[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN101228564B - 用于检测表面上液体的传感器装置 - Google Patents

用于检测表面上液体的传感器装置 Download PDF

Info

Publication number
CN101228564B
CN101228564B CN2005800502882A CN200580050288A CN101228564B CN 101228564 B CN101228564 B CN 101228564B CN 2005800502882 A CN2005800502882 A CN 2005800502882A CN 200580050288 A CN200580050288 A CN 200580050288A CN 101228564 B CN101228564 B CN 101228564B
Authority
CN
China
Prior art keywords
angle
protuberance
facet
liquid
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800502882A
Other languages
English (en)
Other versions
CN101228564A (zh
Inventor
M·里夏尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN101228564A publication Critical patent/CN101228564A/zh
Application granted granted Critical
Publication of CN101228564B publication Critical patent/CN101228564B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms
    • G01F23/2925Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms using electrical detecting means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/04Monitoring of the detection circuits
    • G08B29/046Monitoring of the detection circuits prevention of tampering with detection circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Burglar Alarm Systems (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提出了用于检测表面上液体的传感器装置,包括至少一个形成在表面上的透明隆起。透明隆起由第一透明材料制成。透明隆起的至少一个第一小平面与表面界定了第一角度。该第一角度大于在第一透明材料和空气的分界面处发生全反射的角度,并且同时小于在第一透明材料和液体的分界面处发生全反射的角度。光源布置成将入射光线沿第一方向发射,穿过表面进入透明隆起,这样在第一小平面上存在液体时,入射光线将穿过第一小平面透射,其中,在没有液体时,入射光线将会由于小平面处的全反射而被反射。此外,提供了光检测器来检测反射的光线。

Description

用于检测表面上液体的传感器装置
技术领域
本发明涉及用于检测表面上液体的传感器装置。特别是,本发明涉及红外线入侵检测系统,该红外线入侵检测系统具有这样一种传感器,该传感器用于通过这种液膜检测红外线入侵检测系统的破坏。
背景技术
虽然本发明原则上可以应用于检测表面上液体的任意传感器装置,但是下文中将针对防止喷雾攻击红外线入侵检测器的预防措施解释本发明及其基本问题。
被动红外线入侵检测器通常用于在特定时间监视某些区域,例如在晚上监视博物馆、银行和工业区。这种红外线入侵检测器能够检测在从大约5至15微米的中间红外线范围内检测红外体辐射。图1中显示了这种红外线入侵检测器的草图。它主要包括在具有入射窗92的外壳90中的红外线检测器91。因此,经过红外传感器的人的体辐射就会落到红外传感器91之上。它的光线导致的电信号与阈值相比并且因此可以启动入侵报警信号。
在白天,红外线入侵检测器通常处于备用模式,这样人就可以经过各个区域而不会启动警报。此时,可以使用实心盖屏蔽入射窗92。然而,这些盖很容易被安全人员弄脏。另一个破坏技术使用沉积到入射窗92的表面上的喷雾94。这些液体在从6到15微米的范围内是不透明的,因此使得红外传感器91实际上是盲的。此外,它们在视觉波长范围内可以是透明的。因此喷雾不会被安全人员检测出来。这种破坏很可能会成功。
EP 0 660 284 B1通过放置在入射窗前面的近红外线光发射器和在入射窗的后侧与光发射器相对放置的相应的光检测器来监视红外线入侵检测系统的入射窗的投射情况。近红外发射的波长选取成不会干扰红外线检测系统的中红外线光检测器。因此,该设备不能检测出在近红外线中清澈或透明但是在中红外线范围中不透明的液体。
US5,942,976使用光源和光传感器,其中光衍射光栅结构将光源的第一和较高级的衍射光线聚焦到光传感器上。该聚焦效应在向光栅结构上施加喷雾时会消失。检测到的光强度的降低会触发破坏报警信号。不利地是,这些衍射结构很难以低成本的塑料材料制造并且由于它们对灰尘和带油污的大气的高的灵敏度而不是非常可靠。
US5,499,016通过使用近红外线光发射器照亮窗口外部来检测入射窗处反射的辐射。该技术仅仅在入射窗是平面时才可以应用,然而,现在入射窗的形状通常是弯曲的。此外,该检测系统对在近红外线范围中透明的喷雾并不敏感。
EP 0 817 148 B1在入射窗区域中使用光导装置。喷射攻击改变光导管的反射性能并因此改变导向性能。这些导向性能的检测可以用于生成报警信号。然而,反射性能对在视觉波长范围内透明的喷雾并不敏感。
发明内容
本发明提供了用于检测表面覆盖有液膜的改进的传感器。该传感器显示了如权利要求1所述的特征。
依照本发明的传感器装置包括至少一个形成在表面上的透明隆起。透明隆起由第一透明材料制成。透明隆起的第一小平面与表面界定了第一角度。该第一角度大于在第一透明材料和空气的分界面处发生全(内部)反射的角度,并且同时小于在第一透明材料和液体的分界面处发生全反射的角度。光源布置成将入射光线沿第一方向发射,穿过表面进入透明隆起,这样在第一小平面上存在液体时,入射光线将穿过第一小平面透射,其中,在没有液体时,入射光线将会由于小平面处的全反射而被反射。此外,提供了光检测器来检测反射的光线。
所提供的传感器的原理在于当液体沉积到隆起上时,隆起处的全反射就会消失。在隆起与空气的分界面处的全反射的发生角度小于隆起与液体的分界面处的角度。第一角度被仔细地选取成足够大,这样入射光线就会在隆起-空气分界面处受到全反射。然而,第一角度不会超过在隆起-液体分界面处发生全反射的角度。
在一个改进中,隆起形成有三角形或梯形横截面。特定的适当形状是四面体形。这些隆起提供了三个小平面,这些小平面将入射光线基本上向后反射回其在三维空间中的发射点。第一方向基本上垂直于该表面。
依照优选实施例,邻近第一隆起的第一小平面形成至少一个具有第二小平面的第二隆起,其中,第二小平面与表面界定了第二角度,其中第二角度大于75°,这样就可以增强毛细管效应。毛细管效应改进了液体在表面和隆起上的均匀分散。
依照一个改进,隆起的第一透明材料具有大于大约1.5的折射率并且第一角度在42°至60°的范围内。
依照一个改进,四面体隆起的3个上部小平面之间的角度不同于90°。因此,在隆起处的反射就具有略微有角度的分散的性质并且反射的光线不会与入射光线精确地反向平行。因此反射和入射光线就会在空间上分隔开并且镜子等可以用于使反射光线与入射光线分开。
在一个优选实施例中,提供了第二光检测器来检测在放在隆起前面的物体上反射的光线。因此就可以检测非液体物体,这是由于它们反射由光源发射的光线的反射和散射表面性能的缘故。可以假定,由于隆起在制造过程中的不完整性或是由故意设置的平的区域,始终会有一部分光线穿过隆起。
在另一个实施例中,第二隆起设置有与表面或区域基本上平行的顶部小平面,这样由信号光源发射的光线就会在顶部小平面处穿过隆起。
在一个改进中,光源和/或光检测器包括波导。
附图说明
下面将相对于附图更详细地描述本发明的实施例。在图中:
图1显示了用于显示本发明的根本问题的众所周知的红外线入侵检测器;
图2图示了全反射的原理;
图3显示了本发明的第一实施例的横截面;
图4以更大的比例显示了第一实施例;
图5至图9显示了本发明的另一个实施例的横截面;
图10-图11显示了本发明的进一步改进的局部横截面;并且
图12显示了另一个实施例的局部横截面;
图13是优选实施例的透视图;
图14a-14c显示了图13的优选实施例中的背反射;以及
图15显示了仅在四面体的两个的小平面处的反射。
具体实施方式
图中,除非另外指明,否则相同的参考标记表示相同或等效的零件。
本发明的所有实施例中使用的基本物理原理是光线在由两种具有不同折射率的透明材料形成的分界面处的全反射。图2示意性地显示了这种众所周知的效应。第一材料A和第二材料B形成分界面I。第一材料A的第一折射率n1低于第二材料B的第二折射率n2。图2显示了始于第二材料B中的两条光线r1、r2,这两条光线均指向分界面I。第一光线r1和第二光线r2分别界定了相对于分界面I的法线的第一入射角γ1和第二入射角γ2。第一入射角γ1小于临界角γ,其中第二入射角γ2大于该临界角γ。可以观察到,第一入射光线r1经过分界面I进入第一材料A并且受到折射。与之相反,第二光线r2在分界面I处受到全反射。相关临界角γ取决于两种材料的折射率并且随着依照公式随第一折射率对于第二折射率的商而增大:
Sin ( γ ) = n 1 n 2 .
与本发明相关的是临界角取决于第一材料A,即其折射率n1
为了简化下面的说明,假定光仅在附图所在平面内移动。然而,原理思想对于也适用于三维描述。在最后面的段落之一中将给出两维和三维世界之间差别的简要评论。
图3显示了本发明的第一实施例的局部横截面。提供了具有前侧2的外壳1。该外壳1可以是例如红外线入侵检测系统的壳体并且前侧2是其入射窗之一。在前侧2中布置了透明的主体11。在透明主体11的主表面上形成了透明隆起。隆起12可以具有三角形横截面,其中三角形尖端的指向远离外壳1。透明主体11和透明隆起12可以由透明的塑料材料或玻璃构成。光源13和相应的光检测器14被放入外壳1中。光源13的光线r沿朝向透明主体11和透明隆起12的方向发射。光线r可以经过隆起12或由透明隆起12反射。在后一种情形中,反射光线r’可以由光检测器14检测到。包装10可以围绕光源13和光检测器14用于屏蔽来自其它光源的光的入射。可选地,不透明的屏蔽15布置在光源13和光检测器14之间,这样就可以规避光朝检测器14的直接发射。
图4以更大的比例显示了隆起12和透明主体11。下面将更详细地解释隆起12的原理。透明隆起12形成在透明主体11的主表面100上。隆起12和透明主体11可以在一个整体中并且由相同的第二材料B形成。但是它们也可以由不同的材料形成。第二材料B优选为透明聚合物,例如具有1.49的折射率的聚甲基丙烯酸甲酯(PMMA)或具有1.5或越大折射率的玻璃。
在本实施例中,透明隆起12的横截面显示为具有相对的小平面110和111的三角形形状.在其它改进中,相对的小平面110、111可以形成梯形横截面.倾斜相对的小平面110、111相对于主表面100分别界定了倾斜角α和β.在该给出的示例性实施例中,这些倾斜角均为45°.应该指出,第一和第二倾斜角可以彼此不相同.另外,倾斜角可以在从42°至60°的范围内,如下文所述.
图4显示了两种不同的情况。隆起在右侧与空气A直接接触,并且在左侧隆起被液体C完全覆盖。液体C可以是沉积到红外线入侵检测系统并且部分地沉积到其液体传感器上的喷射溶液。空气A具有的折射率在1.0至1.06的范围内。液体具有最小为1.3的折射率,目前还不知道具有更小折射率的液体。隆起12的第二折射率n2大约为1.5,如上文概述的那样。依照给出的公式,隆起与空气分界面的临界角γea大约为42°并且隆起与液体分界面的临界角γe1大于60°。
光线r从光源(未显示)沿基本上与主表面竖直的方向发射。或者,换句话说,光线r在小平面110、111上的入射角对应于倾斜角α,β。倾斜角大于42°,但是小于60°。
因此对于由液体C覆盖的隆起,光线r的入射角小于临界角γea(左侧)。光线r被折射并且经过液体C进入空气A。假定液体C在其与空气A的分界面处的表面几乎为平面并且基本上与主表面平行。因此,折射光线在液体一空气分界面处具有较小的入射角并且光线不会在液体一空气分界面处受到全反射。
与之相反,光线r的入射角大于隆起-空气分界面的临界角γea(右侧)。光线r由第一小平面110反射并且由与第一小平面110相对的第二小平面110第二次反射。如果倾斜角α、β大约为45°,那么反射光线r’就会沿与入射光线r平行或是相对于入射光线r倾斜几度的方向反射。光检测器布置成它可以检测折射光线r’。相应的信号处理系统将光线r’显示在检测器上。在没有光线r’或强度低于阈值时会生成报警信号。
在图5中显示了本发明的进一步改进。透明隆起22设置在透明主体21的主表面120上。与主表面120相对布置的底面121与主表面120倾斜大约45°。提供了与底面121直接接触的波导26,这样光就沿基本上垂直于主表面120的方向从波导26发射。波导26的开口指向光源23。波导26和透明主体11可以构成为一个整体。由隆起22反射的光线r’由底面121上的全反射或反射涂层而由底面121反射。设置了附加镜27以使光线r’朝光检测器24重定向。波导26的直径d2可以在2毫米的范围内,其中顶部表面120的区域具有大约6毫米的直径d1。隆起的性能和成效对应于随同图3和图4一起给出的说明。
图6中显示了本发明的另一个改进。设置了透明主体31,该透明主体31具有连接到两个表面上的两个凸起或波导36、37。这些表面131之一相对于透明主体31的主表面倾斜45°并且另一个表面基本上垂直于主表面。在所述主表面上设置了透明隆起。透明主体31、波导和隆起可以是一个整体。光源33和光检测器34布置成分别向波导之一发射光和检测离开另一个波导的光。主体31布置在壳体1内,其中隆起32从壳体的前侧2伸出。
图7中显示了本发明的进一步改进。光纤46、47连接到光源和光检测器(未显示)上。纤维46、47的开口末端布置和构成为光从纤维发射并且沿基本上垂直于透明主体41的主表面的方向进入纤维中。纤维的末端可以沿朝向主表面的方向向上弯曲。
图6的实施例可以改变,例如两个波导36’、37’布置以成将光线导向远离隆起32’的光源和光检测器(图8)。
图9中显示了本发明的另一个实施例.上述实施例和改进均很好地适用于检测液体的沉积或是主平面上的喷雾.然而,放置在红外线入侵检测系统上方或是前面的屏蔽S例如组织或硬盖将不会被液体传感器检测到.因此,该实施例使用放置在液体传感器旁边的附加的光传感器55,依照上面的实施例,该液体传感器具有光源53、光传感器54、透明主体51和隆起52.第二光传感器55由隆起52屏蔽开,这样,就不存在朝向该第二光传感器55散射的全反射光.
至少始终存在少部分来自光源53的光不会在透明隆起处受到全反射。这可能是由透明隆起52的不完整性或是由主表面上未设置隆起的区域造成的。因此,从光源53发射的光线t就落在屏蔽S上并且由其表面朝红外线入侵检测系统和第二光检测器55散射或反射。第二光检测器55显示光强度与阈值之差。因此,可以启动破坏警报。第二光检测器55放置在红外线入侵系统的入射窗56的下方。该入射窗56使光t’朝第二光检测器55散射。
图10中显示了本发明的进一步改进。液体传感器和/或红外线入侵检测系统的状态可以由信号光源65指示。这些信号光源发射的光线s将由透明隆起62反射。因此,主表面160的区域200是平面和/或不设置有隆起。
图11中显示了进一步的改进。第一透明隆起72设置在主表面170上。这些第一透明隆起设置有相对于主表面170界定了倾斜角α、β的第一小平面172、173,其中倾斜角α、β在42°至60°的范围内。邻近第一透明隆起72设置了第二种类型的隆起79。它们的第二小平面179界定了倾斜角
Figure G2005800502882D00091
该倾斜角
Figure G2005800502882D00092
大于60°,且优选大于75°。因此,第一小平面171、172和第二小平面179之间的间隙202具有比两个第一小平面171、172之间的间隙201更小的体积。
在大多数情形下,液体传感器将布置成其主表面170与壁平行。因此,必须保证液体或喷雾不会由于重力而流走。另外,优选地,主表面170的大部分应该由沉积的液体C覆盖。通过减少隆起之间的间隙202,少量的液体就足以完全覆盖第一小平面171、172,这样液体与隆起的粘附力就强于液体的重量。此外,间隙202越小,毛细管效应就会增强并且液体将会在主表面170上更均匀地分散。隆起可以设置有两个相对的第一小平面和第二小平面。通过相邻隆起的相应朝向,第一小平面布置成邻近第二小平面。
第二隆起79的顶部小平面可以基本上平行于主表面170。这些顶部小平面形成用于外壳1中信号光源75的光线s的透明窗口。
到目前为止,忽略了在液体空气分界面处可以存在全反射。原则上,该全反射会将光线r反射回光检测器。因此,如果不考虑液体沉积在主表面上的话,光检测器就会检测到相同的光亮度。详细分析显示,对于上面的实施例,在液体空气分界面处的全反射仅仅发生在液体在小平面上形成一层均匀的厚度时或是其厚度从主表面沿向隆起的尖端的方向增大时。换句话说,液体空气分界面的斜率从主表面向隆起的尖端增大。对于四面体形隆起的仔细分析显示斜率必须相差至少20°。粘附力趋于维持液体C接近其中间隙201、202较狭窄的主表面,因此至少部分地提供所需的斜率差。粘附力对较小的隆起具有更大的影响。因此,小平面具有比5毫米小乃至小于1毫米的直径。此外,隆起之间的间隙已由少量液体填充。
图12显示了本发明的最简化的实施例。隆起82提供了一个小平面181,该小平面181仅仅与第一表面100形成在42°至60°范围内的倾斜角α。与上面的实施例相反,由光源83发射的光线r不会被反射,但是将基本上与第一表面100平行传播。因此,需要另一种配置的光检测器84。检测器84靠近第一表面布置或者设置附加的反射设备来导引反射光线r’。
上面的说明仅仅涉及隆起的两维描述。然而,隆起的最优选形状之一是四面体形或是三直角锥形(图13)。因此三个小平面连续地反射光线并且将光线基本上向后朝光源导引。对于下面的描述,假定最优选的状态。所有的小平面相对于第一表面形成54.73°的角度并且相对于彼此形成90°的角度。图14a一14c显示了在四面体92的小平面191、192、193处的三个连续的反射201、202、203。入射光线r垂直于第一小平面191并且入射角因此为54.73°。光线在另外两个小平面192、193上同样以54.73°的角度入射。在这种情形下,光线将完美地回射。
图15显示出一些光线可以仅仅在三个小平面中的两个上入射。这些光线中的大部分将离开隆起,然而,一些光线可以再聚集并且重新使用。
应该指出,入射角或倾角的变化会导致光线的复杂的反射图案。仔细的分析显示出,通过使用不完全的平行源,一部分光线在缺少液体时也会被透射。但是大部分将被反射并且因此提供了一种用于液体的可靠的检测原理。
虽然已经随同优选实施例一起对本发明进行了描述,但是本发明并不限于此。
特别是,对于透明隆起,可以选择具有不同折射率的用于隆起的其它透明材料。倾斜角的范围必须相应地改动。
参考数字

Claims (9)

1.一种用于检测在表面(100,120,160,170)上的液体(C)的传感器装置,该传感器装置包括:
形成在表面(100,120,160,170)上的至少一个透明隆起(12,22,32,42,52,62,72),其中该透明隆起(12,22,32,42,52,62,72)由第一透明材料(B)制成,并且该透明隆起(12,22,32,42,52,62,72)的至少一个第一小平面(110,111,171,172,181)与表面(100,120,160,170)界定了第一角度(a,β);
光源(13,23,33,43,53,63,73),该光源布置成沿第一方向发射入射光线(r),这样入射光线(r)就会经过表面(100,120,160,170)进入透明隆起(12,22,32,42,52,62,72),这样当在第一小平面(110,111,171,172)上存在液体时,入射光线将穿过第一小平面(110,111,171,172)透射,其中在没有液体时,入射光线将会由于第一小平面(110,111,171,172)处的全反射而被反射;
用于检测反射的入射光线(r’)的光检测器(14,24,34,44,54,64,74);
第一角度(α,β)大于在第一透明材料(B)和空气(A)的分界面处发生全反射的角度,并且小于在第一透明材料(B)和液体(C)的分界面处发生全反射的角度;以及
第一方向垂直于表面(100,120,160,170)。
2.如权利要求1所述的传感器装置,其特征在于,隆起(12,22,32,42,52,62,72)具有四面体形状和三个第一小平面。
3.如权利要求1所述的传感器装置,其特征在于,隆起(12,22,32,42,52,62,72)形成有三角形或梯形横截面。
4.如上述权利要求中任一项所述的传感器装置,其特征在于,邻近第一隆起(12,22,32,42,52,62,72)的第一小平面(110,111,171,172)形成至少一个具有第二小平面(179)的第二隆起(12,22,32,42,52,62,72;79),其中第二小平面(179)与表面(100,120,160,170)界定了第二角度,其中,第二角度大于75°,这样毛细管效应就会增强。
5.如权利要求1-3中任一项所述的传感器装置,其特征在于,第一透明材料(B)具有大于1.5的折射率并且第一角度在42°至60°的范围中。
6.如权利要求1-3中任一项所述的传感器装置,其特征在于,由至少一个隆起的两个相邻第一小平面限定的角度不同于90°。
7.如权利要求4所述的传感器装置,其特征在于,第二隆起(12,22,32,42,52,62,72;79)设置有平行于表面(100,120,160,170)的顶部小平面或区域,这样经由信号光源发射的光线就在顶部小平面处经过隆起。
8.如权利要求1-3中任一项所述的传感器装置,其特征在于,设置了第二光检测器(55),用于检测在所述透明隆起(12,22,32,42,52,62,72)前面放置的物体(S)上反射的光线(t)。
9.如权利要求1-3中的任一项所述的传感器装置,其特征在于,光源(22,32)和/或光检测器(24,34)包括波导(26,36,37)。
CN2005800502882A 2005-06-28 2005-06-28 用于检测表面上液体的传感器装置 Expired - Fee Related CN101228564B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2005/053042 WO2007000187A1 (en) 2005-06-28 2005-06-28 Sensor arrangement for detecting a liquid on a surface

Publications (2)

Publication Number Publication Date
CN101228564A CN101228564A (zh) 2008-07-23
CN101228564B true CN101228564B (zh) 2010-05-12

Family

ID=35431099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800502882A Expired - Fee Related CN101228564B (zh) 2005-06-28 2005-06-28 用于检测表面上液体的传感器装置

Country Status (5)

Country Link
US (1) US7884313B2 (zh)
EP (1) EP1899934B1 (zh)
JP (1) JP4755685B2 (zh)
CN (1) CN101228564B (zh)
WO (1) WO2007000187A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650603A (zh) * 2011-02-23 2012-08-29 富士通株式会社 冷凝感测装置、电子设备以及冷凝感测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7414236B2 (en) * 2006-06-16 2008-08-19 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Monitoring devices and intrusion surveillance devices
EP2498232A1 (en) * 2011-03-10 2012-09-12 Siemens Aktiengesellschaft Detector
JP6232378B2 (ja) * 2011-08-16 2017-11-15 ウオーターズ・テクノロジーズ・コーポレイシヨン 示差屈折率検出用フローセル
US9123222B2 (en) 2012-03-15 2015-09-01 Ninve Jr. Inc. Apparatus and method for detecting tampering with an infra-red motion sensor
CN103969219B (zh) * 2013-02-01 2016-12-28 泰科电子(上海)有限公司 硅油检测器和电力终端组件
BR102013006794B1 (pt) 2013-03-25 2022-11-01 Luxtec - Sistemas Ópticos Ltda - Me Dispositivo multiparamétrico para medição por meios ópticos, do nível de preenchimento de tanques e reservatórios para líquidos e liquefeitos, índice de refração e análises por imagem, sem peças móveis
JP6303900B2 (ja) * 2014-07-31 2018-04-04 オムロン株式会社 液体検出センサ
US10304318B1 (en) * 2018-03-19 2019-05-28 Ademco Inc. Anti-masking assembly for intrusion detector and method of detecting application of a masking substance
CN114354547B (zh) * 2022-03-16 2022-05-20 成都理工大学 介质界面光学传感器及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499016A (en) * 1992-02-17 1996-03-12 Aritech B.V. Intrusion alarm system
US5942976A (en) * 1995-11-03 1999-08-24 Cerberus Ag Passive infrared intrusion detector and its use
US6262661B1 (en) * 1999-10-14 2001-07-17 Siemens Building Technologies, Ag Cerberus Division Passive infrared detector
EP0660284B1 (en) * 1993-12-21 2002-03-13 Optex Co. Ltd. Infrared intruder detection system
CN2488119Y (zh) * 2001-07-16 2002-04-24 清华同方核技术股份有限公司 红外线监视自动语音报警器
EP0817148B1 (en) * 1996-07-04 2002-05-02 Interlogix B.V. Security system comprising light-conducting means

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862841A (ja) 1981-10-09 1983-04-14 Seiko Epson Corp デイスク材料
JPS6228642A (ja) * 1985-07-30 1987-02-06 Stanley Electric Co Ltd 水滴検出方法
WO1989003978A1 (en) * 1988-03-22 1989-05-05 Conax Buffalo Corporation Optical liquid level sensor
DE4229491A1 (de) * 1992-09-04 1993-01-07 Steinbacher Peter Dipl Ing Fh Vorrichtung zur steuerung einer scheibenwischeranlage fuer kraftfahrzeuge
JPH0628715U (ja) * 1992-09-08 1994-04-15 自動車電機工業株式会社 雨滴センサ
JP3240399B2 (ja) * 1994-10-20 2001-12-17 株式会社ティアンドティ 漏液検知装置
US5997121A (en) * 1995-12-14 1999-12-07 Xerox Corporation Sensing system for detecting presence of an ink container and level of ink therein
JPH10311786A (ja) * 1997-05-13 1998-11-24 Toyota Motor Corp 水滴検出装置及びワイパシステム
JP2001229473A (ja) * 2000-02-18 2001-08-24 Optex Co Ltd 妨害検知機能付き防犯センサ
JP4537568B2 (ja) * 2000-12-08 2010-09-01 株式会社ティアンドティ 漏液センサー
JP3577012B2 (ja) * 2001-07-31 2004-10-13 キヤノン株式会社 インクの残量検出方法およびインクジェット記録装置
JP2005140635A (ja) * 2003-11-06 2005-06-02 Nidec Copal Electronics Corp 漏液センサー
CN101088005B (zh) * 2004-12-14 2011-06-22 梅伊有限公司 具有光学传感器装置的文件处理器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499016A (en) * 1992-02-17 1996-03-12 Aritech B.V. Intrusion alarm system
EP0660284B1 (en) * 1993-12-21 2002-03-13 Optex Co. Ltd. Infrared intruder detection system
US5942976A (en) * 1995-11-03 1999-08-24 Cerberus Ag Passive infrared intrusion detector and its use
EP0817148B1 (en) * 1996-07-04 2002-05-02 Interlogix B.V. Security system comprising light-conducting means
US6262661B1 (en) * 1999-10-14 2001-07-17 Siemens Building Technologies, Ag Cerberus Division Passive infrared detector
CN2488119Y (zh) * 2001-07-16 2002-04-24 清华同方核技术股份有限公司 红外线监视自动语音报警器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650603A (zh) * 2011-02-23 2012-08-29 富士通株式会社 冷凝感测装置、电子设备以及冷凝感测方法

Also Published As

Publication number Publication date
JP2008547029A (ja) 2008-12-25
CN101228564A (zh) 2008-07-23
EP1899934A1 (en) 2008-03-19
US7884313B2 (en) 2011-02-08
JP4755685B2 (ja) 2011-08-24
US20090039296A1 (en) 2009-02-12
EP1899934B1 (en) 2013-03-27
WO2007000187A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
US5616929A (en) Ink tank with an ink level detector having a viewing window
RU2519392C2 (ru) Сенсорное устройство
CN110300950B (zh) 触摸感测系统中的光学耦合
KR920010481B1 (ko) 요철 표면 데이타 검출장치
CN101228564B (zh) 用于检测表面上液体的传感器装置
US7265670B2 (en) Surveillance detector
US7733226B2 (en) Infrared intrusion detection device
US20060163455A1 (en) Proximity sensor
EP1989695B1 (en) Obstruction detection device
EP3582198A1 (en) Optically enhanced protective cover for chamberless point sensor
EP1984904B1 (en) Obstruction detection device
DE102009002639A1 (de) Fotoelektrischer Sensor
GB2233852A (en) Optical sensor device using total internal reflection
JP2012523562A (ja) 気体を光学的に検出するためのデバイスと方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512