以及毫米波透镜部分504之一可以与多个扇区中的一个扇区相关联,用于与这个相关联扇区中的用户设备通信,虽然本发明的范围不限于这一方面。
在图5所示的示例性实施例中,每个扇区可以覆盖水平面515内的近似60度,发散波束510在水平面内可以具有15度的波束宽度。在这些实施例中,片阵列天线502可以在30度的波束宽度内将其波束操纵在透镜504内,在如图所示60度的扇区内扫描,在每个扇区内提供全覆盖。在一些其它实施例中,每个扇区可以覆盖近似120度,虽然本发明的范围不限于这一方面。
在图5所示的示例性实施例中,每个片阵列天线502可以用30度的波束宽度照射毫米波透镜504。毫米波透镜504可以将波束宽度减小到例如二分之一,向毫米波透镜504以外提供15度波束宽度的发散波束510。将波束宽度缩小一半使得片阵列天线502在扫描时能够提供更大的覆盖区域半径。例如,片阵列天线522可以在扫描角524(图中画出为90度)内进行扫描,覆盖较大的扇区,在毫米波透镜504外提供扫描角526(示出为45度)(也就是从扫描波束520到扫描波束521)。在这个实例中,毫米波透镜504外45度的扫描角可以从毫米波透镜504内90度的扫描角缩小而来。这样就允许每个片阵列天线502用每个发散波束510提供的15度波束宽度在60度扇区之一提供覆盖。不要求每个扇区使用同样的天线方向图和/或波束宽度。在一些实施例中,不同的扇区可以使用不同的天线方向图和/或波束宽度,虽然本发明的范围不限于这一方面。
在一些实施例中,可以在毫米波透镜504和片阵列天线502之间提供一个或多个空腔。如同前面参考片透镜阵列天线系统100(图1)所讨论的一样,这些空腔可以填充空气或惰性气体,这些空腔也可以包括与毫米波透镜504相比,在毫米波频率上具有更高介电常数和/或更高折射指数的电介质材料,虽然本发明的范围不限于这一方面。在一些实施例中,毫米波透镜504还可以包括两层或多层毫米波电介质材料。
参考图1A、1B、2A、2B、3、4A、4B和5,片阵列天线102适合于被用作片阵列天线202、片阵列天线302、片阵列天线402和片阵列天线502。上述用于制作毫米波透镜104的材料也适合于用于制作毫米波透镜204、毫米波透镜304、毫米波透镜折射材料404和毫米波透镜504的一些部分。在一些实施例中,可以在毫米波透镜204的内表面和/或外表面,在毫米波透镜304的内表面和/或外表面,在毫米波透镜材料404的外表面,以及在毫米波透镜504的那些部分的内表面和/或外表面,提供抗反射层或涂层,例如抗反射层107,虽然本发明的范围不限于这一方面。
图6说明本发明的一些实施例中的毫米波通信系统。毫米波通信系统600包括毫米波多载波基站604和片透镜阵列天线系统602。毫米波多载波基站604可以产生毫米波信号,由片透镜阵列天线系统602发射给用户设备。片透镜阵列天线系统602还可以提供从用户设备收到的毫米波信号给毫米波多载波基站604。在一些实施例中,毫米波多载波基站604可以产生和/或处理多载波毫米波信号,虽然本发明的范围不限于这一方面。片透镜阵列天线系统100(图1A和1B)、片透镜阵列天线系统200(图2A和2B)、片透镜阵列天线系统300(图3)、片透镜阵列天线系统400(图4A和4B)或片透镜阵列天线系统500(图5)适合于用作片透镜阵列天线系统602。
如同这里所使用的一样,术语“带宽”和“天线波束”可以指毫米波信号的接收区域和/或发射区域。同样,“产生”和“引导”可以指毫米波信号的接收和/或发射。如同这里所使用的一样,用户设备可以是便携式无线通信设备,例如个人数字助理(PDA),具有无线通信能力的膝上型或便携式计算机,网络输入板(web tablet)、无线电话、无线头戴式耳机、寻呼机、即时消息传递设备、数字相机、接入点、电视、医疗设备(例如心率监视仪、血压监视仪等),或者能够以无线方式接收和/或发射信息的其它设备。在一些实施例中,用户设备可以包括定向天线来接收和/或发射毫米波信号。
在一些实施例中,毫米波通信系统600可以按照具体通信标准或提出的协议传递毫米波信号,例如电气和电子工程师协会(IEEE)标准,包括IEEE 802.15标准和为毫米波通信提出的规范(例如IEEE 802.15任务组2005年12月的3c的“Call For Intent”),虽然本发明的范围不限于这一方面,因为它们还适合于按照其它技术和标准来发射和/或接收通信信号。关于IEEE802.15标准的更多信息,请参考“IEEE Standards for Information Technology—Telecommunications and Information Exchange between Systems”第15部分。
给出摘要是为了符合37 C.F.R.第1.72(b)节需要摘要,让读者能够确定技术公开的本质和要点的要求。要明白,摘要不是用于限定或解释权利要求的范围或含义的。
在以上描述中,在单独的实施例中为了使说明流畅,将各个特征随意地组合在一起。这里公开的方法不应该被解释为说明主题的实施例需要比每个权利要求明确提到的还要多的特征。相反,以下权利要求反映了本发明可以建立在比单个实施例所有特征要少的特征的基础之上。因此,将以下权利要求包括在详细描述中,每个权利要求都单独代表一个优选实施例。
Claims (20)
1.一种片透镜阵列天线系统,包括:
毫米波透镜;以及
片阵列天线,用于生成毫米波信号的入射波束,并引导其通过所述毫米波透镜,供随后发射,
其中所述毫米波透镜具有内表面和外表面,它们的曲率被选择成在第一面内提供发散波束,在第二面内提供基本不发散的波束。
2.如权利要求1所述的片透镜阵列天线系统,
其中所述内表面基本由所述第一面和所述第二面这两者内基本圆形的弧线限定;
其中所述外表面由所述第一面内基本圆形的弧线或椭圆形的弧线以及所述第二面内椭圆的弧线限定;以及
其中所述毫米波信号包括若干多载波信号,这些多载波信号具有多个基本正交的子载波,这些基本正交的子载波包括频率在近似60和90GHz之间的毫米波。
3.如权利要求2所述的片透镜阵列天线系统,还包括:
抗反射层,设置在所述毫米波透镜内表面或外表面的至少一个上,用来帮助减少所述片阵列天线产生的毫米波信号反射。
4.如权利要求1所述的片透镜阵列天线系统,其中所述片阵列天线包括:
天线单元的线阵或平面阵,这些天线单元通过若干控制元件耦合到毫米波信号路径,这些控制元件控制这些天线单元之间的幅度和相移,用于将所述入射波束操纵在所述毫米波透镜内。
5.如权利要求1所述的片透镜阵列天线系统,其中所述毫米波透镜与所述片阵列天线分隔开,在它们之间提供空腔,所述空腔包括介电常数高于所述毫米波透镜的介电常数的电介质材料。
6.一种片透镜阵列天线系统,包括:
毫米波透镜;以及
片阵列天线,用于生成毫米波信号,并引导其通过所述毫米波透镜,供随后发射,
其中所述毫米波透镜具有内表面,并且具有由第一和第二部分限定的外表面,并且
其中所述外表面的第一和第二部分被选择成在第一面内提供基本全向的方向图,在第二面内提供基本正割平方的方向图。
7.如权利要求6所述的片透镜阵列天线系统,其中所述第一面是水平面,所述第二面是垂直面,
其中所述内表面基本上是球形,以及
其中所述水平面内基本全向的方向图和所述垂直面内基本正割平方的方向图提供在预定范围内基本独立于与所述毫米波透镜的距离的信号功率电平,并且还为信号的接收提供基本独立于所述距离的信号电平灵敏度。
8.如权利要求6所述的片透镜阵列天线系统,其中所述片阵列天线包括天线单元的线阵或平面阵,这些天线单元通过若干控制元件耦合到毫米波信号路径,这些控制元件控制这些天线单元之间的幅度和相移,用于将所述入射波束操纵在所述毫米波透镜内,
其中所述毫米波透镜包括交叉链接的聚合物折射材料,并且
其中所述毫米波信号包括若干多载波信号,这些多载波信号具有多个基本正交的子载波,这些基本正交的子载波包括频率在近似60和90GHz之间的毫米波。
9.如权利要求6所述的片透镜阵列天线系统,其中所述毫米波透镜与所述片阵列天线分隔开,在它们之间提供空腔,所述空腔包括介电常数高于所述毫米波透镜的介电常数的电介质材料。
10.如权利要求6所述的片透镜阵列天线系统,其中所述毫米波透镜包括至少第一和第二层毫米波电介质材料,
其中所述第一层的毫米波电介质材料的介电常数比所述第二层的毫米波电介质材料的介电常数高,以及
其中所述第一层比所述第二层更加靠近所述片阵列天线。
11.一种多扇区片透镜阵列天线系统,包括:
多个毫米波透镜部分;以及
多个片阵列天线,用于引导毫米波信号通过那些毫米波透镜部分中相关的一个,供随后发射,
其中那些毫米波透镜部分中的每一个包括部分圆弧限定的内表面,以及
其中那些毫米波透镜部分中的每一个具有外表面,该外表面由所述第一面内基本圆形的弧线或椭圆形的弧线限定并且由所述第二面内椭圆的弧线限定,在每个扇区的第一面内提供发散波束,在每个扇区的第二面内提供基本不发散的波束。
12.如权利要求11所述的多扇区片透镜阵列天线系统,其中每个片阵列天线和毫米波透镜部分与多个扇区中的一个扇区相关联,以便进行通信,并且
还包括抗反射层,设置在所述毫米波透镜内表面或外表面的至少一个上,用来帮助减少所述片阵列天线产生的毫米波信号的反射。
13.如权利要求11所述的多扇区片透镜阵列天线系统,其中每个片阵列天线包括天线单元的线阵或平面阵,这些天线单元通过若干控制元件耦合到毫米波信号路径,这些控制元件控制这些天线单元之间的幅度和相移,用于将所述入射波束操纵在所述毫米波透镜内,
其中所述毫米波透镜包括交叉链接的聚合物折射材料,并且
其中所述毫米波信号包括若干多载波信号,这些多载波信号具有多个基本正交的子载波,这些基本正交的子载波包括频率在近似60和90GHz之间的毫米波。
14.如权利要求11所述的多扇区片透镜阵列天线系统,其中所述毫米波透镜与所述片阵列天线分隔开,在它们之间提供空腔,所述空腔包括介电常数高于所述毫米波透镜的介电常数的电介质材料。
15.如权利要求11所述的多扇区片透镜阵列天线系统,其中所述毫米波透镜包括至少第一和第二层毫米波电介质材料,
其中所述第一层的毫米波电介质材料的介电常数比所述第二层的毫米波电介质材料的介电常数高,以及
其中所述第一层比所述第二层更加靠近所述片阵列天线。
16.一种片透镜阵列天线系统,包括:
片阵列天线;以及
毫米波折射材料,设置在所述片阵列天线上面,所述片阵列天线用于生成毫米波信号,并将其引导到所述毫米波折射材料内,供随后发射,
其中所述毫米波折射材料具有外表面,该外表面在第一面内由基本圆形的弧线或椭圆弧线限定,在第二面内由椭圆型的弧线限定,以便在所述第一面内产生发散波束,在所述第二面内产生基本不发散的波束。
17.如权利要求16所述的片透镜阵列,
其中所述片阵列天线至少部分地嵌入所述毫米波电介质材料中,并且
其中所述毫米波电介质材料包括交叉链接的聚合物折射材料。
18.如权利要求16所述的片透镜阵列,还包括:
抗反射层,设置在所述毫米波透镜内表面或外表面的至少一个上,用来帮助减少所述片阵列天线产生的毫米波信号的反射。
19.如权利要求16所述的片透镜阵列天线系统,其中所述片阵列天线包括:
天线单元的线阵或平面阵,这些天线单元通过若干控制元件耦合到毫米波信号路径,这些控制元件控制这些天线单元之间的幅度和相移,用于将所述入射波束操纵在所述毫米波透镜内,并且
其中所述毫米波信号包括若干多载波信号,这些多载波信号具有多个基本正交的子载波,这些基本正交的子载波包括频率在近似60和90GHz之间的毫米波。
20.如权利要求16所述的片透镜阵列天线系统,其中所述毫米波透镜包括至少第一和第二层毫米波电介质材料,
其中所述第一层的毫米波电介质材料的介电常数比所述第二层的毫米波电介质材料的介电常数高,以及
其中所述第一层比所述第二层更加靠近所述片阵列天线。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2006/000256 WO2007136289A1 (en) | 2006-05-23 | 2006-05-23 | Millimeter-wave chip-lens array antenna systems for wireless networks |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101427422A true CN101427422A (zh) | 2009-05-06 |
CN101427422B CN101427422B (zh) | 2013-08-07 |
Family
ID=37697865
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680054323.2A Expired - Fee Related CN101427422B (zh) | 2006-05-23 | 2006-05-23 | 用于无线网络的毫米波片透镜阵列天线系统 |
CN200680054319.6A Expired - Fee Related CN101427487B (zh) | 2006-05-23 | 2006-06-16 | 使用毫米波通信的具有天花板反射器的毫米波室内无线个域网和方法 |
CN200680054334.0A Expired - Fee Related CN101427420B (zh) | 2006-05-23 | 2006-06-16 | 用于使用毫米波信号进行通信的毫米波反射器天线系统和方法 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680054319.6A Expired - Fee Related CN101427487B (zh) | 2006-05-23 | 2006-06-16 | 使用毫米波通信的具有天花板反射器的毫米波室内无线个域网和方法 |
CN200680054334.0A Expired - Fee Related CN101427420B (zh) | 2006-05-23 | 2006-06-16 | 用于使用毫米波信号进行通信的毫米波反射器天线系统和方法 |
Country Status (6)
Country | Link |
---|---|
US (3) | US8193994B2 (zh) |
EP (3) | EP2025045B1 (zh) |
JP (1) | JP2009538034A (zh) |
CN (3) | CN101427422B (zh) |
AT (2) | ATE509391T1 (zh) |
WO (3) | WO2007136289A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102956975A (zh) * | 2011-08-31 | 2013-03-06 | 深圳光启高等理工研究院 | 一种喇叭天线 |
CN109643839A (zh) * | 2016-09-07 | 2019-04-16 | 康普技术有限责任公司 | 适合用于蜂窝和其它通信系统的多频带多波束透镜式天线 |
CN111433975A (zh) * | 2017-12-19 | 2020-07-17 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
CN111466054A (zh) * | 2017-12-19 | 2020-07-28 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
CN111834756A (zh) * | 2019-04-15 | 2020-10-27 | 华为技术有限公司 | 天线阵列及无线设备 |
CN111835391A (zh) * | 2019-04-22 | 2020-10-27 | 现代自动车株式会社 | 车辆、天线系统及其控制方法 |
CN112261728A (zh) * | 2020-12-22 | 2021-01-22 | 之江实验室 | 一种基于透镜阵列的波束选择矩阵设计方法 |
CN114512824A (zh) * | 2022-03-11 | 2022-05-17 | 电子科技大学 | 基于共腔罗特曼透镜的毫米波十字扫描多波束阵列天线 |
Families Citing this family (315)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7193562B2 (en) | 2004-11-22 | 2007-03-20 | Ruckus Wireless, Inc. | Circuit board having a peripheral antenna apparatus with selectable antenna elements |
US7292198B2 (en) | 2004-08-18 | 2007-11-06 | Ruckus Wireless, Inc. | System and method for an omnidirectional planar antenna apparatus with selectable elements |
US7358912B1 (en) | 2005-06-24 | 2008-04-15 | Ruckus Wireless, Inc. | Coverage antenna apparatus with selectable horizontal and vertical polarization elements |
US7893882B2 (en) * | 2007-01-08 | 2011-02-22 | Ruckus Wireless, Inc. | Pattern shaping of RF emission patterns |
WO2007136289A1 (en) | 2006-05-23 | 2007-11-29 | Intel Corporation | Millimeter-wave chip-lens array antenna systems for wireless networks |
EP2022187B1 (en) * | 2006-05-23 | 2011-03-16 | Intel Corporation | Millimeter-wave communication system for an indoor area |
US8320942B2 (en) * | 2006-06-13 | 2012-11-27 | Intel Corporation | Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
US8712341B2 (en) * | 2007-01-30 | 2014-04-29 | Intellectual Discovery Co., Ltd. | Method and apparatus for transmitting and receiving a signal in a communication system |
US9276656B2 (en) | 2007-02-19 | 2016-03-01 | Corning Optical Communications Wireless Ltd | Method and system for improving uplink performance |
US20100054746A1 (en) | 2007-07-24 | 2010-03-04 | Eric Raymond Logan | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
US8175459B2 (en) | 2007-10-12 | 2012-05-08 | Corning Cable Systems Llc | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
EP2203799A4 (en) | 2007-10-22 | 2017-05-17 | Mobileaccess Networks Ltd. | Communication system using low bandwidth wires |
US8175649B2 (en) | 2008-06-20 | 2012-05-08 | Corning Mobileaccess Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
US8644844B2 (en) * | 2007-12-20 | 2014-02-04 | Corning Mobileaccess Ltd. | Extending outdoor location based services and applications into enclosed areas |
DE102008008715A1 (de) | 2008-02-11 | 2009-08-13 | Krohne Meßtechnik GmbH & Co KG | Dielektrische Antenne |
US20090209216A1 (en) * | 2008-02-20 | 2009-08-20 | Sony Corporation | Reflector for wireless television transmissions |
US8335203B2 (en) * | 2008-03-11 | 2012-12-18 | Intel Corporation | Systems and methods for polling for dynamic slot reservation |
JP5556072B2 (ja) * | 2009-01-07 | 2014-07-23 | ソニー株式会社 | 半導体装置、その製造方法、ミリ波誘電体内伝送装置 |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
JP5480916B2 (ja) | 2009-02-03 | 2014-04-23 | コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー | 光ファイバベースの分散型アンテナシステム、構成要素、及びその較正のための関連の方法 |
EP2394378A1 (en) | 2009-02-03 | 2011-12-14 | Corning Cable Systems LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
US8897215B2 (en) | 2009-02-08 | 2014-11-25 | Corning Optical Communications Wireless Ltd | Communication system using cables carrying ethernet signals |
US8217843B2 (en) | 2009-03-13 | 2012-07-10 | Ruckus Wireless, Inc. | Adjustment of radiation patterns utilizing a position sensor |
DE102010028881A1 (de) * | 2009-06-03 | 2010-12-09 | Continental Teves Ag & Co. Ohg | Fahrzeugantennenvorrichtung mit horizontaler Hauptstrahlrichtung |
US8264548B2 (en) * | 2009-06-23 | 2012-09-11 | Sony Corporation | Steering mirror for TV receiving high frequency wireless video |
US9590733B2 (en) | 2009-07-24 | 2017-03-07 | Corning Optical Communications LLC | Location tracking using fiber optic array cables and related systems and methods |
US8548330B2 (en) | 2009-07-31 | 2013-10-01 | Corning Cable Systems Llc | Sectorization in distributed antenna systems, and related components and methods |
WO2011056256A1 (en) * | 2009-11-06 | 2011-05-12 | Viasat, Inc. | Automated beam peaking satellite ground terminal |
US8280259B2 (en) | 2009-11-13 | 2012-10-02 | Corning Cable Systems Llc | Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication |
JP5229915B2 (ja) * | 2009-12-10 | 2013-07-03 | シャープ株式会社 | ミリ波受信装置、ミリ波受信装置の取付構造およびミリ波送受信装置 |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
EP2360785A1 (en) * | 2010-02-15 | 2011-08-24 | BAE SYSTEMS plc | Antenna system |
TR201906393T4 (tr) * | 2010-02-15 | 2019-05-21 | Bae Systems Plc | Anten sistemi. |
WO2011123336A1 (en) | 2010-03-31 | 2011-10-06 | Corning Cable Systems Llc | Localization services in optical fiber-based distributed communications components and systems, and related methods |
US9525488B2 (en) | 2010-05-02 | 2016-12-20 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
US20110268446A1 (en) | 2010-05-02 | 2011-11-03 | Cune William P | Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods |
US8570914B2 (en) | 2010-08-09 | 2013-10-29 | Corning Cable Systems Llc | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
CN103119865A (zh) | 2010-08-16 | 2013-05-22 | 康宁光缆系统有限责任公司 | 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法 |
JP2012078172A (ja) * | 2010-09-30 | 2012-04-19 | Panasonic Corp | 無線通信装置 |
FR2965980B1 (fr) * | 2010-10-06 | 2013-06-28 | St Microelectronics Sa | Reseau d'antennes pour dispositif d'emission/reception de signaux de longueur d'onde du type micro-onde, millimetrique ou terahertz |
US9160449B2 (en) | 2010-10-13 | 2015-10-13 | Ccs Technology, Inc. | Local power management for remote antenna units in distributed antenna systems |
US9252874B2 (en) | 2010-10-13 | 2016-02-02 | Ccs Technology, Inc | Power management for remote antenna units in distributed antenna systems |
US8816907B2 (en) * | 2010-11-08 | 2014-08-26 | Blinq Wireless Inc. | System and method for high performance beam forming with small antenna form factor |
EP2643947B1 (en) | 2010-11-24 | 2018-09-19 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods |
US11296504B2 (en) | 2010-11-24 | 2022-04-05 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
WO2012090195A1 (en) * | 2010-12-30 | 2012-07-05 | Beam Networks Ltd. | An indoor wireless network with ceiling- mounted repeaters |
US8797211B2 (en) | 2011-02-10 | 2014-08-05 | International Business Machines Corporation | Millimeter-wave communications using a reflector |
WO2012115843A1 (en) | 2011-02-21 | 2012-08-30 | Corning Cable Systems Llc | Providing digital data services as electrical signals and radio-frequency (rf) communications over optical fiber in distributed communications systems, and related components and methods |
WO2012148938A1 (en) | 2011-04-29 | 2012-11-01 | Corning Cable Systems Llc | Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods |
CN103609146B (zh) | 2011-04-29 | 2017-05-31 | 康宁光缆系统有限责任公司 | 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置 |
WO2012161612A1 (en) | 2011-05-23 | 2012-11-29 | Autonomous Non-Commercial Organization "Research Institute "Sitronics Labs"" | Electronically beam steerable antenna device |
WO2013058673A1 (en) | 2011-10-20 | 2013-04-25 | Limited Liability Company "Radio Gigabit" | System and method of relay communication with electronic beam adjustment |
EP2769275B1 (en) | 2011-10-21 | 2021-05-12 | Google LLC | User-friendly, network connected learning programmable device and related method |
US8756668B2 (en) | 2012-02-09 | 2014-06-17 | Ruckus Wireless, Inc. | Dynamic PSK for hotspots |
US10186750B2 (en) | 2012-02-14 | 2019-01-22 | Arris Enterprises Llc | Radio frequency antenna array with spacing element |
US9634403B2 (en) | 2012-02-14 | 2017-04-25 | Ruckus Wireless, Inc. | Radio frequency emission pattern shaping |
EP2829152A2 (en) | 2012-03-23 | 2015-01-28 | Corning Optical Communications Wireless Ltd. | Radio-frequency integrated circuit (rfic) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
WO2013148986A1 (en) | 2012-03-30 | 2013-10-03 | Corning Cable Systems Llc | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods |
US9092610B2 (en) | 2012-04-04 | 2015-07-28 | Ruckus Wireless, Inc. | Key assignment for a brand |
US9781553B2 (en) | 2012-04-24 | 2017-10-03 | Corning Optical Communications LLC | Location based services in a distributed communication system, and related components and methods |
EP2842245A1 (en) | 2012-04-25 | 2015-03-04 | Corning Optical Communications LLC | Distributed antenna system architectures |
WO2013181247A1 (en) | 2012-05-29 | 2013-12-05 | Corning Cable Systems Llc | Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US20140368048A1 (en) * | 2013-05-10 | 2014-12-18 | DvineWave Inc. | Wireless charging with reflectors |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9859757B1 (en) | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10211674B1 (en) * | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9154222B2 (en) | 2012-07-31 | 2015-10-06 | Corning Optical Communications LLC | Cooling system control in distributed antenna systems |
EP2883416A1 (en) | 2012-08-07 | 2015-06-17 | Corning Optical Communications Wireless Ltd. | Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
US10257056B2 (en) | 2012-11-28 | 2019-04-09 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
WO2014085115A1 (en) | 2012-11-29 | 2014-06-05 | Corning Cable Systems Llc | HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs) |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
US9158864B2 (en) | 2012-12-21 | 2015-10-13 | Corning Optical Communications Wireless Ltd | Systems, methods, and devices for documenting a location of installed equipment |
US9173221B2 (en) * | 2013-01-23 | 2015-10-27 | Intel Corporation | Apparatus, system and method of establishing a wireless beamformed link |
US9497706B2 (en) | 2013-02-20 | 2016-11-15 | Corning Optical Communications Wireless Ltd | Power management in distributed antenna systems (DASs), and related components, systems, and methods |
US9413079B2 (en) * | 2013-03-13 | 2016-08-09 | Intel Corporation | Single-package phased array module with interleaved sub-arrays |
RU2530330C1 (ru) | 2013-03-22 | 2014-10-10 | Общество с ограниченной ответственностью "Радио Гигабит" | Станция радиорелейной связи со сканирующей антенной |
US9843763B2 (en) | 2013-05-10 | 2017-12-12 | Energous Corporation | TV system with wireless power transmitter |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
EP3008828B1 (en) | 2013-06-12 | 2017-08-09 | Corning Optical Communications Wireless Ltd. | Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass) |
CN105452951B (zh) | 2013-06-12 | 2018-10-19 | 康宁光电通信无线公司 | 电压控制式光学定向耦合器 |
US9413078B2 (en) | 2013-06-16 | 2016-08-09 | Siklu Communication ltd. | Millimeter-wave system with beam direction by switching sources |
US9806428B2 (en) | 2013-06-16 | 2017-10-31 | Siklu Communication ltd. | Systems and methods for forming, directing, and narrowing communication beams |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
EP3039814B1 (en) | 2013-08-28 | 2018-02-21 | Corning Optical Communications Wireless Ltd. | Power management for distributed communication systems, and related components, systems, and methods |
US9780457B2 (en) * | 2013-09-09 | 2017-10-03 | Commscope Technologies Llc | Multi-beam antenna with modular luneburg lens and method of lens manufacture |
US9887459B2 (en) | 2013-09-27 | 2018-02-06 | Raytheon Bbn Technologies Corp. | Reconfigurable aperture for microwave transmission and detection |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
WO2015063758A1 (en) | 2013-10-28 | 2015-05-07 | Corning Optical Communications Wireless Ltd. | Unified optical fiber-based distributed antenna systems (dass) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods |
WO2015079435A1 (en) | 2013-11-26 | 2015-06-04 | Corning Optical Communications Wireless Ltd. | Selective activation of communications services on power-up of a remote unit(s) in a distributed antenna system (das) based on power consumption |
EP2884580B1 (en) * | 2013-12-12 | 2019-10-09 | Electrolux Appliances Aktiebolag | Antenna arrangement and kitchen apparatus |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9509133B2 (en) | 2014-06-27 | 2016-11-29 | Corning Optical Communications Wireless Ltd | Protection of distributed antenna systems |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9653861B2 (en) | 2014-09-17 | 2017-05-16 | Corning Optical Communications Wireless Ltd | Interconnection of hardware components |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9184960B1 (en) | 2014-09-25 | 2015-11-10 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US10659163B2 (en) | 2014-09-25 | 2020-05-19 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
WO2016071902A1 (en) | 2014-11-03 | 2016-05-12 | Corning Optical Communications Wireless Ltd. | Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement |
WO2016075696A1 (en) | 2014-11-13 | 2016-05-19 | Corning Optical Communications Wireless Ltd. | Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
EP3235336A1 (en) | 2014-12-18 | 2017-10-25 | Corning Optical Communications Wireless Ltd. | Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
WO2016098111A1 (en) | 2014-12-18 | 2016-06-23 | Corning Optical Communications Wireless Ltd. | Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass) |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US10116058B2 (en) * | 2015-02-13 | 2018-10-30 | Samsung Electronics Co., Ltd. | Multi-aperture planar lens antenna system |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
US20160249365A1 (en) | 2015-02-19 | 2016-08-25 | Corning Optical Communications Wireless Ltd. | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das) |
US9785175B2 (en) | 2015-03-27 | 2017-10-10 | Corning Optical Communications Wireless, Ltd. | Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs) |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10103434B2 (en) * | 2015-09-15 | 2018-10-16 | Intel Corporation | Millimeter-wave high-gain steerable reflect array-feeding array antenna in a wireless local area networks |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
CN105206945B (zh) * | 2015-09-22 | 2018-04-10 | 北京航空航天大学 | 一种基于毫米波线性天线阵列摆向设计的性能优化方法 |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10135286B2 (en) | 2015-12-24 | 2018-11-20 | Energous Corporation | Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10263476B2 (en) | 2015-12-29 | 2019-04-16 | Energous Corporation | Transmitter board allowing for modular antenna configurations in wireless power transmission systems |
CN108604914A (zh) * | 2016-01-27 | 2018-09-28 | 斯塔里有限公司 | 高频无线接入网络 |
JP6510439B2 (ja) * | 2016-02-23 | 2019-05-08 | 株式会社Soken | アンテナ装置 |
US9648580B1 (en) | 2016-03-23 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
DE102016006875A1 (de) | 2016-06-06 | 2017-12-07 | Kathrein-Werke Kg | Transceiver-System |
JP6643203B2 (ja) * | 2016-07-26 | 2020-02-12 | 株式会社Soken | レーダ装置 |
DE102016213703B4 (de) * | 2016-07-26 | 2018-04-26 | Volkswagen Aktiengesellschaft | Vorrichtung, Fahrzeug, Verfahren, Computerprogramm und Funksystem zur Funkversorgung in einem vordefinierten Raum |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
JP6691273B2 (ja) | 2016-12-12 | 2020-04-28 | エナージャス コーポレイション | 配送される無線電力を最大化するために近接場充電パッドのアンテナ区域を選択的に活性化する方法 |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US11011942B2 (en) | 2017-03-30 | 2021-05-18 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
WO2019060287A1 (en) * | 2017-09-20 | 2019-03-28 | Commscope Technologies Llc | METHODS OF CALIBRATION OF MILLIMETER WAVE ANTENNA ARRAYS |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US10784586B2 (en) * | 2017-10-22 | 2020-09-22 | MMRFIC Technology Pvt. Ltd. | Radio frequency antenna incorporating transmitter and receiver feeder with reduced occlusion |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
CN108055668B (zh) * | 2017-11-14 | 2023-06-30 | 南京海得逻捷信息科技有限公司 | 毫米波室内无源覆盖方法 |
CN107682875B (zh) * | 2017-11-14 | 2023-06-06 | 南京海得逻捷信息科技有限公司 | 毫米波室外智能无源覆盖方法 |
CN107682873B (zh) * | 2017-11-14 | 2023-08-08 | 南京海得逻捷信息科技有限公司 | 毫米波室外无源覆盖方法 |
CN107708134B (zh) * | 2017-11-14 | 2023-06-09 | 南京海得逻捷信息科技有限公司 | 毫米波室内智能无源覆盖方法 |
KR102531003B1 (ko) * | 2017-12-19 | 2023-05-10 | 삼성전자 주식회사 | 렌즈를 포함하는 빔포밍 안테나 모듈 |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
EP3537537B1 (en) | 2018-03-07 | 2023-11-22 | Nokia Solutions and Networks Oy | A reflector antenna arrangement |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
CN108987945B (zh) * | 2018-07-24 | 2020-08-04 | 维沃移动通信有限公司 | 一种终端设备 |
CN108987944B (zh) * | 2018-07-24 | 2021-04-23 | 维沃移动通信有限公司 | 一种终端设备 |
WO2020070375A1 (en) * | 2018-10-02 | 2020-04-09 | Teknologian Tutkimuskeskus Vtt Oy | Phased array antenna system with a fixed feed antenna |
JP7500431B2 (ja) * | 2018-11-05 | 2024-06-17 | ソフトバンク株式会社 | エリア構築方法 |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
US20200205204A1 (en) * | 2018-12-20 | 2020-06-25 | Arris Enterprises Llc | Wireless network topology using specular and diffused reflections |
CN113597723A (zh) | 2019-01-28 | 2021-11-02 | 艾诺格思公司 | 用于无线电力传输的小型化天线的系统和方法 |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
JP7396348B2 (ja) * | 2019-03-18 | 2023-12-12 | 株式会社オートネットワーク技術研究所 | 移動体用アンテナ装置及び通信装置 |
US11043743B2 (en) | 2019-04-30 | 2021-06-22 | Intel Corporation | High performance lens antenna systems |
US11258182B2 (en) * | 2019-05-31 | 2022-02-22 | Metawave Corporation | Meta-structure based reflectarrays for enhanced wireless applications |
CN111180904B (zh) * | 2020-02-17 | 2022-01-21 | 深圳市聚慧达科技有限公司 | 一种5g毫米波天线及其制造方法 |
US11962098B2 (en) * | 2020-05-21 | 2024-04-16 | Qualcomm Incorporated | Wireless communications using multiple antenna arrays and a lens array |
WO2023168513A1 (en) * | 2022-03-11 | 2023-09-14 | Huawei Technologies Canada Co., Ltd. | Device for extending a scan range of a phased antenna array |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0212963A2 (en) * | 1985-08-20 | 1987-03-04 | Stc Plc | Omni-directional antenna |
WO2003052870A1 (en) * | 2001-12-13 | 2003-06-26 | Mems Optical, Inc. | Optical disc head including a bowtie grating antenna and slider for optical focusing, and method for making |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3922682A (en) | 1974-05-31 | 1975-11-25 | Communications Satellite Corp | Aberration correcting subreflectors for toroidal reflector antennas |
US4321604A (en) * | 1977-10-17 | 1982-03-23 | Hughes Aircraft Company | Broadband group delay waveguide lens |
US4224626A (en) | 1978-10-10 | 1980-09-23 | The United States Of America As Represented By The Secretary Of The Navy | Ellipticized lens providing balanced astigmatism |
DE3431986A1 (de) | 1984-08-30 | 1986-03-06 | Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn | Polarisationstrennender reflektor |
JPH01155174A (ja) | 1987-12-11 | 1989-06-19 | Sanyo Electric Co Ltd | アイスクリーム用冷凍ショーケース |
DE3840451C2 (de) | 1988-12-01 | 1998-10-22 | Daimler Benz Aerospace Ag | Linsenantenne |
US5206658A (en) * | 1990-10-31 | 1993-04-27 | Rockwell International Corporation | Multiple beam antenna system |
US5496966A (en) * | 1991-06-12 | 1996-03-05 | Bellsouth Corporation | Method for controlling indoor electromagnetic signal propagation |
FR2685551B1 (fr) | 1991-12-23 | 1994-01-28 | Alcatel Espace | Antenne active "offset" a double reflecteurs. |
JP2675242B2 (ja) | 1992-12-01 | 1997-11-12 | 松山株式会社 | 代掻装置 |
JPH0799038B2 (ja) | 1993-01-06 | 1995-10-25 | 株式会社ミリウェイブ | 構内情報通信システム |
US5426443A (en) * | 1994-01-18 | 1995-06-20 | Jenness, Jr.; James R. | Dielectric-supported reflector system |
JPH0884107A (ja) | 1994-09-12 | 1996-03-26 | Nippon Telegr & Teleph Corp <Ntt> | 移動無線方式 |
WO1996010277A1 (en) | 1994-09-28 | 1996-04-04 | The Whitaker Corporation | Planar high gain microwave antenna |
JPH08321799A (ja) | 1995-05-25 | 1996-12-03 | Nippondenso Co Ltd | 無線通信装置及び通信システム |
JPH0951293A (ja) | 1995-05-30 | 1997-02-18 | Matsushita Electric Ind Co Ltd | 室内無線通信システム |
JP2817714B2 (ja) * | 1996-05-30 | 1998-10-30 | 日本電気株式会社 | レンズアンテナ |
US6018659A (en) * | 1996-10-17 | 2000-01-25 | The Boeing Company | Airborne broadband communication network |
JP3354081B2 (ja) | 1997-08-07 | 2002-12-09 | 日本電信電話株式会社 | 無線通信装置及び無線通信方法 |
JP4087023B2 (ja) | 1998-09-22 | 2008-05-14 | シャープ株式会社 | ミリ波帯信号送受信システムおよびミリ波帯信号送受信システムを具備した家屋 |
SE514624C2 (sv) | 1998-12-22 | 2001-03-26 | Ericsson Telefon Ab L M | Förfarande och arrangemang för att upprätta en länk mellan två fasta noder i ett mobilradiosystem genom användning av adaptiva antenner och en reflekterande kropp |
JP3544891B2 (ja) | 1999-04-16 | 2004-07-21 | シャープ株式会社 | 無線伝送システム、及びアンテナの指向性方向の決定方法 |
DE19938643A1 (de) | 1999-08-14 | 2001-03-22 | Bosch Gmbh Robert | Innenraum-Antenne für die Kommunikation mit hohen Datenraten und mit änderbarer Antennencharakteristik |
US6246369B1 (en) | 1999-09-14 | 2001-06-12 | Navsys Corporation | Miniature phased array antenna system |
US6448930B1 (en) | 1999-10-15 | 2002-09-10 | Andrew Corporation | Indoor antenna |
US6545064B1 (en) | 1999-11-24 | 2003-04-08 | Avery Dennison Corporation | Coating composition comprising ethoxylated diacrylates |
AU2001239916A1 (en) | 2000-02-28 | 2001-09-12 | The Ohio State University | Reflective panel for wireless applications |
US6320538B1 (en) | 2000-04-07 | 2001-11-20 | Ball Aerospace & Technologies Corp. | Method and apparatus for calibrating an electronically scanned reflector |
JP3911958B2 (ja) | 2000-04-27 | 2007-05-09 | 日本ビクター株式会社 | 無線伝送方法および無線伝送システム |
US6463090B1 (en) | 2000-06-19 | 2002-10-08 | Bertrand Dorfman | Communication in high rise buildings |
US7366471B1 (en) | 2000-08-31 | 2008-04-29 | Intel Corporation | Mitigating interference between wireless systems |
US7623496B2 (en) | 2001-04-24 | 2009-11-24 | Intel Corporation | Managing bandwidth in network supporting variable bit rate |
US6815739B2 (en) | 2001-05-18 | 2004-11-09 | Corporation For National Research Initiatives | Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates |
US7130904B2 (en) | 2001-08-16 | 2006-10-31 | Intel Corporation | Multiple link layer wireless access point |
JP2003124942A (ja) | 2001-10-18 | 2003-04-25 | Communication Research Laboratory | 非対称無線通信システム |
US7133374B2 (en) | 2002-03-19 | 2006-11-07 | Intel Corporation | Processing wireless packets to reduce host power consumption |
US20030228857A1 (en) * | 2002-06-06 | 2003-12-11 | Hitachi, Ltd. | Optimum scan for fixed-wireless smart antennas |
US20040003059A1 (en) | 2002-06-26 | 2004-01-01 | Kitchin Duncan M. | Active key for wireless device configuration |
US8762551B2 (en) | 2002-07-30 | 2014-06-24 | Intel Corporation | Point coordinator delegation in a wireless network |
US7787419B2 (en) * | 2002-09-17 | 2010-08-31 | Broadcom Corporation | System and method for providing a mesh network using a plurality of wireless access points (WAPs) |
JP3831696B2 (ja) | 2002-09-20 | 2006-10-11 | 株式会社日立製作所 | ネットワーク管理装置およびネットワーク管理方法 |
US7260392B2 (en) | 2002-09-25 | 2007-08-21 | Intel Corporation | Seamless teardown of direct link communication in a wireless LAN |
KR100482286B1 (ko) | 2002-09-27 | 2005-04-13 | 한국전자통신연구원 | 선택형 빔형성을 통해 수신성능을 개선하는 디지털 방송수신 장치 |
US7385926B2 (en) | 2002-11-25 | 2008-06-10 | Intel Corporation | Apparatus to speculatively identify packets for transmission and method therefor |
US7394873B2 (en) | 2002-12-18 | 2008-07-01 | Intel Corporation | Adaptive channel estimation for orthogonal frequency division multiplexing systems or the like |
US7613160B2 (en) | 2002-12-24 | 2009-11-03 | Intel Corporation | Method and apparatus to establish communication with wireless communication networks |
US7460876B2 (en) | 2002-12-30 | 2008-12-02 | Intel Corporation | System and method for intelligent transmitted power control scheme |
WO2004088793A1 (en) * | 2003-03-31 | 2004-10-14 | Bae Systems Plc | Low-profile lens antenna |
US7295806B2 (en) | 2003-05-30 | 2007-11-13 | Microsoft Corporation | Using directional antennas to enhance wireless mesh networks |
US7587173B2 (en) | 2003-06-19 | 2009-09-08 | Interdigital Technology Corporation | Antenna steering for an access point based upon spatial diversity |
CN1820429B (zh) | 2003-07-29 | 2010-10-06 | 独立行政法人情报通信研究机构 | 毫米波段无线通信方法和系统 |
US7373112B2 (en) | 2003-08-08 | 2008-05-13 | Intel Corporation | Trained data transmission for communication systems |
US7394858B2 (en) | 2003-08-08 | 2008-07-01 | Intel Corporation | Systems and methods for adaptive bit loading in a multiple antenna orthogonal frequency division multiplexed communication system |
US7286609B2 (en) | 2003-08-08 | 2007-10-23 | Intel Corporation | Adaptive multicarrier wireless communication system, apparatus and associated methods |
US7245879B2 (en) | 2003-08-08 | 2007-07-17 | Intel Corporation | Apparatus and associated methods to perform intelligent transmit power control with subcarrier puncturing |
US7352696B2 (en) | 2003-08-08 | 2008-04-01 | Intel Corporation | Method and apparatus to select an adaptation technique in a wireless network |
US7948428B2 (en) * | 2003-08-12 | 2011-05-24 | Trex Enterprises Corp. | Millimeter wave imaging system with frequency scanning antenna |
US7639643B2 (en) | 2003-09-17 | 2009-12-29 | Intel Corporation | Channel estimation feedback in an orthogonal frequency division multiplexing system or the like |
US7688766B2 (en) | 2003-09-17 | 2010-03-30 | Intel Corporation | Modulation scheme for orthogonal frequency division multiplexing systems or the like |
US7349436B2 (en) | 2003-09-30 | 2008-03-25 | Intel Corporation | Systems and methods for high-throughput wideband wireless local area network communications |
US7551581B2 (en) | 2003-09-30 | 2009-06-23 | Intel Corporation | Methods for transmitting closely-spaced packets in WLAN devices and systems |
US7447232B2 (en) | 2003-09-30 | 2008-11-04 | Intel Corporation | Data burst transmission methods in WLAN devices and systems |
JP4800963B2 (ja) | 2003-11-13 | 2011-10-26 | カリフォルニア インスティテュート オヴ テクノロジー | 通信とレーダー用のモノリシックシリコンベース位相配列受信機 |
US7286606B2 (en) | 2003-12-04 | 2007-10-23 | Intel Corporation | System and method for channelization recognition in a wideband communication system |
US7085595B2 (en) | 2003-12-16 | 2006-08-01 | Intel Corporation | Power saving in a wireless local area network |
US20050190800A1 (en) | 2003-12-17 | 2005-09-01 | Intel Corporation | Method and apparatus for estimating noise power per subcarrier in a multicarrier system |
US7570695B2 (en) | 2003-12-18 | 2009-08-04 | Intel Corporation | Method and adaptive bit interleaver for wideband systems using adaptive bit loading |
US20060007898A1 (en) | 2003-12-23 | 2006-01-12 | Maltsev Alexander A | Method and apparatus to provide data packet |
KR100561630B1 (ko) | 2003-12-27 | 2006-03-20 | 한국전자통신연구원 | 성형 반사판을 이용한 삼중 대역 하이브리드 안테나 |
US7885178B2 (en) | 2003-12-29 | 2011-02-08 | Intel Corporation | Quasi-parallel multichannel receivers for wideband orthogonal frequency division multiplexed communications and associated methods |
US7649833B2 (en) | 2003-12-29 | 2010-01-19 | Intel Corporation | Multichannel orthogonal frequency division multiplexed receivers with antenna selection and maximum-ratio combining and associated methods |
US7593347B2 (en) | 2003-12-29 | 2009-09-22 | Intel Corporation | Method and apparatus to exchange channel information |
US7489621B2 (en) | 2003-12-30 | 2009-02-10 | Alexander A Maltsev | Adaptive puncturing technique for multicarrier systems |
US20050141657A1 (en) | 2003-12-30 | 2005-06-30 | Maltsev Alexander A. | Adaptive channel equalizer for wireless system |
US7333556B2 (en) | 2004-01-12 | 2008-02-19 | Intel Corporation | System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel |
US7345989B2 (en) | 2004-01-12 | 2008-03-18 | Intel Corporation | Adaptive channelization scheme for high throughput multicarrier systems |
US7324605B2 (en) | 2004-01-12 | 2008-01-29 | Intel Corporation | High-throughput multicarrier communication systems and methods for exchanging channel state information |
US7570953B2 (en) | 2004-01-12 | 2009-08-04 | Intel Corporation | Multicarrier communication system and methods for link adaptation using uniform bit loading and subcarrier puncturing |
JP2005244362A (ja) | 2004-02-24 | 2005-09-08 | Sony Corp | ミリ波通信システム、ミリ波送信装置およびミリ波受信装置 |
WO2005114785A1 (ja) | 2004-05-21 | 2005-12-01 | Murata Manufacturing Co., Ltd. | アンテナ装置およびこれを用いたレーダ装置 |
US20050286544A1 (en) | 2004-06-25 | 2005-12-29 | Kitchin Duncan M | Scalable transmit scheduling architecture |
US7570696B2 (en) | 2004-06-25 | 2009-08-04 | Intel Corporation | Multiple input multiple output multicarrier communication system and methods with quantized beamforming feedback |
US7336716B2 (en) | 2004-06-30 | 2008-02-26 | Intel Corporation | Power amplifier linearization methods and apparatus using predistortion in the frequency domain |
US7463697B2 (en) | 2004-09-28 | 2008-12-09 | Intel Corporation | Multicarrier transmitter and methods for generating multicarrier communication signals with power amplifier predistortion and linearization |
KR20060029001A (ko) | 2004-09-30 | 2006-04-04 | 주식회사 케이티 | 이동중계 시스템에서 다수의 지향성 안테나를 이용한무선링크 구성 방법 |
EP1659813B1 (en) | 2004-11-19 | 2009-04-29 | Sony Deutschland GmbH | Communication system and method |
US7649861B2 (en) | 2004-11-30 | 2010-01-19 | Intel Corporation | Multiple antenna multicarrier communication system and method with reduced mobile-station processing |
EP1969388A1 (en) * | 2005-09-23 | 2008-09-17 | California Institute Of Technology | A mm-WAVE FULLY INTEGRATED PHASED ARRAY RECEIVER AND TRANSMITTER WITH ON CHIP ANTENNAS |
US7653163B2 (en) | 2005-10-26 | 2010-01-26 | Intel Corporation | Systems for communicating using multiple frequency bands in a wireless network |
US7720036B2 (en) | 2005-10-26 | 2010-05-18 | Intel Corporation | Communication within a wireless network using multiple frequency bands |
US20070099669A1 (en) | 2005-10-26 | 2007-05-03 | Sadri Ali S | Communication signaling using multiple frequency bands in a wireless network |
US20070097891A1 (en) | 2005-10-27 | 2007-05-03 | Kitchin Duncan M | Unlicensed band heterogeneous network coexistence algorithm |
WO2007136289A1 (en) | 2006-05-23 | 2007-11-29 | Intel Corporation | Millimeter-wave chip-lens array antenna systems for wireless networks |
EP2022187B1 (en) * | 2006-05-23 | 2011-03-16 | Intel Corporation | Millimeter-wave communication system for an indoor area |
US8320942B2 (en) | 2006-06-13 | 2012-11-27 | Intel Corporation | Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering |
-
2006
- 2006-05-23 WO PCT/RU2006/000256 patent/WO2007136289A1/en active Application Filing
- 2006-05-23 AT AT06824417T patent/ATE509391T1/de not_active IP Right Cessation
- 2006-05-23 CN CN200680054323.2A patent/CN101427422B/zh not_active Expired - Fee Related
- 2006-05-23 US US12/301,693 patent/US8193994B2/en not_active Expired - Fee Related
- 2006-05-23 EP EP06824417A patent/EP2025045B1/en not_active Not-in-force
- 2006-06-16 US US12/301,792 patent/US20100156721A1/en not_active Abandoned
- 2006-06-16 AT AT06835789T patent/ATE510364T1/de not_active IP Right Cessation
- 2006-06-16 CN CN200680054319.6A patent/CN101427487B/zh not_active Expired - Fee Related
- 2006-06-16 EP EP06824430A patent/EP2022135A1/en not_active Withdrawn
- 2006-06-16 WO PCT/RU2006/000315 patent/WO2007136292A1/en active Application Filing
- 2006-06-16 CN CN200680054334.0A patent/CN101427420B/zh not_active Expired - Fee Related
- 2006-06-16 EP EP06835789A patent/EP2022188B1/en not_active Not-in-force
- 2006-06-16 US US12/301,669 patent/US8395558B2/en not_active Expired - Fee Related
- 2006-06-16 JP JP2009510911A patent/JP2009538034A/ja active Pending
- 2006-06-16 WO PCT/RU2006/000316 patent/WO2007136293A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0212963A2 (en) * | 1985-08-20 | 1987-03-04 | Stc Plc | Omni-directional antenna |
WO2003052870A1 (en) * | 2001-12-13 | 2003-06-26 | Mems Optical, Inc. | Optical disc head including a bowtie grating antenna and slider for optical focusing, and method for making |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102956975B (zh) * | 2011-08-31 | 2015-07-01 | 深圳光启高等理工研究院 | 一种喇叭天线 |
CN102956975A (zh) * | 2011-08-31 | 2013-03-06 | 深圳光启高等理工研究院 | 一种喇叭天线 |
CN109643839B (zh) * | 2016-09-07 | 2021-02-19 | 康普技术有限责任公司 | 适合用于蜂窝和其它通信系统的多频带多波束透镜式天线 |
CN109643839A (zh) * | 2016-09-07 | 2019-04-16 | 康普技术有限责任公司 | 适合用于蜂窝和其它通信系统的多频带多波束透镜式天线 |
CN111433975A (zh) * | 2017-12-19 | 2020-07-17 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
CN111466054A (zh) * | 2017-12-19 | 2020-07-28 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
CN111466054B (zh) * | 2017-12-19 | 2024-09-03 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
CN111433975B (zh) * | 2017-12-19 | 2024-03-29 | 三星电子株式会社 | 包括透镜的波束成形天线模块 |
US11133597B2 (en) | 2019-04-15 | 2021-09-28 | Huawei Technologies Co., Ltd. | Antenna array and wireless device |
CN111834756B (zh) * | 2019-04-15 | 2021-10-01 | 华为技术有限公司 | 天线阵列及无线设备 |
CN111834756A (zh) * | 2019-04-15 | 2020-10-27 | 华为技术有限公司 | 天线阵列及无线设备 |
CN111835391A (zh) * | 2019-04-22 | 2020-10-27 | 现代自动车株式会社 | 车辆、天线系统及其控制方法 |
CN112261728A (zh) * | 2020-12-22 | 2021-01-22 | 之江实验室 | 一种基于透镜阵列的波束选择矩阵设计方法 |
CN114512824A (zh) * | 2022-03-11 | 2022-05-17 | 电子科技大学 | 基于共腔罗特曼透镜的毫米波十字扫描多波束阵列天线 |
CN114512824B (zh) * | 2022-03-11 | 2023-10-24 | 电子科技大学 | 基于共腔罗特曼透镜的毫米波十字扫描多波束阵列天线 |
Also Published As
Publication number | Publication date |
---|---|
CN101427422B (zh) | 2013-08-07 |
EP2025045B1 (en) | 2011-05-11 |
CN101427487B (zh) | 2013-04-24 |
US20090219903A1 (en) | 2009-09-03 |
EP2022135A1 (en) | 2009-02-11 |
EP2025045A1 (en) | 2009-02-18 |
EP2022188A1 (en) | 2009-02-11 |
US20090315794A1 (en) | 2009-12-24 |
CN101427420B (zh) | 2013-05-01 |
US20100156721A1 (en) | 2010-06-24 |
ATE510364T1 (de) | 2011-06-15 |
EP2022188B1 (en) | 2011-05-18 |
WO2007136292A1 (en) | 2007-11-29 |
US8395558B2 (en) | 2013-03-12 |
ATE509391T1 (de) | 2011-05-15 |
CN101427420A (zh) | 2009-05-06 |
WO2007136289A1 (en) | 2007-11-29 |
US8193994B2 (en) | 2012-06-05 |
WO2007136293A1 (en) | 2007-11-29 |
CN101427487A (zh) | 2009-05-06 |
JP2009538034A (ja) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101427422B (zh) | 用于无线网络的毫米波片透镜阵列天线系统 | |
CN109075454B (zh) | 用在无线通信系统中的带透镜的天线 | |
Hall et al. | Review of radio frequency beamforming techniques for scanned and multiple beam antennas | |
Baba et al. | A millimeter-wave antenna system for wideband 2-D beam steering | |
US20150200452A1 (en) | Planar beam steerable lens antenna system using non-uniform feed array | |
US11303040B2 (en) | Conformal phased arrays | |
RU2660385C1 (ru) | Сканирующая линзовая антенна | |
JP4778701B2 (ja) | 高周波マルチビームアンテナシステム | |
US7283102B2 (en) | Radial constrained lens | |
Maltsev et al. | Millimeter-wave toroidal lens-array antennas experimental measurements | |
Hill et al. | Cascaded Fresnel lens antenna for scan loss mitigation in millimeter-wave access points | |
Maltsev et al. | Scanning toroidal lens-array antenna with a zoned profile for 60 GHz band | |
WO2000076028A1 (en) | Hemispheroidally shaped lens and antenna system employing same | |
US20230163462A1 (en) | Antenna device with improved radiation directivity | |
Basavarajappa | A proposal of antenna topologies for 5g communication systems | |
Chakrabarti et al. | Millimeter-wave profiled lens antenna for 6G beam-steering applications | |
Ivashina et al. | Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays | |
Hassan et al. | A Sub-6GHz 5G switched-beam smart base station antenna using dual parabolic cylindrical reflectors with multiple feeds | |
Uehara et al. | A planar sector antenna for indoor high-speed wireless communication terminals | |
Arya et al. | Compact Cylindrical X-band Luneburg Lens Antenna Design | |
Thornton | Properties of spherical lens antennas for high altitude platform communications | |
Bashir et al. | Dual Beam High Gain Digitally Coded Huygens Metasurface Lens Antenna for Millimeter Wave Applications | |
Huang | Design of a switched beam antenna with 360° multibeam steering and omnidirectional capabilities for S‐X band datalink communications | |
Bodnar | Lens antennas | |
WO2024114894A1 (en) | Gradient-index lens and method of manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130807 Termination date: 20210523 |