[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101371086A - 空调装置 - Google Patents

空调装置 Download PDF

Info

Publication number
CN101371086A
CN101371086A CNA2007800027981A CN200780002798A CN101371086A CN 101371086 A CN101371086 A CN 101371086A CN A2007800027981 A CNA2007800027981 A CN A2007800027981A CN 200780002798 A CN200780002798 A CN 200780002798A CN 101371086 A CN101371086 A CN 101371086A
Authority
CN
China
Prior art keywords
refrigerant
cold
producing medium
pipe arrangement
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800027981A
Other languages
English (en)
Other versions
CN101371086B (zh
Inventor
小谷拓也
西村忠史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN101371086A publication Critical patent/CN101371086A/zh
Application granted granted Critical
Publication of CN101371086B publication Critical patent/CN101371086B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调装置,在使用制冷剂储气瓶来填充制冷剂时无需使用秤等就可掌握制冷剂储气瓶空了的状态。所述空调装置(1)使用封入制冷剂的储气瓶(90)来填充制冷剂,包括制冷剂回路(10)、填充口(P)、下游温度传感器(92)、室外侧控制部(37)和显示部(9)。制冷剂回路(10)由压缩机(21)和室外侧热交换器(23)以及室内侧膨胀阀(41、51)和室内侧热交换器(42、52)连接而成。填充口(P)用于从储气瓶(90)对制冷剂回路(10)填充制冷剂。下游温度传感器(92)设在制冷剂回路(10)中的填充口(P)附近。室外侧控制部(37)基于下游温度传感器(92)检测到的温度或过热度中的至少一方的变化来判定储气瓶(90)是否空了。显示部(9)在室外侧控制部(37)判定为储气瓶(90)空了时进行输出。

Description

空调装置
技术领域
本发明涉及对空调装置的制冷剂回路内的制冷剂量进行判定的功能,尤其涉及对由压缩机、热源侧热交换器、膨胀机构和利用侧热交换器连接而成的空调装置的制冷剂回路内的制冷剂量进行判定的功能。
背景技术
以往,例如像下面的专利文献1所示的那样,在空调装置的安装现场,在通过试运行来进行调整之前,要进行根据各设置设备的容量来填充制冷剂的作业。该空调装置利用连接中所使用的配管直径和配管长度等信息来自动地运算、显示要追加填充的制冷剂量。另外,这种制冷剂填充不仅在安装时的填充中进行,也在发生制冷剂泄漏时的再填充中和故障修理等之后的再填充等中进行。
专利文献1:日本专利特开平08-200905号公报
然而,在专利文献1所示的空调装置中,操作者要在确认自动进行运算、显示的制冷剂的追加填充量后进行制冷剂的填充作业。另外,例如在使用被封入储气瓶的制冷剂来对制冷剂回路进行填充作业时,为了填充已确认的追加填充量,有时操作者要使用多个储气瓶来进行填充。此时,由于在储气瓶空了时需要更换新的储气瓶,因此操作者要一边使用秤等来随时确认储气瓶的重量变化一边进行填充作业。
发明内容
鉴于上述问题,本发明的目的在于提供一种在使用储气瓶来进行制冷剂填充作业时无需使用秤等就可掌握储气瓶空了的情况的空调装置。
解决技术问题所采用的技术方案
第1发明的空调装置是一种使用封入制冷剂的储气瓶来填充制冷剂的空调装置,包括:制冷剂回路、填充口、第一温度传感器、填充判定部、以及输出部。制冷剂回路由压缩机和热源侧热交换器以及利用侧膨胀阀和利用侧热交换器连接而构成。填充口是用于从储气瓶对制冷剂回路填充制冷剂的端口。第一温度传感器设在制冷剂回路中的填充口附近。填充判定部基于第一温度传感器检测到的温度或过热度中的至少一方的变化来判定储气瓶是否空了。输出部在填充判定部判定为储气瓶空了时进行输出。作为此处的输出部,例如包括通过使LED亮灯、从扬声器等发声、或在显示装置中显示来进行输出的情况。
在以往的空调装置中,有时储气瓶会在制冷剂填充作业途中变空,因此需要在更换成新储气瓶后继续填充。此时,为了判断储气瓶是否空了,操作者需要使用秤等来进行随时确认储气瓶的重量变化的作业。
与此相对,在第1发明的空调装置1中,由于在制冷剂回路的制冷剂的填充口附近设有第一温度传感器,因此,可由在制冷剂回路内流动的制冷剂的温度变化来检测出已开始从制冷剂储气瓶填充制冷剂。为了可靠地检测出温度变化,此处的温度传感器最好设在制冷剂回路中的填充口附近及其下游侧。填充判定部基于第一温度传感器检测到的温度或过热度中的至少一方的变化来判定储气瓶是否空了。另外,输出部在填充判定部判定为储气瓶空了时进行输出。因此,使用储气瓶来对制冷剂回路填充制冷剂的操作者可根据来自输出部的输出结果而容易地掌握储气瓶已空的情况。
由此,填充制冷剂的操作者在填充作业中无需用秤等进行测定,无需特别注意就可根据由显示部得到的信息来掌握储气瓶已空的情况。
第2发明的空调装置是在第1发明的空调装置中,填充判定部在第一温度传感器检测到的温度或过热度中的至少一方的值成为规定判定值以上时判定为储气瓶空了。此处的规定判定值例如既可以是反映了利用侧热交换器的制冷剂的出口附近的过热度目标值的值或考虑了大气温度影响的修正量的值,也可以是第一温度传感器检测到的温度或过热度的变化率的阈值。作为此处的值,例如包括单位时间的温度变化和过热度变化等变化率等。
在此,填充判定部对温度或过热度中的至少一方的值是否成为规定判定值以上进行判定。由此,填充判定部可判断制冷剂是否处在过热状态,当处在过热状态时,可判定为储气瓶空了。
由此,能更可靠地判定储气瓶空了。
第3发明的空调装置是在第1发明或第2发明的空调装置中,填充口设在制冷剂回路中的利用侧热交换器与压缩机之间。第一温度传感器设在填充口与压缩机之间。
在此,由于填充口设在利用侧热交换器与压缩机之间,因此能可靠地掌握制冷剂的过热度。另外,由于第一温度传感器设在填充口与压缩机之间,因此能可靠地掌握从储气瓶填充后的下游侧的制冷剂的温度。
由此,能更可靠地判定储气瓶空了。
第4发明的空调装置是在第1发明至第3发明的任一个空调装置中,第一温度传感器设在填充口与压缩机之间的下游侧。空调装置还包括第二温度传感器,该第二温度传感器设在填充口的上游侧。在此,填充判定部基于利用第一温度传感器和第二温度传感器检测得到的温度之差、过热度之差、或者温度之差或过热度之差的变化来进行判定。
在此,在填充口的上游侧和填充口的下游侧这两个部位对因从储气瓶填充制冷剂而引起的在制冷剂回路内流动的制冷剂的温度变化进行检测。因此,可对来自储气瓶的制冷剂混入之前的制冷剂温度与来自储气瓶的制冷剂混入之后的制冷剂温度进行比较。由此,还可对来自储气瓶的制冷剂混入之前的制冷剂的过热度与来自储气瓶的制冷剂混入之后的制冷剂的过热度进行比较。
由此,当填充口上游的状态量和填充口下游的状态量的值变成相等时,可判断为来自储气瓶的制冷剂的填充已结束,可更准确地检测出储气瓶空了。
第5发明的空调装置是在第1发明或第2发明的空调装置中,第一温度传感器设于储气瓶与填充口之间的通过点。作为此处的储气瓶与填充口之间的通过点,例如包括在使用从主制冷剂回路分支出的配管从储气瓶进行填充时在储气瓶与主制冷剂回路的分支部分之间的通过点。
在此,第一温度传感器不是对主制冷剂回路途中的制冷剂、而是对从储气瓶向填充口供给的制冷剂的温度进行检测,因此不容易受到主制冷剂回路内的制冷剂的流量和温度的影响。另外,在从储气瓶对主制冷剂回路进行的制冷剂填充处理中,从填充开始起,当检测温度随着填充的进行而变化时,可根据从储气瓶至填充口的制冷剂的温度来推测储气瓶内的制冷剂残余量。
由此,仅用从主制冷剂回路以外的储气瓶到填充口为止的独立结构即可检测储气瓶空了。
第6发明的空调装置是在第1发明至第5发明的任一个空调装置中,还包括状态量检测传感器和制冷剂量判定装置。状态量检测传感器对制冷剂回路内的制冷剂的状态量进行检测。制冷剂量判定装置基于状态量检测传感器检测到的状态量的变化来判定是否在制冷剂回路内填充了规定量的制冷剂。在此,作为由状态量检测传感器进行检测的状态量,例如包括制冷剂回路内的制冷剂的温度、过热度以及它们的变化率等。此处的状态量检测传感器也可兼作上述第一温度传感器。
在此,可利用状态量检测传感器和制冷剂量判定装置来判断是否在制冷剂回路内填充了规定量的制冷剂。因此,无需利用秤来进行储气瓶是否空了的检测作业就可自动地掌握储气瓶已空的情况,而且,无需利用秤来进行检测作业就可自动地掌握已对制冷剂回路填充了必要量的制冷剂的情况。
由此,操作者只需在掌握储气瓶空了的状态下更换新的储气瓶,就可结束对制冷剂回路填充必要量的制冷剂的作业。
发明效果
在第1发明的空调装置中,填充制冷剂的操作者在填充作业中无需用秤等进行测定,无需特别注意就可根据由显示部得到的信息来掌握储气瓶已空的情况。
在第2发明的空调装置中,能更可靠地判定储气瓶是否空了。
在第3发明的空调装置中,能更可靠地判定储气瓶空了。
在第4发明的空调装置中,当填充口上游的状态量和填充口下游的状态量的值变成相等时,可判断为来自储气瓶的制冷剂的填充已结束,可更准确地检测出储气瓶空了的状态。
在第5发明的空调装置中,仅用从主制冷剂回路以外的储气瓶到填充口为止的独立结构即可检测储气瓶空了的状态。
在第6发明的空调装置中,操作者只需在掌握储气瓶已空的情况时更换新的储气瓶,就可结束对制冷剂回路填充必要量的制冷剂的作业。
附图说明
图1是本发明一实施形态的空调装置的概略的制冷剂回路图。
图2是空调装置的控制方框图。
图3是试运行模式的流程图。
图4是制冷剂自动填充运行的流程图。
图5是表示制冷剂量判定运行中在制冷剂回路内流动的制冷剂的状态的示意图(四通切换阀等未图示)。
图6是配管容积判定运行的流程图。
图7是表示液体制冷剂连通配管用的配管容积判定运行中空调装置的制冷循环的焓-熵图。
图8是表示气体制冷剂连通配管用的配管容积判定运行中空调装置的制冷循环的焓-熵图。
图9是初始制冷剂量判定运行的流程图。
图10是制冷剂泄漏检测运行模式的流程图。
图11是连接有空调装置和储气瓶的概略制冷剂回路图。
图12是利用多个储气瓶来填充制冷剂的流程图。
图13是表示下游温度检测器的制冷剂温度检测的曲线图。
图14是连接有另一实施形态(A)的空调装置和储气瓶的概略制冷剂回路图。
图15是另一实施形态(A)的空调装置的控制方框图。
图16是连接有另一实施形态(B)的空调装置和储气瓶的概略制冷剂回路图。
图17是另一实施形态(B)的空调装置的控制方框图。
(符号说明)
1 空调装置
2 室外单元
4、5 室内单元
6、7 制冷剂连通配管
9 输出部
10 制冷剂回路
21 压缩机
23 室外热交换器(热源侧热交换器)
37 控制部(填充判定部)
41、51 利用侧膨胀阀
42、52 室内热交换器(利用侧热交换器)
90 制冷剂储气瓶(储气瓶)
91 上游温度传感器(第二温度传感器)
92 下游温度传感器(吸入温度传感器、即第一温度传感器)
P 填充口
具体实施方式
<发明的概况>
本发明提供一种使用储气瓶来对制冷剂回路填充制冷剂的空调装置。在本发明的空调装置中,基于因从储气瓶通过填充口对制冷剂回路填充制冷剂而变动的填充口附近的制冷剂温度或过热度来确定储气瓶变空的时间。本发明的特征在于,由此来减轻使用储气瓶来对制冷剂回路填充制冷剂的操作者的负担。
下面参照附图对本发明的空调装置的实施形态进行说明。
(1)空调装置的结构
图1是本发明一实施形态的空调装置1的概略结构图。空调装置1是通过进行蒸汽压缩式的制冷循环运行来用于大楼等的室内的制冷、供暖的装置。空调装置1主要包括:一个作为热源单元的室外单元2;与其并列连接的多个(本实施形态中为两个)作为利用单元的室内单元4、5;以及连接室外单元2和室内单元4、5的作为制冷剂连通配管的液体制冷剂连通配管6和气体制冷剂连通配管7。即,本实施形态的空调装置1的蒸汽压缩式制冷剂回路10由室外单元2、室内单元4、5以及液体制冷剂连通配管6和气体制冷剂连通配管7连接而成。
在如图1所示地连接了室外单元2、室内单元4、5、液体制冷剂连通配管6和气体制冷剂连通配管7后,为了补充不足的制冷剂,利用封入制冷剂的制冷剂储气瓶90来补充在该制冷剂回路10内流动的制冷剂。
<室内单元>
室内单元4、5通过埋入大楼等的室内的顶棚内或从顶棚上吊下等、或者挂设在室内的壁面上等进行设置。室内单元4、5通过液体制冷剂连通配管6和气体制冷剂连通配管7与室外单元2连接,构成制冷剂回路10的一部分。
下面对室内单元4、5的结构进行说明。由于室内单元4和室内单元5的结构相同,因此在此仅对室内单元4的结构进行说明,至于室内单元5的结构,对表示室内单元4各部分的40号段的符号分别标注50号段的符号,省略各部分的说明。
室内单元4主要具有构成制冷剂回路10的一部分的室内侧制冷剂回路10a(在室内单元5中为室内侧制冷剂回路10b)。该室内侧制冷剂回路10a主要具有作为膨胀机构的室内膨胀阀41和作为利用侧热交换器的室内热交换器42。
在本实施形态中,室内膨胀阀41是为了对在室内侧制冷剂回路10a内流动的制冷剂的流量进行调节等而与室内热交换器42的液体侧连接的电动膨胀阀。
在本实施形态中,室内热交换器42是由传热管和大量翅片构成的交叉翅片式的翅片管热交换器,是在制冷运行时作为制冷剂的蒸发器发挥作用而对室内空气进行冷却、在供暖运行时作为制冷剂的冷凝器发挥作用而对室内空气进行加热的热交换器。
在本实施形态中,室内单元4具有作为送风风扇的室内风扇43,该室内风扇43用于将室内空气吸入到单元内而使其在室内热交换器42内与制冷剂进行热交换,并在之后将其作为供给空气向室内供给。室内风扇43是可以改变对室内热交换器42供给的空气的风量Wr的风扇,在本实施形态中是受由直流风扇电动机所构成的电动机43a驱动的离心风扇和多叶片风扇等。
在室内单元4内设有各种传感器。在室内热交换器42的液体侧设有对制冷剂的温度(即与供暖运行时的冷凝温度Tc或制冷运行时的蒸发温度Te对应的制冷剂温度)进行检测的液体侧温度传感器44。在室内热交换器42的气体侧设有对制冷剂的温度Teo进行检测的气体侧温度传感器45。
在室内单元4的室内空气的吸入口侧设有对流入室内单元中的室内空气的温度(即室内温度Tr)进行检测的室内温度传感器46。在本实施形态中,液体侧温度传感器44、气体侧温度传感器45和室内温度传感器46由热敏电阻构成。室内单元4具有对构成室内单元4的各部分的动作进行控制的室内侧控制部47。室内侧控制部47具有为了控制室内单元4而设置的微型计算机和存储器等,可在与用于单独操作室内单元4的遥控器(未图示)之间进行控制信号等的交换,或在与室外单元2之间通过传输线8a进行控制信号等的交换。
<室外单元>
室外单元2设置在大楼等的室外,通过液体制冷剂连通配管6和气体制冷剂连通配管7与室内单元4、5连接,在室内单元4、5之间构成制冷剂回路10。
下面对室外单元2的结构进行说明。室外单元2主要具有构成制冷剂回路10的一部分的室外侧制冷剂回路10c。该室外侧制冷剂回路10c主要具有:压缩机21、四通切换阀22、作为热源侧热交换器的室外热交换器23、作为膨胀机构的室外膨胀阀38、蓄能器24、液体侧截止阀26、气体侧截止阀27、以及用于将来自所述制冷剂储气瓶90的制冷剂填充到制冷剂回路10内的填充口P。
压缩机21是可改变运行容量的压缩机,在本实施形态中是由电动机21a驱动的容积式压缩机,该电动机21a的转速Rm由变换器来控制。在本实施形态中,压缩机21为一台,但并不局限于此,也可根据室内单元的连接个数等而并列连接两台以上的压缩机。
四通切换阀22是用于切换制冷剂流方向的阀,在制冷运行时,为了使室外热交换器23作为被压缩机21压缩的制冷剂的冷凝器发挥作用并使室内热交换器42、52作为在室外热交换器23内被冷凝的制冷剂的蒸发器发挥作用,可将压缩机21的排出侧和室外热交换器23的气体侧连接并将压缩机21的吸入侧(具体而言是蓄能器24)和气体制冷剂连通配管7侧连接(参照图1中的四通切换阀22的实线),在供暖运行时,为了使室内热交换器42、52作为被压缩机21压缩的制冷剂的冷凝器发挥作用并使室外热交换器23作为在室外热交换器42、52内被冷凝的制冷剂的蒸发器发挥作用,可将压缩机21的排出侧和气体制冷剂连通配管7侧连接并将压缩机21的吸入侧和室外热交换器23的气体侧连接(参照图1中的四通切换阀22的虚线)。
在本实施形态中,室外热交换器23是由传热管和大量翅片构成的交叉翅片式的翅片管热交换器,是在制冷运行时作为制冷剂的冷凝器发挥作用、在供暖运行时作为制冷剂的蒸发器发挥作用的热交换器。室外热交换器23的气体侧与四通切换阀22连接,液体侧与液体制冷剂连通配管6连接。
在本实施形态中,室外膨胀阀38是为了对在室外侧制冷剂回路10c内流动的制冷剂的压力和流量等进行调节而与室外热交换器23的液体侧连接的电动膨胀阀。
在本实施形态中,室外单元2具有作为送风风扇的室外风扇28,该室外风扇28用于将室外空气吸入到单元内而使其在室外热交换器23内与制冷剂进行热交换,并在之后将其向室外排出。该室外风扇28是可以改变对室外热交换器23供给的空气的风量Wo的风扇,在本实施形态中是受由直流风扇电动机构成的电动机28a驱动的螺旋桨风扇等。
蓄能器24连接在四通切换阀22与压缩机21之间,是可以储藏因室内单元4、5的运行负载的变动等而在制冷剂回路10内产生的剩余制冷剂的容器。
在本实施形态中,过冷却器25为双管式热交换器,是为了对在室外热交换器23内冷凝后被送往室内膨胀阀41、51的制冷剂进行冷却而设置的。在本实施形态中,过冷却器25连接在室外膨胀阀38与液体侧截止阀26之间。
在本实施形态中设有作为过冷却器25的冷却源的旁通制冷剂回路61。在下面的说明中,为了方便而将制冷剂回路10中除旁通制冷剂回路61以外的部分称作主制冷剂回路。
旁通制冷剂回路61以使从室外热交换器23送往室内膨胀阀41、51的制冷剂的一部分从主制冷剂回路分流而返回压缩机21的吸入侧的形态与主制冷剂回路连接。具体而言,旁通制冷剂回路61具有:以使从室外膨胀阀38送往室内膨胀阀41、51的制冷剂的一部分在室外热交换器23与过冷却器25之间的位置上分流的形态连接的分流回路61a、以及以从过冷却器25的靠旁通制冷剂回路侧的出口朝压缩机21的吸入侧返回的形态与压缩机21的吸入侧连接的汇流回路61b。在分流回路61a上设有旁通膨胀阀62,该旁通膨胀阀62用于对在旁通制冷剂回路61内流动的制冷剂的流量进行调节。在此,旁通膨胀阀62由电动膨胀阀构成。由此,从室外热交换器23送往室内膨胀阀41、51的制冷剂在过冷却器25内被在由旁通膨胀阀62减压后的旁通制冷剂回路61内流动的制冷剂冷却。即,过冷却器25通过旁通膨胀阀62的开度调节来进行能力控制。
液体侧截止阀26和气体侧截止阀27是设在与外部设备、配管(具体而言是液体制冷剂连通配管6和气体制冷剂连通配管7)之间的连接口上的阀。液体侧截止阀26与室外热交换器23连接。气体侧截止阀27与四通切换阀22连接。
如上所述,填充口P是用于将来自封入制冷剂的制冷剂储气瓶90的制冷剂填充到制冷剂回路10内的连接口,通过配管与制冷剂储气瓶90连接,由此填充制冷剂。
在室外单元2上设有各种传感器。
具体而言,在室外单元2上设有:对压缩机21的吸入压力Ps进行检测的吸入压力传感器29、对压缩机21的排出压力Pd进行检测的排出压力传感器30、对压缩机21的吸入温度Ts进行检测的作为吸入温度传感器的下游温度传感器92、以及对压缩机21的排出温度Td进行检测的排出温度传感器32。下游温度传感器92设在蓄能器24与压缩机21之间的位置上。在室外热交换器23上设有对在室外热交换器23内流动的制冷剂的温度(即与制冷运行时的冷凝温度Tc或供暖运行时的蒸发温度Te对应的制冷剂温度)进行检测的热交换温度传感器33。在室外热交换器23的液体侧设有对制冷剂的温度Tco进行检测的液体侧温度传感器34。在过冷却器25的靠主制冷剂回路侧的出口设有对制冷剂的温度(即液体管道温度Tlp)进行检测的液体管道温度传感器35。在旁通制冷剂回路61的汇流回路61b上设有旁通温度传感器63,该旁通温度传感器63用于对从过冷却器25的靠旁通制冷剂回路侧的出口流过的制冷剂的温度进行检测。在室外单元2的室外空气的吸入口侧设有对流入单元内的室外空气的温度(即室外温度Ta)进行检测的室外温度传感器36。
如图1所示,从填充口P看,制冷剂回路10的下游温度传感器92配置在压缩机21侧的下游侧。在此,制冷剂储气瓶90可通过配管与填充口P连接,在该配管上设有储气瓶开闭阀95。来自制冷剂储气瓶90的制冷剂通过开闭该储气瓶开闭阀95进行填充。
在本实施形态中,下游温度传感器92、排出温度传感器32、热交换温度传感器33、液体侧温度传感器34、液体管道温度传感器35、室外温度传感器36和旁通温度传感器63由热敏电阻构成。
室外单元2具有对构成室外单元2的各部分的动作进行控制的室外侧控制部37。室外侧控制部37具有为了进行室外单元2的控制而设置的微型计算机、存储器和控制电动机21a的变换器回路等,可通过传输线8a与室内单元4、5的室内侧控制部47、57之间进行控制信号等的交换。即,由室内侧控制部47、57、室外侧控制部37和将控制部37、47、57彼此连接的传输线8a来构成对空调装置1整体进行运行控制的控制部8。
如图2所示,控制部8连接成可以接收各种传感器29~36、44~46、54~56、63、92的检测信号,并连接成可以基于这些信号等来控制各种设备和阀21、22、24、28a、38、41、43a、51、53a、62。在控制部8上连接有由LED等构成的显示部9,该显示部9用于报知在下述的制冷剂泄漏检测运行中检测到制冷剂泄漏。在此,图2是空调装置1的控制方框图。
<制冷剂连通配管>
制冷剂连通配管6、7是在将空调装置1设置于大楼等设置场所时在现场进行施工的制冷剂配管,可根据设置场所和室外单元与室内单元之间的组合等设置条件而使用各种长度和管径的配管。因此,例如在新设置空调装置时,为了计算制冷剂填充量,需要准确掌握制冷剂连通配管6、7的长度和管径等信息,而该信息管理和制冷剂量的计算本身很烦琐。在利用已设配管来更新室内单元和室外单元之类的场合,有时制冷剂连通配管6、7的长度和管径等信息已丢失。
如上所述,室内侧制冷剂回路10a、10b、室外侧制冷剂回路10c以及制冷剂连通配管6、7连接而构成空调装置1的制冷剂回路10。另外,该制冷剂回路10也可以说是由旁通制冷剂回路61和除旁通制冷剂回路61以外的主制冷剂回路构成的。本实施形态的空调装置1利用由室内侧控制部47、57和室外侧控制部37构成的控制部8、且通过四通切换阀22而在制冷运行和供暖运行之间切换运行,并根据各室内单元4、5的运行负载来控制室外单元2和室内单元4、5的各设备。
(2)空调装置的动作
下面对本实施形态的空调装置1的动作进行说明。
作为本实施形态的空调装置1的运行模式,包括:根据各室内单元4、5的运行负载来控制室外单元2和室内单元4、5的构成设备的通常运行模式;在空调装置1的构成设备设置之后(具体而言并不局限于最初的设备设置之后,例如还包括对室内单元等的构成设备进行追加和拆去等改造之后、对设备故障进行了修理之后等)进行的试运行用的试运行模式;以及在试运行结束并开始通常运行之后对制冷剂回路10有无制冷剂泄漏进行判定的制冷剂泄漏检测运行模式。通常运行模式主要包括对室内进行制冷的制冷运行和对室内进行供暖的供暖运行。试运行模式主要包括:在制冷剂回路10内填充制冷剂的制冷剂自动填充运行、对制冷剂连通配管6、7的容积进行检测的配管容积判定运行、以及对设置了构成设备后或在制冷剂回路内填充了制冷剂后的初始制冷剂量进行检测的初始制冷剂量检测运行。
下面对空调装置1在各运行模式下的动作进行说明。
<通常运行模式>
(制冷运行)
首先用图1和图2对通常运行模式下的制冷运行进行说明。
在制冷运行时,四通切换阀22处于图1中的实线所示的状态,即成为压缩机21的排出侧与室外热交换器23的气体侧连接、且压缩机21的吸入侧通过气体侧截止阀27和气体制冷剂连通配管7与室内热交换器42、52的气体侧连接的状态。室外膨胀阀38处于全开状态。液体侧截止阀26和气体侧截止阀27处于打开状态。对各室内膨胀阀41、51进行开度调节,以使室内热交换器42、52出口(即室内热交换器42、52的气体侧)处的制冷剂的过热度SHr稳定在过热度目标值SHr2。在本实施形态中,各室内热交换器42、52出口处的制冷剂的过热度SHr通过从用气体侧温度传感器45、55所检测出的制冷剂温度值中减去用液体侧温度传感器44、54所检测出的制冷剂温度值(与蒸发温度Te对应)来进行检测,或通过将用吸入压力传感器29所检测出的压缩机21的吸入压力Ps换算成与蒸发温度Te对应的饱和温度值、并从用气体侧温度传感器45、55所检测出的制冷剂温度值中减去该制冷剂的饱和温度值来进行检测。在本实施形态中虽未采用,但也可以设置对在各室内热交换器42、52内流动的制冷剂的温度进行检测的温度传感器,通过将与用该温度传感器所检测出的蒸发温度Te对应的制冷剂温度值从用气体侧温度传感器45、55所检测出的制冷剂温度值中减去,来检测各室内热交换器42、52出口处的制冷剂的过热度SHr。另外,对旁通膨胀阀62进行开度调节,以使过冷却器25的靠旁通制冷剂回路侧的出口处的制冷剂的过热度SHb成为过热度目标值SHbs。在本实施形态中,过冷却器25的靠旁通制冷剂回路侧的出口处的过热度SHb通过将用吸入压力传感器29所检测出的压缩机21的吸入压力Ps换算成与蒸发温度Te对应的饱和温度值、并从用旁通温度传感器63所检测出的制冷剂温度值中减去该制冷剂的饱和温度值来进行检测。在本实施形态中虽未采用,但也可以在过冷却器25的靠旁通制冷剂侧的入口设置温度传感器,通过将用该温度传感器检测出的制冷剂温度值从用旁通温度传感器63所检测出的制冷剂温度值中减去来检测过冷却器25的靠旁通制冷剂侧的出口处的制冷剂的过热度SHb。
当在该制冷剂回路10的状态下启动压缩机21、室外风扇28和室内风扇43、53时,低压的气体制冷剂被压缩机21吸入并压缩成为高压的气体制冷剂。之后,高压的气体制冷剂经由四通切换阀22被送往室外热交换器23,与由室外风扇28供给的室外空气进行热交换,从而冷凝成高压的液体制冷剂。接着,该高压的液体制冷剂流过室外膨胀阀38而流入过冷却器25内,与在旁通制冷剂回路61内流动的制冷剂进行热交换,从而被进一步冷却成为过冷状态。此时,在室外热交换器23内冷凝的高压液体制冷剂的一部分向旁通制冷剂回路61分流,并在被旁通膨胀阀62减压后返回压缩机21的吸入侧。在此,流过旁通膨胀阀62的制冷剂被减压至接近压缩机21的吸入压力Ps,因而其一部分蒸发。另外,从旁通制冷剂回路61的旁通膨胀阀62的出口朝压缩机21的吸入侧流动的制冷剂流过过冷却器25,与从主制冷剂回路侧的室外热交换器23被送往室内单元4、5的高压液体制冷剂进行热交换。
接着,成为过冷状态的高压液体制冷剂经由液体侧截止阀26和液体制冷剂连通配管6被送往室内单元4、5。该被送往室内单元4、5的高压液体制冷剂在被室内膨胀阀41、51减压至接近压缩机21的吸入压力Ps而成为低压的气液两相状态的制冷剂后被送往室内热交换器42、52,在室内热交换器42、52内与室内空气进行热交换,从而蒸发成低压的气体制冷剂。
该低压的气体制冷剂经由气体制冷剂连通配管7被送往室外单元2,并经由气体侧截止阀27和四通切换阀22而流入蓄能器24内。接着,流入蓄能器24内的低压气体制冷剂流过下游填充口P旁边,利用下游温度传感器92来检测制冷剂的温度,制冷剂再次被压缩机21吸入。
(供暖运行)
下面对通常运行模式下的供暖运行进行说明。
在供暖运行时,四通切换阀22处于图1中的虚线所示的状态,即成为压缩机21的排出侧通过气体侧截止阀27和气体制冷剂连通配管7而与室内热交换器42、52的气体侧连接、且压缩机21的吸入侧与室外热交换器23的气体侧连接的状态。为了将流入室外热交换器23内的制冷剂减压至可在室外热交换器23内进行蒸发的压力(即蒸发压力Pe)而对室外膨胀阀38进行开度调节。液体侧截止阀26和气体侧截止阀27处于打开状态。对室内膨胀阀41、51进行开度调节,以使室内热交换器42、52出口处的制冷剂的过冷度SCr稳定在过冷度目标值SCrs。在本实施形态中,室内热交换器42、52出口处的制冷剂的过冷度SCr通过将用排出压力传感器30检测出的压缩机21的排出压力Pd换算成与冷凝温度Tc对应的饱和温度值、并从该制冷剂的饱和温度值中减去用液体侧温度传感器44、54所检测出的制冷剂温度值来进行检测。在本实施形态中虽未采用,但也可以设置对在各室内热交换器42、52内流动的制冷剂的温度进行检测的温度传感器,通过将与用该温度传感器所检测出的冷凝温度Tc对应的制冷剂温度值从用液体侧温度传感器44、54所检测出的制冷剂温度值中减去来检测室内热交换器42、52出口处的制冷剂的过冷度SCr。另外,旁通膨胀阀62被关闭。
当在该制冷剂回路10的状态下启动压缩机21、室外风扇28和室内风扇43、53时,低压的气体制冷剂被压缩机21吸入并压缩成为高压的气体制冷剂,并经由四通切换阀22、气体侧截止阀27和气体制冷剂连通配管7被送往室内单元4、5。
接着,被送往室内单元4、5的高压气体制冷剂在室内热交换器42、52内与室内空气进行热交换而冷凝成高压的液体制冷剂,之后,当流过室内膨胀阀41、51时,与室内膨胀阀41、51的阀开度对应地被减压。
该流过室内膨胀阀41、51后的制冷剂经由液体制冷剂连通配管6被送往室外单元2,并经由液体侧截止阀26、过冷却器25和室外膨胀阀38而被进一步减压,之后,流入室外热交换器23内。接着,流入室外热交换器23内的低压的气液两相状态的制冷剂与由室外风扇28供给来的室外空气进行热交换而蒸发成低压的气体制冷剂,并经由四通切换阀22流入蓄能器24内。然后,流入蓄能器24内的低压气体制冷剂流过下游填充口P旁边,利用下游温度传感器92来检测制冷剂的温度,制冷剂再次被压缩机21吸入。
在如上所述的通常运行模式下的运行控制由控制部8(更具体而言是将室内侧控制部47、57、室外侧控制部37以及将控制部37、47、57彼此连接的传输线8a)来进行,该控制部8进行包括制冷运行和供暖运行在内的通常运行,作为通常运行控制装置发挥作用。
<试运行模式>
下面用图1~图3对试运行模式进行说明。在此,图3是试运行模式的流程图。在本实施形态中,在试运行模式下,首先进行步骤S1的制冷剂自动填充运行,接着进行步骤S2的配管容积判定运行,然后进行步骤S3的初始制冷剂量检测运行。
在本实施形态中以下述场合为例进行说明,即,将预先填充有制冷剂的室外单元2、室内单元4、5设置在大楼等设置场所并通过液体制冷剂连通配管6和气体制冷剂连通配管7来连接,从而构成制冷剂回路10,之后,根据液体制冷剂连通配管6和气体制冷剂连通配管7的容积,将不足的制冷剂追加填充到制冷剂回路10内。
(步骤S1:制冷剂自动填充运行)
首先,打开室外单元2的液体侧截止阀26和气体侧截止阀27,使预先填充在室外单元2内的制冷剂充满制冷剂回路10内。接着,当进行试运行的操作者将追加填充用的制冷剂储气瓶90与制冷剂回路10的填充口P(参照图14)连接、并对控制部8直接或通过遥控器(未图示)等远程地发出开始试运行的指令时,由控制部8来进行图4所示的步骤S11~步骤S13的处理。在此,图4是制冷剂自动填充运行的流程图。
(步骤S11:制冷剂量判定运行)
当发出制冷剂自动填充运行的开始指令时,在制冷剂回路10中的室外单元2的四通切换阀22处于图1中的实线所示的状态、且室内单元4、5的室内膨胀阀41、51和室外膨胀阀38为打开状态的情况下,压缩机21、室外风扇28和室内风扇43、53启动,对室内单元4、5全部强制地进行制冷运行(下面称作室内单元全部运行)。
这样一来,如图5所示,在制冷剂回路10中,在从压缩机21到作为冷凝器发挥作用的室外热交换器23为止的流路内流动着在压缩机21内被压缩后排出的高压气体制冷剂(参照图5的斜线阴影部分中从压缩机21到室外热交换器23为止的部分),在作为冷凝器发挥作用的室外热交换器23内流动着因与室外空气进行热交换而从气态相变成液态的高压制冷剂(参照图5的斜线阴影部分和涂黑阴影部分中与室外热交换器23对应的部分),在从室外热交换器23到室内膨胀阀41、51为止的、包括室外膨胀阀38、过冷却器25的靠主制冷剂回路侧的部分和液体制冷剂连通配管6在内的流路、以及从室外热交换器23到旁通膨胀阀62为止的流路内流动着高压的液体制冷剂(参照图5的涂黑阴影部分中从室外热交换器23到室内膨胀阀41、51和旁通膨胀阀62为止的部分),在作为蒸发器发挥作用的室内热交换器42、52的部分和过冷却器25的靠旁通制冷剂回路侧的部分上流动着因与室内空气进行热交换而从气液两相状态相变成气态的低压制冷剂(参照图5的格子状阴影和斜线阴影部分中的室内热交换器42、52的部分和过冷却器25的部分),在从室内热交换器42、52到压缩机21为止的、包括气体制冷剂连通配管7和蓄能器24在内的流路、以及从过冷却器25的靠旁通制冷剂回路侧的部分到压缩机21为止的流路内,流动着低压的气体制冷剂(参照图5的斜线阴影部分中从室内热交换器42、52到压缩机21为止的部分以及从过冷却器25的靠旁通制冷剂回路侧的部分到压缩机21为止的部分)。图5是表示制冷剂量判定运行中在制冷剂回路10内流动的制冷剂的状态的示意图(四通切换阀22等未图示)。
接着,转移到通过如下的设备控制来使在制冷剂回路10内循环的制冷剂的状态变得稳定的运行。具体而言,对室内膨胀阀41、51进行控制以使作为蒸发器发挥作用的室内热交换器42、52的过热度SHr成为一定(下面称作过热度控制),对压缩机21的运行容量进行控制以使蒸发压力Pe成为一定(下面称作蒸发压力控制),对用室外风扇28向室外热交换器23供给的室外空气的风量Wo进行控制以使室外热交换器23内的制冷剂的冷凝压力Pc成为一定(下面称作冷凝压力控制),对过冷却器25的能力进行控制以使从过冷却器25送往室内膨胀阀41、41的制冷剂的温度成为一定(下面称作液体管道温度控制),并使由室内风扇43、53向室内热交换器42、52供给的室内空气的风量Wr成为一定,以使制冷剂的蒸发压力Pe被上述蒸发压力控制稳定地控制。
在此,之所以进行蒸发压力控制是因为:在作为蒸发器发挥作用的室内热交换器42、52内流动着因与室内空气进行热交换而从气液两相状态相变成气态的低压制冷剂,流动着低压制冷剂的室内热交换器42、52内(参照图5的格子状阴影和斜线阴影部分中与室内热交换器42、52对应的部分,下面称作蒸发器部C)的制冷剂量会对制冷剂的蒸发压力Pe产生较大的影响。在此,利用转速Rm被变换器控制的的电动机21a来控制压缩机21的运行容量,从而使室内热交换器42、52内的制冷剂的蒸发压力Pe成为一定,使在蒸发器C内流动的制冷剂的状态变得稳定,从而形成主要通过蒸发压力Pe使蒸发器C内的制冷剂量变化的状态。在本实施形态的压缩机21对蒸发压力Pe的控制中,将用室内热交换器42、52的液体侧温度传感器44、54所检测出的制冷剂温度值(与蒸发温度Te对应)转换成饱和压力值,以使该压力值稳定在低压目标值Pes的形态对压缩机21的运行进行控制(即进行使电动机21a的转速Rm变化的控制),通过对在制冷剂回路10内流动的制冷剂循环量Wc进行增减来实现。在本实施形态中虽未采用,但也可以对压缩机21的运行容量进行控制,以使与室内热交换器42、52内的制冷剂在蒸发压力Pe下的制冷剂压力等价的运行状态量、即吸入压力传感器29所检测出的压缩机21的吸入压力Ps稳定在低压目标值Pes,或与吸入压力Ps对应的饱和温度值(与蒸发温度Te对应)稳定在低压目标值Tes,还可以对压缩机21的运行容量进行控制,以使室内热交换器42、52的液体侧温度传感器44、54所检测出的制冷剂温度(与蒸发温度Te对应)稳定在低压目标值Tes。
通过进行这种蒸发压力控制,在从室内热交换器42、52到压缩机21为止的包括气体制冷剂连通配管7和蓄能器24在内的制冷剂配管内(参照图5的斜线阴影部分中从室内热交换器42、52到压缩机21为止的部分,下面称作气体制冷剂流通部D)流动的制冷剂的状态也变得稳定,从而形成在气体制冷剂流通部D内的制冷剂量主要因与气体制冷剂流通部D的制冷剂压力等价的运行状态量、即蒸发压力Pe(即吸入压力Ps)而变化的状态。
之所以进行冷凝压力控制是因为:在流动着因与室外空气进行热交换而从气态相变成液态的高压制冷剂的室外热交换器23内(参照图5的斜线阴影和涂黑阴影部分中与室外热交换器23对应的部分,下面称作冷凝器部A),制冷剂量会对制冷剂的冷凝压力Pc产生较大的影响。另外,由于该冷凝器部A处的制冷剂的冷凝压力Pc会比室外温度Ta的影响更大幅度地变化,因此,通过对由电动机28a从室外风扇28向室外热交换器23供给的室内空气的风量Wo进行控制,使室外热交换器23内的制冷剂的冷凝压力Pc成为一定,使在冷凝器部A内流动的制冷剂的状态变得稳定,从而形成冷凝器部A内的制冷剂量主要因室外热交换器23的液体侧(在下面的制冷剂量判定运行的相关说明中称作室外热交换器23的出口)的过冷度Sco而变化的状态。在本实施形态的室外风扇28对冷凝压力Pc的控制中使用的是与室外热交换器23内的制冷剂的冷凝压力Pc等价的运行状态、即排出压力传感器30所检测出的压缩机21的排出压力Pd或热交换温度传感器33所检测出的在室外热交换器23内流动的制冷剂的温度(即冷凝温度Tc)。
通过进行这种冷凝压力控制,在从室外热交换器23到室内膨胀阀41、51为止的包括室外膨胀阀38、过冷却器25的靠主制冷剂回路侧的部分和液体制冷剂连通配管6在内的流路、以及从室外热交换器23到旁通制冷剂回路61的旁通膨胀阀62为止的流路内流动着高压的液体制冷剂,在从室外热交换器23到室内膨胀阀41、51和旁通膨胀阀62为止的部分(参照图5的涂黑阴影部分,下面称作液体制冷剂通路B)上的制冷剂的压力也稳定,液体制冷剂通路B被液体制冷剂密封而成为稳定状态。
之所以进行液体管道温度控制是为了使包括从过冷却器25至室内膨胀阀41、51的液体制冷剂连通配管6在内的制冷剂配管内(参照图5所示的液体制冷剂通路B中从过冷却器25到室内膨胀阀41、51为止的部分)的制冷剂的密度不变化。通过以使设在过冷却器25的靠主制冷剂回路侧的出口处的液体管道温度传感器35所检测出的制冷剂的温度T1p稳定在液体管道温度目标值Tlps的形态对在旁通制冷剂回路61内流动的制冷剂的流量进行增减、对在过冷却器25的主制冷剂回路侧流动的制冷剂与在旁通制冷剂回路侧流动的制冷剂之间的交换热量进行调节来实现过冷却器25的能力控制。通过旁通膨胀阀62的开度调节来增减上述在旁通制冷剂回路61内流动的制冷剂的流量。这样,便可实现液体管道温度控制,使包括从过冷却器25至室内膨胀阀41、51的液体制冷剂连通配管6在内的制冷剂配管内的制冷剂温度成为一定。
通过进行这种液体管道温度控制,即使在制冷剂回路10内的制冷剂量因对制冷剂回路10填充制冷剂而逐渐增加、同时导致室外热交换器23出口处的制冷剂温度Tco(即室外热交换器23出口处的制冷剂的过冷度Sco)发生变化时,室外热交换器23出口处的制冷剂温度Tco的变化也只是影响从室外热交换器23的出口至过冷却器25的制冷剂配管,而不会影响液体制冷剂流通部B中包括从过冷却器25到室内膨胀阀41、51为止的液体制冷剂连通配管6在内的制冷剂配管。
之所以进行过热度控制,是因为蒸发器部C的制冷剂量会对室内热交换器42、52出口处的制冷剂的干燥度产生较大的影响。对于该室内热交换器42、52出口处的制冷剂的过热度SHr,通过对室内膨胀阀41、51的开度进行控制,使室内热交换器42、52的气体侧(在下面的制冷剂量判定运行的相关说明中称作室内热交换器42、52的出口)的制冷剂的过热度SHr稳定在过热度目标值SHrs(即,使室内热交换器42、52出口处的气体制冷剂成为过热状态),从而使在蒸发器部C内流动的制冷剂的状态变得稳定。
通过进行这种过热度控制,能形成使气体制冷剂在气体制冷剂连通部D内可靠地流动的状态。
通过上述各种控制,在制冷剂回路10内循环的制冷剂的状态稳定,由于在制冷剂回路10内的制冷剂量的分布稳定,因此,当通过接着进行的来自制冷剂储气瓶90的制冷剂的追加填充开始向制冷剂回路10内填充制冷剂时,可使制冷剂回路10内的制冷剂量的变化主要表现为室外热交换器23内的制冷剂量的变化(下面将该运行称作制冷剂量判定运行)。
上述控制由进行制冷剂量判定运行的作为制冷剂量判定运行控制装置发挥作用的控制部8(更具体而言是室内侧控制部47、57、室外侧控制部37以及将控制部37、47、57彼此连接的传输线8a)作为步骤S11的处理进行。
另外,当与本实施形态不同、在室外单元2内预先并未填充制冷剂时,在上述步骤S11的处理之前进行上述制冷剂量判定运行时,需要填充使构成设备不会异常停止的左右的量的制冷剂量。
(步骤S12:制冷剂量的运算)
接着,一边进行上述制冷剂量判定运行一边在制冷剂回路10内追加填充制冷剂。
因此,如图1和图11所示,将制冷剂储气瓶90与填充口P连接。此时,利用作为制冷剂量运算装置发挥作用的控制部8,基于步骤S12中追加填充制冷剂时在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10内的制冷剂量。
首先对本实施形态的制冷剂量运算装置进行说明。制冷剂量运算装置将制冷剂回路10分割成多个部分并对分割形成的各部分运算制冷剂量,由此来运算制冷剂回路10内的制冷剂量。
更具体而言,对分割形成的各部分设定了各部分的制冷剂量与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式,可使用这些关系式来运算各部分的制冷剂量。在本实施形态中,在四通切换阀22处于图1中的实线所示的状态、即压缩机21的排出侧与室外热交换器23的气体侧连接且压缩机21的吸入侧通过气体侧截止阀27和气体制冷剂连通配管7与室内热交换器42、52的气体侧连接的状态下,制冷剂回路10被分割成如下所示的A~I的各部分。
制冷剂回路10被分割成:压缩机21的部分和从压缩机21到包括四通切换阀22(图5中未表示)在内的室外热交换器23的部分(下面称作高压气体管部E);第二,室外热交换器23的部分(即冷凝器部A);液体制冷剂流通部B中从室外热交换器23到过冷却器25为止的部分和过冷却器25的靠主制冷剂回路侧的部分的入口侧一半部(下面称作高温液体管部B1);液体制冷剂通路B中过冷却器25的靠主制冷剂回路侧的部分的出口侧一半部和从过冷却器25到液体侧截止阀26(图5中未表示)为止的部分(下面称作低温液体管部B2);液体制冷剂通路B中的液体制冷剂连通配管6的部分(下面称作液体制冷剂连通配管部B3);从液体制冷剂通路B中的液体制冷剂连通配管6到包括室内膨胀阀41、51和室内热交换器42、52的部分(即蒸发器部C)在内的气体制冷剂流通部D中的气体制冷剂连通配管7为止的部分(下面称作室内单元部F);气体制冷剂流通部D中的气体制冷剂连通配管7的部分(下面称作气体制冷剂连通配管部G);气体制冷剂流通部D中从气体侧截止阀27(图5中未表示)到压缩机21为止的包括四通切换阀22和蓄能器24在内的部分(下面称作低压气体管部H);以及液体制冷剂通路B中从高温液体管部B1到低压气体管部H为止的包括旁通膨胀阀62和过冷却器25的靠旁通制冷剂回路侧的部分在内的部分(下面称作旁通回路部I),对各部分设定了关系式。
下面说明对上述A~I各部分设定的关系式。
在本实施形态中,高压气体管部E的制冷剂量Mog1与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mog1=Vog1×ρd
该函数式是将室外单元2的高压气体管部E的容积Vog1乘上高压气体管部E的制冷剂的密度ρd。其中,高压气体管部E的容积Vog1是在将室外单元2设置于设置场所之前已知的值,被预先存储在控制部8的存储器内。高压气体管部E的制冷剂的密度ρd可通过换算排出温度Td和排出压力Pd而得到。
冷凝器部A的制冷剂量Mc与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由室外温度Ta、冷凝温度Tc、压缩机排出过热度SHm、制冷剂循环量Wc、室外热交换器23内的制冷剂的饱和液密度ρc和室外热交换器23出口处的制冷剂密度ρco的以下函数式来表示:
Mc=kc1×Ta+kc2×Tc+kc3×SHm+kc4×Wc
+kc5×ρc+kc6×ρco+kc7
上述关系式中的参数kc1~kc7是通过对试验和详细模拟的结果进行回归分析后求出的,被预先存储在控制部8的存储器内。压缩机排出过热度SHm为压缩机排出侧的制冷剂的过热度,可通过将排出压力Pd换算成制冷剂的饱和温度值并从排出温度Td中减去该制冷剂的饱和温度值而得到。制冷剂循环量Wc表示为蒸发温度Te和冷凝温度Tc的函数(即,Wc=f(Te,Tc))。制冷剂的饱和液密度ρc可通过换算冷凝温度Tc而得到。室外热交换器23出口处的制冷剂密度ρco可通过对换算冷凝温度Tc得出的冷凝压力Pc和制冷剂的温度Tco进行换算而得到。
高温液体管部B1的制冷剂量Mol1与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mol1=Vol1×ρco
该函数式是将室外单元2的高温液体管部B1的容积Vol1乘上高温液体管部B1的制冷剂密度ρco(即上述室外热交换器23出口处的制冷剂的密度)。高温液体管部B1的容积Vol1是在将室外单元2设置于设置场所之前已知的值,被预先存储在控制部8的存储器内。
低温液体管部B2的制冷剂量Mol2与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mol2=Vol2×ρlp
该函数式是将室外单元2的低温液体管部B2的容积Vol2乘上低温液体管部B2的制冷剂密度ρlp。低温液体管部B2的容积Vol2是在将室外单元2设置于设置场所之前已知的值,被预先存储在控制部8的存储器内。低温液体管部B2的制冷剂密度ρlp为过冷却器25出口处的制冷剂密度,可通过换算冷凝压力Pc和过冷却器25出口处的制冷剂温度Tlp而得到。
液体制冷剂连通配管部B3的制冷剂量Mlp与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mlp=Vlp×ρlp
该函数式是将液体制冷剂连通配管6的容积Vlp乘上液体制冷剂连通配管部B3的制冷剂密度ρlp(即过冷却器25出口处的制冷剂的密度)。由于液体制冷剂连通配管6是在将空调装置1设置于大楼等设置场所时现场进行施工的制冷剂配管,因此液体制冷剂连通配管6的容积Vlp可通过以下方式算出:输入基于长度和管径等信息而在现场运算出的值,或在现场输入长度和管径等信息并由控制部8基于这些被输入的液体制冷剂连通配管6的信息进行运算,或者如下所述用配管容积判定运行的运行结果来运算。
室内单元部F的制冷剂量Mr与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由过冷却器25出口处的制冷剂的温度Tlp、从室内温度Tr中减去了蒸发温度Te的温度差ΔT、室内热交换器42、52出口处的制冷剂的过热度SHr和室内风扇43、53的风量Wr的以下函数式来表示:
Mr=kr1×Tlp+kr2×ΔT+kr3×SHr+kr4×Wr+kr5
上述关系式中的参数kr1~kr5是通过对试验和详细模拟的结果进行回归分析后求出的,被预先存储在控制部8的存储器内。在此,对应两个室内单元4、5分别设定了制冷剂量Mr的关系式,通过将室内单元4的制冷剂量Mr和室内单元5的制冷剂量Mr相加来运算室内单元部F的全部制冷剂量。在室内单元4和室内单元5的机型和容量不同时,则使用参数kr1~kr5的值不同的关系式。
气体制冷剂连通配管部G的制冷剂量Mgp与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mgp=Vgp×ρgp
该函数式是将气体制冷剂连通配管7的容积Vgp乘上气体制冷剂连通配管部H的制冷剂密度ρgp。与液体制冷剂连通配管6一样,气体制冷剂连通配管7是在将空调装置1设置于大楼等设置场所时现场进行施工的制冷剂配管,因此,气体制冷剂连通配管7的容积Vgp可通过以下方式算出:输入基于长度和管径等信息而在现场运算出的值,或在现场输入长度和管径等信息并由控制部8基于这些被输入的气体制冷剂连通配管7的信息进行运算,或者也可如下所述地用配管容积判定运行的运行结果来运算。气体制冷剂连通配管部G的制冷剂密度ρgp是压缩机21吸入侧的制冷剂密度ρs和室内热交换器42、52出口(即气体制冷剂连通配管7的入口)处的制冷剂密度ρeo的平均值。制冷剂密度ρs可通过换算吸入压力Ps和吸入温度Ts而得到,制冷剂密度ρeo可通过对蒸发温度Te的换算值、即蒸发压力Pe和室内热交换器42、52的出口温度Teo进行换算而得到。
低压气体管部H的制冷剂量Mog2与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由以下函数式来表示:
Mog2=Vog2×ρs
该函数式是将室外单元2内的低压气体管部H的容积Vog2乘上低压气体管部H的制冷剂密度ρs。低压气体管部H的容积Vog2是在设置于设置场所之前已知的值,被预先存储在控制部8的存储器内。
旁通回路部I的制冷剂量Mob与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式例如由室外热交换器23出口处的制冷剂密度ρco、过冷却器25的靠旁通回路侧的出口处的制冷剂的密度ρs和蒸发压力Pe的以下函数式来表示:
Mob=kob1×ρco+kob2×ρs+kob3×Pe+kob4
上述关系式中的参数kob1~kob3是通过对试验和详细模拟的结果进行回归分析后求出的,被预先存储在控制部8的存储器内。由于旁通回路部I的容积Mob与其它部分相比制冷剂量较少,因此也可用更简单的关系式来运算。例如由以下函数式来表示:
Mob=Vob×ρe×kob5
该函数式是将旁通回路部I的容积Vob乘上过冷却器25的靠旁通回路侧的部分的饱和液密度ρe和修正系数kob。旁通回路部I的容积Vob是在将室外单元2设置于设置场所之前已知的值,被预先存储在控制部8的存储器内。过冷却器25的靠旁通回路侧的部分的饱和液密度ρe可通过换算吸入压力Ps或蒸发温度Te而得到。
在本实施形态中有一个室外单元2,但在连接多个室外单元时,与室外单元相关的制冷剂量Mog1、Mc、Mol1、Mol2、Mog2和Mob,通过对多个室外单元分别设定各部分的制冷剂量的关系式并将多个室外单元的各部分的制冷剂量相加来运算室外单元的全部制冷剂量。在连接机型和容量不同的多个室外单元时,则使用参数值不同的各部分的制冷剂量的关系式。
如上所述,在本实施形态中,通过使用制冷剂回路10的A~I各部分的相关关系式并基于制冷剂量判定运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算各部分的制冷剂量,可运算出制冷剂回路10的制冷剂量。
由于反复进行该步骤S12直到下述的步骤S13中的制冷剂量是否合适的判定条件被满足,因此,在制冷剂的追加填充从开始到完成为止的期间内,可使用制冷剂回路10各部分的相关关系式并基于制冷剂填充时的运转状态量来运算出各部分的制冷剂量。更具体而言,可对下述步骤S13中判定制冷剂量是否合适时所需的室外单元2内的制冷剂量Mo和各室内单元4、5内的制冷剂量Mr(即除了制冷剂连通配管6、7以外的制冷剂回路10的各部分的制冷剂量)进行运算。在此,室外单元2内的制冷剂量Mo可通过将上述室外单元2内的各部分的制冷剂量Mog1、Mc、Mol1、Mol2、Mog2和Mob相加而得到。
这样,由作为制冷剂量运算装置发挥作用的控制部8来进行步骤S12的处理,该控制部8基于制冷剂自动填充运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10各部分的制冷剂量。
(步骤S13:制冷剂量是否合适的判定)
如上所述,当开始从制冷剂储气瓶90向制冷剂回路10内追加填充制冷剂时,制冷剂回路10内的制冷剂量逐渐增加。在此,当制冷剂连通配管6、7的容积未知时,无法将在制冷剂的追加填充后要填充到制冷剂回路10内的制冷剂量规定为制冷剂回路10整体的制冷剂量。不过,若只看室外单元2和室内单元4、5(即除了制冷剂连通配管6、7以外的制冷剂回路10),由于可通过试验和详细模拟来预知通常运行模式下的最佳的室外单元2的制冷剂量。
因此,只要预先将该制冷剂量作为填充目标值Ms存储在控制部8的存储器内后从制冷剂储气瓶90追加填充制冷剂,直到将室外单元2的制冷剂量Mo和室内单元4、5的制冷剂量Mr相加后的制冷剂量的值达到该填充目标值Ms为止即可,室外单元2的制冷剂量Mo和室内单元4、5的制冷剂量Mr可通过使用上述关系式并基于制冷剂自动填充运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量进行运算。
即,步骤S13是通过对制冷剂自动填充运行中室外单元2的制冷剂量Mo和室内单元4、5的制冷剂量Mr相加后的制冷剂量的值是否达到填充目标值Ms进行判定,来判定通过制冷剂的追加填充被填充到制冷剂回路10内的制冷剂量是否合适。
在步骤S13中,当室外单元2的制冷剂量Mo和室内单元4、5的制冷剂量Mr相加后的制冷剂量的值小于填充目标值Ms、制冷剂的追加填充未完成时,反复进行步骤S13的处理,直到达到填充目标值Ms。当室外单元2的制冷剂量Mo和室内单元4、5的制冷剂量Mr相加后的制冷剂量的值达到了填充目标值Ms时,制冷剂的追加填充完成,作为制冷剂自动填充运行处理的步骤S1完成。
在上述制冷剂量判定运行中,随着向制冷剂回路10内追加填充制冷剂的进行,主要会呈现出室外热交换器23出口处的过冷度Sco增大的倾向,从而出现室外热交换器23内的制冷剂量Mc增加、其它部分的制冷剂量大致保持一定的倾向,因此,不一定要将填充目标值Ms设定成与室外单元2和室内单元4、5对应的值,也可将填充目标值Ms设定成仅与室外单元2的制冷剂量Mo对应的值或设定成与室外热交换器23的制冷剂Mc对应的值后进行制冷剂的追加填充,直到达到填充目标值Ms为止。
这样,利用作为制冷剂量判定装置发挥作用的控制部8来进行步骤S13的处理,该控制部8对制冷剂自动填充运行的制冷剂量判定运行中制冷剂回路10内的制冷剂量是否合适(即是否达到填充目标值Ms)进行判定。
(制冷剂自动填充运行中对制冷剂储气瓶是否已空作检测判定和更换制冷剂储气瓶)
上述对制冷剂回路10进行的直到填充目标值Ms为止的制冷剂填充具体是通过使用与制冷剂回路10的填充口P连接的制冷剂储气瓶90如下地进行。
在上述制冷剂量判定运行开始时,控制部8对制冷剂回路10的运行状态是否稳定进行判断。当控制部8判断为运行状态稳定时,在显示部9中显示用于通知可连接制冷剂储气瓶90的标志。通过该显示部9的显示,操作者掌握已可连接制冷剂储气瓶90的情况。接着,操作者将制冷剂储气瓶90与制冷剂回路10的填充口P连接,并使储气瓶开闭阀95成为打开状态。由此,被封入制冷剂储气瓶90内的制冷剂会流过填充口P而流入制冷剂回路10内。在此期间,制冷剂量判定运行继续进行,从而可使在制冷剂回路10内循环的制冷剂的分布状态变得稳定。
在步骤S12中,对因从制冷剂储气瓶90填充制冷剂而引起的制冷剂回路10内各部分的制冷剂状态变化进行检测,并运算制冷剂回路10内的制冷剂量的当前值。
在步骤S13中,控制部8逐次判定在步骤S12中求出的制冷剂量的当前值是否达到填充目标值Ms。在该步骤S13中,控制部8对制冷剂量的当前值是否达到填充目标值Ms进行判断。当控制部8判断为达到了填充目标值Ms时,在显示部9中显示用于通知已达到填充目标值Ms的标志,停止制冷剂自动填充运行。这样,通过在显示部9中显示,操作者掌握制冷剂回路10的制冷剂量已填充至填充目标值Ms的情况,使储气瓶开闭阀95成为关闭状态,从而结束制冷剂填充作业。
另一方面,当控制部8判断为制冷剂回路10内的制冷剂量的当前值尚未达到填充目标值Ms时,从制冷剂储气瓶90继续向制冷剂回路10填充制冷剂。此时,在制冷剂储气瓶90内的制冷剂量比为达到填充目标值Ms而需要追加填充的制冷剂量少的场合,制冷剂储气瓶90有时会在填充作业途中变空,为了继续填充,需要更换新的制冷剂储气瓶90。
在此,控制部8通过下面所述的各顺序对制冷剂储气瓶90是否空了自动地进行检测,通过来自显示部90的显示来通知制冷剂储气瓶90的更换时间。由此,操作者无需将制冷剂储气瓶90载放到秤等上来监视制冷剂储气瓶90的重量变化即可掌握更换新制冷剂储气瓶90的时间。
具体而言,执行图12的流程图所示的顺序。
在步骤S51中,操作者将制冷剂储气瓶90与制冷剂回路10连接,并将储气瓶开闭阀95打开,从而开始制冷剂的填充。此时,操作者通过按下与室外侧控制部37连接设置的按钮(未图示)而将制冷剂自动填充运行的开始指令输入控制部8,开始对制冷剂储气瓶是否已空进行检测判定。
在步骤S52中,来自制冷剂储气瓶90的制冷剂开始流过填充口P,在制冷剂回路10内流动的处于过热气体状态的制冷剂与从制冷剂储气瓶90进行填充的液体制冷剂混合。这样一来,如图13所示,这个向混合状态的变化可由下游稳定传感器92的检测温度Ts2的急剧下降检测到。在此,控制部8对此时的检测温度Ts2与此时的饱和温度Te之差(过热度)是否成为规定阈值ΔT1以下进行判断,在判断为已成为阈值ΔT1以下时,判断为已连接未空的制冷剂储气瓶90而转移到步骤S53。另外,也可基于在此检测出的下游温度传感器92的检测温度Te2的急剧下降而判定制冷剂自动填充运行、对制冷剂储气瓶是否已空而作的检测判定开始以及已连接制冷剂储气瓶90,从而省略操作者的输入作业等。
在步骤S53中,控制部8对步骤S13的制冷剂填充量判定结果进行评价,并对制冷剂回路10的制冷剂量是否成为填充目标值Ms进行判断,在判断为成为填充目标值Ms时,即作为在制冷剂回路10内已填充了所需的制冷剂量,从而结束制冷剂自动填充运行。另一方面,在判断为制冷剂量尚未达到填充目标值Ms时,转移到步骤S54。
在步骤S54中,对与制冷剂回路10连接的制冷剂储气瓶90是否空了进行判断。如上所述,在刚开始进行制冷剂自动填充运行并连接了制冷剂储气瓶90时,在制冷剂储气瓶90的内部存在大量液体制冷剂,因此,向制冷剂回路10供给的制冷剂成为液态。而随着来自制冷剂储气瓶90的制冷剂自动填充运行的进行,制冷剂储气瓶90内部的液体制冷剂逐渐减少,向制冷剂回路10供给的制冷剂就成为气液两相状态和气态。这样一来,如图13所示,这个被供给的制冷剂的状态变化便可由下游温度传感器92所检测的制冷剂温度Ts2的急剧上升检测到,Ts2—Te的值(过热度)变大。在此,控制部8对该过热度(Ts2—Te)比在规定阈值ΔT2上加上修正项ε后的值大的状态是否持续了规定时间TW进行判断,在判断为持续时,判定为制冷剂储气瓶90已空,转移到步骤S55。在此,修正项ε是考虑了室内热交换器42、52出口附近的过热度和大气温度的影响的值。
在步骤S55中,由于控制部8判定为制冷剂储气瓶90已空,因此在显示部9中显示指示更换制冷剂储气瓶90的更换标志。操作者可通过确认显示部9所显示的更换标志来掌握制冷剂储气瓶90的更换时间。
在步骤S56中,操作者将与填充口P连接的空制冷剂储气瓶90更换为新的制冷剂储气瓶90,从而重新开始制冷剂填充。
在步骤S57中,与步骤S52一样,由于从制冷剂储气瓶90供给液体制冷剂,因此制冷剂温度Ts2再次下降。在此,如图13所示,控制部8再次对过热度(Ts2—Te)是否成为规定阈值ΔT1以下进行判断,在判断为已成为规定阈值ΔT1以下时,判定为未空的新制冷剂储气瓶90正在供给,转移到步骤S58。
在步骤S58中,控制部8在使显示部9中的储气瓶更换标志结束后,返回步骤S53,继续进行制冷剂自动填充运行。
这样,一边对制冷剂回路10更换制冷剂储气瓶90,一边继续制冷剂的追加填充,直到制冷剂量达到填充目标值Ms。
上述作业中的显示部9通过LED的亮灯显示来将各种状态传达给操作者,但并不特别局限于LED亮灯,也可通过显示器的显示输出和蜂鸣声等的输出来通知操作者。
(步骤S2:配管容积判定运行)
在上述步骤S1的制冷剂自动填充运行完成后,转移到步骤S2的配管容积判定运行。在配管容积判定运行中,由控制部8来进行图6所示的步骤S21~步骤S25的处理。在此,图6是配管容积判定运行的流程图。
(步骤S21、S22:液体制冷剂连通配管用的配管容积判定运行和容积的运算)
在步骤S21中,与上述制冷剂自动填充运行中步骤S11的制冷剂量判定运行一样,进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的液体制冷剂连通配管6用的配管容积判定运行。在此,将液体管道温度控制中过冷却器25的靠主制冷剂回路侧的出口处的制冷剂的温度Tlp的液体管道温度目标值Tlps设为第一目标值Tlps1,将制冷剂量判定运行在该第一目标值Tlps1下稳定的状态设为第一状态(参照图7的用包括虚线在内的线表示的制冷循环)。图7是表示液体制冷剂连通配管用的配管容积判定运行中空调装置1的制冷循环的焓-熵图。
另外,从液体管道温度控制中过冷却器25的靠主制冷剂回路侧的出口处的制冷剂的温度Tlp稳定在第一目标值Tlps1的第一状态起,在其它的设备控制、即冷凝压力控制、过热度控制和蒸发压力控制的条件不变的情况下(即不变更过热度目标值SHrs和低压目标值Tes的情况下)成为将液体管道温度目标值Tlps变更为与第一目标值Tlps1不同的第二目标值Tlps2后稳定的第二状态(参照图7的实线表示的制冷循环)。在本实施形态中,第二目标值Tlps2是比第一目标值Tlps1高的温度。
这样,通过从稳定在第一状态的状态变更为第二状态,使液体制冷剂连通配管6内的制冷剂的密度变小,因此第二状态下的液体制冷剂连通配管部B3的制冷剂量Mlp与第一状态下的制冷剂量相比减少。从该液体制冷剂连通配管部B3减少的制冷剂朝制冷剂回路10的其它部分移动。更具体而言,如上所述,由于液体管道温度控制以外的其它的设备控制的条件不变,因此高压气体管部E的制冷剂量Mog1、低压气体管部H的制冷剂量Mog2和气体制冷剂连通配管部G的制冷剂量Mgp大致保持一定,从液体制冷剂连通配管部B3减少的制冷剂会朝冷凝器部A、高温液体管部B1、低温液体管部B2、室内单元F和旁通回路部I移动。即,冷凝器部A的制冷剂量Mc、高温液体管部B1的制冷剂量Mol1、低温液体管部B2的制冷剂量Mol2、室内单元F的制冷剂量Mr和旁通回路部I的制冷剂量Mob增加与从液体制冷剂连通配管部B3减少的制冷剂相应的量。
上述控制由作为配管容积判定运行控制装置发挥作用的控制部8(更具体而言是室内侧控制部47、57、室外侧控制部37以及将控制部37、47、57彼此连接的传输线8a)作为步骤S21的处理进行,该控制部8进行用于运算液体制冷剂连通配管6的容积Mlp的配管容积判定运行。
接着,在步骤S22中,通过从第一状态向第二状态变更,利用制冷剂从液体制冷剂连通配管部B3减少而朝制冷剂回路10的其它部分移动的现象,来运算出液体制冷剂连通配管6的容积Vlp。
首先,对为了运算液体制冷剂连通配管6的容积Vlp而使用的运算式进行说明。若通过上述配管容积判定运行将从该液体制冷剂连通配管部B3减少而朝制冷剂回路10的其它部分移动的制冷剂量设为制冷剂增减量ΔMlp,将第一和第二状态之间的各部分的制冷剂的增减量设为ΔMc、ΔMol1、ΔMol2、ΔMr和ΔMob(在此,制冷剂量Mog1、制冷剂量Mog2和制冷剂量Mgp因大致保持一定而省略),则制冷剂增减量ΔMlp例如可由以下函数式进行运算:
ΔMlp=—(ΔMc+ΔMol1+ΔMol2+ΔMr+ΔMob)
另外,通过将该ΔMlp的值除以液体制冷剂连通配管6内的第一和第二状态之间的制冷剂的密度变化量Δρlp,可以运算出液体制冷剂连通配管6的容积Vlp。虽然对于制冷剂增减量ΔMlp的运算结果几乎没有影响,但也可在上述函数式中包含制冷剂量Mog1和制冷剂量Mog2。
Vlp=ΔMlp/Δρlp
ΔMc、ΔMol1、ΔMol2、ΔMr和ΔMob可通过使用上述制冷剂回路10各部分的相关关系式运算出第一状态下的制冷剂量和第二状态下的制冷剂量后从第二状态下的制冷剂量中减去第一状态下的制冷剂量而得到,密度变化量Δρlp可通过运算出第一状态下过冷却器25出口处的制冷剂密度和第二状态下过冷却器25出口处的制冷剂密度后从第二状态下的制冷剂密度中减去第一状态下的制冷剂密度而得到。
使用如上所述的运算式,可基于第一和第二状态下在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算出液体制冷剂连通配管6的容积Vlp。
在本实施形态中,要进行状态变更以使第二状态下的第二目标值Tlps2成为比第一状态下的第一目标值Tlps1高的温度,并使液体制冷剂连通配管部B2的制冷剂朝其它部分移动而使其它部分的制冷剂量增加,从而基于该增加量来运算液体制冷剂连通配管6的容积Vlp。但是,并不局限于此,也可进行状态变更,以使第二状态下的第二目标值Tlps2成为比第一状态下的第一目标值Tlps1低的温度,且使制冷剂从其它部分朝液体制冷剂连通配管部B3移动而使其它部分的制冷剂量减少,从而基于该减少量来运算液体制冷剂连通配管6的容积Vlp。
这样,由作为液体制冷剂连通配管用的配管容积运算装置发挥作用的控制部8来进行步骤S22的处理,该控制部8基于液体制冷剂连通配管6用的配管容积判定运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算液体制冷剂连通配管6的容积Vlp。
(步骤S23、S24:气体制冷剂连通配管用的配管容积判定运行和容积的运算)
在上述步骤S21和步骤S22完成后,在步骤S23中进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的气体制冷剂连通配管7用的配管容积判定运行。在此,将蒸发压力控制中压缩机21的吸入压力Ps的低压目标值Pes设为第一目标值Pes1,将制冷剂量判定运行在该第一目标值Pes1下稳定的状态设为第一状态(参照图8的用包括虚线在内的线表示的制冷循环)。图8是表示气体制冷剂连通配管用的配管容积判定运行中空调装置1的制冷循环的焓-熵图。
另外,从蒸发压力控制中压缩机21的吸入压力Ps的低压目标值Pes稳定在第一目标值Pes1的第一状态起在其它的设备控制、即液体管道温度控制、冷凝压力控制和过热度控制的条件不变的情况下(即不变更液体管道温度目标值Tlps和过热度目标值SHrs的情况下),成为将低压目标值Pes变更为与第一目标值Pes1不同的第二目标值Pes2后稳定的第二状态(参照仅由图8的实线表示的制冷循环)。在本实施形态中,第二目标值Pes2是比第一目标值Pes1低的压力。
这样,通过从稳定在第一状态的状态变更为第二状态,气体制冷剂连通配管7内的制冷剂的密度变小,因此第二状态下的气体制冷剂连通配管部G的制冷剂量Mgp与第一状态下的制冷剂量相比减少。从该气体制冷剂连通配管部G减少的制冷剂朝制冷剂回路10的其它部分移动。更具体而言,如上所述,由于蒸发压力控制以外的其它的设备控制的条件不变,因此高压气体管部E的制冷剂量Mog1、高温液体管部B1的制冷剂量Mol1、低温液体管部B2的制冷剂量Mol2和液体制冷剂连通配管部B3的制冷剂量Mlp大致保持一定,从气体制冷剂连通配管部G的减少的制冷剂会朝低压气体管部H、冷凝器部A、室内单元F和旁通回路部I移动。即,低压气体管部H的制冷剂量Mog2、冷凝器部A的制冷剂量Mc、室内单元F的制冷剂量Mr和旁通回路部I的制冷剂量Mob增加与从气体制冷剂连通配管部G减少的制冷剂相应的量。
上述控制由作为配管容积判定运行控制装置发挥作用的控制部8(更具体而言是室内侧控制部47、57、室外侧控制部37以及将控制部37、47、57彼此连接的传输线8a)作为步骤S23的处理进行,该控制部8进行用于运算气体制冷剂连通配管7的容积Vgp的配管容积判定运行。
接着,在步骤S24中,通过从第一状态向第二状态变更,利用制冷剂从气体制冷剂连通配管部G减少而朝制冷剂回路10的其它部分移动的现象来运算出气体制冷剂连通配管7的容积Vgp。
首先,对为了运算气体制冷剂连通配管7的容积Vgp而使用的运算式进行说明。若将上述配管容积判定运行中从该气体制冷剂连通配管部G减少而朝制冷剂回路10的其它部分移动的制冷剂量设为制冷剂增减量ΔMgp,将第一和第二状态之间的各部分的制冷剂的增减量设为ΔMc、ΔMol2、ΔMr和ΔMob(在此,制冷剂量Mog1、制冷剂量Mol1、制冷剂量Mol2和制冷剂量Mlp大致保持一定,故而省略),则制冷剂增减量ΔMgp例如可由
ΔMgp=—(ΔMc+ΔMog2+ΔMr+ΔMob)
的函数式进行运算。另外,通过将该ΔMgp的值除以气体制冷剂连通配管7内的第一和第二状态之间的制冷剂的密度变化量Δρgp,可以运算出气体制冷剂连通配管7的容积Vgp。虽然对于制冷剂增减量ΔMgp的运算结果几乎没有影响,但也可在上述函数式中包含制冷剂量Mog1、制冷剂量Mol1和制冷剂量Mol2。
Vgp=ΔMgp/Δρgp
ΔMc、ΔMog2、ΔMr和ΔMob可通过使用上述制冷剂回路10各部分的相关关系式运算出第一状态下的制冷剂量和第二状态下的制冷剂量后从第二状态下的制冷剂量中减去第一状态下的制冷剂量而得到,密度变化量Δρgp可通过运算出第一状态下压缩机21吸入侧的制冷剂密度ρs和室内热交换器42、52出口处的制冷剂密度ρeo的平均密度后从第二状态下的平均密度中减去第一状态下的平均密度而得到。
使用如上所述的运算式,可基于第一和第二状态下在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算出气体制冷剂连通配管7的容积Vgp。
在本实施形态中,进行状态变更,以使第二状态下的第二目标值Pes2成为比第一状态下的第一目标值Pes1低的压力,使气体制冷剂连通配管部G的制冷剂朝其它部分移动而使其它部分的制冷剂量增加,从而基于该增加量来运算气体制冷剂连通配管7的容积Vgp。但是,并不局限于此,也可进行状态变更,以使第二状态下的第二目标值Pes2成为比第一状态下的第一目标值Pes1高的压力,使制冷剂从其它部分朝气体制冷剂连通配管部G移动而使其它部分的制冷剂量减少,从而基于该减少量来运算气体制冷剂连通配管7的容积Vgp。
这样,由作为气体制冷剂连通配管用的配管容积运算装置发挥作用的控制部8来进行步骤S24的处理,该控制部8基于气体制冷剂连通配管7用的配管容积判定运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算出气体制冷剂连通配管7的容积Vgp。
(步骤S25:配管容积判定运行结果的准确性判定)
在上述步骤S21~步骤S24完成后,在步骤S25中对配管容积判定运行的结果是否准确、即由配管容积运算装置运算出的制冷剂连通配管6、7的容积Vlp、Vgp是否准确进行判定。
具体而言,如下面的不等式所示,对根据运算得到的液体制冷剂连通配管6的容积Vlp与气体制冷剂连通配管7的容积Vgp之比是否处在规定的数值范围内进行判定。
ε1<Vlp/Vgp<ε2
其中,ε1和ε2是可以根据热源单元与利用单元之间的可能组合的配管容积比的最小值和最大值而变化的值。
若容积比Vlp/Vgp满足上述数值范围,则配管容积判定运行的步骤S2的处理完成,若容积比Vlp/Vgp不满足上述数值范围,则再次进行步骤S21~步骤S24的配管容积判定运行和容积的运算处理。
这样,由作为准确性判定装置发挥作用的控制部8来进行步骤S25的处理,该控制部8对上述配管容积判定运行的结果是否准确、即由配管容积运算装置运算出的制冷剂连通配管6、7的容积Vlp、Vgp是否准确进行判定。
在本实施形态中,是先进行液体制冷剂连通配管6用的配管容积判定运行(步骤S21、S22),后进行气体制冷剂连通配管7用的配管容积判定运行(步骤S23、S24),但也可先进行气体制冷剂连通配管7用的配管容积判定运行。
在上述步骤S25中,在步骤S21~S24的配管容积判定运行的结果被多次判定为不准确时、以及想要更简单地进行制冷剂连通配管6、7的容积Vlp、Vgp的判定时,图6中虽未图示,但例如也可以如下,即在步骤S25中,在步骤S21~S24的配管容积判定运行的结果被判定为不准确后,转移到基于制冷剂连通配管6、7的压力损失来推测制冷剂连通配管6、7的配管长度、并基于该推测出的配管长度和平均容积比来运算制冷剂连通配管6、7的容积Vlp、Vgp的处理,从而得到制冷剂连通配管6、7的容积Vlp、Vgp。
在本实施形态中说明了在没有制冷剂连通配管6、7的长度和管径等信息、制冷剂连通配管6、7的容积Vlp、Vgp未知的前提下通过运行配管容积判定运行来运算制冷剂连通配管6、7的容积Vlp、Vgp的情况,但在配管容积运算装置具有可通过输入制冷剂连通配管6、7的长度和管径等信息来运算制冷剂连通配管6、7的容积Vlp、Vgp的功能时,也可同时使用该功能。
在不运用通过使用上述配管容积判定运行及其运行结果来运算制冷剂连通配管6、7的容积Vlp、Vgp的功能、而仅运用通过输入制冷剂连通配管6、7的长度和管径等信息来运算制冷剂连通配管6、7的容积Vlp、Vgp的功能时,也可使用上述准确性判定装置(步骤S25)对输入的制冷剂连通配管6、7的长度和管径等信息是否准确进行判定。
(步骤S3:初始制冷剂量检测运行)
在上述步骤S2的配管容积判定运行完成后,转移到步骤S3的初始制冷剂量判定运行。在初始制冷剂量检测运行中,由控制部8来进行图9所示的步骤S31和步骤S32的处理。在此,图9是初始制冷剂量检测运行的流程图。
(步骤S31:制冷剂量判定运行)
在步骤S31中,与上述制冷剂自动填充运行的步骤S11的制冷剂量判定运行一样,进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的制冷剂量判定运行。在此,液体管道温度控制中的液体管道温度目标值Tlps、过热度控制中的过热度目标值SHrs和蒸发压力控制中的低压目标值Pes原则上使用与制冷剂自动填充运行的步骤S11的制冷剂量判定运行中的目标值相同的值。
这样,由作为制冷剂量判定运行控制装置发挥作用的控制部8来进行步骤S31的处理,该控制部8进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的制冷剂量判定运行。
(步骤S32:制冷剂量的运算)
利用一边进行上述制冷剂量判定运行一边作为制冷剂量运算装置发挥作用的控制部8,基于步骤S32的初始制冷剂量判定运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10内的制冷剂量。制冷剂回路10内的制冷剂量的运算使用上述制冷剂回路10各部分的制冷剂量与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式来进行运算,此时,由于在空调装置1的构成设备的设置后未知的制冷剂连通配管6、7的容积Vlp、Vgp通过上述配管容积判定运行进行了运算而已知,因此通过将这些制冷剂连通配管6、7的容积Vlp、Vgp乘上制冷剂密度来运算制冷剂连通配管6、7内的制冷剂量Mlp、Mgp并加上它各部分的制冷剂量,可检测出制冷剂回路10整体的初始制冷剂量。由于该初始制冷剂量在下述的制冷剂泄漏检测运行中作为构成判定制冷剂回路10有无泄漏的基准的制冷剂回路10整体的基准制冷剂量Mi使用,因此将其作为运行状态量之一而存储在作为状态量储存装置的控制部8的存储器内。
这样,由作为制冷剂量运算装置发挥作用的控制部8来进行步骤S32的处理,该控制部8基于初始制冷剂量检测运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10各部分的制冷剂量。
<制冷剂泄漏检测运行模式>
下面用图1、图2、图5和图10来说明制冷剂泄漏检测运行模式。在此,图10是制冷剂泄漏检测运行模式的流程图。
在本实施形态中,以定期(例如休息日和深夜等不必进行空气调节的时间段等)检测制冷剂是否意外地从制冷剂回路10泄漏到外部的情况为例进行说明。
(步骤S41:制冷剂量判定运行)
首先,在上述制冷运行和供暖运行那样的通常运行模式下运行了一定时间(例如每半年~一年等)后,自动或手动地从通常运行模式切换成制冷剂泄漏检测运行模式,与初始制冷剂量检测运行的制冷剂量判定运行一样地进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的制冷剂量判定运行。在此,液体管道温度控制中的液体管道温度目标值Tlps、过热度控制中的过热度目标值SHrs和蒸发压力控制中的低压目标值Pes原则上使用与初始制冷剂量检测运行中制冷剂量判定运行的步骤S32中的目标值相同的值。
该制冷剂量判定运行在每次进行制冷剂泄漏检测运行时进行,例如即使在因冷凝压力Pc不同或发生制冷剂泄漏那样的运行条件差异而导致室外热交换器23出口处的制冷剂温度Tco变动时,也可通过液体管道温度控制使液体制冷剂连通配管6内的制冷剂的温度Tlp以相同液体管道温度目标值Tlps保持一定。
这样,由作为制冷剂量判定运行控制装置发挥作用的控制部8来进行步骤S41的处理,该控制部8进行包括室内单元全部运行、冷凝压力控制、液体管道温度控制、过热度控制和蒸发压力控制在内的制冷剂量判定运行。
(步骤S42:制冷剂量的运算)
接着,利用一边进行上述制冷剂量判定运行一边作为制冷剂量运算装置发挥作用的控制部8基于步骤S42的初始制冷剂量判定运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10内的制冷剂量。制冷剂回路10内的制冷剂量的运算使用上述制冷剂回路10各部分的制冷剂量与在制冷剂回路10内流动的制冷剂或构成设备的运行状态量之间的关系式来进行运算。此时,与初始制冷剂量判定运行一样,由于在空调装置1的构成设备的设置后未知的制冷剂连通配管6、7的容积Vlp、Vgp通过上述配管容积判定运行进行了运算而成为已知。因此,通过将这些制冷剂连通配管6、7的容积Vlp、Vgp乘上制冷剂密度来运算制冷剂连通配管6、7内的制冷剂量Mlp、Mgp,并加上其它各部分的制冷剂量,可运算出制冷剂回路10整体的制冷剂量M。
在此,如上所述,由于通过液体管道温度控制使液体制冷剂连通配管6内的制冷剂的温度Tlp在液体管道温度目标值Tlps下保持一定,因此,不管制冷剂泄漏检测运行的运行条件是否不同,即使是在热交换器23出口处的制冷剂温度Tco变动时,液体制冷剂连通配管部B3的制冷剂量Mlp也会保持一定。
这样,由作为制冷剂量运算装置发挥作用的控制部8来进行步骤S42的处理,该控制部8基于制冷剂泄漏检测运行中在制冷剂回路10内流动的制冷剂或构成设备的运行状态量来运算制冷剂回路10各部分的制冷剂量。
(步骤S43、S44:制冷剂量是否合适的判定、警报显示)
制冷剂一旦从制冷剂回路10泄漏到外部,制冷剂回路10内的制冷剂量便会减少。若制冷剂回路10内的制冷剂量减少,则主要会呈现出室外热交换器23出口处的过冷度SCo变小的倾向,相应地出现室外热交换器23内的制冷剂量Mc减少、其它部分的制冷剂量大致保持一定的倾向。因此,上述步骤S42中运算出的制冷剂回路10整体的制冷剂量M在制冷剂回路10发生制冷剂泄漏时小于在初始制冷剂量检测运行中检测出的基准制冷剂量Mi,在制冷剂回路10未发生制冷剂泄漏时与基准制冷剂量Mi大致相同。
根据上述内容在步骤S43中对制冷剂有无泄漏进行判定。在步骤S43中,当判定为制冷剂回路10未发生制冷剂泄漏时,结束制冷剂泄漏检测运行模式。
另一方面,在步骤S43中,当判定为制冷剂回路10发生制冷剂泄漏时,转移到步骤S44的处理,在警报显示部9中显示报知检测到制冷剂泄漏的警报,之后结束制冷剂泄漏检测运行模式。
这样,由作为制冷剂泄漏检测装置发挥作用的控制部8来进行步骤S42~S44的处理,该控制部8在制冷剂泄漏检测运行模式下一边进行制冷剂量判定运行一边对制冷剂回路10内的制冷剂量是否合适进行判定,从而检测有无制冷剂泄漏。
在此,当检测到制冷剂泄漏时,在对泄漏部位进行了修理后,进行制冷剂填充运行。此处的制冷剂填充运行与上述施工时的运行顺序相同,在制冷剂回路10内填充制冷剂,直到制冷剂量达到填充目标值Ms。每当制冷剂储气瓶90空了时,在更换成新的制冷剂储气瓶90后继续填充,直到达到填充目标值Ms,这点也相同。另外,由于制冷剂泄漏以外的原因,在为了修理制冷剂回路10而对制冷剂回路10的制冷剂进行回收、从而成为制冷剂量未达到填充目标值Ms的状态时,也可通过同样的顺序进行制冷剂再填充。
如上所述,在本实施形态的空调装置1中,控制部8作为制冷剂量判定运行装置、制冷剂量运算装置、制冷剂量判定装置、配管容积判定运行装置、配管容积运算装置、准确性判定装置和状态量储存装置发挥作用,从而构成用于对被填充到制冷剂回路10内的制冷剂量是否合适进行判定的制冷剂量判定系统。
<本实施形态的空调装置1的特征>
(1)在以往的空调装置中,有时储气瓶会在制冷剂填充作业途中变空,需要在更换成新储气瓶后继续填充。此时,为了判断储气瓶是否空了,操作者需要使用秤等来随时确认储气瓶的重量变化。
而在本实施形态的空调装置1中,由于在针对制冷剂回路10的制冷剂的填充口P的下游侧设有下游温度传感器92,因此,在从制冷剂储气瓶90填充制冷剂时,室外侧控制部37可基于下游温度传感器92的检测温度的变化或基于由此得到的过热度的变化等(制冷剂的过热度是否以在规定阈值以上的状态持续了规定时间TW)来判定制冷剂储气瓶90是否空了。另外,操作者可根据来自显示部9的输出来掌握制冷剂储气瓶90已空的情况。由此,操作者无需用秤等来测定制冷剂储气瓶90的重量变化,无需特别注意就可根据显示部9的显示来掌握制冷剂储气瓶90空了的情况。
由此,操作者可简单地进行制冷剂储气瓶90的更换作业。
另外,不仅无需利用秤等来检测制冷剂储气瓶90是否空了就可自动地检测到制冷剂储气瓶90已空的状态,而且还可自动地检测到已对制冷剂回路10填充了制冷剂目标值Ms的制冷剂的情况。由此,操作者只需在掌握制冷剂储气瓶90空了的情况后进行几次新制冷剂储气瓶90的更换作业,就可在制冷剂回路10内填充制冷剂目标值Ms的制冷剂量。
(2)在本实施形态的空调装置1中,在由下游温度传感器92的检测温度得到的过热度低于阈值ΔT1时,室外侧控制部37自动地判断为已开始从制冷剂储气瓶90填充制冷剂。另外,被下游温度传感器92检测的制冷剂的过热度是与刚开始填充制冷剂时的温度相同的温度,当制冷剂的过热度以在规定阈值以上的状态下持续了规定时间TW时,自动地判定为制冷剂储气瓶90空了并从显示部9输出。由此,操作者可根据显示部9的显示来自动地掌握制冷剂储气瓶90空了的情况。
<其它实施形态>
上面对本发明的一实施形态进行了说明,但本发明并不局限于上述实施形态,可在不脱离发明主旨的范围内进行变更。
(A)在上述空调装置1中,是仅在填充口P的下游设置下游温度传感器92来检测温度,从而检测制冷剂储气瓶90是否已空。
但是,本发明并不局限于此,如图14所示,也可做成还在填充口P的上游侧设有上游温度传感器91的结构。如图15所示,该上游温度传感器91与下游温度传感器92一样,与室外侧控制部37连接。
采用这种设有两个温度传感器91、92的结构,可将上游温度传感器91与下游温度传感器92之间的检测温度之差、由上游温度传感器91和下游温度传感器92分别得到的过热度之差、或者它们的变动作为基准来检测制冷剂储气瓶90是否空了。
在此,可对来自制冷剂储气瓶90的制冷剂混入之前的制冷剂温度或过热度与来自储气瓶的制冷剂混入之后的制冷剂温度或过热度进行比较。由此,当填充口P的上游的制冷剂的状态量和填充口P的下游的制冷剂的状态量的值变成相等或变动减小时,可判断为来自制冷剂储气瓶90的制冷剂的填充已结束,可更准确地检测出制冷剂储气瓶90空了的情况。
(B)在上述空调装置1中,是下游温度传感器92设在主制冷剂回路中来进行温度检测。
但是,本发明并不局限于此,如图16所示,也可做成在将填充口P与制冷剂储气瓶90之间连接的配管途中设有储气瓶温度传感器93的结构。如图17所示,该储气瓶温度传感器93与下游温度传感器92一样,与室外侧控制部37连接。
在此,利用与主制冷剂回路连接的储气瓶温度传感器93、配管和制冷剂储气瓶90,可将制冷剂自动填充运行中储气瓶温度传感器93的检测温度、制冷剂的过热度、或它们的变动等作为基准来检测制冷剂储气瓶90是否空了。
在此,在从制冷剂储气瓶90对主制冷剂回路进行的制冷剂填充处理中,可在填充开始时和制冷剂储气瓶90空了的填充结束时对检测温度进行比较。另外,储气瓶温度传感器93不是对主制冷剂回路途中的制冷剂、而是对从制冷剂储气瓶90向填充口P供给的制冷剂的温度进行检测,因此可检测出不容易受到主制冷剂回路内的制冷剂的流量和温度影响的值。由此,当填充口P与制冷剂储气瓶90之间的制冷剂的温度等状态量的值的变动减小了时,可判断为来自制冷剂储气瓶90的制冷剂的填充已结束,可更准确地检测出制冷剂储气瓶90空了的情况。
另外,可对开始填充来自制冷剂储气瓶90的制冷剂时的液体制冷剂的检测温度与从填充开始起经过少许时间后的气液混合制冷剂或气态制冷剂的检测温度进行比较。由此,当填充口P与制冷剂储气瓶90之间的制冷剂的温度等状态量的值与主制冷剂回路的填充口P附近的制冷剂的温度等状态量的值变成相等或变动减小了时,可判断为来自制冷剂储气瓶90的制冷剂的填充已结束。
工业上的可利用性
采用本发明,在利用储气瓶填充制冷剂时,操作者无需特别注意就可掌握储气瓶空了的状态,因此,尤其适用于在空调装置中从储气瓶填充制冷剂的场合。

Claims (6)

1.一种空调装置(1),使用封入制冷剂的储气瓶(90)来填充制冷剂,其特征在于,包括:
制冷剂回路(10),该制冷剂回路(10)由压缩机(21)和热源侧热交换器(23)以及利用侧膨胀阀(41、51)和利用侧热交换器(42、52)连接而构成;
填充口(P),该填充口(P)用于从所述储气瓶(90)对所述制冷剂回路(10)填充制冷剂;
第一温度传感器(92),该第一温度传感器(92)设置在所述制冷剂回路(10)中的所述填充口(P)附近;
填充判定部(37),该填充判定部(37)基于所述第一温度传感器(92)检测到的温度或过热度中的至少一方的变化来判定所述储气瓶(90)是否空了;以及
输出部(9),该输出部(9)在所述填充判定部(37)判定为所述储气瓶(90)空了时进行输出。
2.如权利要求1所述的空调装置(1),其特征在于,所述填充判定部(37)在所述第一温度传感器(92)检测到的温度或过热度中的至少一方的值成为规定判定值以上时判定为所述储气瓶(90)空了。
3.如权利要求1或2所述的空调装置(1),其特征在于,
所述填充口(P)设置在所述制冷剂回路(10)中的所述利用侧热交换器(42、52)与所述压缩机(21)之间,
所述第一温度传感器(92)设置在所述填充口(P)与所述压缩机(21)之间。
4.如权利要求1至3中任一项所述的空调装置(1),其特征在于,
所述第一温度传感器(92)设置在所述填充口(P)与所述压缩机(21)之间的下游侧,
所述空调装置(1)还包括第二温度传感器(91),该第二温度传感器(91)设置在所述填充口(P)的上游侧,
所述填充判定部(37)基于利用所述第一温度传感器(92)和所述第二温度传感器(91)检测得到的温度之差、过热度之差、或者所述温度之差或过热度之差的变化来进行所述判定。
5.如权利要求1或2所述的空调装置(1),其特征在于,
所述第一温度传感器(93)设置于所述储气瓶(90)与所述填充口(P)之间的通过点。
6.如权利要求1至5中任一项所述的空调装置(1),其特征在于,还包括:
状态量检测传感器,该状态量检测传感器对所述制冷剂回路(10)内的制冷剂的状态量进行检测;以及
制冷剂量判定装置(8),该制冷剂量判定装置(8)基于所述状态量检测传感器检测到的状态量的变化来判定是否在所述制冷剂回路(10)内填充了规定量的制冷剂。
CN2007800027981A 2006-01-25 2007-01-25 空调装置 Expired - Fee Related CN101371086B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006015817A JP4165566B2 (ja) 2006-01-25 2006-01-25 空気調和装置
JP015817/2006 2006-01-25
PCT/JP2007/051138 WO2007086445A1 (ja) 2006-01-25 2007-01-25 空気調和装置

Publications (2)

Publication Number Publication Date
CN101371086A true CN101371086A (zh) 2009-02-18
CN101371086B CN101371086B (zh) 2010-11-17

Family

ID=38309233

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800027981A Expired - Fee Related CN101371086B (zh) 2006-01-25 2007-01-25 空调装置

Country Status (7)

Country Link
US (1) US7980086B2 (zh)
EP (1) EP1983279A4 (zh)
JP (1) JP4165566B2 (zh)
KR (1) KR101001851B1 (zh)
CN (1) CN101371086B (zh)
AU (1) AU2007208727C1 (zh)
WO (1) WO2007086445A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574855A (zh) * 2012-07-30 2014-02-12 富士通将军股份有限公司 空气调节装置的室外机和空气调节装置
CN103661457A (zh) * 2012-09-13 2014-03-26 阿尔斯通运输股份有限公司 特别用于轨道车辆的空气调节设备
CN106016866A (zh) * 2015-09-18 2016-10-12 青岛海尔空调电子有限公司 一种空调器冷媒充注方法及系统
CN108800685A (zh) * 2018-08-22 2018-11-13 安徽美乐柯制冷空调设备有限公司 一种设有过冷器和润滑油冷却器的冷水机组
CN110199162A (zh) * 2017-01-19 2019-09-03 三菱电机株式会社 冷冻循环装置
CN110651163A (zh) * 2018-04-26 2020-01-03 日立江森自控空调有限公司 空调机
CN111811174A (zh) * 2020-06-24 2020-10-23 河北博志热能设备有限公司 一种用于空调热泵机组的制冷剂自动补给的控制方法
CN112888907A (zh) * 2018-11-19 2021-06-01 大金工业株式会社 制冷剂循环装置、制冷剂量判断系统以及制冷剂量判断方法
CN113465200A (zh) * 2014-11-25 2021-10-01 康唯特股份公司 具有填充程度监测的制冷系统

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225357B2 (ja) * 2007-04-13 2009-02-18 ダイキン工業株式会社 冷媒充填装置、冷凍装置及び冷媒充填方法
JP4474455B2 (ja) * 2007-11-01 2010-06-02 三菱電機株式会社 冷凍空調装置への冷媒充填装置及び冷凍空調装置への冷媒充填方法
EP2056046B1 (en) * 2007-11-01 2018-09-12 Mitsubishi Electric Corporation Refrigerant filling apparatus of refrigerating and air conditioning apparatus and refrigerant filling method of refrigerating and air conditioning apparatus
CN102395842B (zh) 2009-04-17 2015-03-11 大金工业株式会社 热源单元
WO2012000501A2 (en) * 2010-06-30 2012-01-05 Danfoss A/S A method for operating a vapour compression system using a subcooling value
US20120227824A1 (en) * 2011-03-11 2012-09-13 Austin Scientific Company Methods And Apparatus For Gas Compression With Gas Flow Rate And Pressure Regulation
JP5759017B2 (ja) * 2011-12-22 2015-08-05 三菱電機株式会社 空気調和装置
JP5445577B2 (ja) * 2011-12-29 2014-03-19 ダイキン工業株式会社 冷凍装置およびその異冷媒充填検出方法
JP5948237B2 (ja) * 2012-12-27 2016-07-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和装置
DK178047B1 (da) * 2013-02-04 2015-04-13 Agramkow Fluid Systems As Fremgangsmåde til påfyldning af kølemiddel
JP5812081B2 (ja) * 2013-11-12 2015-11-11 ダイキン工業株式会社 室内機
EP3098540B1 (en) * 2014-01-23 2020-10-07 Mitsubishi Electric Corporation Heat pump apparatus
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
KR20160043402A (ko) * 2014-10-13 2016-04-21 엘지전자 주식회사 칠러용 컨트롤러 및 칠러의 제어방법
US10443901B2 (en) * 2015-04-30 2019-10-15 Daikin Industries, Ltd. Indoor unit of air conditioner
EP3324137B1 (en) * 2016-11-18 2022-01-05 LG Electronics Inc. Air conditioner and control method thereof
US10837685B2 (en) * 2018-06-29 2020-11-17 Johnson Controls Technology Company HVAC refrigerant charging and relieving systems and methods
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
JP6819708B2 (ja) * 2019-02-13 2021-01-27 ダイキン工業株式会社 冷媒量管理システム
JP7536429B2 (ja) * 2019-07-04 2024-08-20 三星電子株式会社 冷媒充填装置
JP7343764B2 (ja) * 2019-09-30 2023-09-13 ダイキン工業株式会社 空気調和機
CN110986437B (zh) * 2019-12-10 2023-06-16 珠海市鹿鸣智慧科技有限公司 一种空调自动调试装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311576Y2 (zh) * 1980-05-07 1988-04-04
JPS6311576A (ja) * 1986-03-13 1988-01-19 東芝セラミツクス株式会社 電融体およびその製造方法
JPH0743193B2 (ja) * 1990-11-30 1995-05-15 サンデン株式会社 冷媒過充填防止装置
US5090212A (en) * 1990-12-17 1992-02-25 Technical Chemical Company Cutoff switch for refrigerant container
FR2677112A1 (fr) * 1991-05-29 1992-12-04 Savema Sa Poste de charge pour unites frigorifiques.
US5377499A (en) * 1994-05-10 1995-01-03 Hudson Technologies, Inc. Method and apparatus for refrigerant reclamation
JPH08200905A (ja) 1995-01-20 1996-08-09 Hitachi Ltd 冷媒量の指示装置
JP3152187B2 (ja) * 1997-11-21 2001-04-03 ダイキン工業株式会社 冷凍装置及び冷媒充填方法
JP3327215B2 (ja) * 1998-07-22 2002-09-24 三菱電機株式会社 空気調和機の冷媒充填量決定方法
JP2002195705A (ja) 2000-12-28 2002-07-10 Tgk Co Ltd 超臨界冷凍サイクル
JP2004327874A (ja) 2003-04-28 2004-11-18 Hitachi High-Technologies Corp 冷媒消費量監視機能を備えた冷却システム,生体磁気計測装置
JP4110276B2 (ja) * 2003-10-03 2008-07-02 株式会社日立製作所 冷媒充填装置及び冷媒充填方法
AU2005252968B2 (en) * 2004-06-11 2008-07-31 Daikin Industries, Ltd. Air conditioner
EP2360441B1 (en) 2005-10-25 2019-05-08 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe clearing method of air conditioner
JP2007127326A (ja) 2005-11-02 2007-05-24 Yanmar Co Ltd 冷媒充填回路を備えたエンジン駆動式ヒートポンプ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574855A (zh) * 2012-07-30 2014-02-12 富士通将军股份有限公司 空气调节装置的室外机和空气调节装置
CN103574855B (zh) * 2012-07-30 2017-03-01 富士通将军股份有限公司 空气调节装置的室外机和空气调节装置
CN103661457A (zh) * 2012-09-13 2014-03-26 阿尔斯通运输股份有限公司 特别用于轨道车辆的空气调节设备
CN113465200A (zh) * 2014-11-25 2021-10-01 康唯特股份公司 具有填充程度监测的制冷系统
CN106016866A (zh) * 2015-09-18 2016-10-12 青岛海尔空调电子有限公司 一种空调器冷媒充注方法及系统
CN106016866B (zh) * 2015-09-18 2018-05-04 青岛海尔空调电子有限公司 一种空调器冷媒充注方法及系统
CN110199162A (zh) * 2017-01-19 2019-09-03 三菱电机株式会社 冷冻循环装置
CN110651163A (zh) * 2018-04-26 2020-01-03 日立江森自控空调有限公司 空调机
CN110651163B (zh) * 2018-04-26 2020-08-18 日立江森自控空调有限公司 空调机
CN108800685A (zh) * 2018-08-22 2018-11-13 安徽美乐柯制冷空调设备有限公司 一种设有过冷器和润滑油冷却器的冷水机组
CN112888907A (zh) * 2018-11-19 2021-06-01 大金工业株式会社 制冷剂循环装置、制冷剂量判断系统以及制冷剂量判断方法
CN111811174A (zh) * 2020-06-24 2020-10-23 河北博志热能设备有限公司 一种用于空调热泵机组的制冷剂自动补给的控制方法

Also Published As

Publication number Publication date
WO2007086445A1 (ja) 2007-08-02
AU2007208727B2 (en) 2010-03-04
CN101371086B (zh) 2010-11-17
US20100223940A1 (en) 2010-09-09
EP1983279A4 (en) 2015-03-04
EP1983279A1 (en) 2008-10-22
AU2007208727C1 (en) 2010-09-16
KR101001851B1 (ko) 2010-12-17
US7980086B2 (en) 2011-07-19
JP2007198642A (ja) 2007-08-09
AU2007208727A1 (en) 2007-08-02
KR20080089470A (ko) 2008-10-06
JP4165566B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
CN101371086B (zh) 空调装置
CN101326416B (zh) 空调装置
CN101473177B (zh) 空调装置
CN101331370B (zh) 空调装置
CN101331372B (zh) 空调装置
CN101371087B (zh) 空调装置
CN101432584B (zh) 空调装置
CN101865509B (zh) 空调装置的制冷剂量判定方法
CN101405550B (zh) 空调装置
CN101395436B (zh) 空调装置
CN101490485B (zh) 空调装置
CN101498535B (zh) 空调装置的制冷剂量判定系统
CN101512256A (zh) 空调装置
CN101331368B (zh) 空调装置
JP2007292429A (ja) 空気調和装置
JP4665748B2 (ja) 空気調和装置
JP4892954B2 (ja) 空気調和装置
JP4655107B2 (ja) 空気調和装置
JP4826247B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101117

Termination date: 20180125