CN101059101B - 燃气轮机进口调节系统和方法 - Google Patents
燃气轮机进口调节系统和方法 Download PDFInfo
- Publication number
- CN101059101B CN101059101B CN200710096192.0A CN200710096192A CN101059101B CN 101059101 B CN101059101 B CN 101059101B CN 200710096192 A CN200710096192 A CN 200710096192A CN 101059101 B CN101059101 B CN 101059101B
- Authority
- CN
- China
- Prior art keywords
- compressor
- fluid
- heat exchanger
- optionally
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 20
- 230000003750 conditioning effect Effects 0.000 title description 2
- 239000003570 air Substances 0.000 claims abstract description 56
- 239000012080 ambient air Substances 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 22
- 238000010248 power generation Methods 0.000 claims description 14
- 239000000498 cooling water Substances 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 3
- 239000012809 cooling fluid Substances 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 7
- 239000000446 fuel Substances 0.000 abstract description 6
- 238000009434 installation Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 66
- 230000008676 import Effects 0.000 description 21
- 230000009183 running Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000007906 compression Methods 0.000 description 7
- 238000010304 firing Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000659 freezing mixture Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000396377 Tranes Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/12—Cooling of plants
- F02C7/14—Cooling of plants of fluids in the plant, e.g. lubricant or fuel
- F02C7/141—Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/101—Regulating means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/08—Heating air supply before combustion, e.g. by exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
一种系统,能够增加温暖天气里的输出量,并在燃气轮机联合循环安装的温度和负荷范围内保持压缩机运转裕度。所提出的解决方案利用了这个事实,即这两个目标可通过压缩机进口空气温度的处理来达成。具体地说,本系统设计用于加热进口空气,而其是在较低的环境空气温度或当燃烧稀释的燃料时保持安全的压缩机运转裕度所需要的。在可选实施例中,本系统设计用于在温暖天气里冷却进口空气。
Description
技术领域
本发明涉及一种为了在某一负荷和温度范围内使能量输出和效率达到最大化的加热和冷却供给燃气轮机的压缩机进口空气的系统和方法。
背景技术
联合循环发电站的最简单形式包括燃气轮机,蒸汽轮机,发电机,以及热回收蒸汽发生器(HRSG),燃气轮机和蒸汽轮机在单个轴上一前一后连接到单个发电机上。具有一个或多个燃气轮机发电机和一个共用蒸汽轮机发电机的多轴布置已经得到应用。联合循环发电站的热效率由与其余热回收底循环相结合的燃气轮机的性能决定。
燃气轮机具有两个特征,其可成为在运行范围内实现最大输出和效率的阻碍。
首先,燃气轮机是等容流动机器。这给它们带来的这样的固有特性,即在温暖的天气(此时,空气密度更低)具有比更冷天气(此时,空气密度更高)更低的空气质量流量和能量输出。在这点上,空气密度随着温度的降低而增加,从而导致更高的质量流量通过燃气轮机。燃气轮机的输出随着空气质量流量的增加而增加。因而发现在温暖天气里通常通过减小进口空气的温度来增加空气质量流量,从而增加输出是非常理想的。
第二,工作流体通过空气压缩机供给循环,该压缩机具有空气动力学运转极限,其限定了运转压缩比为修正速度,修正空气流量以及可变导向叶片设定的函数。在更冷的天气由于供给的空气质量流量随着压缩机进口温度的降低而增加,而点火温度保持不变(对于最大效率),所以涡轮机进口体积流量和压缩机压力比增加。因此,压缩机运转极限在更冷的天气可能成为问题。在燃烧稀释燃料的应用中,其增加了涡轮机体积流量和压缩机压力比,压缩机运转极限也更容易受到影响。这种情况的发生很可能是燃料合成或低级燃料气化的结果,这种燃料产生的燃料气体仅仅为天然气的五分之一。
还应当注意地是燃气轮机压缩机包括一排或多排可变导向叶片,可对该导向叶片进行调节以减少压缩机进口空气流量。尽管这似乎可以提供一种限定压缩机压力比的方法,从而避免压缩机运转极限,但是运转极限本身是导向叶片设定的函数,使得该限定随着空气流量以这种方式减少而变得更严格。
发明内容
本发明提供了这样一种系统和方法,为了使联合循环发电站的能量输出和效率最大化,其选择性地加热或选择性地加热或冷却供给燃气轮机的压缩机进口空气。
本发明可体现为这样一种方法,其在联合循环发电系统中选择性地加热进入燃气轮机的环境空气,该联合循环发电系统具有多个涡轮机,包括蒸汽轮机和具有压缩机的燃气轮机,所述涡轮机传动连接到一个或多个产生电的发电机,以及用于冷凝在蒸汽轮机中膨胀的蒸汽的冷凝器,该方法包括:从所述蒸汽轮机和所述冷凝器的至少一个中抽取具有比所述环境空气温度更高的选定流体,然后引导所述环境空气通过热交换器以从所述选定流体中直接或间接地接收热量,从而所述环境空气的温度在所述热交换器中升高。
本发明还体现为这样一种联合循环发电系统,包括:具有压缩机的燃气轮机;蒸汽轮机;用于冷凝在所述蒸汽轮机内膨胀的废汽的冷凝器;用于控制到所述压缩机的进口空气温度的热交换器;以及确定用于工作流体通过所述热交换器的流动路径的结构,其可操作地连接到所述蒸汽轮机和所述冷凝器之一,从而用于选择性地加热所述工作流体,通过所述热交换器提升所述进口空气的温度。
附图说明
通过仔细研究下文参照附图所做的展示了本发明优选实施例的详细说明,可以更好的理解本发明的这些和其它目的及优点,其中:
图1是联合循环燃气轮机的示意图;
图2是传统的使用联合进口排气加热和喷雾系统的示意图;
图3是传统的使用联合进口排气加热和机械冷却系统的示意图;
图4是压缩机特性图和运转限定线,示意性示出了工业燃气轮机压缩机的性能特征;
图5是根据本发明实施例的具有加热和冷却压缩机进口空气的联合循环燃气轮机的示意图;
图6是根据本发明另一实施例的具有加热和冷却压缩机进口空气的联合循环燃气轮机的示意图;
图7是根据本发明另一实施例的具有加热压缩机进口空气的联合循环燃气轮机的示意图;以及
图8是根据本发明的又一实施例的具有加热和冷却压缩机进口空气的联合循环燃气轮机的示意图;
具体实施方式
通过参考背景技术以及图1所示的示意图,典型的联合循环燃气轮机包括以顺次关系排列的空气10的进口或进口、压缩机18、燃烧室20、涡轮机22、热回收蒸汽发生器(HRSG)26以及与它联合的蒸汽轮机28。因此,进口空气10在环境条件下进入到轴流式压缩机18内。环境条件随着地点以及时间的不同而不同。因此,为了比较,蒸汽轮机工业采用标准条件。这些标准条件是:59°F(15℃)、14.696帕(1.013巴)和60%的相对湿度。该标准条件由国际标准组织(ISO)制定,并且通常称为ISO条件。
压缩空气12进入到喷射燃料和产生燃烧的燃烧系统20中。燃烧混合物14离开燃烧系统进入到涡轮机22内。在涡轮机部分,热气体的能量转化为功。这种转化分两步进行。热气体膨胀,一部分热能在涡轮机喷嘴部分转化为动能。接着,在涡轮机的叶片部分,一部分动能被传递到旋转叶片并转化为功。通过涡轮机22产生的功的一部分用于驱动压缩机18,而剩余部分可用于发电机24发电。排出的气体16离开涡轮机流入HSRG 26。
很多因素影响燃气轮机的性能。如上所述,空气温度是燃气轮机性能的重要因素。由于燃气轮机接收环境空气作为进口空气,它的性能将随着影响进入压缩机的空气质量流量的任何情况而发生变化,也就是基于参考条件59°F和14.696帕的变化。每一个涡轮机模型具有它自己的温度效应曲线,它取决于循环参数、部件效率以及空气质量流量。
通常采用几种方法来提高温暖天气里燃气轮机的输出量。大部分方法包括降低燃气轮机进口空气的温度来增大空气质量流量和输出量。这可以通过直接接触(空气流过湿润介质)或者直接将水喷射到进口空气上、接着其随着水滴蒸发而冷却空气(进口喷雾)(图2)从而蒸发冷却进口空气来实现。当空气饱和时(例如对于100°F-40%相对湿度天气的79°F),这些方法不能冷却低于湿球温度的进口空气。超过这一点的过渡喷雾将导致水滴进入到压缩机。虽然由于中间冷却效果,在压缩过程中这些水滴的蒸发是有利的,但是它们碰撞压缩机叶片的有害影响将为性能持久和机器完整性带来问题。
另一种方法是通常通过设置在燃气轮机进口管道处并供有来自机械制冷系统(图3)的冷冻水的管道间接的冷却进口空气。可以购得的两种主要的机械制冷系统是带有机械驱动(例如电动机)冷却压缩机的吸收式冷却器和冷却器组。这些系统可将空气冷却到露点(例如对于100°F-40%相对湿度天气的81°F)。如果提供足够大的冷却器容量,通过浓缩环境湿气来进一步冷却到露点之下也是可能的。
利用增压器(其向进口空气施压以增大其密度)或者采用在燃烧室中压缩附加的第二股流体的扩充压缩机(此处没有示出),温暖天气里的能量也可以增大。
提高燃气轮机中的点火温度是提供更高的输出量/单位空气质量流量的关键因素,提高联合循环效率。而且,对于给定的点火温度,具有使联合循环效率最大化的最佳循环压力比值。理论显示最佳循环压力比值随着点火温度的上升而不断增大。由此要求用于这些涡轮机的压缩机具有更高水平的压力比值,同时要求实现最小部件数量、操作简单、低的整体成本的目标。而且,压缩机必须在提高整体循环效率的压缩效率上提高循环压力比的等级。最后,压缩机必须在与联合循环运转的不同能量输出特征相关联的很宽范围的空气质量流速下以空气动力学和航空力学上的稳定状态运行。
工业燃气轮机吸入的空气常常包含未知量的空气中的固体和液体颗粒。这些包括泥土、灰尘、花粉、昆虫、油、海水盐分、烟灰、未燃烧的一氧化碳等。当这些空气中的原料粘附到叶片并且相互粘结时,在压缩涡轮机叶片上形成堆积物,导致叶片空气动力学外型、叶片表面条件和流体迎角的变化。这种污垢导致质量流量、热动力学效率、压力比和喘振压力比的性能参数相应恶化。后者的影响将导致运转压力比和喘振线之间的裕度(通常称为喘振裕度)退化。
在连续的工作状态下压缩机能够产生的最大压力比通常根据距喘振压力比线的裕度确定。压缩机喘振是低频的流量振荡,其中气流与叶片分离并倒转流动方向通过机器,即,作为以给定速度工作的压缩机运转的物理极限。
传统的保护压缩机的方法是将所谓的运转限定线植入燃气轮机控制,该限定线提供距新的,清洁的压缩机喘振边界的裕度。建立这个裕度的其中一个考虑是这个裕度是对预期级别的压缩机污垢及其相应的对喘振裕度影响的固定余量。一旦设定,这个余量将不随时间和/或运行条件而改变。
参照图4,示出了典型的燃气轮机的压缩机特性线图,其是压力比对流量的曲线图。压缩机特性线图由修正到14.696帕和518.67°R的ISO条件的恒定转动速度的几条线定义。
图4的特性线图还通过喘振压力比线确定。如上所述,喘振线是在此压力比下,气流与叶片分离并且倒转方向,即,给定速度压缩机的极限。
综合考虑到喘振压力比和回流,定义运转限定线是要提供距与运转限定相关的压力比的理想裕度。这些运转限定包括在接近喘振线的较高压力比处停止转动和起动超叶片应变。在运转限定线之上的运转是燃气轮机控制系统所不允许的。因而,运转限定线是燃气轮机的制造商设定的压缩机最大运转极限。
标准(基本负荷)运转线是这样的运转条件,在此条件下涡轮机和压缩机将以变动的修正速度运转。所允许的压力比和流量组合的标准运转线通过第一阶段的涡轮机喷嘴区域确定,选定该区域以在寒冷的天气状况下提供理想的喘振裕度。定义一个设计点作为100%修正速度线和标准运转线的交叉点。
防止压缩机运转极限产生的措施采取三种形式。它们是点火温度(其可被减小以降低涡轮机进口体积流量,从而减小压缩机的压力比),压缩机排气(其减小处于固定导流叶片设定的压力比),以及压缩机进口空气加热(其减少空气流量和压力比)。进口排气加热结合这两种方法,其将热压缩机排出的空气排出到进口以提高进口空气温度。图2和3示出了现有技术的两个系统,它们将用于压缩机运转极限裕度保护的进口排气加热与用于温暖天气的进口喷雾,蒸发冷却,或机械制冷相结合。
在发电站的设计中这一点通常是正确的,所选定的提高温暖天气输出量或保持压缩机运转裕度的特定解决方案是场地特定环境和运行条件的函数,得自每个竞争系统的性能的函数以及实施和运转所需成本的函数。
本发明提供了一种改进的系统,其能够提高温暖天气的输出量并在燃气轮机联合循环安装的环境和负荷范围内保持压缩机运转裕度。所提出的解决方案利用了这个事实,即这两个目标可通过压缩机进口空气温度的处理来达成。具体地说,本发明包含在一个设计用于冷却温暖天气里的进口空气的系统中,通过仅使用较小的附加成本,该系统也能够加热进口空气,而这是在较低的环境空气温度或当燃烧稀释的燃料时保持安全的压缩机运转裕度所需要的。
图5示出了用于联合循环应用的包含本发明的实例系统配置。该系统采用例如,可购买的用于增大温暖天气能量的吸收液体冷却器(ALC)30,并与使用从蒸汽轮机28中在34处抽取的蒸汽的抽汽加热器32相结合,以当需要更多的压缩机运转极限裕度时,通过进口冷却/加热管36加热燃气轮机的进口空气10。
吸收液体冷却器(ALC)30使用蒸汽涡轮机抽汽34作为它的发电机的热源以将制冷剂蒸气从液体溶液中分离。(合适的ALC实例是Trane生产的水平单步蒸汽点火吸收装置)。
ALC相对于其它机械制冷系统例如空气或水冷却的冷却器组的优势在于:它无需蒸汽压缩因此无需大量的自身能量消耗。实例计算表明由于抽汽的减少和ALC的很小的泵功耗需求,蒸汽轮机输出的影响是可以忽略的。因此,对于相同的进口冷却状态和能量增加,具有ALC的系统会产生更好的联合循环网效率。
如上所述,图解示出的系统将抽汽加热器32放入燃气轮机进口冷却管36的冷却剂环路38中。当需要增加压缩机运转极限裕度时,抽汽加热器可被用于选择性地加热冷却剂环路38中的流体(以及进口空气10)。因此,在冷却模式中,抽汽34仅仅流入冷却器30,而在加热模式中,抽汽34仅仅供给加热器32。由于抽汽34在其残余热量(主要是潜在的热量)被用于加热进口空气10或将热量提供给ALC30之前已经完成了它的大部分工作,所以这种配置在加热和制冷模式中都能提供很有效的运转。
为这些目的使用抽汽34的第二个优势在于减小了冷凝器40中的热损耗以及冷凝器压力和蒸汽轮机的排气损失,通过不使蒸汽34膨胀而产生能量,它们对于补偿能量损失都是很有作用的。在应用中采用空气作为冷却媒质,通过减小所需气体冷却剂的体积,使用用于ALC30的抽汽34从而减少高温环境下冷却剂的热损耗还具有潜在的资金成本优势。
在一些应用中,由于与具有例如电动马达驱动的蒸汽压缩的冷却器组系统相比的更高的冷却器成本,通过蒸汽轮机抽汽34的ALC30的额外性能优势被证明是不合适的。这引出了图6中所示的可选实施例,其保留了用于压缩机运转极限控制的抽汽加热器32,但用机械冷却器42代替了ALC30。该实施例另外还对应于图5的实施例。
图7示出的另一实施例提出这样的情况,消费者的场地条件和车间设计根本不适合温暖天气的能量增加,在这种情况下,系统将仅仅变成包括抽汽加热器32和热流体流动环路138的加热系统。该系统与现有技术的进口排气加热系统相比提高了寒冷天气里的效率。
图8中示出的最后一个实例提出这样的情况,压缩机运转极限在寒冷的天气里出现,使得用过的冷凝器冷却水44是温的,足够加热燃气轮机进口空气(代替蒸汽轮机抽汽34)。这种配置取代了蒸汽轮机抽汽管46,抽汽加热器32以及排水管48(如果使用用于温暖天气增量的冷却器组42),代之以冷凝器排水供给装置50、供应到流动环路238、到达燃气轮机进口管36。这应当是低成本的解决方案,其中燃气轮机进口管36已经足够大(相对于温暖天气的冷却器的尺寸)而且运转极限裕度所需的燃气轮机进口温度通常比冷凝器冷却水排放44的温度更低。相对于现有技术的进口排气加热系统,图8的系统还提高了寒冷天气的效率,并在某些情况下可超过图5所示的实施例。
温暖环境的性能是场地环境湿度和资本投资经济学相对于产品附加值的重要功能。本发明并不是追求要相对于现有技术提高温暖天气里的性能,而是提供一种有效的解决方案,其通过将有效的加热能力增加到温暖环境能量增量的(进口冷却)传统系统,从而确定压缩机运转极限。
所述发明的低温输出基本与进口排气加热系统可达到的相同。然而,本发明的低温热速性能明显优于传统的进口排气加热系统。由于目标燃气轮机进口温度可设置为使效率最大化(其可增加压缩机在所需最小值之上的运转裕度),而进口排气加热系统可达到的最佳效率从不比机器以其最小运转裕度运行时更好(最小进口吸热),因此这个热速优势增加了局部负荷。而且,通常进口排气加热系统具有标准压缩机进口温度曲线图所需的最小停机温度,其要求当装置仅需要一个很小的提高(例如20°F之下)时,系统必须以超过该最小进口排气的流量运行。
尽管已经结合最实用和优选的实施例对本发明进行了说明,但是应当理解地是本发明并不局限于所公开的实施例,而是恰恰相反,本发明意欲涉及包含在附属权利要求的精神和范围内的各种变形和等价配置。
部件列表
空气进口 10
压缩空气 12
燃烧混合物 14
排出气体 16
压缩机 18
燃烧室 20
燃气轮机 22
热回收蒸汽发生器(HRSG) 26
蒸汽轮机 28
吸收液体冷却器(ALC) 30
抽汽加热器 32
抽取蒸汽 34
进口冷却/加热管 36
冷却剂环路 38
冷凝器 40
冷却器组 42
用过的冷凝器冷却水 44
蒸汽轮机抽汽管 46
排水管 48
冷凝器排水供给装置 50
热流体流动环路 138
流体流动环路 238
Claims (9)
1. 一种选择性地加热进入联合循环发电系统的燃气轮机压缩机的环境空气(10)的方法,所述联合循环发电系统具有多个涡轮机,包括蒸汽轮机(28)和具有压缩机(18)的燃气轮机,所述涡轮机传动连接到一个或多个产生电的发电机以及用于冷凝在蒸汽轮机中膨胀的蒸汽的冷凝器(40),所述方法包括:
从所述蒸汽轮机(28)和所述冷凝器(40)的至少一个中抽取选定流体(34、44),该选定流体(34、44)具有比所述环境空气温度更高的温度,
引导所述环境空气(10)通过热交换器(36)以选择性地从所述选定流体中直接或间接地接收热量,所述选定流体具有比进入所述热交换器的所述环境空气温度更高的温度,从而所述环境空气的温度在所述热交换器中选择性地升高,以及
从所述热交换器将所述环境空气供给到所述燃气轮机压缩机,
其中:来自所述选定流体的热量被传递到(32)工作流体,所述工作流体通过所述热交换器循环(38、138)。
2. 根据权利要求1所述的方法,其特征在于:所述抽取的流体被直接添加(50)到所述工作流体(238)。
3. 根据权利要求1所述的方法,还包括选择性地冷却(30、42)工作流体以便选择性地冷却所述环境空气。
4. 一种联合循环发电系统,包括:
具有压缩机(18)的燃气轮机(22);
蒸汽轮机(28);
用于冷凝在所述蒸汽轮机中膨胀的废汽的冷凝器(40);
用于控制到所述压缩机的进口空气温度的热交换器(36);
确定用于工作流体通过所述热交换器(36)的流动路径(38、138、238)的结构,其可操作地连接到所述蒸汽轮机(28)和所述冷凝器(40)之一,从而用于选择性地加热所述工作流体到比进入所述热交换器的环境空气温度更高的温度,以通过所述热交换器提升所述进口空气的温度;以及
确定用于环境空气从所述热交换器直接到达所述压缩机的流动路径的结构。
5. 根据权利要求4所述的联合循环发电系统,其特征在于:吸收液体冷却器(30)沿所述流体流动路径(38)布置,用于选择性地冷却所述工作流体。
6. 根据权利要求5所述的联合循环发电系统,其特征在于:吸收液体冷却器(30)可操作选择性地连接到从所述蒸汽轮机抽取的蒸汽(34)的流动路径,用于选择性地用作所述吸收液体冷却器中的热源。
7. 根据权利要求4所述的联合循环发电系统,其特征在于:具有电动马达驱动的冷却剂压缩机的冷却器(42)沿所述工作流动路径(38、238)布置,用于选择性地冷却所述工作流体。
8. 根据权利要求4所述的联合循环发电系统,其特征在于:确定用于工作流体的所述流动路径(238)的所述结构可被操作地连接(50)到所述冷凝器(40)的用过的冷却水蒸汽(44),从而使部分的所述用过的冷却水流动到所述热交换器。
9. 根据权利要求4所述的联合循环发电系统,其特征在于:确定用于所述工作流动路径(38、138)的所述结构布置在与从所述蒸汽轮机中抽取的蒸汽(34)的流动路径相关联的热交换中,从而选择性地用所述抽取的蒸汽加热所述工作流体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/405482 | 2006-04-18 | ||
US11/405,482 US7644573B2 (en) | 2006-04-18 | 2006-04-18 | Gas turbine inlet conditioning system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101059101A CN101059101A (zh) | 2007-10-24 |
CN101059101B true CN101059101B (zh) | 2015-06-03 |
Family
ID=38542537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200710096192.0A Active CN101059101B (zh) | 2006-04-18 | 2007-04-18 | 燃气轮机进口调节系统和方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7644573B2 (zh) |
JP (1) | JP5154822B2 (zh) |
CN (1) | CN101059101B (zh) |
DE (1) | DE102007018420B4 (zh) |
FR (1) | FR2899936B1 (zh) |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6769258B2 (en) * | 1999-08-06 | 2004-08-03 | Tom L. Pierson | System for staged chilling of inlet air for gas turbines |
US7801660B2 (en) * | 2006-07-31 | 2010-09-21 | General Electric Company | Methods and systems for estimating compressor fouling impact to combined cycle power plants |
US7716930B2 (en) * | 2007-01-29 | 2010-05-18 | General Electric Company | Integrated plant cooling system |
US7762054B2 (en) * | 2007-08-21 | 2010-07-27 | Donald Charles Erickson | Thermally powered turbine inlet air chiller heater |
JP4949977B2 (ja) * | 2007-09-04 | 2012-06-13 | 三菱重工業株式会社 | ガスタービンの吸気加熱制御装置 |
US20090235634A1 (en) * | 2008-03-24 | 2009-09-24 | General Electric Company | System for extending the turndown range of a turbomachine |
CA2934541C (en) | 2008-03-28 | 2018-11-06 | Exxonmobil Upstream Research Company | Low emission power generation and hydrocarbon recovery systems and methods |
MX2011002770A (es) | 2008-10-14 | 2011-04-26 | Exxonmobil Upstream Res Co | Metodos y sistemas para controlar los productos de combustion. |
US8266910B2 (en) * | 2008-10-24 | 2012-09-18 | General Electric Company | System and method for changing the efficiency of a combustion turbine |
US8483929B2 (en) * | 2008-11-21 | 2013-07-09 | General Electric Company | Method of controlling an air preheating system of a gas turbine |
US9470149B2 (en) * | 2008-12-11 | 2016-10-18 | General Electric Company | Turbine inlet air heat pump-type system |
US8468830B2 (en) * | 2008-12-11 | 2013-06-25 | General Electric Company | Inlet air heating and cooling system |
US8201411B2 (en) * | 2008-12-11 | 2012-06-19 | General Electric Company | Deep chilled air washer |
US20100146978A1 (en) * | 2008-12-11 | 2010-06-17 | General Electric Company | Gas Turbine Base Load Control by Chilling Modulation |
US8356466B2 (en) * | 2008-12-11 | 2013-01-22 | General Electric Company | Low grade heat recovery system for turbine air inlet |
US8186935B2 (en) | 2009-01-12 | 2012-05-29 | General Electric Company | Steam turbine having exhaust enthalpic condition control and related method |
US8152457B2 (en) * | 2009-01-15 | 2012-04-10 | General Electric Company | Compressor clearance control system using bearing oil waste heat |
US8172521B2 (en) * | 2009-01-15 | 2012-05-08 | General Electric Company | Compressor clearance control system using turbine exhaust |
US20100242475A1 (en) * | 2009-03-09 | 2010-09-30 | Xiao Dong Xiang | Systems and Methods of Thermal-Electric Power Generation Including Latent Heat Utilization Features |
JP5291576B2 (ja) * | 2009-08-28 | 2013-09-18 | 三菱重工業株式会社 | ガスタービン用吸気調温装置、並びに、これを備えたガスタービン及びガスタービンコンバインドサイクル発電プラント |
US8475117B2 (en) * | 2009-11-10 | 2013-07-02 | General Electric Company | Gas turbine compressor and method of operation |
EP2499332B1 (en) | 2009-11-12 | 2017-05-24 | Exxonmobil Upstream Research Company | Integrated system for power generation and method for low emission hydrocarbon recovery with power generation |
EP2351915A1 (en) | 2010-01-11 | 2011-08-03 | Alstom Technology Ltd | Combined cycle power plant and method of operating such power plant |
US20110173947A1 (en) * | 2010-01-19 | 2011-07-21 | General Electric Company | System and method for gas turbine power augmentation |
EP2369145A1 (en) * | 2010-03-09 | 2011-09-28 | Siemens Aktiengesellschaft | Power generation system and method |
JP5597016B2 (ja) * | 2010-04-07 | 2014-10-01 | 株式会社東芝 | 蒸気タービンプラント |
JP5479192B2 (ja) * | 2010-04-07 | 2014-04-23 | 株式会社東芝 | 蒸気タービンプラント |
US20110277476A1 (en) * | 2010-05-14 | 2011-11-17 | Michael Andrew Minovitch | Low Temperature High Efficiency Condensing Heat Engine for Propelling Road Vehicles |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
BR112012031512A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e processos de geração de energia de baixa emissão |
MY160832A (en) | 2010-07-02 | 2017-03-31 | Exxonmobil Upstream Res Co | Stoichiometric combustion with exhaust gas recirculation and direct contact cooler |
US9903271B2 (en) | 2010-07-02 | 2018-02-27 | Exxonmobil Upstream Research Company | Low emission triple-cycle power generation and CO2 separation systems and methods |
US8141336B1 (en) | 2010-09-08 | 2012-03-27 | General Electric Company | Combined cycle power augmentation by efficient utilization of atomizing air energy |
US20130291567A1 (en) | 2011-01-28 | 2013-11-07 | Lalit Kumar Bohra | Regasification Plant |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
US8505309B2 (en) | 2011-06-14 | 2013-08-13 | General Electric Company | Systems and methods for improving the efficiency of a combined cycle power plant |
US8894356B2 (en) | 2011-08-23 | 2014-11-25 | General Electric Company | Retractable gas turbine inlet coils |
CN102410518B (zh) * | 2011-09-24 | 2013-08-14 | 安徽金禾实业股份有限公司 | 一种液尿洗涤塔低位热能回收利用方法 |
US9297316B2 (en) | 2011-11-23 | 2016-03-29 | General Electric Company | Method and apparatus for optimizing the operation of a turbine system under flexible loads |
WO2013095829A2 (en) | 2011-12-20 | 2013-06-27 | Exxonmobil Upstream Research Company | Enhanced coal-bed methane production |
US9181876B2 (en) | 2012-01-04 | 2015-11-10 | General Electric Company | Method and apparatus for operating a gas turbine engine |
US20130199196A1 (en) * | 2012-02-07 | 2013-08-08 | General Electric Company | System and method for gas turbine part load efficiency improvement |
US20130199192A1 (en) * | 2012-02-07 | 2013-08-08 | General Electric Company | System and method for gas turbine nox emission improvement |
US9970360B2 (en) | 2012-03-05 | 2018-05-15 | Siemens Aktiengesellschaft | Gas turbine engine configured to shape power output |
EP2642092B1 (en) * | 2012-03-19 | 2014-10-08 | Alstom Technology Ltd | Method for operating a combined cycle power plant and plant to carry out such a method |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
ES2604935T3 (es) * | 2012-06-12 | 2017-03-10 | General Electric Technology Gmbh | Método de funcionamiento de una central eléctrica con Sistema de Energía Solar |
CN102799161B (zh) * | 2012-08-13 | 2014-11-05 | 浙江大学 | 联合循环发电机组的性能指标修正比较方法 |
US9897003B2 (en) | 2012-10-01 | 2018-02-20 | General Electric Company | Apparatus and method of operating a turbine assembly |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US10100741B2 (en) | 2012-11-02 | 2018-10-16 | General Electric Company | System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
JP6110110B2 (ja) | 2012-11-16 | 2017-04-05 | 三菱日立パワーシステムズ株式会社 | ガスタービン及びガスタービンの運転方法 |
US9447732B2 (en) | 2012-11-26 | 2016-09-20 | General Electric Company | Gas turbine anti-icing system |
US9410451B2 (en) * | 2012-12-04 | 2016-08-09 | General Electric Company | Gas turbine engine with integrated bottoming cycle system |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US10221762B2 (en) | 2013-02-28 | 2019-03-05 | General Electric Company | System and method for a turbine combustor |
EP2775107A1 (en) * | 2013-03-06 | 2014-09-10 | Alstom Technology Ltd | Method for starting-up and operating a combined-cycle power plant |
AU2014226413B2 (en) | 2013-03-08 | 2016-04-28 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
DE102013205979A1 (de) * | 2013-04-04 | 2014-10-09 | Siemens Aktiengesellschaft | Optimierung von Kaltstarts bei thermischen Kraftwerken, insbesondere bei Dampfturbinen- oder bei Gas-und-Dampfturbinenkraftwerken (GuD-Kraftwerke) |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US9500103B2 (en) | 2013-08-22 | 2016-11-22 | General Electric Company | Duct fired combined cycle system |
US9752509B2 (en) | 2013-08-27 | 2017-09-05 | Siemens Energy, Inc. | Method for controlling coupling of shafts between a first machine and a second machine using rotation speeds and angles |
US20150075170A1 (en) * | 2013-09-17 | 2015-03-19 | General Electric Company | Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine |
EP2857656A1 (en) * | 2013-10-01 | 2015-04-08 | Alstom Technology Ltd | Gas turbine with cooling air cooling system and method for operation of a gas turbine at low part load |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
CN103696855B (zh) * | 2013-12-17 | 2017-02-15 | 中国能源建设集团浙江省电力设计院有限公司 | 一种用于燃气轮机进气加热与冷却的集成系统 |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9492780B2 (en) | 2014-01-16 | 2016-11-15 | Bha Altair, Llc | Gas turbine inlet gas phase contaminant removal |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US20160040596A1 (en) * | 2014-08-08 | 2016-02-11 | General Electric Company | Turbomachine system including an inlet bleed heat system and method of operating a turbomachine at part load |
US10502136B2 (en) | 2014-10-06 | 2019-12-10 | Bha Altair, Llc | Filtration system for use in a gas turbine engine assembly and method of assembling thereof |
CN105569751B (zh) * | 2014-10-09 | 2017-09-26 | 宝莲华新能源技术(上海)有限公司 | 一种热能梯级利用的冷热电联产系统 |
US10767561B2 (en) | 2014-10-10 | 2020-09-08 | Stellar Energy Americas, Inc. | Method and apparatus for cooling the ambient air at the inlet of gas combustion turbine generators |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
CN104763535A (zh) * | 2015-04-02 | 2015-07-08 | 北京京能未来燃气热电有限公司 | 燃气蒸汽联合循环机组的效率提升方法及进气系统 |
CN104912669B (zh) * | 2015-06-25 | 2017-06-06 | 上海电气燃气轮机有限公司 | 燃气蒸汽联合循环电厂的进气空调系统及其使用方法 |
WO2017041111A1 (en) | 2015-09-04 | 2017-03-09 | Stellar Energy Americas, Inc. | Modular chiller plant |
CN105464809B (zh) * | 2015-12-31 | 2017-08-04 | 中国能源建设集团广东省电力设计研究院有限公司 | 燃气蒸汽联合系统及其运行控制方法 |
JP6455581B1 (ja) * | 2017-11-17 | 2019-01-23 | マツダ株式会社 | エンジンの制御装置及びエンジンの制御方法 |
US11092075B2 (en) * | 2019-11-04 | 2021-08-17 | New York Power Authority | High-capacity electric energy storage system for gas turbine based power plants |
US11668239B2 (en) * | 2020-06-24 | 2023-06-06 | General Electric Company | System and method for controlling temperature in an air intake |
MX2023009883A (es) * | 2021-02-23 | 2023-11-09 | Stellar Energy Americas Inc | Sistemas de enfriamiento con entrada de aire de turbina con recuperacion de agua condensada. |
CN114278436B (zh) * | 2021-12-21 | 2024-06-25 | 华能桂林燃气分布式能源有限责任公司 | 一种两级双模燃气轮机进气调温余热利用系统及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2038551U (zh) * | 1988-05-07 | 1989-05-31 | 苏艾今 | 蒸汽—燃气双工质气轮机 |
US5708306A (en) * | 1997-02-17 | 1998-01-13 | Lin; Chion-Dong | Supplementary power system of an automobile |
CN1202572A (zh) * | 1997-06-17 | 1998-12-23 | 抚顺市科学技术委员会 | 双工质联合循环单机系统发动机 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4753068A (en) * | 1987-01-15 | 1988-06-28 | El Masri Maher A | Gas turbine cycle incorporating simultaneous, parallel, dual-mode heat recovery |
CH674547A5 (zh) | 1987-08-24 | 1990-06-15 | Bbc Brown Boveri & Cie | |
US5301500A (en) * | 1990-07-09 | 1994-04-12 | General Electric Company | Gas turbine engine for controlling stall margin |
US5203161A (en) * | 1990-10-30 | 1993-04-20 | Lehto John M | Method and arrangement for cooling air to gas turbine inlet |
US5222356A (en) * | 1991-12-12 | 1993-06-29 | Allied-Signal Inc. | Modulating surge prevention control for a variable geometry diffuser |
US5235801A (en) * | 1991-12-12 | 1993-08-17 | Allied-Signal Inc. | On/off surge prevention control for a variable geometry diffuser |
US5632148A (en) * | 1992-01-08 | 1997-05-27 | Ormat Industries Ltd. | Power augmentation of a gas turbine by inlet air chilling |
US5353585A (en) * | 1992-03-03 | 1994-10-11 | Michael Munk | Controlled fog injection for internal combustion system |
US5285629A (en) * | 1992-11-25 | 1994-02-15 | Pyropower Corporation | Circulating fluidized bed power plant with turbine fueled with sulfur containing fuel and using CFB to control emissions |
US5444971A (en) * | 1993-04-28 | 1995-08-29 | Holenberger; Charles R. | Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers |
US5329758A (en) * | 1993-05-21 | 1994-07-19 | The United States Of America As Represented By The Secretary Of The Navy | Steam-augmented gas turbine |
JP2856552B2 (ja) * | 1993-12-10 | 1999-02-10 | キャボット コーポレイション | 液化天然ガスを燃料とする改良された共同サイクルプラント |
NO952860L (no) * | 1994-08-08 | 1996-02-09 | Compressor Controls Corp | Framgangsmåte og apparat for å hindre parameterdrift i gassturbiner |
US5623822A (en) * | 1995-05-23 | 1997-04-29 | Montenay International Corp. | Method of operating a waste-to-energy plant having a waste boiler and gas turbine cycle |
JP3114005B2 (ja) * | 1995-07-12 | 2000-12-04 | 株式会社日立製作所 | ガスタービン吸気冷却システム及びその運転方法 |
US5790972A (en) * | 1995-08-24 | 1998-08-04 | Kohlenberger; Charles R. | Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers |
JP2877098B2 (ja) * | 1995-12-28 | 1999-03-31 | 株式会社日立製作所 | ガスタービン,コンバインドサイクルプラント及び圧縮機 |
US6059522A (en) * | 1996-04-17 | 2000-05-09 | United Technologies Corporation | Compressor stall diagnostics and avoidance |
GB2318832B (en) | 1996-11-03 | 2000-07-05 | Ainul Abedin | A gas turbine-based combined cycle electric power generation system with increased part-load efficiencies |
JPH10184390A (ja) * | 1996-12-24 | 1998-07-14 | Hitachi Ltd | ガスタービンの吸気冷却装置 |
EP0859136A1 (en) * | 1997-02-17 | 1998-08-19 | N.V. Kema | Gas turbine with energy recovering |
JPH10246126A (ja) * | 1997-03-05 | 1998-09-14 | Toshiba Corp | ガスタービン吸気装置およびガスタービンの運転方法 |
JPH11270352A (ja) * | 1998-03-24 | 1999-10-05 | Mitsubishi Heavy Ind Ltd | 吸気冷却型ガスタービン発電設備及び同発電設備を用いた複合発電プラント |
US6058695A (en) * | 1998-04-20 | 2000-05-09 | General Electric Co. | Gas turbine inlet air cooling method for combined cycle power plants |
US6173563B1 (en) * | 1998-07-13 | 2001-01-16 | General Electric Company | Modified bottoming cycle for cooling inlet air to a gas turbine combined cycle plant |
KR100372064B1 (ko) * | 1998-10-23 | 2003-02-14 | 가부시키가이샤 히타치세이사쿠쇼 | 가스 터빈 발전 설비 및 공기 증습 장치 |
US6089024A (en) * | 1998-11-25 | 2000-07-18 | Elson Corporation | Steam-augmented gas turbine |
US6318065B1 (en) * | 1999-08-06 | 2001-11-20 | Tom L. Pierson | System for chilling inlet air for gas turbines |
US6364602B1 (en) * | 2000-01-06 | 2002-04-02 | General Electric Company | Method of air-flow measurement and active operating limit line management for compressor surge avoidance |
WO2001090548A1 (en) * | 2000-05-12 | 2001-11-29 | Clean Energy Systems, Inc. | Semi-closed brayton cycle gas turbine power systems |
DE10033052A1 (de) | 2000-07-07 | 2002-01-24 | Alstom Power Nv | Verfahen zum Betreiben einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens |
US6474069B1 (en) * | 2000-10-18 | 2002-11-05 | General Electric Company | Gas turbine having combined cycle power augmentation |
JP2002266656A (ja) * | 2001-03-07 | 2002-09-18 | Ishikawajima Harima Heavy Ind Co Ltd | ガスタービンコージェネレーションシステム |
JP2003065628A (ja) * | 2001-08-27 | 2003-03-05 | Mitsubishi Heavy Ind Ltd | 吸収冷凍機、吸収冷凍機を用いた設備、及びガスタービン吸気冷却装置 |
JP4089187B2 (ja) * | 2001-08-31 | 2008-05-28 | 株式会社日立製作所 | 熱電供給システム |
JP2003161164A (ja) * | 2001-11-26 | 2003-06-06 | Hitachi Ltd | コンバインドサイクル発電プラント |
GB2382848A (en) * | 2001-12-06 | 2003-06-11 | Alstom | Gas turbine wet compression |
JP2003206752A (ja) * | 2002-01-17 | 2003-07-25 | Mitsubishi Heavy Ind Ltd | ガスタービン設備 |
JP2004052631A (ja) * | 2002-07-18 | 2004-02-19 | Mitsubishi Heavy Ind Ltd | マイクロコンバインド発電システム |
US6782703B2 (en) * | 2002-09-11 | 2004-08-31 | Siemens Westinghouse Power Corporation | Apparatus for starting a combined cycle power plant |
US7007484B2 (en) * | 2003-06-06 | 2006-03-07 | General Electric Company | Methods and apparatus for operating gas turbine engines |
WO2005042929A1 (de) * | 2003-10-30 | 2005-05-12 | Alstom Technology Ltd | Kraftwerksanlage |
-
2006
- 2006-04-18 US US11/405,482 patent/US7644573B2/en active Active
-
2007
- 2007-04-11 JP JP2007103588A patent/JP5154822B2/ja active Active
- 2007-04-17 FR FR0754523A patent/FR2899936B1/fr not_active Expired - Fee Related
- 2007-04-17 DE DE102007018420.6A patent/DE102007018420B4/de active Active
- 2007-04-18 CN CN200710096192.0A patent/CN101059101B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2038551U (zh) * | 1988-05-07 | 1989-05-31 | 苏艾今 | 蒸汽—燃气双工质气轮机 |
US5708306A (en) * | 1997-02-17 | 1998-01-13 | Lin; Chion-Dong | Supplementary power system of an automobile |
CN1202572A (zh) * | 1997-06-17 | 1998-12-23 | 抚顺市科学技术委员会 | 双工质联合循环单机系统发动机 |
Also Published As
Publication number | Publication date |
---|---|
JP5154822B2 (ja) | 2013-02-27 |
CN101059101A (zh) | 2007-10-24 |
FR2899936A1 (fr) | 2007-10-19 |
US20070240400A1 (en) | 2007-10-18 |
FR2899936B1 (fr) | 2016-11-11 |
DE102007018420B4 (de) | 2022-07-14 |
DE102007018420A1 (de) | 2007-10-31 |
US7644573B2 (en) | 2010-01-12 |
JP2007285298A (ja) | 2007-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101059101B (zh) | 燃气轮机进口调节系统和方法 | |
Ibrahim et al. | Improvement of gas turbine performance based on inlet air cooling systems: A technical review | |
US8266910B2 (en) | System and method for changing the efficiency of a combustion turbine | |
CA2514073C (en) | Thermodynamic cycles using thermal diluent | |
CA2666325C (en) | Thermodynamic cycles with thermal diluent | |
JP2877098B2 (ja) | ガスタービン,コンバインドサイクルプラント及び圧縮機 | |
CA2127772C (en) | Indirect contact chiller air-precooler method and apparatus | |
US20110088399A1 (en) | Combined Cycle Power Plant Including A Refrigeration Cycle | |
US20030182944A1 (en) | Highly supercharged gas-turbine generating system | |
US8387356B2 (en) | Method of increasing power output of a combined cycle power plant during select operating periods | |
CN1198197A (zh) | 冷却燃气透平和内燃机等原动机进气空气的方法及装置 | |
JPH07166888A (ja) | ガスタービンから発生する電力を増大させる方法および装置 | |
Najjar et al. | Sustainable energy development in power generation by using green inlet-air cooling technologies with gas turbine engines | |
Njoku et al. | Comparative thermoeconomic and environmental impact analyses of different combined cycle power systems | |
CN110953069A (zh) | 一种燃机电站多能耦合发电系统 | |
JP5885576B2 (ja) | 蒸気タービンプラント | |
Erickson et al. | Absorption refrigeration cycle turbine inlet conditioning | |
CN105240128A (zh) | 一种间冷循环燃气轮机系统 | |
Ancona et al. | Power Augmentation Technologies: Part II—Thermo-Economic Analysis | |
US20140007553A1 (en) | Hot water injection for turbomachine | |
Kim et al. | Comparative study on implementation technology for enhancing performance of combined cycle power plant in system perspective | |
KR102329750B1 (ko) | 계간 축열을 이용한 복합화력 발전 시스템 | |
US20140216045A1 (en) | Gas turbine with improved power output | |
IL107530A (en) | Method and device for increasing the power produced by gas turbines | |
Etminan et al. | Performance improvement of simple cycle gas turbine by using fogging system as intake air cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231227 Address after: Swiss Baden Patentee after: GENERAL ELECTRIC CO. LTD. Address before: New York, United States Patentee before: General Electric Co. |