CN109981154A - Low complex degree array antenna multi-input multi-output system mixing precoding algorithms - Google Patents
Low complex degree array antenna multi-input multi-output system mixing precoding algorithms Download PDFInfo
- Publication number
- CN109981154A CN109981154A CN201910400885.7A CN201910400885A CN109981154A CN 109981154 A CN109981154 A CN 109981154A CN 201910400885 A CN201910400885 A CN 201910400885A CN 109981154 A CN109981154 A CN 109981154A
- Authority
- CN
- China
- Prior art keywords
- matrix
- antenna
- calculation
- auxiliary vector
- output system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 61
- 239000013598 vector Substances 0.000 claims abstract description 50
- 238000004364 calculation method Methods 0.000 claims abstract description 38
- 238000012216 screening Methods 0.000 claims description 4
- 238000003491 array Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000004088 simulation Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
Abstract
本发明公开了低复杂度阵列天线多输入多输出系统混合预编码算法,给定用于计算天线子阵最优编码的初始解和最大计算次数,并获取部分连接架构的有效信道矩阵;结合初始解和有效信道矩阵计算出辅助向量,筛选出模值最大的辅助向量作为特征值矢量;判断当前计算次数的值,并得出中间结果;根据中间结果和辅助向量得出当次计算结果;重复计算,直至达到最大计算次数,得出中间结果和计算结果,进而计算得出部分连接架构系统中每个天线子阵的最优编码,结合每个天线子阵的最优编码得出部分连接架构系统的混合预编码矩阵;通过本发明方法,在现有硬件连接基础上,可以降低大规模天线编码矩阵的计算复杂度及消耗时间,缩短网络传输延迟。
The invention discloses a hybrid precoding algorithm for a low-complexity array antenna multiple-input multiple-output system. Given an initial solution and a maximum number of calculations for calculating the optimal coding of an antenna sub-array, an effective channel matrix of a partial connection structure is obtained; The solution and the effective channel matrix are used to calculate the auxiliary vector, and the auxiliary vector with the largest modulus value is selected as the eigenvalue vector; the value of the current calculation times is judged, and the intermediate result is obtained; the current calculation result is obtained according to the intermediate result and the auxiliary vector; repeat Calculate until the maximum number of calculations is reached, obtain intermediate results and calculation results, and then calculate the optimal coding of each antenna sub-array in the partial connection architecture system, and combine the optimal coding of each antenna sub-array to obtain the partial connection structure The hybrid precoding matrix of the system; the method of the present invention can reduce the computational complexity and time consumption of the large-scale antenna coding matrix on the basis of the existing hardware connection, and shorten the network transmission delay.
Description
【技术领域】【Technical field】
本发明属于移动通信技术领域,尤其涉及一种低复杂度阵列天线多输入多输出系统混合预编码算法。The invention belongs to the technical field of mobile communication, and in particular relates to a hybrid precoding algorithm of a low-complexity array antenna multiple-input multiple-output system.
【背景技术】【Background technique】
为了满足第五代(5G)移动通信移动数据业务量爆炸式增长的态势,5G采用拥有30~300GHz毫米波频段,极大提高了频谱资源。In order to meet the explosive growth of mobile data traffic in the fifth generation (5G) mobile communication, 5G adopts the 30-300GHz millimeter wave frequency band, which greatly improves the spectrum resources.
毫米波因其波长相对较短,天线阵列的物理尺寸大幅度缩小,因此基站端可以安装大规模天线,从而可将毫米波系统与大规模Massive MIMO技术完美地结合起来。因此,Massive MIMO技术成为目前移动通信国内外学者研究的重点。Due to the relatively short wavelength of millimeter wave, the physical size of the antenna array is greatly reduced, so massive antennas can be installed at the base station, so that the millimeter wave system can be perfectly combined with massive Massive MIMO technology. Therefore, Massive MIMO technology has become the focus of research by scholars at home and abroad in mobile communications.
随着Massive MIMO系统中混合波束赋形技术的发展与研究,现有的混合预编码方案可分为两类,第一类提出了基于空间稀疏性散射性混合预编码,将可达速率优化问题转化为稀疏逼近问题,并通过正交匹配求解追求(OMP)算法以使天线阵列达到接近最优的性能;第二类提出了基于码本混合预编码的方法,在预先定义的码本之间进行迭代搜索,寻找最优的混合预编码矩阵。然而,这些算法都是基于全连接架构,不仅硬件实现困难,而且算法复杂度相当高。With the development and research of hybrid beamforming technology in Massive MIMO systems, the existing hybrid precoding schemes can be divided into two categories. It is transformed into a sparse approximation problem, and an orthogonal matching solution pursuit (OMP) algorithm is used to make the antenna array achieve near-optimal performance; the second category proposes a codebook-based hybrid precoding method, which is between pre-defined codebooks An iterative search is performed to find the optimal hybrid precoding matrix. However, these algorithms are based on the fully connected architecture, which is not only difficult to implement in hardware, but also has a high algorithm complexity.
由于基于稀疏散射性采用OMP迭代的MMSE混合预编码算法需要进行大规模矩阵的求逆和奇异值分解计算,计算复杂度很高,因此,对硬件结构设计要求也相对提高,还需要重新设计硬件连接,提高了基站内的数据存储要求,增加了网络传输延迟。Because the MMSE hybrid precoding algorithm using OMP iteration based on sparse scattering needs to perform large-scale matrix inversion and singular value decomposition calculation, the calculation complexity is very high, so the requirements for hardware structure design are relatively high, and the hardware needs to be redesigned. connection, which increases the data storage requirements within the base station and increases the network transmission delay.
【发明内容】[Content of the invention]
本发明的目的是提供一种低复杂度阵列天线多输入多输出系统混合预编码算法,在现有硬件连接基础上,降低大规模天线编码矩阵的计算复杂度及消耗时间,缩短网络传输延迟。The purpose of the present invention is to provide a low-complexity array antenna multiple-input multiple-output system hybrid precoding algorithm, which reduces the computational complexity and time consumption of large-scale antenna coding matrices and shortens network transmission delay on the basis of existing hardware connections.
本发明采用以下技术方案:低复杂度阵列天线多输入多输出系统混合预编码算法,包括以下步骤:The present invention adopts the following technical solutions: a low-complexity array antenna multiple-input multiple-output system hybrid precoding algorithm, comprising the following steps:
根据部分连接架构系统的状态信息,给定用于计算天线子阵最优编码的初始解和最大迭代次数S,并获取部分连接架构的有效信道矩阵;结合初始解和有效信道矩阵计算出辅助向量z(s),筛选出模值最大的辅助向量,取其模值为最大的特征值m(s);According to the state information of the partially connected architecture system, the initial solution and the maximum number of iterations S for calculating the optimal coding of the antenna subarray are given, and the effective channel matrix of the partially connected architecture is obtained; the auxiliary vector is calculated by combining the initial solution and the effective channel matrix z (s) , screen out the auxiliary vector with the largest modulus value, and take the eigenvalue m (s) with the largest modulus value;
判断当前迭代次数s的值,当1≤s≤2时,n(s)=m(s),n(s)为中间结果,当s>2时,根据中间结果和辅助向量得出当次计算结果u(s);Judging the value of the current iteration number s, when 1≤s≤2, n (s) = m (s) , n (s) is the intermediate result, when s > 2, Obtain the current calculation result u (s) according to the intermediate result and the auxiliary vector;
继续迭代,直至达到最大计算次数S,得出第S次的中间结果和计算结果,进而计算得出部分连接架构系统中每个天线子阵的最优编码,结合每个天线子阵的最优编码得出部分连接架构系统的混合预编码矩阵。Continue to iterate until the maximum number of calculations S is reached, obtain the intermediate results and calculation results of the S-th time, and then calculate the optimal coding of each antenna sub-array in the partially connected architecture system, combined with the optimal coding of each antenna sub-array The encoding results in a hybrid precoding matrix for a partially connected architecture system.
进一步的,有效信道矩阵通过得出,其中,为有效信道矩阵,A为天线矢量矩阵,H为信道矩阵。Further, the effective channel matrix is passed through It is obtained, in which, is the effective channel matrix, A is the antenna vector matrix, and H is the channel matrix.
进一步的,辅助向量通过得出,其中,z(s)为第s次计算的辅助向量,u(s-1)为第s-1次的计算结果。Further, the auxiliary vector is passed through It is obtained, where z (s) is the auxiliary vector of the s-th calculation, and u (s-1) is the calculation result of the s-1th time.
进一步的,筛选特征值矢量前先将计算结果进行比对,将相同的计算结果合并为一个计算结果,得出待筛选辅助向量集其中,i为在s个辅助向量中不同辅助向量的个数。Further, before screening the eigenvalue vector, the calculation results are compared, and the same calculation results are combined into one calculation result, and the auxiliary vector set to be screened is obtained. Among them, i is the number of different auxiliary vectors in the s auxiliary vectors.
通过对待筛选出辅助向量集进行筛选,选出其中辅助向量对应的最大模值作为最大特征值。pass Auxiliary vector set to be filtered out Screening is performed, and the largest modulus value corresponding to the auxiliary vector is selected as the largest eigenvalue.
进一步的,通过计算出计算结果,其中,u(s)为第s次计算的计算结果。Further, by Calculate the calculation result, where u (s) is the calculation result of the s-th calculation.
进一步的,每个天线子阵的最优编码计算方法具体为:Further, the optimal coding calculation method for each antenna sub-array is as follows:
将中间结果n(s)赋予有效信道矩阵的最大奇异值Σ1,通过计算出有效信道矩阵的第一右奇异值v1;Assign the intermediate result n (s) to the largest singular value Σ 1 of the effective channel matrix, by Calculate the first right singular value v 1 of the effective channel matrix;
通过和分别计算出部分连接架构系统中数字预编码矩阵W的第n行的最优数字预编码和模拟预编码矩阵F的第n个天线子阵的最优模拟预编码;pass and Calculate the optimal digital precoding of the nth row of the digital precoding matrix W and the optimal analog precoding of the nth antenna subarray of the analog precoding matrix F in the partially connected architecture system;
通过计算得出部分连接架构系统中第n个天线子阵的最优编码。pass The optimal coding of the nth antenna subarray in the partially connected architecture system is calculated.
本发明的有益效果是:本发明提出了基于部分连接结构的SIC混合预编码方案,将优化系统容量这个非凸问题转化成求解一系列简单的子速率优化之和(即天线子阵速率之和)的问题;合理巧妙避开大规模矩阵—矩阵求逆和奇异值分解问题,极大降低算法复杂度,节省了低复杂度阵列天线多输入多输出系统的信号传输延时,并通过算法复杂度分析和系统容量性能仿真,得出该算法性能能够接近最优无约束算法,性能稳定且算法复杂度是基于稀疏散射性预编码的10%。The beneficial effects of the present invention are as follows: the present invention proposes a SIC hybrid precoding scheme based on a partial connection structure, which converts the non-convex problem of optimizing system capacity into solving a series of simple sub-rate optimization sums (that is, the sum of antenna sub-array rates). ) problem; reasonably and skillfully avoid large-scale matrix-matrix inversion and singular value decomposition problems, greatly reduce the complexity of the algorithm, save the signal transmission delay of the low-complexity array antenna multiple-input multiple-output system, and pass the complex algorithm. Through degree analysis and system capacity performance simulation, it is concluded that the performance of the algorithm can be close to the optimal unconstrained algorithm, and the performance is stable and the algorithm complexity is 10% of that based on sparse scattering precoding.
【附图说明】【Description of drawings】
图1为现有技术中部分连接的系统模型图;Fig. 1 is the system model diagram of partial connection in the prior art;
图2为本发明实施例中NM×K=64×16(N=8)时的系统容量图;FIG. 2 is a system capacity diagram when NM×K=64×16 (N=8) in an embodiment of the present invention;
图3为本发明实施例中NM×K=128×32(N=16)时的系统容量图。FIG. 3 is a system capacity diagram when NM×K=128×32 (N=16) in an embodiment of the present invention.
【具体实施方式】【Detailed ways】
下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
在现有的时分双工下行多用户Massive MIMO系统中,如图1所示,假设基站拥有完全的信道状态信息,即信道矩阵H,N个射频链,每个射频链连接M根天线,基站装配Nt根天线,用户为多天线Nr接收天线,用户数为K。In the existing time division duplex downlink multi-user Massive MIMO system, as shown in Figure 1, it is assumed that the base station has complete channel state information, that is, the channel matrix H, N radio frequency chains, each radio frequency chain is connected to M antennas, the base station Assemble N t antennas, the user is a multi-antenna N r receiving antenna, and the number of users is K.
Ns个数据流,W=diag[w1,w2,...,wN]是数字预编码矩阵,F是NM×N的模拟预编码矩阵,由N个模拟权重矢量组成, N s data streams, W=diag[w 1 ,w 2 ,...,w N ] is the digital precoding matrix, F is the NM×N analog precoding matrix, which consists of N analog weight vectors composition,
用户端接收到的毫米波窄带信号矢量y=[y1,y2,...,yk]T,可以表达如下:The millimeter-wave narrowband signal vector y=[y 1 , y 2 ,...,y k ] T received by the user terminal can be expressed as follows:
其中,ρ为平均接收功率;H∈CK×NM,是基带传输信号矢量,具有归一化信号功率(即信号满足功率约束),IN为N*N维的单位矩阵,P=FW是NM×N混合预编码矩阵,它满足总的传输功率约束||P||F≤N,a=[a1,a2,…aN]T是一个加性高斯白噪声矢量,它的元素服从独立同分布(i.i.d)CN(0,σ2),则系统总可达速率可以表示为:Among them, ρ is the average received power; H∈C K×NM , is the baseband transmit signal vector with normalized signal power (that is, the signal satisfies the power constraint), I N is an N*N-dimensional identity matrix, and P=FW is an NM×N hybrid precoding matrix, which satisfies the total transmission power constraint ||P|| F ≤N, a=[ a 1 ,a 2 ,…a N ] T is an additive white Gaussian noise vector, and its elements obey the independent and identical distribution (iid)CN(0,σ 2 ), then the total achievable rate of the system can be expressed as:
其中,Ik为单位矩阵。Among them, I k is the identity matrix.
从理论和实际上,传统全数字预编码的性能是最优的,因此,采用混合预编码性能接近全数字预编码性能为优化目标。Theoretically and practically, the performance of traditional all-digital precoding is optimal, therefore, adopting hybrid precoding performance close to all-digital precoding performance is the optimization goal.
在用户数量与发射天线相同的全负载系统中,ZF(即破零法)或预编码的性能不会线性增长。根据信道的互易性先通过MMSE法(即最小均方差法)得出非归一化混合预编码矩阵PMMSE,在传统数字预编码算法中,MMSE法相比ZF法(破零法)和BD法(即块分法)在复杂度和性能上取了一个折中,因此,本发明首先采用MMSE码矩阵PMMSE代替FW,则求解公式(2)等价于求解以下问题:In a fully loaded system with the same number of users as the transmit antenna, the performance of ZF (ie zero-breaking) or precoding does not increase linearly. According to the reciprocity of the channel, the non-normalized hybrid precoding matrix P MMSE is obtained by the MMSE method (ie, the minimum mean square error method). In the traditional digital precoding algorithm, the MMSE method is compared with the ZF method (zero-breaking method) and BD. The method (that is, the block method) takes a compromise between complexity and performance. Therefore, the present invention first adopts the MMSE code matrix P MMSE to replace FW, then solving formula (2) is equivalent to solving the following problems:
为MMSE编码矩阵,为有效信道矩阵,A为天线矢量矩阵。求解上述问题可以转化成求解天线子阵速率最优解的问题,即 is the MMSE encoding matrix, is the effective channel matrix, and A is the antenna vector matrix. Solving the above problem can be transformed into the problem of solving the optimal solution of the rate of the antenna subarray, namely
将子天线编码矢量去掉了上标,这里ψ包含所有满足恒模约束和功率约束的MMSE编码矢量。因为这里的pn opt不符合恒模约束,不能直接拿来作为最优解。因此问题(4)可以转化成以下问题:The sub-antenna coding vectors are removed from the superscript, where ψ contains all MMSE coding vectors that satisfy the constant modulus constraints and power constraints. Because the p n opt here does not meet the constant modulus constraint, it cannot be directly used as the optimal solution. Therefore, problem (4) can be transformed into the following problem:
这里v1是有效信道矩阵的右奇异矩阵第一列,公式(5)表明可以找到一个可行的预编码向量足够接近(欧几里德距离)最优,但不能直接用的预编码向量v1,来最大化第n个天线子阵的可达速率,则数字预编码和模拟预编码分别为:Here v1 is the effective channel matrix The first column of the right singular matrix of , Equation (5) shows that a feasible precoding vector can be found The precoding vector v 1 that is close enough to be optimal (Euclidean distance) but cannot be used directly to maximize the achievable rate of the nth antenna subarray, the digital precoding and analog precoding are:
其中,是数字预编码矩阵W的第n行的数字预编码,是v1的共轭转置。为模拟预编码矩阵第n个天线子阵的模拟预编码,in, is the digital precoding of the nth row of the digital precoding matrix W, is the conjugate transpose of v1. is the analog precoding of the nth antenna subarray of the analog precoding matrix,
表示第n个天线子阵的模拟预编码的最优解,为归一化因子,M表示每个天线子阵中的天线个数,jangle(v1)表示取v1中的角度信息,则第n个天线子阵(即第n列)的最优编码可以表示为: represents the optimal solution of analog precoding for the nth antenna subarray, is the normalization factor, M represents the number of antennas in each antenna sub-array, jangle(v 1 ) represents the angle information in v 1 , then the optimal encoding of the n-th antenna sub-array (that is, the n-th column) It can be expressed as:
因为是满足赫尔米特矩阵性质,即是赫尔米特矩阵,它遵循以下两条性质:1)也是一个可对角化矩阵;2)的右奇异值矩阵和特征值分解的特征值矩阵相似。因此,幂迭代算法中可以用来计算v1,也可以用来计算的最大特征值Σ1。because It satisfies the properties of the Hermitian matrix, that is, it is the Hermitian matrix, which follows the following two properties: 1) is also a diagonalizable matrix; 2) The right singular value matrix of is similar to the eigenvalue matrix of the eigenvalue decomposition. Therefore, the power iteration algorithm can be used to calculate v 1 , and can also be used to calculate The largest eigenvalue Σ 1 of .
在本实施例的算法中,迭代从初始解u(0)∈CM×1开始,本实施例中设置为[1,1,...,1]T,但不失一般性。在每次迭代中,首先计算辅助向量然后提取模值最大的辅助向量z(s)的模值m(s)。In the algorithm of this embodiment, the iteration starts from the initial solution u (0) ∈ C M×1 , which is set to [1,1,...,1] T in this embodiment, but without loss of generality. In each iteration, the auxiliary vector is first calculated Then the modulus value m (s) of the auxiliary vector z (s) with the largest modulus value is extracted.
之后,u(s)更新为u(s)=z(s)/m(s),用于下一个迭代。本发明算法直到迭代次数达到预定义值S时停止。最后,m(s)和u(s)/||u(s)||2将分别作为最大奇异值Σ1和第一个右奇异向量。After that, u (s) is updated to u (s) = z (s) /m (s) for the next iteration. The algorithm of the present invention stops until the number of iterations reaches a predefined value S. Finally, m (s) and u (s) /||u (s) || 2 will be the largest singular values Σ 1 and The first right singular vector.
为了降低求解公式(8)时计算复杂度,采用本发明算法求解v1,避免SVD分解和矩阵求逆问题,同时通过公式推导可将公式(3)中每次迭代中避免矩阵—矩阵乘法矩阵—向量乘法,即它不仅仅只是一个矩阵符号的计算,实则是很大规模的矩阵与矩阵之间的乘法,本发明方法是直接提取了矩阵里最有用的一列,将矩阵和矩阵的乘法换成矩阵和单一向量之间的乘法,计算量大大减小。In order to reduce the computational complexity when solving formula (8), the algorithm of the present invention is used to solve v 1 to avoid SVD decomposition and matrix inversion problems. -Vector multiplication, that is, it is not just the calculation of a matrix symbol, but is actually a multiplication between a large-scale matrix and a matrix. The method of the present invention directly extracts the most useful column in the matrix, and replaces the multiplication of the matrix with the matrix. Multiplication between a matrix and a single vector, the amount of calculation is greatly reduced.
本发明算法步骤如下所示:The algorithm steps of the present invention are as follows:
步骤1.根据部分连接架构系统的状态信息,给定用于计算天线子阵最优编码的初始解u(0)∈CM×1和最大计算次数S,初始解给定为[1,1,…,1]T。Step 1. According to the state information of the partially connected architecture system, given the initial solution u (0) ∈ C M×1 and the maximum number of computations S for calculating the optimal encoding of the antenna subarray, the initial solution is given as [1,1 ,…,1] T .
获取部分连接架构的有效信道矩阵通过初始解和有效信道矩阵并结合计算出辅助向量z(s),1≤s≤S,为当前迭代次数。Obtain the effective channel matrix for a partially connected architecture By combining the initial solution and the effective channel matrix The auxiliary vector z (s) is calculated, 1≤s≤S, which is the current iteration number.
筛选特征值矢量前先将计算结果进行比对,将相同的计算结果合并为一个计算结果,得出待筛选辅助向量集在i个辅助向量中,通过选取模值最大的一个作为特征值矢量m(s),i表示在s个辅助向量中不同辅助向量的个数。Compare the calculation results before screening the eigenvalue vectors, combine the same calculation results into one calculation result, and obtain the auxiliary vector set to be screened Among the i auxiliary vectors, by The one with the largest modulus value is selected as the eigenvalue vector m (s) , and i represents the number of different auxiliary vectors in the s auxiliary vectors.
得到特征值矢量后,继续进行迭代计算,判断迭代次数s:After obtaining the eigenvalue vector, continue the iterative calculation to determine the number of iterations s:
当1≤s≤2时,n(s)=m(s),n(s)为中间结果。When 1≤s≤2, n (s) = m (s) , and n (s) is an intermediate result.
当s>2时, When s>2,
将n(s)的值代入中,得出第s迭代后迭代结果的u(s)。Substitute the value of n (s) into , obtain u (s) of the iteration result after the sth iteration.
通过以上步骤可得出,有效信道矩阵的最大奇异值Σ1=n(s)和第一个右奇异值 Through the above steps, it can be obtained that the effective channel matrix The largest singular value of Σ 1 =n (s) and the first right singular value
通过的最大奇异值Σ1和第一个右奇异值v1,结合公式(6)和(7)得出和最后,根据公式(8)得出第n个天线子阵的最优编码将每个天线子阵的最优编码结合得出部分连接架构系统的混合预编码矩阵。pass The largest singular value Σ 1 and the first right singular value v 1 of , combined with equations (6) and (7) to get and Finally, according to formula (8), the optimal coding of the nth antenna subarray is obtained The optimal coding of each antenna sub-array is combined to obtain the hybrid precoding matrix of the partially connected architecture system.
本实施例中还列出了算法中的部分程序代码设计,具体如下:Part of the program code design in the algorithm is also listed in this embodiment, as follows:
Input:(1) Input: (1)
(2)初始解u(0);(2) Initial solution u (0) ;
(3)最大迭代次数S;(3) The maximum number of iterations S;
For 1≤s≤2For 1≤s≤2
1) 1)
2) 2)
3)If 1≤s≤23)If 1≤s≤2
n(s)=m(s) n (s) = m (s)
ElseElse
End ifEnd if
4) 4)
End forEnd for
Output:(1)最大奇异值Σ1=n(s) Output: (1) Maximum singular value Σ 1 =n (s)
(2)第一个右奇异值 (2) The first right singular value
步骤2:求解混合预编码Step 2: Solve for Hybrid Precoding
Input: Input:
For 1≤n≤NFor 1≤n≤N
1)通过算法2计算的v1和Σ1 1) Calculated by Algorithm 2 of v 1 and Σ 1
2) 2)
End forEnd for
Output:(1) Output: (1)
(2) (2)
(3)P=FW(3) P=FW
实施例:复杂度分析Example: Complexity Analysis
表1算法复杂度对比Table 1 Algorithm complexity comparison
通过表1可知,其所提供的关于基于MMSE迭代算法混合预编码复杂度和现有技术中所提出基于空间稀疏性混合预编码算法复杂度对比,在典型毫米波MIMO系统下,当N=8,M=8,K=16,L=3时,L为有效路径数量。观察到基于SIC混合预编码算法复杂度需要4×103次乘法和102次除法。设置S=5。相比较,基于空间稀疏性预编码算法复杂度大约需要5×104次乘法和103除法。由此可知,本发明所提出的基于SIC的混合预编码算法的复杂度是基于空间稀疏性混合预编码算法复杂度的10%。It can be seen from Table 1 that the complexity of hybrid precoding based on MMSE iterative algorithm and the complexity of hybrid precoding based on spatial sparsity proposed in the prior art are compared. Under a typical millimeter-wave MIMO system, when N=8 , M=8, K=16, L=3, L is the number of effective paths. It is observed that the SIC based hybrid precoding algorithm complexity requires 4×10 3 multiplications and 10 2 divisions. Set S=5. In comparison, the spatial sparsity-based precoding algorithm complexity requires about 5×10 4 multiplications and 10 3 divisions. It can be seen that the complexity of the hybrid precoding algorithm based on SIC proposed by the present invention is 10% of the complexity of the hybrid precoding algorithm based on spatial sparsity.
实施例:仿真结果分析Example: Analysis of Simulation Results
仿真条件:Simulation conditions:
仿真条件描述如下,有效信道路径的数量是L=3,载波频率设置为28GHz。发射和接收天线阵列都是天线间距d=λ/2的ULA(均匀线性阵列)。AoD(到达角)假定在[-π/6,π/6]上均匀分布。同时由于用户位置的随机分布,假设AOA在[-π/2,π/2]上均匀分布。此外,在运行算法2时的最大迭代次数设置为S=5。最后,SNR(信噪比)被定义为 The simulation conditions are described below, the number of valid channel paths is L=3, and the carrier frequency is set to 28GHz. Both transmit and receive antenna arrays are ULAs (Uniform Linear Arrays) with antenna spacing d=λ/2. The AoD (angle of arrival) is assumed to be uniformly distributed over [-π/6, π/6]. At the same time, due to the random distribution of user locations, AOA is assumed to be uniformly distributed on [-π/2, π/2]. Also, the maximum number of iterations when running Algorithm 2 is set to S=5. Finally, the SNR (Signal to Noise Ratio) is defined as
系统性能仿真:System performance simulation:
从图2可以看出,在完美信道信息下提出的SIC编码系统容量在整个SNR范围内优于传统具有子连接架构的模拟预编码,并且接近最优无约束全连接结构编码和基于空间稀疏散射性编码。图3增大了天线规模,从图3可以观察出与图2具有相同的趋势,说明提出的SIC算法不仅算法发杂度低,同时也满足了系统性能要求,且在增大天线数量的情况依然具有稳定的性能。From Fig. 2, it can be seen that the proposed SIC coding system capacity under perfect channel information is better than the traditional analog precoding with sub-connected architecture in the whole SNR range, and is close to the optimal unconstrained fully-connected structure coding and spatial sparse scattering based Sexual coding. Figure 3 increases the size of the antenna, and it can be observed from Figure 3 that the same trend as Figure 2 shows that the proposed SIC algorithm not only has low algorithm complexity, but also meets the system performance requirements and increases the number of antennas. Still has stable performance.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910400885.7A CN109981154A (en) | 2019-05-15 | 2019-05-15 | Low complex degree array antenna multi-input multi-output system mixing precoding algorithms |
CN201910534855.5A CN110138425B (en) | 2019-05-15 | 2019-06-20 | Low-complexity array antenna multi-input multi-output system hybrid precoding algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910400885.7A CN109981154A (en) | 2019-05-15 | 2019-05-15 | Low complex degree array antenna multi-input multi-output system mixing precoding algorithms |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109981154A true CN109981154A (en) | 2019-07-05 |
Family
ID=67073515
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910400885.7A Withdrawn CN109981154A (en) | 2019-05-15 | 2019-05-15 | Low complex degree array antenna multi-input multi-output system mixing precoding algorithms |
CN201910534855.5A Expired - Fee Related CN110138425B (en) | 2019-05-15 | 2019-06-20 | Low-complexity array antenna multi-input multi-output system hybrid precoding algorithm |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910534855.5A Expired - Fee Related CN110138425B (en) | 2019-05-15 | 2019-06-20 | Low-complexity array antenna multi-input multi-output system hybrid precoding algorithm |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN109981154A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212962A (en) * | 2019-07-07 | 2019-09-06 | 东北大学秦皇岛分校 | One kind is based on simulation phase shift-switch cascade network mixing method for precoding |
CN111555782A (en) * | 2020-03-08 | 2020-08-18 | 郑州大学 | Mixed precoding design method based on multi-user millimeter wave MIMO-OFDM system |
CN112039565A (en) * | 2020-09-11 | 2020-12-04 | 成都大学 | Large-scale MIMO mixed pre-coding method based on distributed part connection |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112468202B (en) * | 2020-05-14 | 2021-12-21 | 哈尔滨工程大学 | Low-complexity millimeter-wave massive MIMO hybrid precoding method |
CN112054826B (en) * | 2020-09-14 | 2021-09-07 | 长沙理工大学 | A single-user low-complexity hybrid precoding method based on intermediate channel |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106506051A (en) * | 2015-09-08 | 2017-03-15 | 上海贝尔股份有限公司 | Method and device for hybrid precoding based on reconfigurable antenna |
CN105959048B (en) * | 2016-06-23 | 2019-02-15 | 北京科技大学 | A Precoding Method for Large Scale Antennas |
CN108075811B (en) * | 2016-11-11 | 2021-03-30 | 上海诺基亚贝尔股份有限公司 | Method for hybrid precoding and communication device |
CN108449121B (en) * | 2018-02-13 | 2020-09-01 | 杭州电子科技大学 | Low-complexity hybrid precoding method in millimeter-wave massive MIMO systems |
CN109039400B (en) * | 2018-08-14 | 2020-11-17 | 西安科技大学 | Hybrid pre-coding/merging device design method based on matrix decomposition |
CN109167622B (en) * | 2018-11-08 | 2021-04-30 | 江西理工大学 | Mixed precoding method for millimeter wave large-scale MIMO system |
CN109617585A (en) * | 2019-01-18 | 2019-04-12 | 杭州电子科技大学 | Hybrid precoding method based on partial connection in mmWave massive MIMO |
-
2019
- 2019-05-15 CN CN201910400885.7A patent/CN109981154A/en not_active Withdrawn
- 2019-06-20 CN CN201910534855.5A patent/CN110138425B/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212962A (en) * | 2019-07-07 | 2019-09-06 | 东北大学秦皇岛分校 | One kind is based on simulation phase shift-switch cascade network mixing method for precoding |
CN111555782A (en) * | 2020-03-08 | 2020-08-18 | 郑州大学 | Mixed precoding design method based on multi-user millimeter wave MIMO-OFDM system |
CN112039565A (en) * | 2020-09-11 | 2020-12-04 | 成都大学 | Large-scale MIMO mixed pre-coding method based on distributed part connection |
CN112039565B (en) * | 2020-09-11 | 2021-03-26 | 成都大学 | Large-scale MIMO mixed pre-coding method based on distributed part connection |
Also Published As
Publication number | Publication date |
---|---|
CN110138425B (en) | 2020-08-18 |
CN110138425A (en) | 2019-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110138425B (en) | Low-complexity array antenna multi-input multi-output system hybrid precoding algorithm | |
CN108023620B (en) | Large-scale MIMO system hybrid precoding method applied to millimeter wave frequency band | |
CN106603130B (en) | Digital-analog hybrid precoding method in large-scale MIMO system | |
CN112737647B (en) | A Hybrid Connection-Based Massive MIMO Precoding Method for Millimeter Waves | |
CN110048752B (en) | Mixed precoding method in millimeter wave large-scale MIMO | |
CN107294590B (en) | A digital-analog hybrid beamforming method based on uplink training | |
CN108199753B (en) | An Iterative Minimal Precoding Method in Millimeter-Wave Communication | |
CN109861731B (en) | A hybrid precoder and design method thereof | |
CN112039565A (en) | Large-scale MIMO mixed pre-coding method based on distributed part connection | |
CN107332596B (en) | Zero forcing-based millimeter wave communication system hybrid precoding method | |
CN109714091B (en) | An iterative hybrid precoding method based on hierarchical design in mmWave MIMO systems | |
CN109120316B (en) | A Hybrid Beamforming Method Based on Maximizing the Minimum Phase Difference | |
CN112118033B (en) | Nonlinear hybrid precoding design method of multi-user large-scale MIMO system | |
CN112468202B (en) | Low-complexity millimeter-wave massive MIMO hybrid precoding method | |
CN108566236B (en) | User terminal, base station, and hybrid beamforming transmission method and system | |
CN110138427B (en) | Partial Connection Based Massive Multiple-Input Multiple-Output Hybrid Beamforming Algorithm | |
Jiang et al. | Multi-user hybrid precoding for dynamic subarrays in mmWave massive MIMO systems | |
CN109039400B (en) | Hybrid pre-coding/merging device design method based on matrix decomposition | |
CN111953393B (en) | Massive MIMO Hybrid Precoder and Matching Method | |
CN108736943A (en) | A kind of mixing method for precoding suitable for extensive mimo system | |
CN107809275B (en) | A limited feedback hybrid precoding method based on mmWave MIMO system | |
CN110233649B (en) | Dynamic subarray design method based on millimeter wave MIMO system | |
CN108683441B (en) | Multi-User Beamforming Method in Hybrid Precoding | |
Zhang et al. | An efficient hybrid diagonalization for multiuser mmWave massive MIMO systems | |
CN115001545B (en) | Mixed precoding method in millimeter wave large-scale MIMO system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20190705 |